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Instructions
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Abstrakt

Tato práce se zabývá návrhem a implementaćı virtuálńıho stroje pro kompon-
entově orientovaný programovaćı jazyk Compo. Komponentově orientované
programováńı je obecně založeno na skládáńı jednoduchých komponent do
komplexńıch systémů. Standardńı programovaćı jazyky v dnešńı době pracuj́ı
v drtivé většině s objektově orientovaným modelem. Objektově orientované
programováńı ovšem nenab́ıźı potřebnou úroveň abstrakce. V př́ıpadě převedeńı
komponentového modelu na objektový model existuje riziko postupného vytra-
ceńı požadované architekury systému. Komponentově orientované jazyky oproti
objektovým umožňuj́ı explictńı vyjádřeńı architektury př́ımo v kódu. Kom-
ponentově orientované modely jsou v neposladńı řadě o mnoho bližš́ı lidskému
myšleńı.

Kĺıčová slova komponentově orientované programováńı, Compo, mode-
lováńı systémů, virtuálńı stroj
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Abstract

This thesis deals with design and implementation of a virtual machine for
component-based programming language Compo. Component-based model-
ing is based on composition of trivial parts into complex systems. Ordin-
ary programming languages are mainly object-oriented these days. Object-
oriented programming does not offer needed level of abstraction. There is a
risk of loss of an architecture model while trying to transform a component
model to an object model. Component-oriented programming, in comparison
to object-oriented programming, provides explicit expression of architecture
directly in a code. Moreover, component-oriented programming is much closer
to the human way of thinking.

Keywords component-based programming, Compo, system modeling, vir-
tual machine
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Introduction

Software development evolution is faster and faster every year. Evolution
primarily lies in reusing solutions of sub-problems that were solved by someone
else in the past. From the ordinary programmer point of view, the whole
running computer with its complex circuits inside and its operating system is
a sub-problem solved before. Deep in the history, ones and zeros were the only
way to program computers. As programmers observed repetitive patterns in
ones and zeros, they realized that these patterns could have some names and
that they can be reused. These names represent the assembly languages.
Same process of reusing patterns occurred with assembly languages and later
with procedural languages.

Majority of today’s production programming langauges is object-oriented.
Object-oriented programming provides a decent way how to design and imple-
ment various types of software. However, there are some issues with common
object-oriented languages. The biggest problem is that object-oriented lan-
guages rely on programmer’s thoroughness and do not enforce correct struc-
ture of the code by itself. Therefore, new approaches of software engineering
are studied and the natural step is to make a reusage more explicit directly
in the code.

Current research shows that the component model is already known and
present, but only in the design phase of software engineering. TIOBE sur-
vey [1] shows that the most popular languages are object-oriented languages
like C++ or Java (and even Assembly language). Nevertheless, component
programming languages are already available.

Related work

This thesis is based on dissertation thesis of Ing. Petr Špaček, Ph.D. [2].
The dissertation thesis thoroughly analyses Component-based Software Engin-
eering (CBSE), goes through related existing technologies and mainly comes
up with principles of Compo — custom component-based programming lan-

1



Introduction

guage. The dissertation thesis contains detailed description of Compo lan-
guage. Many references of virtual machine functionality will be pointed into
the dissertation thesis. A part of the dissertation thesis is a prototype im-
plementation of a virtual machine for Compo written in Pharo — Smalltalk
development environment. This thesis benefits from Smalltalk implementa-
tion mainly in extracting the actual Compo grammar. Other inspirations by
Smalltalk implementation are less than humble.

Structure of the thesis

The text starts with Chapter 1, which contains brief exploration of current
CBSE, presentation of selected existing languages and frameworks and in the
end Compo language principles.

Chapter 2 contains description of structure of an existing Smalltalk proto-
type and overall description of the virtual machine architecture. This chapter
also justifies selection of used technologies.

Chapter 3 goes deep into the implementation of the virtual machine and
also explains various particular implementation decisions.

Chapter 4 is composed of description of test approaches and test reports.
Chapter 5 points out subjects for successors of this thesis.

2



Chapter 1

Analysis

This chapter covers the current state of CBSE research, presents existing
technologies and talks over the principles of Compo language.

1.1 Description of CBSE

Decomposition is the most natural way to solve problems. It is present in
almost every branch of industrial production. Clear example of decomposition
is automotive industry. Every car has an engine, wheels, a steering wheel —
all of these are components that are assembled together. The same approach
is applied in CBSE.

CBSE is an approach that uses COP1 to develop reusable components
(development for reuse) and to assemble software from these reusable off-
the-shelf components, connected together into various kinds of architectures
(development by reuse).

Software components enable practical reuse of software parts. There are
other units of reuse, such as libraries, designs, etc. As noted in [3]: ”soft-
ware components are binary units of independent production, acquisition, and
deployment that interact to form a functioning system”. Benefits of reusing
off-the-shelf components are obvious. Reusing improves quality and supports
rapid development. At the same time, change of requirements leads to change
of only affected components rather than the whole complex system.

Let us mention major advantages of CBSE:

• Reusability

• Maintainability

1Component-oriented programming is a programming technique and paradigm produ-
cing reusable components as the output of coding process.
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1. Analysis

• Clarity

• Flexibility

CBSE distinctly simplifes:

• Analysis of the system

• Understanging of how the system works

• Evolution of the system

1.2 Current state of CBSE

As mentioned in Introduction, CBSE is already present and known. Component-
based approach opens the door for the large-scale application development and
analysis. Current component-based approaches differ in many aspects.

One of the problems CBSE suffers from is that the component-based ap-
proach is not enforced by the most used — object-oriented — programming
languages. Component-based approach means to follow some rules or to util-
ize available frameworks while using an object-oriented language such as Java
or C++.

1.2.1 CBSE approaches

Following sections go briefly through three major categories of current CBSE
approaches as described in [2].

1.2.1.1 Generative strategy

Generative strategy utilizes ADLs2. ADLs provide high-level overview of soft-
ware system organization. An ADL describes the components which the sys-
tem is composed of, interconnection among them and constrains how compon-
ents interact. ADLs help during the design stage and aid in the communication
of system designers. ADLs are usually able to generate basic code skeletons
from architecture description. Architecture description is an abstract overview
of the system, therefore ADLs are implementation-language independent.

However, there are some issues with ADLs. A big gap appears between
the architecture description and the final shape of the system. As mentioned
herein, ADLs are implementation-language independent. It means that it is
not guaranteed that the design constraints submitted in the design stage keep
in the implementation stage. Moreover, design constraints may completely
vanish during system evolution and functionalities addition.

2Architecture Description Languages
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1.2. Current state of CBSE

1.2.1.2 Framework strategy

Framework strategy provides component models and development frameworks3.
Majority of frameworks is provided for ordinary object-oriented languages.
The software developer is able to achive quite good results using frameworks.
Frameworks offer a sort of programming guidelines to build complex system
from off-the-shelf components. The problem is that object-oriented language
does not enforce correct structure of the code by itself. Despite the fact that
development framework offers guidelines and a proper way for application
development, a user of that framework is able to violate offered rules.

1.2.1.3 Component-oriented language strategy

Generative strategy and framework strategy use ADLs4 or DSLs5 to model or
implement complex systems. There is a gap between these two approaches.
Lack of built-in architecture constraints check results in difficulties during
implementation, testing and software evolution stage.

COL6 strategy is an evolution compatible with previous strategies. It is
difficult to preserve the original idea while transforming design to implement-
ation. COLs enforce both strategies directly in the code. COLs operate in
a design domain and offer a natural way to build component-based systems.
Such programming languages have support for component definition and com-
position.

Listing 1.1 demonstrates implicit involvement of moving strategy.

class MovingObject {
private ∗ AbstractStrategy ;
public MovingObject ( ) { }
public void s e t S t r a t e g y ( AbstractStrategy ∗ s ) { . . . }
public AbstractStrategy ge tSt ra t egy ( ) { . . . }

}
Listing 1.1: Moving object example.

The intended semantics is: ”class MovingObject requires an instance of
custom implementation of AbstractMoveStrategy”. This example shows that
the requirement for a moving-strategy is made implicit. It means that a user
of this code may not be aware of this information without any knowledge of

3Software structure to support common programming tasks. Usually contains helper
programs, API libraries, etc.

4Architecture Description Language
5Domain Specific Language
6Component Oriented Language

5



1. Analysis

the internal structure of class or without any documentation. COLs made
the requirement explicit by allowing developers to express full description of
executable components.

The research in [2] showed that with COLs it is possible to bridge the gap
between the design and implementation stage. Conformity of architectural
constraints is automatically guaranteed, since these properties are captured
directly in the code. The research also showed that COL approach brings
better results in decomposition and decoupling.

Moreover, COL approach supports maintenance and evolution of software.
For instance, generative approach is forced to regenerate an implementation
code of an architecture design every time the design is changed. Managing
software evolution and productivity are the main interests of MDE7.

1.2.2 Selected existing technologies

This section shortly summarizes and describes some of the existing technolo-
gies concerning component approach.

1.2.3 ArchJava

ArchJava is a small, backwards-compatible extension to Java that integrates
software architecture specifications smoothly into the Java implementation
code. ArchJava seamlessly unifies the architectural structure and implement-
ation in one language allowing flexible implementation techniques, ensuring
treaceability between the architecture and the code, and supporting the co-
evolution of the architecture and implementation. According to [4], ArchJava
is intended to investigate the benefits and drawbacks of a relatively unex-
plored part of the ADL design space. ArchJava approach extends a practical
implementation language to incorporate architectural features and enforces
communication integrity. Key benefits are better program understanding, re-
liable architectural reasoning about the code and keeping the architecture and
the code consistent as it evolves.

To allow programmers to describe software architecture, ArchJava adds
new language constructs to support compontents, connections and ports. Ex-
ample listed in listing 1.2 code is taken from [4].

7Model Driven Engineering
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1.2. Current state of CBSE

Figure 1.1: Graphical compiler structure

public component class Parser {
public port in {

provides void s e t I n f o ( Token symbol , SymTabEntry e ) ;
requires Token nextToken ( ) throws} ScanException ;

}
public port out {

provides SymTabEntry s e t I n f o ( Token t ) ;
requires void compi le (AST ast ) ;

}
}

Listing 1.2: ArchJava parser example.

The Parser component class uses two ports to communicate with other
components in a compiler. The parser’s in port declares a required method
that requests a token from the lexical analyzer, and a provided method that
initializes tokens in the symbol table. The out port requires a method that
compiles an AST to an object code, and provides a method that looks up
tokens in the symbol table.

public component class Compiler {
private f ina l Scanner scanner = . . . ;
private f ina l Parser par s e r = . . . ;
private f ina l CodeGen codegen = . . . ;

connect scanner . out , pa r s e r . in ;
connect par s e r . out , codegen . in ;

public stat ic void main ( St r ing args [ ] ) {
new Compiler ( ) . compi le ( args ) ;

}

public void compi le ( S t r ing args [ ] ) {
// f o r each f i l e in args do :
. . . pa r s e r . parse ( f i l e ) ; . . .

}
}

Listing 1.3: ArchJava compiler example.
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1. Analysis

The Compiler component class in figure 1.1 contains three subcomponents:
a Scanner, a Parser, and a CodeGen. The scanner, parser, and codegen are
connected in a linear sequence with the out port of one component connected
to the in port of the next component.

1.2.3.1 CORBA

As described in [5], CORBA8 is a technical standard for ORB9. ORB is a
object-oriented version of an older technology called RPC10. ORB (or RPC)
is a mechanism for invoking operations on an object (or calling a procedure) in
a different (remote) process that may be running on the same, or a different,
computer. At a programming level, these remote calls look like local calls.

CORBA is sometimes referred to as middleware or integration software.
This is because CORBA is often used to get existing, stand-alone applications
communicating with each other. CORBA is also an object-oriented distributed
middleware.

CORBA utilizes definitions client and server, but CORBA is not as strict
about these terms as other computer technologies. In CORBA terminology, a
server is a process that contains objects, and a client is a process that makes
calls to objects. A CORBA application can be both a client and a server at
the same time.

An architectural aspect of CORBA is covered in its IDL11. An IDL file
defines the public API12 that is exposed by objects in a server application.
The type of CORBA object is called an interface, which is similar in concept
to a C++ class or Java interface. IDL interfaces support multiple inheritance.

Example in listing 1.4 is taken from [5].

8Common Object Request Broker Architecture
9Object Request Broker

10Remote Procedure Call
11Interface Description Language
12Application Programmig Interface

8



1.3. SCL, the predecessor of Compo

module Finance {
typedef sequence<s t r i ng> StringSeq ;
struct AccountDetails {

s t r i n g name ;
StringSeq address ;
long account number ;
double cu r r en t ba l ance ;

} ;
except ion insufficientFunds { } ;
i n t e r f a c e Account {

void deposit ( in double amount ) ;
void withdraw( in double amount )

r a i s e s ( insufficientFunds ) ;
readonly a t t r i b u t e AccountDetails detai ls ;

}
}

Listing 1.4: CORBA example.

IDL interface may contain operations and attributes. Attributes are syn-
tactic sugar for a pair of get- and set-style operations. Attribute can be
read-only, in which case it maps just to a get-style operation. The paramet-
ers of an operation have a specified direction, which can be in (meaning that
the parameter is passed from the client to the server), out (the parameter is
passed from the server back to the client) or inout (the parameter is passed
in both directions). Operations can also have a return value. An operation
can raise (throw) an exception if something goes wrong. One can notice, that
IDL is close to C++ language.

For further details on CORBA refer to [5].

1.3 SCL, the predecessor of Compo

The dissertation thesis [2] is based on previous work presented in [6]. SCL lan-
guage is intended to be a minimal basis of a really usable component-oriented
language. SCL was built to be minimal, simple, detailed and dedicated to
CBSE. The core of SCL is built upon the following concepts: a component, a
port, a service, a connector, a glue code, and the following mechanisms: port
binding and service invocation. All of these properties are composed into pro-
gramming language. A skilled programmer can develop independent, reusable
components with it. A less experienced programmer can reuse previously
created components and interconnect them into a new unit.

SCL utilizes class/instance approach and clearly distinguishes it. A com-
ponent is a run-time entity and is an instance of a component descriptor.

A communication protocol is built on unidirectional named ports. Ports

9



1. Analysis

allow programmers to group a set of services and require or provide this set
via required respectively provided ports. Components communicate by service
invocation through their ports.

Areas of SCL improvement are explicit architecture description and re-
flection. SCL is hard to use as an architecture description language, because
it focuses more on the functional aspect of components rather than on the
specification aspect.

1.4 Contribution of Compo

As stated in [2], contributions of Compo language are as follows:

• Uniformity. Compo proposes an everything is a component opera-
tional development paradigm. The system is self-described by the expli-
cit definition of the root of the instantiation tree (Descriptor) and the
root of the inheritance tree (Component).

• Architecture within implementation. Compo tries to integrate
smoothly a rich architectural description with a programming language
to enforce full structural conformance between design and implement-
ation. Compo provides architecture description constructs, so that de-
velopers can specify an architecture during designing and then fill in the
architecture with the Compo implementation code.

• Unique communication protocol. In SCL, sending service invoca-
tion through a port is the only possible way for two components to in-
teract. An effort was made to integrate an ownership relation to achieve
hierarchical design, thus solution based on internal required ports is pro-
posed.

• Openness and extensibility. Reflection provides the necessary levels
of openness making the language uniformly accessible by the user. It
opens the essential possibility that architectures, implementations and
transformations can all be written at the component level and using a
unique language. It encourages introspection and indeed adaptation of
the underlying structure and behavior of the platform.

• Modeling friendly inheritance system. Reuse scheme designed for
Compo is quite innovative in the context of CBSE, because it promotes
modeling power with covariant specializations. Using extends statement,
a new descriptor can be defined on the base of an existing descriptor,
such a descriptor is then called a sub-descriptor. Sub-descriptors may
introduce new ports or extend interfaces of inherited ports.

10



1.5. Basic description of Compo

1.5 Basic description of Compo

Only a very basic description of Compo language could be found in this section.
This thesis is not intended to be a complete reference of Compo language. For
further details refer to [2].

As described in [2], Compo is inteded to bridge the gap between an object-
oriented and an architecture-oriented design and also gather properties of
existing, though insufficient, approaches into one complete and comprehensible
language. Existing approaches were thoroughly examined in [2] and the result
is that all approaches together abound with decent amount of new concepts,
but these concepts are scattered around. For instance, both ArchJava (see
[4]) and ComponentJ (see [7]) present mechanisms that allow the building of
components, however, in ArchJava it is not possible, for instance, to export
the behavior of interal components and to define new component structures
at runtime. Unlike ComponentJ, which components are used to instantiate
objects, ArchJava’s components hold state variables, implemented methods
and communication ports.

1.5.1 The language philosophy

Compo’s philosphy is to keep the language as simple, minimal and uniform as
possible, while at the same time incorporate all core concepts and mechanisms
necessary for description and implementation of independent components and
for description and implementation of high-level component-based architec-
tures.

1.5.2 Concepts

This section benefits mainly from [2] as it is a complete reference for Compo
language.

• Component: a run-time entity which provides and requires services
through ports.

• Descriptor: an entity which describes the structure and the behavior
of a particular kind of components in terms of declaration and definition
of the external contract and the internal architecture.

• Port: a named communication and connection point; described by a
name and a list of service signatures.

• Service: a unit of behavior definition.

• Connection: describes a binding from one to another port.

11



1. Analysis

1.5.3 Mechanisms

• Component creation (instantiation): a mechanism for building new
components according to the description a descriptor defines. Such com-
ponents are then called instances of the descriptor.

• Service invocation: a mechanism for run-time communication in between
components.

• Composition mechanism: a mechanism for creating a new component
by connecting off-the-shelf components within the context of the new
component.

• Substitution mechanism: a mechanism for replacing components.

1.5.4 Example

Listing 1.5 shows a basic usage of Compo language. The same example as for
ArchJava was selected for better understanding.

12



1.6. Contribution of this thesis

descriptor Compiler {
provides {

in : { compi le ( ) }
out : { getCode ( ) }

}
internally requires {

scanner : Scanner ;
pa r s e r : Parser ;
codegen : CodeGen ;

}
architecture {

connect scanner to default@ ( Scanner .new( ) )
connect par s e r to default@ ( Parser .new( ) )
connect codegen to default@ (CodeGen .new( ) )
delegate i n @ s e l f to in@scanner ;
connect out@scanner to in@parser ;
connect out@parser to in@codegen ;
delegate out@codegen to out@se l f ;

}
service compi le ( ) {

. . .
}
service getCode ( ) {

. . .
}

}
Listing 1.5: Compo compiler example.

Descriptor Compiler externally (default visibility) provides two ports: in
and out. Ports provide services compile() respectively getCode(). Descriptor
internally requires three ports: scanner, parser and codegen. These ports are
interconnected as stated in architecture. Interconnection is quite obvious but
for clarity there is a diagram of interconnection shown in figure 1.2.

1.6 Contribution of this thesis

Contribution of this thesis is to explore options in designing and implement-
ation of a pure component-based virtual machine. Until now, there is not
such a real-world virtual machine. The closest concept is ArchJava (described
in section 1.2.3), but it benefits mostly from Java language (inheritance and
reflection). As described in [2], other component-based language approaches
are similar to ArchJava: it is a component-oriented language build upon an
object-oriented virtual machine.
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1. Analysis

Figure 1.2: Graphical structure of compiler.

1.7 Summary

Motivation for using CBSE13 as well as basic principles and existing tech-
nologies were described in this chapter. This chapter does not aim to fully
capture all details of Compo language, because it was exhaustively explored
and described in [2].

Following chapters go deep into a virtual machine design and implement-
ation.

13Component-Based Software Engineering
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Chapter 2

Design

This chapter discusses the following design topics: toolchain settings, extrac-
tion and final definiton of Compo grammar, design of frontend and virtual
machine core details. The virtual machine is implemented in C++ program-
ming language. Details on choice of C++ programming language can be found
in 3.1.1.

2.1 Overview

A very basic question ”What is the result of this thesis?” is answered here.

The result of this thesis is a prototype of the virtual machine for Compo
language. The virtual machine is implemented as an AST14 interpreter, thus
the frontend does not produce any bytecode, but AST. The prototype should
solve problems like bootstrapping, reflection and inheritance.

2.2 Used tools

Since toolchains and development environments are crucial every-day-life com-
ponents for any programmer, it is appropriate to devote few words to this part.

2.2.1 Flex and Bison

As described in [8], Flex and Bison are tools designed for writers of compilers
and interpreters, although they are also useful for many applications that will
interest noncompiler writers. Any application that looks for patterns in its
input or has an input or a command language is a good candidate for Flex
and Bison. Furthermore, they allow for rapid application prototyping, easy
modification, and simple maintenance of programs.

There is also a port for Microsoft Windows of these tools.

14Abstract Syntax Tree
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2.2.2 Perl language

An integral part of developer’s skills is the ability to write little helper scripts
that make his life easier. Perl language was used to create such scripts. This
choice was made because the Perl is a multiplatform and a very powerful
language. Perl was also used to simplify the process of typesetting of this
thesis.

2.2.3 Doxygen

Doxygen was used to create programmers reference. Following chapter may
refer to particular parts of doxygen documentation. Perl script for document-
ation generation is included in the attachments.

2.2.4 OCLint, CppCheck

OCLint and CppCheck static analyzers were used to improve the code quality.
Perl script for generation of static analysis is included in the attachments.

2.2.5 Valgrind

Valgrind is a multipurpose code profiling and memory debugging tool for Linux
when on the x86 and, as of version 3, AMD64, architectures. Valgrind is
automatically called during the tests and a report is generated into XML15

file.
Command-line parameters used:

− −leak−check=f u l l − −show−r eachab l e=yes − −track−o r i g i n s=yes

2.2.6 Ninja

Ninja is a small build system with a focus on speed. It differs from other build
systems in two major respects: it is designed to have its input file generated
by a higher-level build system, and it is designed to run builds as fast as
possible. Ninja was used because of quite a large amount of code, which was
relatively difficult for GCC16 to build in feasible time. Build times with Ninja
was reduced approximately by half. Time was measured on native Arch Linux
system, Kernel version 4.4.3, CPU: i7, 1.60GHz.

Release version of Compo vm is built with GCC.

2.2.7 CMake

CMake is multiplatform free software for automated builds in various operat-
ing systems. CMake is supported in Microsoft Visual Studio, Apple Xcode and

15eXtensible Markup Language
16GNU Compiler Collection
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Linux make. CMake also integrates Valgrind, Flex, Bison, Boost, all of which
are included in this project. Main configuration file is called CMakeLists.txt,
this file must be preserved. CMake generates a lot of temporary files. So
called out-of-source build places temporary files into separate directory, usu-
ally named build. CMake is also integrated with NetBeans IDE17.

2.3 Used libraries

STL18 and Boost[9] libraries were heavily utilized during the development
process.

2.3.1 STL

Besides some basic data structures such as a vector or a stack, the STL was
mainly used for shared pointers implementation. Shared pointers proved to
be very helpful element, because they simplified dynamic memory operations.

2.3.2 Boost

Boost library is mainly used for tests. It allows to create various test suites,
test cases and even to separate them into independent executable binaries.
This project uses only one testing binary (compiled from multiple source files)
with a large amount of testing code. For further details on tests, see 4.

2.4 Grammar extraction

Grammar was extracted from existing implementation in Pharo Smalltalk de-
velopment environment. Grammar in Pharo is implemented using PetitParser
tool. PetitParser is described in [10] as a parsing framework which makes it
easy to define parsers with Smalltalk code and to dynamically reuse, com-
pose, transform and extend grammars. Furthermore, PetitParser is not based
on tables such as SmaCC and ANTLR. Instead, it uses a combination of
four alternative parser methodologies: scanerless parsers, parser combinators,
parsing expression grammars and packrat parsers. As such PetitParser is more
powerful in what it can parse.

Pharo Smalltalk development environment window is shown in figure 2.1.
Window presents System browser and its subviews. Subviews are thoroughly
described in [11]. Subviews (respectively from left) represents packages, classes,
protocols and methods. The bottom view shows Smalltalk code — rule of
PetitParser.

17Integrated Development Environment
18Standard Template Library, standard library for C++ language
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2. Design

Figure 2.1: Architecture rule in Pharo Smalltalk development environment.

2.4.1 Grammar

Grammar has three sections. First section describes regular expressions for
identifier, constant and string literal matching.

Second section is typical procedural grammar. The procedural part is
inspired by C grammar, especially in an operator precedence part.

Third section contains Compo specific statements.
For complete grammar refer to appendix A

2.5 Frontend

Generally, frontend of any compiler-like application is composed of a lexical
analyzer (scanner), a syntactic analyzer (parser) and a generation of middle-
or directly back-end code. A lot of various libraries and tools are available but
only few of them are suitable. Following enumeration contains short reasoning
about the most well known tools for frontend generation.

• ANTLR: Sparse documentation for other languages than Java, sup-
ports only LL(*) grammars.

• Boost Spirit: Confused description of grammar rules. Grammar rules
are described with valid C++ code. For instance, an asterisk symbol19

must not be placed after an identifier alone, so the zero or more oc-
currences are described with asterisk symbol before regular expression
insted of after regular expression.

• LLVM: LLVM contains own Kaleidoscope language, nevertheless, it is
suitable primarily for implementing whole language for LLVM backend.

19Also known as Kleene star
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2.5. Frontend

• Flex + Bison: Supports LR grammars as well as C++ code generation.

From previous listing follows, that Flex and Bison combination is the most
suitable for this work. Thus, Compo’s frontend is built upon Flex scanner,
Bison parser and a custom code for AST20 generation.

Flex scanner is composed of regular expressions to match particular tokens.
Scanner is very straightforward in case of Compo. It contains only bunch of
keywords and few, more or less complex rules for identifiers, strings, constants
and comments matching. Tokens are defined in parser and parser header is
included in lexer. Flex file has .l extension.

Bison parser is quite complicated as it contains a lot of custom C++ code
and some intricate empty rules for special actions. In fact, Bison parser builds
an AST structure for later use. Bison file has .y extension.

Parser code contains various helper structures to hold currently parsed
rules. These structures are crucial because of Compo grammar complexity.
Some rules need additional actions to be taken.

A bit challenging was to implement and debug stacking contexts of nested
compound statements and nested service calls. Bison generates large bunch
of C++ (or C) code and it is possible to trace that code in debugger. Since
grammar rules have numeric identifiers instead of a name, the code is confusing
for quick navigation, etc. Therefore, one must orientate by C++ context.
Fortunately, majority of the code was moved into custom ParserWrapper class,
so the debugging was simplified a little bit.

For thorough description of frontend refer to the chapter 2.

2.5.0.1 Shift-reduce conflicts

Grammar contains two shift-reduce conflicts. First conflict is in the selec-
tion statement rule. This particular selection statement conflict is described
in [12], section Algorithm, subsection Shift/Reduce Conflicts. This conflict
is inevitable and Bison solves this issue by preferring shift before reduction.
Second conflict is in the expression rule. Bison solves this issue in the same
manner as previous conflict.

2.5.1 Abstract Syntax Tree

Abstract syntax tree is a common structure representing the source-code of an
application. Various kinds of trees could be found in the real-world compilers
and they are covered in [13]. Following listing describes major types:

• Parse tree: records the sequence of rules that parser applies as well as
the token it matches. It is not very useful for building interpreters and
translators.

20Abstract Syntax Tree

19
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• Homogenous AST: implements an abstract syntax tree using a single
node data type and a normalized child list representation. This makes
it particularly easy to build external visitors, which rely on a uniform
child list for walking.

• Normalized heterogeneous AST: implements an abstract syntax
tree using more than a single data type but with a normalized child
list representation. This pattern makes the most sense when it is ne-
cessary to store node-specific data. It is also easier to build external
visitor.

• Irregular heterogeneous AST: implements an abstract syntax tree
using more than a single node data type and with an irregular child list
representation21. Disadvantage of this approach is more complex visitor
implementation.

Compo frontend uses last option due to the fact, that Compo grammar
is complicated and with many exceptions. It would be difficult to traverse a
child vector in homogeneous AST and search for some particular node. In fact,
visitor implementation is large bunch of code and the complexity raises with
every new node. But it pays off more than searching and traversing vectors
of childs.

Figure 2.2 shows an example of irregular AST for while loop. Figure 2.3
shows an example of irregular AST for descriptor. Note that every AST node
has a different type.

2.6 Bootstrapping

Bootstrapping is known as a procedure where a simple computer program
initializes a complex computer program. The most well known example of
bootstrapping is BIOS22. In context of virtual machines, it is understood as a
process that produces a minimal functional system (kernel). Virtual machine
bootstrapping is described in [14].

To go deep into Compo’s bootstrapping mechanisms, it is necessary to in-
troduce concepts of introspection, reflection and reification. Following defini-
tions are taken from [15]

Definition 1. Introspection is the ability of a program to observe, and there-
fore reason about its own state.

Definition 2. Reflection is the ability of a program to modify its own exe-
cution state or alter its own interpretation or meaning.

21Instead of uniform list of children, each node data type has specific (named) child fields.
This leads to more readable code

22Basic Input/Output System
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2.6. Bootstrapping

Figure 2.2: Abstract syntax tree for while loop.

Figure 2.3: Abstract syntax tree for descriptor.
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Figure 2.4: Essential part of Compo meta-model: relationship of Component
and Descriptor.

Definition 3. Both of introspection and reflection require mechanism for en-
coding execution state as data. Providing such an encoding is called Reflec-
tion.

There are two kinds of reflection: structural and behavioral. The structural
reflection is considered easier to implement. Languages such as Lisp, Prolog,
Smalltalk, and others have included structural reflection for a long time. The
structural reflection involves for example addition and alteration services at
runtime.

The behavioral reflection touches aspects governing the semantics of pro-
grams. The behavioral reflection is not described in this thesis, for further
details on behavioral reflection refer to [16].

2.6.0.1 Compo reflection

The structural reflection in Compo is captured by following two definitions:

Definition 4. Descriptor Component is a basic descriptor and the root of
inheritance tree, all descriptors inherit it.

Definition 5. Descriptor Descriptor is a sub-descriptor of descriptor Com-
ponent. It describes descriptors (it is a meta-descriptor) and is the instance
of itself.

For further details refer to [2].

2.6.1 Bootstrapping approaches

A lot of existing approaches were described and implemented. Some of them
are described in [14] for Smalltalk virtual machine. Basic idea behind Small-
talk bootstrapping is to obtain existing kernel23 and load it into the virtual

23Minimal system, containing basic language constructs
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machine memory. Altough, this introduces the problem of an egg and an
chicken: where the first kernel was made? The answer is that the very first
Smalltalk virtual machine had to generate kernel by itself.

2.6.2 GNU Smalltalk bootstrapping from scratch

As stated in [14], GNU Smalltalk is the only Smalltalk implementation that
is able to recreate a new image from scratch. The GNU Smalltalk virtual
machine, written in C, performs this task. The bootstrap function in the
virtual machine creates some objects like true, false, nil, the characters, a
symbol table, etc. Next, the class and metaclass hierarchy is created. For
each class, there is a C struct that stores all its information like its shape,
its name and its instance variables. Finally, an entry is added into the global
symbol table for each class. Next, the kernel source files are loaded file by file
and are executed as a regular Smalltalk execution.

The main advangate of this approach is to produce a clean image. Un-
fortunately all the process is defined in C as a part of the virtual machine
code. Therefore it is tedious to change and reflection can not be utilized at
this stage.

2.6.3 Compo Bootstrapping

Bootstrapping from scratch approach was chosen due to the fact that there is
no previous existing Compo virtual machine. Thus, no previous kernel can be
obtained and loaded into the virtual machine memory.

Like in GNU Smalltalk, there are two stages of bootstrapping.

2.6.3.1 Stage 1

To build Component component and open up reflection capabilities it is ne-
cessary to define primitive structures, which the Component component is
composed from. Definition 6. is taken from [2]. Definition 7. was newly
invented for the same reason as the primitive port.

Definition 6. Primitive port behaves like a port but is not a component. Ports
declared in the Port descriptor (or its sub-descriptors) are automatically made
primitive to avoid infinite regression.

Definition 7. Primitive service behaves like a service but is not a compon-
ent. Services declared in the Service descriptor (or its sub-descriptors) are
automatically made primitive to avoid infinite regression.

First stage of bootstrap builds basic Component component, listed in ap-
pendix B, from primitive structures. At this moment of bootstrapping, there
is no non-primitive structure available, thus, there is no other option.
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Next, all other basic components (Port, Service, PortDescription, etc.)
are built from primitive structures. It may look convenient to compose only
Component, Service and Port components from primitive structures and oth-
ers build on top of these. But there is an underlying issue. Port component
depends on Interface component, Interface component depends on ServiceSig-
nature component, etc. Thus, when one wants to create Port component, he
first has to create Interface and ServiceSignature, but there is no non-primitive
Port at the moment. So, for the sakes of clarity, everything in the first stage
is built up from primitive structures.

The previous paragraph introduced descriptors, which are not defined in
[2], although they are used as inner structures of given descriptors. Newly
invented descriptors are listed in appendix B

At this moment, basic components exist and at the same time they provide
reflective properties.

2.6.3.2 Stage 2

Second stage of bootstrap builds Descriptor component on the top of previ-
ously created components. There is one exception: service new() has to be
created as primitive and filled with a native code. This code takes all inform-
ation contained in a descriptor and builds an appropriate component object
in the memory.

Second stage also creates System component for basic interaction with real
world. System component contains input/output operations, in the future it
can also contain networking, filesystem operations, etc.

Second stage bootstrap is a unique interface to the interpreter. Calling
second stage bootstrap methods is the only way how to obtain a new com-
ponent of any type.

2.6.4 Inheritance

Compo inheritance is defined in [2] — it says that Compo supports only single
inheritance (choice 24 in [2]) and every descriptor inherits directly or trans-
itively (via its parent’s descriptor) from Component descriptor (choice 35 in
[2]).

Inheritance is one of important features of Compo. An essential inheritance
usage is shown in figure 2.4. Some kind of inheritance has to be present during
both stages of bootstrapping.

Inheritance in the first stage of bootstrapping is present in a form of hard
copy of parent properties to the child component.

Inheritance in the second stage of bootstrapping is done by referencing to
the parent and child component. The descriptor always holds the name of
the parent descriptor. In the process of the new component creation, a parent
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2.7. Interpreter execution

Figure 2.5: Clash of parent components.

component (respectively components) is (respectively are) created first and
then connected to the child components.

2.6.5 Inheritance issue

There is an issue with inheritance. Every component is derived from Compon-
ent component, which posseses super, self and default port. In [2] is stated
that the super and self ports are delegated to the default port of a parent
component. This definition introduces a clash of connections, because there
are two kinds of parents. Refer to the figure 2.5. There is a base Component
component and two inherited components. Child1 inherits from Component.
Child2 — as stated in subsection 2.6.4 — inherits from Component descriptor.
At the same time, there is no support for multiple inheritance, so there is no
way how to inherit from Child1. Probably the multiple inheritance is the
solution for this issue.

2.7 Interpreter execution

Running of computer programs can be realized in various ways. The straight-
forward way to execute a program is to rewrite it to a machine code of a
given machine and run the code. This is a very complex task for high-level
languages. Compo is a high-level language.

Further options are far simpler and involve virtual machines. Three very
basic approaches are:
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• Syntax-directed interpreter: This approach is usually used in simple
domain-specific languages, e.g. SQL.

• Tree-based interpreter: Tree interpretation is used by dynamic lan-
guages like Lisp or Prolog.

• Bytecode interpreter: Bytecode interpreter is the most complex way
to interpret languages. Standard object-oriented languages like Java go
this way.

Intended outcome of this thesis is an AST interpreter. Interpretation is
done in a typical way using an endless loop with large swith-case commands,
where every case processes a particular AST node. As there is a requirement
to compile the service code during the runtime, an interpreter holds reference
to the parser and provides a method for service code parsing.

The interpreter also contains two structures for semantic checking.
First structure is a descriptor table, which holds references to all user-

defined descriptors as well as Compo descriptors (Service, PortDescription) to
maintain reflective properties such a service and port addition.

Second is service context stack which holds context of the currently ex-
ecuted service and its sub-compound statements.

2.8 Memory

The whole project heavily utilizes shared pointers from STL. Due to the fact
that Compo’s internal structure is complicated, every component has to be
allocated and deallocated in a systematic way. Many circular dependencies
occur, thus it is not possible to maintain a correct dynamic memory structure
without any memory management.

The memory is implemented as multiple vectors, holding strong refer-
ences24 to any kind of inner objects. Each vector holds references to different
kind of inner object to distinguish the way the object is managed. Inner ob-
jects are components, primitive services and primitive ports. All of the inner
objects can have circular dependecies on each other.

Components, primitive ports and primitive services hold weak references
to their inner properties.

24Strong reference holder is entity, which is responsible for memory deallocation.
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Chapter 3

Implementation

3.1 Implementation notes

3.1.1 Choice of programming language

C++ programming language was chosen to implement Compo virtual ma-
chine. C++ code benefits mainly from STL shared and weak pointers. Thus,
almost no memory management is needed and no new or delete C++ keywords
could be found across the code.

3.1.2 Memory management

As stated in section 2.8, the internal structure of Compo is complicated and
circular dependencies are inevitable. So the reasoning about weak pointers is
suitable at this place. Every structure mentioned further is managed with a
weak pointer or a shared pointer.

3.1.3 Namespaces

The whole project is divided into namespaces to avoid naming clash. The dis-
advantage of using namespaces is the length of fully qualified names. There-
fore, namespace definitions are used. Directory include/definitions contains
AST definitions, memory objects definitions as well as interpreter entities
definitions. There are also STL pointers definitions. The decision to create
these definitions was made due to the code complexity and poor readability.
Downside of this approach is slowed compilation because of many included
files. Namespaces reproduce directory tree hierarchy.

3.2 Grammar implementation

Grammar is implemented by using Flex lexer and Bison parser. The descrip-
tion and examples follow. Only basic examples are shown, for complete listing

27



3. Implementation

refer to the attached source code.

3.2.1 Flex scanner

Example of a rule in Flex is shown in listing 3.1. There is an Identifier variable
which holds a regular expression for identifier matching. Note that identifiers
in Compo are allowed to start with upper-case letters. <INITIAL>stands for
initial state of lexer, therefore Identifier and architecture have to be matched
from initial state as well as COMMENT state. It is evident that state INI-
TIAL is changed to COMMENT with slash and asterisk symbols, everything
else is ignored (including newlines) and with another slash and asterisk sym-
bols, COMMENT state is changed back to the INITIAL state. Identifier is
represented by instance of class CSymbol, pointer to which is sent through
yylval variable.

I d e n t i f i e r [ a−zA−Z ] [ a−zA−Z 0−9]∗

<INITIAL>{ I d e n t i f i e r } {
yy lva l = std : : make shared<nodes : : p rocedura l : : CSymbol>

( std : : s t r i n g ( yytext , yyleng ) ) ;
return IDENTIFIER ;

}

<INITIAL>”/∗” {BEGIN(COMMENT) ; }

<COMMENT>”∗/” {BEGIN( INITIAL ) ; }

/∗ Multi−l i n e comments a l l o w e d ∗/
<COMMENT>\n {}

<COMMENT>. {}

<INITIAL>architecture {return ARCHITECTURE;}
Listing 3.1: Flex rules example.

3.2.2 Bison parser

3.2.2.1 Basic rule

Bison parser utilizes tokens received from Flex lexer and builds syntactic rules
upon them. Appropriate action is taken while the rule is matched. Usually it
is creation of some particular AST25 node and sending pointer to node into
the pseudo-variable $$. Pseudo-variable $$ stands for the semantic value for

25Abstract Syntax Tree
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the grouping. The lower-case string means a syntactic rule, upper-case means
a token. The descriptor rule matches keyword DESCRIPTOR, name of the
descriptor represented by an IDENTIFIER, inheritance rule and compo expr
rule enclosed in brackets. The only important parts are captured in listing 3.2
for sakes of simplicity (for example shared pointers are omitted).

3.2.2.2 Nested structure rules

Rules for nested structures parsing are very interesting and they required some
reasoning. In the first place, it is necessary to clarify, how the Bison parser
works. While there is a rule with a related action, the action is taken after
the whole rule — with all its sub-rules — is matched. As long as grammar
contains nested structures, there is a need to save the context before the rule
is matched. There are two solutions for this situation:

1. Place brackets with C++ code before the nested rule. This is also called
the ”mid-rule”26.

2. Add an empty rule that contains only brackets with C++ code to the
beginning of the nested rule

Second option was selected for the sakes of clarity. First option looks quite
tangled, because the second half of the rule may be confused with alternative
rule. This rule is shown in listing 3.2. Note the rule push context, which does
not have any associated statements on the right side of the rule. An action is
taken if this rule is expanded.

26http://www.gnu.org/software/bison/manual/html_node/Using-Mid_002dRule-
Actions.html#Using-Mid_002dRule-Actions
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compound statement
: push context ’ { ’ t emporar i e s s t a t e m e n t l i s t ’ } ’
{ $$ = parser−>getCurrentCompoundBody ( ) ;

pa r s e r
−>setCurrentCompoundBody ( parser−>popBlock ( ) ) ;

}
| push context ’ { ’ ’ } ’
{ $$ = n u l l p t r ; }

;

push context
:
{ parser−>pushBlock

( parser−>getCurrentCompoundBody ( ) ) ;
parser−>setCurrentCompoundBody (CCompoundBody ( ) ) ;

}
;

Listing 3.2: Bison rule example.

3.2.2.3 Rule for matching service code

To fulfill basic requirement of Compo — to parse service code during runtime
— there is one special rule.

While going through parsed text, the parser exactly matches tokens, given
by the lexer. Tokens are divided by whitespace characters. It is necessary
to do some magic to match the whole service code (with all whitespaces and
newlines) at once and preserve the result.

Bison parser thus contains a special rule to switch Flex state. This rule is
listed in listing 3.3. Note that C++ code in curly brackets before a parser
state is executed first, then the rule is expanded. So the state is switched before
the token is parsed. After switching the lexer state, the lexer is instructed to
match input regardless of whitespaces. Clue for the lexer are opening and
closing brackets (’{’ respectively ’}’).

The lexer contains a counter. The counter is incremented with opening
bracket and decremented with closing bracket. When the counter is equal
zero, the state is switched back to the initial state and a string literal token
is returned.

Previous section offered two options for ”mid-rule” and the second was
chosen. First option was chosen for this issue due to the fact that an action to
be taken is only one command and in this simple case it will not be confused
with an alternative rule.
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s e r v i c e c o d e
: { parser−>getLexer ()−> s e t S e r v i c e S t a t e ( ) ; }

STRING LITERAL
{ $$ = $2 ; }

;

Listing 3.3: Special Bison parser rule to match whole service code.

3.2.2.4 Operator precedence rules

There are a lot of existing solutions of how to implement operator precedence
rules in grammar. A brief description with reasoning about which one to
choose follows.

• Edsger Dijkstra’s shunting yard algorithm: First described in [17].
Have to be implemented as a whole algorithm from scratch. Not suitable
for simple addition of rules into the grammar.

• Vaughan Pratt’s top down operator precedence method: First
described in [13]. Recursive descent parser. Not suitable for Compo LR
grammar.

• Precedence climbing method: Described in [18]. Not as efficient as
previous methods; form of parser rules; suitable for needs of Compo.

Listing 3.4 shows the practical usage of a precedence climbing method.
Listing contains only a short excerpt.
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pr imary expre s s i on
: IDENTIFIER
{ $$ = $1 ; }

| CONSTANT
{ $$ = $1 ; }

| STRING LITERAL
{ $$ = $1 ; }

;

m u l t i p l i c a t i v e e x p r e s s i o n
: p r imary expre s s i on
{ $$ = $1 ; }

| m u l t i p l i c a t i v e e x p r e s s i o n ’ ∗ ’ p r imary expre s s i on
{ $$ = CMult ip l i ca t i onExpre s s i on ( $1 , $3 ) ; }

| m u l t i p l i c a t i v e e x p r e s s i o n ’ / ’ p r imary expre s s i on
{ $$ = CDiv i s ionExpress ion ( $1 , $3 ) ; }

;

a d d i t i v e e x p r e s s i o n
: m u l t i p l i c a t i v e e x p r e s s i o n
{ $$ = $1 ; }

| a d d i t i v e e x p r e s s i o n ’+’ m u l t i p l i c a t i v e e x p r e s s i o n
{ $$ = CAddit ionExpress ion ( $1 , $3 ) ; }

| a d d i t i v e e x p r e s s i o n ’− ’ m u l t i p l i c a t i v e e x p r e s s i o n
{ $$ = CSubtract ionExpress ion ( $1 , $3 ) ; }

;

a s s i gnment expre s s i on
: l o g i c a l o r e x p r e s s i o n
{ $$ = $1 ; }

| pr imary expre s s i on ASSIGNMENT expr e s s i on
{ $$ = CAssignmentExpression ( $1 , $3 ) ; }

exp r e s s i on
: a s s i gnment expre s s i on
{ $$ = $1 ; }

;

Listing 3.4: Example of precedence climbing method.
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Figure 3.1: AST namespaces.

3.3 Abstract syntax tree structure

This section describes the AST creation and its basic structures. The AST is
created while parsing a source code. A lot of C++ code is included in Bison
source file to match the particular rule and build a corresponding node.

3.3.1 Namespaces

Figure 3.1 shows the namespaces structure for the AST part. There are two
namespaces for AST nodes. A Compo part and a procedural part are sep-
arated to avoid confusion and to distinguish interpretation of an ordinary
procedural part and a component part. Third namespace contains various
visitors.

3.3.2 AST nodes

As stated in chapter 2, the AST is in a form of an irregular heterogenous tree.
Thus, every node type has a different inner structure. Listing 3.5 presents
simplified class that represents the AST node for Compo descriptor. Note
inheriting from std::enable shared from this<CDescriptor> and virtual void
accept(...) method. These features enable implementing of an external visitor
design pattern. Constructor is heavily simplified because of length of default
parameters. For details refer to the attached code.

Listing 3.5 is C++ representation of AST depicted in figure 2.3.
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class CDescr iptor
: public CDescriptor ,

public enab l e sha r ed f r om th i s<CDescriptor> {
private :

shared ptr<CArchitecture> m arch i t e c tu re ;
vector<shared ptr<CPort>> m ports ;
vector<shared ptr<CService>> m serv i c e s ;
vector<shared ptr<CConstraint>> m const ra in t s ;

public :
CDescr iptor ( . . . ) ;
virtual void accept (

shared ptr<CAbstractVis i tor> v i s i t o r ) ;

s i z e t g e t S e r v i c e s S i z e ( ) ;
s i z e t g e t C o n s t r a i n t s S i z e ( ) ;
s i z e t g e tPo r t sS i z e ( ) ;
shared ptr<CService> getServ i ceAt ( int index ) ;
shared ptr<CConstraint> getConstra intAt ( int index ) ;
shared ptr<CPort> getPortAt ( int index ) ;
shared ptr<CPort> getPortByName ( s t r i n g name ) ;
shared ptr<CArchitecture> ge tArch i t e c tu r e ( ) ;
shared ptr<CService> getServiceByName ( s t r i n g name ) ;

} ;

Listing 3.5: The Descriptor class.

The root of the inheritance tree is class CNode which contains a type of
node. An excerpt of the inheritance tree is shown in figure 3.2.

3.3.3 Visitors

As stated in [19], the visitor design pattern comes under the behavioral pattern
category. The visitor design pattern represents an operation to be performed
on the elements of an object structure. The visitor design pattern defines
a new operation without changing the classes of the elements on which it
operates.

Figure 3.3 shows an excerpt from AbstractVisitor class.

Compo vm implements three kinds of visitors:

• SemanticCheckVisitor: performs a very basic semantic checking.

• PrintVisitor: performs printing of the code in a readable form (with
proper whitespaces).
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Figure 3.2: AST inheritance tree.

Figure 3.3: Visitor structure.
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• ConstantsVisitor: searches for constants contained in a given subtree
— used by Service component which holds references to constants in its
code.

3.4 Memory objects implementation

The VM’s memory contains various kinds of objects. Each elementary object
is an instance of class CComponent, which represents Compo Component.
Component contains references to other components or other non-component
objects.

3.4.1 Component

Listing 3.6 presents an excerpt from CComponent class. It is evident that
CComponent class holds weak references to its properties. Weak references
are necessary because of avoiding circular dependencies.

As defined in [2], Component consists of ports (vector of references to
instances of class CGeneralPort) and services (vector of references to instances
of class CGeneralService). There is also a weak reference to children and a
parent. Class CComponent contains many methods for services and ports
lookup.

class CComponent
: public enab l e sha r ed f r om th i s<CComponent> {

protected :
weak ptr (CComponent) m parent ;
weak ptr (CComponent) m chi ld ;
vector <: weak ptr ( CGeneralPort)> m ports ;
vector <: weak ptr ( CGeneralService)> m serv i c e s ;

public :
CComponent ( ) ;
virtual ˜CComponent ( ) ;
. . .

}
Listing 3.6: The Component class.

3.4.1.1 Inheritance

The inheritance is represented by parentName port definition in Descriptor
descriptor. While creating new instance of a sub-descriptor, all instances of
super-descriptors are created first in the proper order. These instances —
components — are interconnected with the child and parent references.
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Figure 3.4: Example of complicated component.

3.4.1.2 Component copying

Component copying is a complex task because of tangled Compo inner struc-
ture. The natural way to think about copying a component is to copy its inner
structure and do not touch outter environment.

Refering to the figure 3.4 taken from [2]. Let’s suppose that outter envir-
onment holds the reference to the default port of HTTPServer and it wants
to make a copy of it. As showed in listing 3.6, component holds only refer-
ences to ports27. So the component does not know, whether inner components
are connected or not. Therefore, the component itself cannot decide how to
interconnect a newly created copy.

Next step is to distinguish components, which are in fact Port compon-
ents. Port components would be copied in the same manner as the standard
component with one exception. The port itself has to decide, wheter it is an
internal or an external port and what is its role. Moreover, this information is
available at the runtime because everything (including port) is a component.

This implies that a simple copy constructor is not sufficient and extra work
must be done to copy the whole inner structure.

The copy constructor can do the job of copying ports, services, parents
and children. Extra work lies in duplicating connections, which depend on
the runtime information.

27References to ports are not references to the connected ports, but references to the
instances of Port descriptor (primitive ports respectively).
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3.4.2 Ports

Compo defines two kinds of ports: primitive ports and instances of Port
descriptor. Nevertheless, a component is not aware of primitive ports. Com-
ponents deal with all ports in the same manner. The class CGeneralPort was
invented for this reason. Class CGeneral port provides a uniform interface to
the user and internally holds a reference to the real port. The real port is a
primitive port (exclusively) or a Port component.

CGeneralPort also provides semantic information about ports such a vis-
ibility, role and primitiveness flag. This is useful especially while validating
service invocation through a particular port. Interpreter does not have to
search for inner structures and simply calls a suitable getter.

3.4.3 Services

As it was described in [2], Compo defines only Service component. But there is
a problem of infinite regression while building the Service component, because
the Service component also contains service(s). Thus, primitive services were
added.

The situation is the same as for ports at this point. CGeneralService class
is implemented and it is treated as a Service. The Service component contains
a service code in a text form, which allows the programmer to alter a service
code dynamically at the runtime.

3.4.4 Primitives

This section describes primitive entities of Compo. Primitive entities are
necessary elements to avoid infinite regression.

3.4.4.1 Abstract primitive class

CAbstractPrimitive is a base class to inherit from for primitive entities. Usual
Compo component contains a name, e.g. a port name or a service selector,
and an owner (respectively context). CAbstractPrimitive class implements
these properties with std::string instance variable and weak pointer to owner
CComponent object.

3.4.4.2 Primitive port

An excerpt from CPrimitivePort implementation is shown in listing 3.7. CPrim-
itivePort class contains all properties, according to Port descriptor. owner and
name ports are included in CAbstractPrimitive base class. connectedPorts,
respectively delegatedPorts ports are represented by m connectedPorts, re-
spectively m delegatedPorts. interfaceDescription — if any — is represented
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by m connectedServices.

class CPrimit ivePort : public CAbstractPr imit ive {
private :

vector<weak ptr ( CGeneralPort)> m connectedPorts ;
weak ptr ( CGeneralPort ) m delegatedPort ;
vector<weak ptr ( CGeneralService)> m connectedServ ices ;
bool m isDelegated ;
bool m i s C o l l e c t i o n ;

public :
CPrimit ivePort ( ) ;
virtual ˜ CPrimit ivePort ( ) ;

} ;

Listing 3.7: The primitive port class.

3.4.4.3 Primitive service

The primitive service contains only std::function<... > callback which ex-
ecutes its code while invoked. The code of a primitive service is filled in
during bootstrapping.

class CPr imi t iveServ i ce : public CAbstractPr imit ive {
private :

funct ion<ptr ( CGeneralPort ) ( const ptr (CComponent)&)>
m cal lback ;

public :
CPr imi t iveServ i ce ( ) ;
virtual ˜ CPr imi t iveServ i ce ( ) ;

} ;

Listing 3.8: The primitive service class.

3.5 Exceptions

Exceptions provide a way to react to exceptional circumstances (like runtime
errors) in programs by transferring control to special functions called handlers.

Compo virtual machine contains many exceptions to distinguish all error
states. Elaborated error handling is a foundation for successful debugging
and tracing of complex applications. A lot of exception types proved to be
handy tool to track unhandled states. No exceptions were thrown during
experimenting development stage, because it is not worth elaborating deeply
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something which is not proven to be right. However, it was a big leap to add
exceptions when concepts were verified.

3.5.1 Abstract exception

There is CAbstractException class which is derived from std::exception. CAb-
stractException is derived from std::exception to coalesce with standard C++
exceptions and to enable to catch the most general exception. CAbstractEx-
ception class contains a string to hold the message set in the constructor.

3.5.2 Semantic exceptions

Semantic exceptions are thrown when wrong semantic behavior is encountered.
Acutally, these exceptions are thrown both in compile time and at runtime.
Semantic exceptions comprise redefined/undefined variables or ports, wrong
port usage or referencing of wrong AST node.

3.5.3 Runtime exceptions

Runtime exceptions are thrown exclusively at runtime. Runtime exceptions
concern calling an unknown service, calling a service with a wrong number
of parameters, referencing a wrong port or calling a service on a wrong port.
These exceptions were extremely useful during the service invocation imple-
mentation.

3.5.4 Execution exceptions

Execution exceptions cover a special case of exceptions. Compo language re-
quires return statement. return statement cannot be mapped to return state-
ment in C++ but, at the same time, return statement has to unroll execution
back to the service invocation. Moreover, return statement may contain a
value. The simple solution to this problem is to throw an exception which will
be caught in an invoking code. The return exception contains pointer to the
returned value and the invoking code may easily extract returned value.

Same principle is used for continue and break. If continue or break is
encountered in a loop code, the rest of the code in the black is skipped and
execution whether continues with a new iteration or ends. There are another
two special types of exceptions for this purposes.

3.6 Bootstrapping implementation and structures

The bootstrapping code is placed into two separated classes representing
two stages of bootstrapping. The second stage possesses a reference to the
first stage and the first stage allocates everything through a reference to the
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Figure 3.5: Example of communication between first stage bootstrap and
memory.

memory. Compo’s memory is implemented as a separate class, referencing
the first stage of bootstrap. The memory and the first stage of bootstrap be-
nefits from each other. Figure 3.5 shows example of communication between
bootstrap and memory objects.

3.6.1 Core modules

Directory coreModules contains Compo source codes with basic structures
for bootstrapping and reflection. Compo source code of core modules is lis-
ted in appendix B. Basic structures help with bootstrapping in a sense of
adding ports and bare services. Services are then filled in with the appropri-
ate method and the corresponding callback. As stated in 3.4.4.3, the first stage
of bootstrapping contains only primitive services. An original idea was to ex-
ecute these modules in the second (or maybe third) stage of bootstrapping
in Compo interpreter and place them into the descriptor table. Nevertheless,
the first stage bootstrapping showed to be a complex task and executing of
core modules is left for the future work. First intention was also to have some
kind of clue to follow and not to create whole inner structure in C++ code —
as it is in a case of GNU Smalltalk.

3.6.2 First stage bootstrapping

First stage bootstrapping is represented by CBoostrapStage1 class.

First stage bootstrapping loads core modules and provides methods to
build core components. As there is no inheritance at the first stage of boot-
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strapping, a bootstrapped component is made of one object without any par-
ent/child component. bootstrapComponent() is a method which prepares base
Component component, based on information obtained from core modules.

Next there are methods for ports and bare services addition. These meth-
ods iterate through the provided AST descriptor (which is parsed from Compo
core modules) and create primitive ports and services from provided AST de-
scription.

Other components, like Port, PortDescription, Service, etc. are created in
the same manner as Component with the exception that their properties are
added directly to the Component component without inheritance features.

3.6.3 Second stage bootstrapping

Second stage bootstrapping is represented by CBoostrapStage2 class.

Second stage bootstrapping is created to provide one major method. This
major method is bootstrapDescriptorComponent() and almost all other meth-
ods in CBoostrapStage2 class are only support methods for bootstrapDescriptor-
Component() method.

bootstrapDescriptorComponent() method takes an AST of the descriptor as
a parameter and builds Descriptor component from non-primitive structures.
Descriptor component services should be made as non-primitive. However,
in order to saving time and also due to the fact that there are unsupported
features in Compo interpreter, some of the services are currently primitive.

The most important primitive service of Descriptor component is service
new(). Service new() manufactures Component component from information
provided by Descriptor component. In other words, Component component
is made from runtime information, contained in Descriptor component. This
property directly implies reflection as it is possible to change structure of
Descriptor component at runtime and produce a brand new Component.

The second stage bootstrapping also provides methods for obtaining value
components.

3.7 Value components

Values in Compo are represented by special components. There is CValue
class, which inherits from CComponent — it preserves ”is-component” prop-
erty — and also deletes (at C++ level with keyword delete) unnecessary meth-
ods. Values also have to be bootstrapped because of one tiny C++ feature.

Every component must possesses a default port. Thus, value components
must also posseses a default port. One may think that it is easy to add a
default port while creating a value component. But there is a little hitch.
The default port (whether it is primitive or not) holds reference to the owner.
So the reference to the owner could be set up in a constructor of a value
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component (the owner of the default port is just the value component). But
this is not possible with shared pointers from STL.

An object which inherits from std::enable shared from this must be fully
created to pass shared from this() reference. It implies that an owner reference
cannot be set up in a constructor.

Value components creation is included in the second stage bootstrapping.

Compo currently supports:

• Signed integer: internally implemented as 8 byte signed int.

• Boolean: internally implemented as simple C++ bool data type.

• String: internally implemented as std::string.

3.8 System component

System component provides basic services for input and output:

• print(): prints provided attribute to the std::cout without newline at
the end.

• println(): prints provided attribute to the std::cout with newline at the
end.

• readString(): reads exactly one string (without whitespaces) from std::cin.

• readLine(): reads whole line from std::cin.

• readInt(): reads integer from std::cin.

There is also an experimental service getRand() which returns a pseudo-
random number.

3.8.1 Reflection

Current implementation supports all elementary features of a reflection. Al-
though, the interface defined in [2] supports only basic features. Moreover,
there was a time constraint to invent a richer interface, that supports opera-
tions for real-world application.

Running reflection examples are shown in the testing code. For further
details refer to the attached source code or to the chapter 4
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3.8.1.1 Reflective descriptor

Since the Descriptor component is a runtime entity, it can be queried and
altered at runtime. Descriptor descriptor provides a sufficient interface for
a real-world application. There are services for setting the name of the
Descriptor, the name of the parent Descriptor, new services, new port descrip-
tions and connections descriptions (from which the architecture of a compon-
ent is produced). There are of course corresponding getters.

All descriptors are parsed when the interpreter is launched. Then the ASTs
of particular descriptors are one by one bootstrapped from the second stage
and placed to the descriptors table. Descriptors table is a kind of a global
environment available to the programmer through the Compo environment.

3.8.1.2 Reflective ports

The reflection of ports is allowed thanks to the PortDescription descriptor.
New instance of PortDescription descriptor can be made, filled and finally
joined to the existing descriptor. Second option is to get existing PortDe-
scription from any of the descriptors in the descriptor table and alter its inner
properties.

3.8.1.3 Reflective services

Reflection of services is available through the Service descriptor. The service
descriptor is also placed in the descriptor table and, thus, is available to the
programmer. The major feature is to add a new service source code as a string.
Current implementation supports setting of a service selector, a number of
parameters and a service code. However, there is a space for future work
and new inventions. The current component does not support services like
invokeServiceByName(), invokeServiceByArity(), etc.

3.9 Inheritance

Inheritance in terms of Compo is quite complicated due to the fact that ser-
vices are tightly coupled with ports. It means that the service invocation
depends on a port, which provides a particular service. But that particular
port could be provided by a parent component. For example, there is default
port that is provided by a root component. default port provides all services.
It follows that a parent port has to manage child components services. An-
other issue is the fact, that any component is handled by its default port.
Thus, if one holds reference to a component, i.e. its default port, and tries
to invoke some of sub-components services, the interpreter has to look for a
service both in upward and downward direction.

Service lookup mechanism, described at [2], algorithm 4, is slightly modi-
fied. Modification lies in addition of downward lookup.

44



3.10. Interpreter implementation

3.10 Interpreter implementation

The implementation of an interpreter is quite straightforward with the excep-
tion of services invocation. The interpreter contains a long switch-case, where
cases represent particular AST nodes. A special action is executed for every
single AST node. Every node is processed in a particular method.

Interpreter is represented by CInterpreter class. CInterpreter class con-
tains references to the parser, the second stage bootstrap, the descriptor table
and the context stack.

3.10.1 Semantic structures

Semantic structures provide an interface to manage local variables and ports
in the current service context.

3.10.1.1 Descriptor table

The most important semantic structure is of course the descriptor table, which
contains references to existing Descriptor components. The descriptor table
is represented by CDescriptorTable class. Inner representation of the table is
implemented with plain vector of references. One may think that hash table
of name to reference is more suitable. Nevertheless, reflective properties must
be taken into account. The descriptor is uniquely described by the name port,
which is connected to the String component. So the hash table could contain
tuples of String components and references to descriptors. However, there is
a risk of errorneous situation, when no String component is connected, then
there is no way to determine the descriptor.

It is probably better to have an unaccessible descriptor without any name
in the descriptor table than invalid state of the descriptor table. This could
be a subject of future work.

3.10.1.2 Context stack

Since the interpreter supports services invocation, some kind of stack structure
is necessary. Stack is an elegant and comfortable way to manage nested service
invocations. There are two kinds of stack. The first kind is represented by
STL stack, which contains references to the CContext class.

CContext class contains a vector from STL that holds references to an-
other class: CVariablesTable. Vector inside of CContext is treated like a stack.
Vector is used because of ability to iterate the content and search for a par-
ticular element. Another stacking structure is implemented to enable define
new variables inside compound statements. Example of usage such a feature
is shown in listing 3.9.
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service t e s t ( ) {
| i var1 var2 |
for ( i := 0 ; i < var ; i := i + 1) {

| a b |
a := System . readInt ( ) ;
b := 5 ;
i f ( a < b) {

| x y |
. . .

}
}

}
Listing 3.9: Compound statement context.

CContext class also contains a reference to the current component, respect-
ively to the owner component of the currently executed service. The owner
component contains various ports that have to be accessible from inside of the
component (for example the self port). While service accesses some of internal
ports, CContext searches for the reference to the port like it was ordinary vari-
able. Thus, variables and ports are the same thing from the interpreter point
of view.

Ports and variables are tightly linked with the assignment operator. Stand-
ard programming languages implement a variable (more or less) as a place in
the memory. Compo variable is rather a port than a place in the memory.
This is due to the fact that a communication element for Compo component
is not its place in the memory (in other words: reference to the component
itself), but its default port. Thus, the local variable references the default
port of the connected component.

Assignment is defined in [2] as making a copy of the assigned element.
Component copying is described in 3.4.1.2 as a complex task, so the current
implementation of assignment assigns default port to the variable. Only value
components are physically duplicated because of their simple inner structure.

3.10.2 Service invocation

The service invocation depends on the type of invoked service. A C++ call-
back is directly invoked in case of a primitive service. Situation is a little
complicated in case of Service component. Argument passing is defined in [2]
as connecting default ports of arguments to the args port of context compon-
ent.
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3.10.2.1 Primitive service invocation

As described in 3.4.4.3, the primitive service contains in fact only a name, an
owner and a callback. The callback is a pointer to a function which returns
reference to a port and takes reference to a component as a parameter. Inner
implementation is up to the designer of the bootstrapping. Primitive services
are created as C++ lambda functions during bootstraping.

Reference to the component is a context component from which the service
is invoked.

The most common use case of a primitive service is to perform some simple
operation. Operation may handle connected arguments, return result, per-
form some operation on context component or both. Arguments are acquired
through the context component from an argument of a callback.

Special cases of primitive services are services execute() and new().

Service execute() determines if arguments port is delegated to another
port and checks if a number of arguments matches to its prototype, which is
connected to the serviceSign port. Then the service code is executed. The
execution is made through the call of the execServiceCode() from CInterpreter
class. Service execute() is created as C++ lambda function during the first
stage of bootstrapping. Instance of CBootstrap1 class holds reference to the
instance of CInterpreter class. Reference to the instance of CInterpreter class
is passed as captured variable to the lambda function.

This concept allows the component to hold only reference to a general call-
back without any information about internals of the callback. The primitive
service, when invoked, only calls its callback with context (reference to which
is contained in the base CAbstractPrimitive class) as a parameter and returns
a result.

Primitive service new() is an important part of Descriptor descriptor.
Primitive service new() produces new instances of a descriptor based on the
runtime information saved in the descriptor. Primitive service new() is filled
during the second stage of bootstrapping. The most complex part is to connect
newly produced ports together correspondingly to the content of architecture-
Definition. Realizing connections is also complicated with the requirement
to build new components directly within the connection. Example of such a
connection is shown in listing 3.10.

connect fE to default@ ( FrontEnd .new ( ) ) ;

Listing 3.10: Example of connection with component instantiation.

3.10.2.2 Service component invocation

The service component follows definition from [2]. The service component
contains a code and a service signature. These properties are referenced in
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execute() service. Thus, Service component invocation is made through ex-
ecute() service, described in the previous chapter.

The service component also provides tempsN and tempsV collection ports.
These ports are connected to the variable names, respectively values from the
service code.

3.11 Summary

The code contains approximately 14 000 lines of a code. Lines of code was com-
puted with cloc utility, which counts only lines with the code — no whitespaces
or comments. Simple Perl script for lines counting with non-C++ sources ex-
clusion is included in attachements.

Git repository contains 383 commits.
The code quality was constantly checked with CppCheck and OCLint static

code analyzers.
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Chapter 4

Tests

This chapter describes testing of the implemented virtual machine. Tests
include unit testing with a code coverage report, real-world examples and the
Valgrind memory check report.

4.1 Unit tests

Unit testing is a necessary element in software development. Thanks to the
unit tests, developers are able to work on different parts of the system any
without worries about hidden inconsistencies of a previously developed code.
Unit tests can also serve as a reference of code usage. TDD28 is closely linked to
unit tests. It is a software development process that relies on the repetition of
a very short development cycle: first the developer writes an (initially failing)
automated test case that defines a desired improvement or a new function.
Then produces the minimum amount of a code to pass that test, and finally
refactors the new code to acceptable standards. TDD was invented by Kent
Beck.

4.1.1 Unit testing framework

A lot of unit testing frameworks for C++ are available. Following listing
presents the most well known frameworks:

• Google Test: Unit test library based on the xUnit architecture, can be
compiled for variety of POSIX and Windows platforms.

• UnitTest++: Lightweight unit testing framework. It was designed to
do a test-driven development on a wide variety of platforms.

28Test Driven Development
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• Boost Test: Provides a matched set of components for writing test
programs, organizing tests in to simple test cases and test suites, and
controlling their runtime execution.

Boost Test framework was chosen because of its modularity and wide op-
tions. Once the Boost is added into the CMake tool, one can simply utilize
another Boost library. Additional benefit is the possibility of creation of a
separate binary with a test code only.

4.1.2 Test cases and test suites examples

Listing 4.1 presents an excerpt from one of the test suites. This particular test
case tests parsing of a service and its parameters. There are some Boost check
macros and also custom macros named with prefix TEST . Instance of parser
is global for the whole test suite, thus, parser initialization is not present in
this excerpt (it is about two lines of a code). Note dynamic pointer casting.
This breakneck syntax is present due to the usage of shared pointers.

BOOST AUTO TEST CASE( compoServiceParams ) {
s t r i ng s t r eam input ;
input . s t r (
” d e s c r i p t o r t e s t {\

s e r v i c e noparams ( ) {}\
s e r v i c e oneparam ( param1 ) {}\

}” ) ;
pa r s e r . parse ( input ) ;

CDescr iptor descriptor = parse r . getRootNodeAt ( 0 ) ;
TEST DESCRIPTOR( descriptor , ” t e s t ” , ”” , 4 ) ;

CService service = descriptor−>getBodyNodeAt ( 0 ) ;
TEST SERVICE( service , ”noparams” , 0 , 0 , 0 ) ;

service = descriptor−>getBodyNodeAt ( 1 ) ;
TEST SERVICE( service , ”oneparam” , 1 , 0 , 0 ) ;
BOOST CHECK EQUAL( ”param1” ,

service−>getParamAt(0)−>getStr ingValue ( ) ) ;
}

Listing 4.1: Test case example.

4.1.3 Code coverage statistics

Figure 4.1 shows code coverage statistics. Code coverage is not the only
one software quality metric. Nevertheless, it can significantly contribute to
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Figure 4.1: Code coverage report.

the code quality. Code coverage statistic is generated using GCC parameter
coverage and web report generation tool lcov.

Figure 4.1 shows approximately 70% code coverage which is acceptable
result.

4.2 Real-world examples

Real-world examples are shown in directory test/compoTests. They include:

• helloWorld.cp: Every programming language ”must-have”. Prints
”Hello world!” to the output.

• calculator.cp: Service invocation and procedural statements example.
Performs basic arithmetic operations, power and factorial.

• cars.cp: Inheritance and ports connections example. Presents service
specialization, service addition, ports addition and service lookup mech-
anism.

• reflection.cp: Basic reflection example. Asks user to enter a service
code, then executes it and prints the result.

4.3 Valgrind report

The Valgrind check is built within CTest utility of CMake build tool. Valgrind
command is included in CMakeList.txt file and runs testing binary. Since the
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Figure 4.2: Valgrind report.

code coverage concerns about 70% of the code, Valgrind result can be also
accepted as successful.

Figure 4.2 shows that there is no serious memory error. Message still
reachable is Valgrind notation for the memory that was not freed but some
reference to the memory exists. As noted in [20], this ”error” is usually present
while using some external library — like STL. External libraries utilizes their
own memory allocators and the memory is kept for later re-use.

4.4 Documentation

Code documentation is generated with doxygen and generating script is in-
cluded in the attachement. Code documentation describes basic usage of
implemented classes.

4.5 Tests summary

All of the mentioned reports and statistics can be reproduced by running
generation script. Details on building, testing and reports generating are
mentioned in readme.txt file.
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Future work

There is a lot of work for successors to make this project a real-world applic-
ation. Major issues that should be solved are pointed out in the following
listing:

• Returning collection port.

• Copying of inner component structure.

• Garbage collection.

• Think out and implement third stage of bootstrapping.
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Conclusion

The goal of this thesis was to get familiar with the Compo language, then
design and implement front-end with parallel Master’s thesis author and finally
design and implement a virtual machine for Compo. Compo’s virtual machine
should be able to evaluate basic language constructs.

The first task was to explore component-oriented paradigm, reflection,
search for existing approaches and lay out basic sub-goals. The main source
of inspiration was [2] as well as various books, articles and documentations.
The analysis chapter of this thesis describes the current state of component-
base software engineering.

Next sub-goal was to extract Compo grammar and implement front-end.
Grammar extraction was based on prototype implementation in Pharo Small-
talk. Front-end implementation was then quite a straightforward task.

Last and the most difficult part was to design and implement bootstrap-
ping and reflection.

Implementation was done in C++ programming language, using Boost and
STL library and Flex & Bison frontend generator tools. The project contains
built-in unit tests, helper scripts for building reports and documentation and
a few real-world examples of implemented concepts.

Testing was an indispensable process to verify basic code functionality
and it is also used as Compo usage reference. The testing code contains
approximately 120 test cases and 70% code coverage which could be considered
as sufficient.

There are also a few complex examples of Compo usage to demonstrate
overall functionality. These examples can be served to a built binary, which
asks for the appropriate input and returns results.

The resulting code is definitely not bulletproof. This project can be con-
sidered as a first try to implement a pure component-based virtual machine.
This project contains some of uncommon concepts and a few humble author’s
ideas and inventions.

As the most interesting author’s contribution can be mentioned mainly

55



Conclusion

a callback structure of primitive services. The primitive service itself is a
very simple structure that contains a complex callback. The callback is not
managed by the primitive service. The primitive service only invokes the
callback. The concept of general services/ports is also quite important. The
concept simplifies the management of primitive and non-primitive structures.
There was also an effort made to enhance given base-descriptors from [2].
Extended descriptors are shown in appendix B.

However, this thesis is a solid foundation for the future implementation.
Successors may study mainly the bootstrapping features and build a better
code or think out new practises.

Probably the biggest challenge was to think out and then implement boot-
strapping and reflection. The reflection is quite common these days for com-
mon languages like Java, Smalltalk, etc. and it opens the door for a lot of new
concepts and approaches.

This thesis is primarily based on dissertation thesis of Ing. Petr Špaček,
Ph.D. [2] and contained concepts. The dissertation thesis comes up with new
approaches in software engineering, which could be widely used in the future.
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1 Lexical rules for primary expressions

〈identifier〉 ::= [a-zA-Z][a-zA-Z 0-9]

〈constant〉 ::= [+-]?[0-9]+

〈string literal〉 ::= ’ .+ ’

2 Procedural part

〈literal〉 ::= 〈identifier〉
| 〈constant〉
| 〈string literal〉
| ’true’
| ’false’

〈primary expression〉 ::= 〈identifier〉
| 〈literal〉
| ’(’ 〈expression〉 ’)’
| 〈service invocation〉
| 〈connection〉
| 〈disconnection〉
| 〈delegation〉
| ’sizeof ’ ’(’ 〈identifier〉 ’)’

〈multiplicative expression〉 ::= 〈primary expression〉
| 〈multiplicative expression〉 ’*’ 〈primary expression〉
| 〈multiplicative expression〉 ’/’ 〈primary expression〉

Appendix A

Grammar
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〈additive expression〉 ::= 〈multiplicative expression〉
| 〈additive expression〉 ’+’ 〈multiplicative expression〉
| 〈additive expression〉 ’-’ 〈multiplicative expression〉

〈relational expression〉 ::= 〈additive expression〉
| 〈relational expression〉 ’<’ 〈additive expression〉
| 〈relational expression〉 ’>’ 〈additive expression〉
| 〈relational expression〉 ’<=’ 〈additive expression〉
| 〈relational expression〉 ’>=’ 〈additive expression〉

〈equality expression〉 ::= 〈relational expression〉
| 〈equality expression〉 ’==’ 〈additive expression〉
| 〈equality expression〉 ’!=’ 〈additive expression〉

〈logical and expression〉 ::= 〈equality expression〉
| 〈logical and expression〉 ’&&’ 〈equality expression〉

〈logical or expression〉 ::= 〈logical and expression〉
| 〈logical or expression〉 ’||’ 〈logical and expression〉

〈assignment expression〉 ::= 〈logical or expression〉
| 〈primary expression〉 ’:=’ 〈expression〉

〈expression〉 ::= 〈assignment expression〉
| 〈expression〉 ’,’ 〈assignment expression〉

〈statement〉 ::= 〈expression statement〉
| 〈selection statement〉
| 〈iteration statement〉
| 〈jump statement〉
| 〈compound statement〉

〈compound statement〉 ::= ’{’ 〈temporaries〉 〈statement list〉 ’}’
| ’{’ ’}’

〈temporaries〉 ::= ’|’ 〈temporaries list〉 ’|’
| 〈empty〉

〈temporaries list〉 ::= 〈identifier〉
| 〈temporaries list〉 〈identifier〉

〈statement list〉 ::= 〈statement〉
| 〈statement list〉 〈statement〉
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〈expression statement〉 ::= ’;’
| 〈expression〉 ’;’

〈selection statement〉 ::= ’if ’ ’(’ 〈expression〉 ’)’ 〈statement〉
| ’if ’ ’(’ 〈expression〉 ’)’ 〈statement〉 ’else’ 〈statement〉

〈iteration statement〉 ::= ’while’ ’(’ 〈expression〉 ’)’ 〈statement〉
| ’for’ ’(’ 〈assignment expression〉 ’;’ 〈expression statement〉 〈expression〉

’)’ 〈statement〉

〈jump statement〉 ::= ’continue’ ’;’
| ’break’ ’;’
| ’return’ 〈expression〉 ’;’

3 COMPO part

〈start〉 ::= 〈descriptor interface〉
| 〈service body〉

〈service body〉 ::= 〈compound statement〉

〈descriptor interface〉 ::= 〈descriptor interface〉 〈descriptor〉
| 〈descriptor interface〉 〈interface〉
| 〈empty〉

〈descriptor〉 ::= ’descriptor’ 〈identifier〉 〈inheritance〉 ’{’ 〈compo expressions〉
’}’

〈interface〉 ::= ’interface’ 〈identifier〉 〈inheritance〉 〈service signatures list〉

〈inheritance〉 ::= ’extends’ 〈identifier〉
| 〈empty〉

〈compo expressions〉 ::= 〈compo expression〉 〈compo expressions〉
| 〈empty〉

〈compo expression〉 ::= 〈provision requirement〉
| 〈constraint〉
| 〈service〉
| 〈architecture〉

〈provision requirement〉 ::= 〈visibility〉 〈role〉 〈provision requirement signature〉

〈visibility〉 ::= ’externally’
| ’internally’
| 〈empty〉
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〈role〉 ::= ’provides’
| ’requires’

〈provision requirement signature〉 ::= ’{’ 〈ports〉 ’}’

〈ports〉 ::= 〈port〉 ’;’
| 〈port〉 ’;’ 〈ports〉

〈port〉 ::= 〈atomic〉 〈port name〉 〈collecting〉 ’:’ 〈port signature〉 〈of kind〉

〈atomic〉 ::= ’atomic’
| 〈empty〉

〈port name〉 ::= 〈identifier〉

〈collecting〉 ::= ’[’ ’]’
| 〈empty〉

〈port signature〉 ::= 〈identifier〉
| ’*’
| 〈service signatures list〉

〈of kind〉 ::= ’ofKind’ 〈identifier〉
| 〈empty〉

〈service〉 ::= ’service’ 〈service signature〉 〈service code〉

〈service code〉 ::= 〈string literal〉

〈service signature〉 ::= 〈identifier〉 ’(’ 〈service params〉 ’)’

〈service signature call〉 ::= 〈identifier〉 ’(’ 〈service runtime params〉 ’)’

〈service signatures〉 ::= 〈service signature〉
| 〈service signature〉 ’;’ 〈service signatures〉
| 〈empty〉

〈service signatures list〉 ::= ’{’ 〈service signatures〉 ’}’

〈service params〉 ::= 〈parameter〉
| 〈parameter〉 ’,’ 〈service params〉
| 〈empty〉

〈parameter〉 ::= 〈identifier〉

〈service runtime params〉 ::= 〈parameter runtime〉
| 〈parameter runtime〉 ’,’ 〈service runtime params〉
| 〈empty〉
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〈parameter runtime〉 ::= 〈logical or expression〉

〈constraint〉 ::= ’constraint’ 〈service signature〉 〈compound statement〉

〈architecture〉 ::= ’architecture’ ’{’ 〈bindings〉 ’}’

〈bindings〉 ::= 〈disconnections〉
| 〈connections〉
| 〈delegations〉
| 〈empty〉

〈connections〉 ::= 〈connection〉 ’;’ 〈bindings〉
| 〈empty〉

〈connection〉 ::= ’connect’ 〈port address〉 ’to’ 〈port address〉

〈disconnections〉 ::= 〈disconnection〉 ’;’ 〈bindings〉

〈disconnection〉 ::= ’disconnect’ 〈port address〉 ’from’ 〈port address〉

〈delegations〉 ::= 〈delegation〉 ’;’ 〈bindings〉

〈delegation〉 ::= ’delegate’ 〈port address〉 ’to’ 〈port address〉

〈port address〉 ::= 〈identifier〉 ’@’ 〈component identifier〉
| 〈identifier〉

〈component identifier〉 ::= 〈collection port literal〉
| ’(’ 〈service invocation〉 ’)’
| 〈dereference literal〉
| 〈identifier〉

〈collection port literal〉 ::= 〈identifier〉 ’[’ 〈expression〉 ’]’

〈service invocation〉 ::= 〈identifier〉 ’.’ 〈service signature call〉
| 〈identifier〉 ’[’ 〈index 〉 ’]’ ’.’ 〈service signature call〉

〈index 〉 ::= 〈identifier〉
| 〈constant〉

〈dereference literal〉 ::= ’&’ 〈identifier〉
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Appendix B

New descriptors

descriptor Component {
provides {

default : ∗ ;
}

requires {
args [ ] : ∗ ;
owner : Component ;
d e s c r i p t o r P o r t : Component ;

}

internally provides {
super : ∗ ofKind SuperPort ;
s e l f : ∗ ofKind S e l f P o r t ;

}
service getPort s ( ) { . . . }
service getPortNamed (newName) { . . . }
service ge tDes c r i p to r ( ) { . . . }
service getOwner ( ) { . . . }
service get Ident i tyHash ( ) { . . . }

}
Listing B.1: The Component descriptor
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B. New descriptors

descriptor Desc r ip to r extends Component {
internally requires {

name : S t r ing ;
parentName : S t r ing ;
por t s [ ] : Por tDesc r ip t i on ;
a r c h i t e c t u r e D e f i n i t i o n [ ] : Connect ionDescr ipt ion ;
s e r v i c e s [ ] : S e r v i c e ;

}

service getName ( ) { . . . }

service setName (newName) { . . . }

service getParentName ( ) { . . . }

service setParentName ( newParentName ) { . . . }

service getDescr ibedPortAt ( index ) { . . . }

service getDescribedConnAt ( index ) { . . . }

service g e t S e r v i c e ( s e l e c t o r , a r i t y ) { . . . }

service new( ) { . . . }

service newNamed(name , superDesc ) { . . . }

service addServ ice ( serviceComponent ) { . . . }

service removeService ( s e l e c t o r , a r i t y ) { . . . }

service addPortDescr ipt ion (pd) { . . . }

service removePortDescr ipt ion (name) { . . . }

service addConnDescription ( cd ) { . . . }

service removeConnDescription ( cd ) { . . . }
}

Listing B.2: The Descriptor descriptor
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descriptor Port extends Component {
requires {

connectedPorts [ ] : Port ;
de l egatedPor t s [ ] : Port ;

}

internally requires {
name : S t r ing ;
i n t e r f a c e D e s c r i p t i o n : I n t e r f a c e ;
i s C o l l e c t i o n : Bool ;

}

service getName ( ) { . . . }
service g e t I n t e r f a c e ( ) { . . . }

service invoke ( serviceName ) { . . . }
service i sConnected ( ) { . . . }
service i sDe l ega t ed ( ) { . . . }

service connectTo ( port ) { . . . }
service di sconnectPort ( ) { . . . }

service i s C o l l e c t i o n P o r t ( ) { . . . }
}

Listing B.3: The Port descriptor

descriptor Co l l e c t i onPor t extends Port {
service invoke ( serviceName , index ) { . . . }
service di sconnectPort ( index ) { . . . }

}
Listing B.4: The CollectionPort descriptor
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B. New descriptors

descriptor S e r v i c e extends Component {
internally requires {
s e r v i c e S i g n : S e rv i c eS i gna tu r e ;

tempsN [ ] : S t r ing ;
tempsV [ ] : Component ;

code : S t r ing ;
}

service getName ( ) { . . . }

service setName ( selectorName ) { . . . }

service addParam( param ) { . . . }

service getParamAt ( index ) { . . . }

service setCode (newCode ) { . . . }

service getCode (newCode ) { . . . }

service execute ( ) { . . . }
}

Listing B.5: The Service descriptor
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descriptor Connect ionDescr ipt ion extends Component {
internally requires {

sourceType : S t r ing ;
sourceComponent : S t r ing ;
sourceComponentIndex : UInt ;
sourceComponentInvocation : S e r v i c e I n v o c a t i o n ;
sourcePort : S t r ing ;

dest inat ionType : S t r ing ;
destinationComponent : S t r ing ;
dest inationComponentIndex : UInt ;
dest inat ionComponentInvocat ion : S e r v i c e I n v o c a t i o n ;
de s t i na t i onPor t : S t r ing ;

bindType : S t r ing ;
}

service setSourceType ( type ) { . . . }
service getSourceType ( ) { . . . }
service setSourceComponent ( scd ) { . . . }
service getSourceComponent ( ) { . . . }
service setSourceComponentIndex ( index ) { . . . }
service getSourceComponentIndex ( ) { . . . }
service setSourceComponentInvocation ( inv ) { . . . }
service getSourceComponentInvocation ( ) { . . . }

service se tSourcePort ( port ) { . . . }
service getSourcePort ( ) { . . . }

service setDest inat ionType ( type ) { . . . }
service getDest inat ionType ( ) { . . . }
service setDestinationComponent ( sdc ) { . . . }
service getDestinationComponent ( ) { . . . }
service setDestinationComponentIndex ( index ) { . . . }
service getDestinationComponentIndex ( ) { . . . }
service setDest inat ionComponentInvocat ion ( inv ) { . . . }
service getDest inat ionComponentInvocat ion ( ) { . . . }

service s e tDes t ina t i onPor t ( port ) { . . . }
service ge tDes t inat i onPor t ( ) { . . . }

service setBindType ( type ) { . . . }
service getBindType ( ) { . . . }

}
Listing B.6: The ConnectionDescription descriptor
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B. New descriptors

descriptor I n t e r f a c e extends Component {
e x t e r n a l l y requires {

component : Component ;
s e r v i c e s [ ] : S e r v i c e ;

}
internally requires {

type : S t r ing ;
s i g n a t u r e s [ ] : S e rv i c eS i gna tu r e ;
componentName : S t r ing ;

}
service getType ( ) { . . . }
service setType ( type ) { . . . }
service getSignaturesCount ( ) { . . . }
service getS ignatureAt ( index ) { . . . }
service addSignature ( s i g n a t u r e ) { . . . }
service getConnectedComponentName ( ) { . . . }
service setConnectedComponentName (name) { . . . }
service getConnectedComponent ( ) { . . . }
service setConnectedComponent ( component ) { . . . }
service getServ i ceAt ( index ) { . . . }
service addServ ice ( serviceComponent ) { . . . }

}
Listing B.7: The Interface descriptor
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descriptor PortDesc r ip t i on extends Component {
internally requires {

name : S t r ing ;
r o l e : S t r ing ;
v i s i b i l i t y : S t r ing ;
i n t e r f a c e D e f i n i t i o n : I n t e r f a c e ;
kind : S t r ing ;
i s C o l l e c t i o n P o r t : Bool ;

}

service setName (name) { . . . }
service getName ( ) { . . . }
service s e tRo le ( r o l e ) { . . . }
service getRole ( ) { . . . }
service setKind ( kind ) { . . . }
service getKind ( ) { . . . }
service s e t I n t e r f a c e ( i n t f ) { . . . }
service g e t I n t e r f a c e ( ) { . . . }
service s e t V i s i b i l i t y ( v i s ) { . . . }
service g e t V i s i b i l i t y ( ) { . . . }
service s e t I s C o l l e c t i o n ( bool ) { . . . }
service i s C o l l e c t i o n ( ) { . . . }
service setType ( type ) { . . . }
service setComponentName (name) { . . . }

}
Listing B.8: The PortDescription descriptor

descriptor S e r v i c e I n v o c a t i o n extends Component {
internally requires {

r e c e i v e r : S t r ing ;
s e l e c t o r : S t r ing ;
params [ ] : Component ;

}
service s e tR ec e i v e r ( r e c e i v e r ) { . . . }
service getRece ive r ( ) { . . . }
service s e t S e l e c t o r ( s e l e c t o r ) { . . . }
service g e t S e l e c t o r ( ) { . . . }
service getParamsCount ( ) { . . . }
service getParamAt ( index ) { . . . }
service addParam( param ) { . . . }

}
Listing B.9: The ServiceInvocation descriptor
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B. New descriptors

descriptor Se rv i c eS i gna tu r e extends Component {
internally requires {

s e l e c t o r : S t r ing ;
paramNames [ ] : S t r ing ;

}
service s e t S e l e c t o r (name) { . . . }
service g e t S e l e c t o r ( ) { . . . }
service getParamsCount ( ) { . . . }
service getParamAt ( index ) { . . . }
service setParam ( param ) { . . . }

}
Listing B.10: The ServiceSignature descriptor

descriptor System extends Component {
internally requires {

name : S t r ing ;
}
service p r i n t l n ( s t r i n g ) { . . . }
service pr in t ( s t r i n g ) { . . . }
service r eadSt r ing ( ) { . . . }
service readLine ( ) { . . . }
service readInt ( ) { . . . }
service getRand ( seed ) { . . . }

}
Listing B.11: The Service descriptor
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Appendix C

Acronyms

OOP Object-Oriented Programming

COP Component-Oriented Programming

CBSE Component-Based Software Engineering

ADL Architecture Description Language

DSL Domain Specific Language

MDE Model Driven Engineering

CORBA Common Object Request Broker Architecture

RPC Remote Procedure Call

IDL Interface Description Language

STL Standard Template Library

VM Virtual Machine

73





Appendix D

Contents of enclosed CD

sources....the directory with the archive with source files and md5 hash
dp licek tomas 2016.tar...............the archive with source files

readme.txt.................the file with CD contents description
compoVm......................... the directory with C++ project

coreModules..........the directory with core Compo modules
include......................the directory with C++ headers
resources....the directory with Flex, Bison and Doxygen files
script.........................the directory with Perl scripts
src...........................the directory with C++ sources
test..............................the directory with test files

thesis-text ....... the directory with diploma thesis text sources
make.pl.........................the file with build Perl script
resources...........the directory with pictures and other files
src...........................the directory with LATEXsources

md5.txt................... the directory with the file with md5 hash
text..................the directory with the thesis text and assignment

DP Licek Tomas 2016.pdf................the file with the thesis text
assignment.pdf........................ the file with the assignment
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