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Abstrakt

Tato práce se zabývá automatickým rozpoznáváńım znak̊u generovaných CAPTCHA
řešeńımi. Jej́ım ćılem je poukázat na nedostatky a slabá mı́sta v jejich návrźıch.
Studovány a vyhodnocovány jsou r̊uzné prvky návrh̊u. Je vytvořen a realizován
algoritmus pro segmentaci obrazu. Jednotlivé znaky jsou klasifikovány pomoćı
algoritmu strojového ueńı. Výsledný algoritmus je nasazen na třech řešeńıch
v několika experimentech.

Kĺıčová slova bezpečnost webových stránek, CAPTCHA, optické rozpoznáváńı
znak̊u, poč́ıtačové viděńı, strojové učeńı

Abstract

This thesis studies automatic recognition of characters generated by CAPTCHA
solutions. Its aim is to point out the flaws and weak spots in their design.
Various design features are studied and evaluated. An algorithm for image
segmentation is created and implemented. The individual characters are clas-
sified using a machine learning algorithm. The resulting algorithm is deployed
on three solutions in several experiments.
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Keywords CAPTCHA, machine learning, optical character recognition, com-
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Introduction

In the past few decades, the rise of Internet has revolutionized our lives. We
use it for studies, work, socializing, shopping and many other activities on a
daily basis. With the increasing popularity of the web though, many public
services have been targeted by malicious attackers. Among other activities,
they attempt to exploit mail servers for sending massive amounts of spam
messages, create numerous fake profiles on social networks or make fraudulent
offers on online marketplaces. In order to block the access of automated
scripts and bots, websites started to use various security measures so as to
ensure their safety. One type of such tools is the CAPTCHA1. The acronym
stands for “Completely Automated Public Turing Test to Tell Computers and
Humans Apart”. As the attackers tried to overcome the security measures,
the website owners were forced to deploy increasingly more difficult challenges,
and the battle has eventually developed into an arms race between the two
sides. Its benefit, on the other side, is that it pushes the boundaries of artificial
intelligence and optical character recognition.

The main goal of this thesis is the automatic recognition of characters
generated by captcha solutions. Using computational intelligence and a cus-
tom segmentation method, an algorithm will be implemented taking an image
with a captcha challenge on the input, and resulting in a most probable set of
characters on the output.

An additional goal of this thesis is to study captcha design features. A
thorough research will be undertaken, and based on acquired knowledge and
experiments, their strengths and weaknesses will be evaluated and their design
flaws exposed.

This thesis consists of six main chapters. The first chapter gives an insight
on current captcha schemes and studies and evaluates their various design
features. The second chapter presents an overview of the algorithm which
is later used to break the captcha. The third chapter deals with the pre-

1I will use lower case “captcha” in future reference for typographical reasons
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Introduction

processing part of the algorithm pipeline. The fourth chapter proposes a
segmentation algorithm which is used to isolate individual characters. The
fifth chapters deals with the recognition of the characters achieved by methods
of computational intelligence, specifically machine learning algorithms. The
sixth chapter summarizes the results of my experiments with the implemented
algorithm. The last chapter concludes the thesis.
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Chapter 1

Analysis

1.1 Captcha

The acronym captcha was coined in 2003 by von Ahn et al[1]. In this paper
they present the basic idea of captcha and introduce a definition of what it
exactly is. For the exact definition I refer the reader to the original paper. The
fundamental idea is to use a useful and yet unsolved hard AI problem which
is easy for humans to solve. It implies a win-win situation in which either
the problem is unsolved and we have an effective way to discern humans and
robots or a solution appears which develops the field of AI problems. It is
the main motivation for majority of researchers working in this branch of
computer science.

A captcha is a program that generates and then grades a test which the
majority of humans are able to solve, but current computer programs cannot.
Its main application is on websites where it is used in order to distinguish
whether the user is a human or a robot. The need for this type of challenge
arose with the increasing amount of Internet bots and automated scripts at-
tempting to exploit public web services. Nowadays it is an established security
mechanism to prevent mailing spam messages, mass posting on internet for-
ums, mass voting in online polls and downloading files in massive amounts.

In artificial intelligence, standard Turing test [2] is defined as a test in
which a human judge is supposed to consistently distinguish whether he/she
is communicating via text with a human counterpart or a computer pretending
to be a human. However on the Internet for such a test to be used automatic-
ally and effectively the judge must be also a computer. This is where captcha
comes into play. It is also sometimes described as a “reverse Turing test”,
because the judge is not a human but a computer. This term can be however
misleading, because it can also imply a test in which both human and com-
puter participants are attempting to prove that they are the computer, not
the human.

Another significant work was done by Microsoft researcher Chellapilla[3]
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1. Analysis

who calls these tests Human interaction proofs (HIPs for short). His work
focuses on distinguishing effective distortion features and specifying best prac-
tices for designing captchas which are resistant to computers while remaining
relatively easy for humans to solve. He also states that, depending on the
cost of the attack, automated scripts should not be more successful than 1 in
10 000 attempts, while human success rate should approach 90%. It is gener-
ally considered a too ambitious goal, as random guesses can be successful[4],
and subsequently a captcha is considered compromised when the attacker suc-
cess rate surpasses 1%.

1.2 Types of captcha

Over the years there have been developed many types of captcha. In the
following section is the brief survey of current captcha schemes.

1.2.1 Text-based schemes

The first captcha ever used was in 1997 by the software company Alta-Vista
which sought a way to prevent automated submissions to their search-engine.
It was a simple text-based test which was sufficient for the time, but it was
eventually proven ineffective. At the time the computer recognition rates of
single characters were at par with those of humans[4] and thus the development
of captchas shifted to prevention of segmentation like noise addition, cluttering
and other various anti-segmentation techniques. As the popularity of the
Internet rose, so did the amount of malicious activities and accordingly the
popularity of captchas. With the effort to prevent breaking of captchas with
increasing the amount of distortion and cluttering, the challenges faced the
risk of becoming almost illegible. The design of captchas developed into a
challenging task in order for them to be human friendly and secure at the
same time.

1.2.2 Sound-based schemes

From the beginning the adoption of captcha schemes was not an ideal state.
The users were annoyed with the bothersome challenges that were at times
almost illegible and had to try numerous attempts in order to solve them. The
people affected the most were the ones with visual impairments or various
reading disorders such as dyslexia. For them surfing the Internet was already
a very challenging task and this obstacle made the web even more inaccessible.
But soon an alternative emerged in the form of audio captchas. Instead of
looking at the image and transcribing the displayed characters, the user was
given the option, usually alongside with a traditional text-based captcha, to
play a sound puzzle and write the characters that he heard. In order to
remain effective and secure the captcha has to be resistant to automated sound
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1.3. Anti-recognition features

analysis. For this purpose various background noise and sound distortion
were added. Still a human visitor should have no problem in hearing and
recognizing the code. Generally, this scheme is now a standard option on
major websites who implement captcha.

1.2.3 Image-based schemes

With the rise of the captcha schemes criticism soon began to appear. The
obstacle of solving a puzzle every time someone wants to enter a site is at
least annoying and discouraging for the common user. On the other hand,
the companies who owned the websites were unsatisfied as well. Imagine a
customer visiting an online shop who is presented with a captcha challenge,
fails to solve it and switches to a competitor. It is in a company’s best interest
to keep the customer satisfied all the time and make their user experience the
most pleasant. In order to preserve security against spam-bots, new captcha
designs were developed. Ranging from various forms of video captchas to
miniature puzzle games and math questions, the most prominent design was
image-based captcha. The user is presented with a series of images showing
various objects and the task lies usually in detecting which of them have a
common topic and selecting them. For example a user is shown a series of
images with various animals and is supposed to select the ones with a cat. This
type of captcha has gained huge popularity on smart phones, where simply
tapping the screen is the preferable option over typing the code.

1.3 Anti-recognition features

Character recognition has long been one of the major problems in the field
of artificial intelligence. It has been vastly explored and modern classifiers
perform very well on character recognition (up to 99.5% on a handwritten
digit dataset[4]). Accordingly, we cannot rely on anti-recognition techniques
to prevent breaking the captcha, but we rather use them so as to increase
security.

1.3.1 Set of characters

The volume of the character set (i.e. using only digits, alphabetical letters or
a combination of both) can have a huge impact on both the computer classi-
fier and the person attempting to solve the captcha. Increasing it reduces the
attacker’s success rate by decreasing the classifier performance and it becomes
more resistant to brute-force attacks by randomly guessing the answer. How-
ever when the attacker expands the set, on which the classifier is learning, it
negates the effect, because the recognizer can learn all the characters at the
cost of taking more time in the learning phase. On the other hand it also
reduces the human accuracy by introducing easily confusable characters for
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1. Analysis

example i and j or l an I. All in all the reduced readability is too significant
compared to the small security gain and so the recommendation is to use a
small non-confusable set of characters.

1.3.2 Multiple fonts

Another similar technique is to use multiple fonts. It is no problem for hu-
mans to read letters in different fonts as we do it on everyday basis. This
technique by itself is not much different from increasing the charset, but with
an introduction of an anti-segmentation technique changing the fonts makes
the size of the letters unpredictable and in turn makes this technique relatively
effective.

1.3.3 String length

Length of the string in each challenge is very important. Along with the
character set size, it is the basis for resisting brute-force attacks. The more
characters the captcha contains, the harder it is to guess or recognize the
text. Assuming the rate of recognition of one character is r, r < 1, then
the recognition rate of the whole challenge is rn, where n is the length of
the captcha. Note that the rate is exponential and it decreases as n grows.
However the length of captchas has uncertain implications. A fixed length
benefits the user in his recognition efforts, as it helps him discern clutter from
easily confusable letters such as confusing a random vertical line with the letter
’l’. It can also help him recognize merged characters from single characters
to match the length of the captcha, for example ’rn’ and ’m’, ’cl’ and ’d’. On
the other hand, randomizing the length of the captcha has huge drawback in
the attacker’s efforts as it is a vital information for segmentation algorithms.
It is recommended to use medium to high and random length of captchas.

1.3.4 Dictionary words

The choice between random strings and dictionary words is not obvious. Al-
though using dictionary words has been exploited to attack captchas[5], it has
many benefits for the user and the idea should not be wholly abandoned. For
people who understand the language, it is much easier to solve heavily distor-
ted words than individual characters, because they can place the particularly
heavily distorted letter into context of the whole word and try to guess it. It
is upon the designer to consider whether to implement this feature or not.

1.3.5 Distortion

Distortion is a technique in which ripples and warp are added to the image. It
is one of the easiest and most effective ways of reducing the classifier accuracy
and scheme learnability. It can have a large impact on the user’s accuracy
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1.4. Anti-segmentation features

though, as it can make the captcha particularly hard to read. Human captcha
readability is a requirement of captcha design and thus usage of this feature
cannot be recommended.

1.3.6 Rotation, slanting, sloping, scaling

Rotating, slanting or other spatial deformation of individual characters or
the whole captcha does not imply decreasing the classifier performance, since
using the right tools can revert or overcome the process. However, the use
of anti-segmentation techniques makes the position and size of each character
unpredictable which is effective in reducing the attacker’s chance of success.
Humans are altogether able to overcome these features and do not have major
difficulties with them which makes the above specified tools a good technique
to implement.

1.4 Anti-segmentation features

As previously mentioned, anti-recognition features do not by themselves guar-
antee the captcha safety, but rather help slow down the attacker and re-
duce their accuracy. The core defence mechanism has thus shifted to anti-
segmentation features trying to prevent the attacker from dividing the text
into isolated letters and recognizing them later, as it is considerably easier
than recognising the text as a whole. A short summary of the most frequently
used follows.

1.4.1 Confusing background

The idea of this feature is to use complex and confusing background such as a
random image to hide the letters and prevent the attacker from isolating and
recognizing them. Nevertheless, this idea is fundamentally flawed, because the
user has to be able to decipher the text. The designer is forced to make the
letters somewhat contrasting from the background. This in turn enables the
attacker the isolate the captcha. That is why this technique is nearly useless
and not recommendable.

1.4.2 Noise

A very common technique is to use random noise and clutter to confuse the
segmentation. It is very easy to implement and thus can be found in many
captchas. However, it is also quite easy to overcome. Many techniques for
removing noise have been explored, analysed and successfully implemented,
for example standard Gaussian smoothing with thresholding or a standard
filter from image processing called opening2 can easily erase most of the small

2More about this technique in the Pre-processing3 section of this work
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clutter. We cannot therefore recommend to rely on this technique as the main
anti-segmentation tool, but it can serve as a good complement.

1.4.3 Lines

Confusing lines and arcs in the scheme design can be implemented in various
ways. It is vital to use the same color as the text, because the alternative
would provide an easy way for the attacker to tell the lines and the text
apart and render the use of them useless. Another important factor is to
use the same line width as the characters, since doing otherwise would make
them susceptible to denoising techniques mentioned previously. A good way of
implementing them is to use lines which intersect some of the letters. Doing so
strongly decreases the chance of good segmentation. A good implementation
of occluding lines is one of the most effective and human-friendly ways of
preventing segmentation and thus it is highly recommended.

1.4.4 Collapsing

Collapsing or negative kerning is a technique where neighboring letters are
moved closer to each other in order to remove the spaces between them and
form a continuous area. A form of collapsing can be the aforementioned ro-
tating of characters, which possibly makes the letters touch and overlap one
another. This makes it really hard to predict where the segmentation of the
captcha should be done in order to obtain isolated letters. Even so there are a
few design flaws to be avoided. If the length of the captcha is predetermined
and the letters have a constant width, we can make the cuts based on an
educated guess. Another thing to be aware of is that excessive collapsing [4]
rapidly decreases human ability to solve the captcha and promptly makes it al-
most impossible to decipher. Properly implemented collapsing alongside with
intersecting lines are the most recommendable anti-segmentation features.

1.5 Tested solutions

1.5.1 ČÚZK

The site “cuzk.cz”[6] is the official website of the Czech “State Administra-
tion of Land Surveying and Cadastre”. It enables its users to look at the
cadastre map of the Czech Republic, find the information about a particular
land parcels. Some of its other services, such as finding a property with the
owner’s name, is however charged. This could be circumvented by download-
ing all the data and searching through them directly. Exploiting the database
is nonetheless against the site’s terms and conditions and using its data can
be against the law. In order to prevent access to automated bots, the website
utilizes a captcha to prevent the mass-downloading of the database.
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1.5. Tested solutions

The design of the captcha is fairly standard. It contains characters of about
five different fonts including serif and sans serif ones with various stroke width
and character height and width. The characters 0 and i are missing so as
to reduce their substitution with similar characters. The captcha contains
both upper and lower case letters and Arabic numerals. A small global warp
is applied and the letters have a variable horizontal and vertical offset. The
letters usually do not touch the border of the image. In some cases, when
the captcha is long, the last letter exceeds the right border so that up to
a half of the letter is missing. In rare instances, the height of some letters
and their vertical offset are so big that they touch the top or bottom border.
The background is plain white and all the other features and font color are
grey. It includes random noise with a grain of about four pixels. The main
anti-segmentation feature is a curved line originating in the top left corner
and curving throughout the image. The path of the line is very random,
sometimes intersecting all the letters and other times going out of the image
and returning to touch only a few letters. Occasionally, it does not touch any
characters at all, not helping secure the captcha whatsoever.

The length of the captcha is mostly the same, but it sometimes varies.
Based on my experience it depends on the amount of accesses from the same
network. On a private home computer, the length of the captcha is five char-
acters, but on a busy network, such as in school, the length is six characters.
Nevertheless, the dimensions of the image remains the same. In the five char-
acter version the characters are usually isolated and touch only occasionally.
In the longer version though, the characters touch very frequently, often pass
through one another and occasionally completely cover the next letter. This
reduces the human readability very significantly
and sometimes renders it impossible to solve.

1.5.2 mojedatovaschranka

As a part of modernizing bureaucratic apparatus, the Czech government intro-
duced a system of online data repositories for exchange of documents between
various government offices, companies and citizens[7]. It offers an alternative
for delivering letters and makes it more effective. To sign in, one has to fill in
his username and password and enter a captcha.

Comparing to the previous scheme, this one is fairly simpler. It shows
yellow numbers on a white background with numerous curved lines of various
width. However, the color of the lines is grey and they do not interfere with
the individual characters in any way. The length of the captcha is constant,
because it contains always five numerals. A global warp is applied to the image
with the consequence that the letters have an irregular height and width and
a slight deformation. In some instances it causes the letters to graze one
another. Very rarely the letters touch the bottom or the top border.

9



1. Analysis

If the user decides that the captcha is too hard to solve, an option to load
a different challenge is offered. The site tracks the number of captchas the
user has requested. After five attempts it shows the user an error message and
refuses to load another one. This number is stored in the site’s local cookies.
However, the website has no control what happens to them so they can be
easily erased. This makes this feature useless and only bothersome for the
user.

1.5.3 ulozto

The website ulozto.cz[8] is a czech server dedicated to uploading, downloading
and sharing various data files. The option of a sound-based captcha challenge
is offered. The captcha on this site is harder than the previous ones. It includes
four characters with either lower or upper case and the same font. No numbers
appear in this scheme. The design features include uniform background noise
in form of little dots and numerous occluding curved lines intersecting char-
acters and each other and thus making the segmentation very hard. A global
and local warps are applied varying the stroke width significantly. However,
the individual characters never touch each other. This fact could be taken
advantage of for possible segmentation.
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Chapter 2

Algorithm overview

2.1 Outline

In this chapters and the following ones, I will summarize the main ideas of the
algorithm and present a pipeline with which I will attempt to break the afore-
mentioned schemes. Currently, there are numerous techniques to overcome
the captcha security. The most common and also reliable performing is the
segment-then-recognize approach consisting of two parts. In the first one, we
will try to overcome the anti-segmentation techniques the captcha has. The
image is converted to a binary pixel matrix and then divided into individual
letters. It is usually achieved with image processing tools and a custom built
algorithm depending on the implemented techniques. A machine learning al-
gorithm to classify the individual letters will be used in the second part. The
advantages are its simplicity, speed, and accuracy. However, it is customized
for the targeted scheme and subsequently does not perform on all captchas
but only similar ones. This can be considered as the main disadvantage.

A next notable approach is to find all possible cuts in the captcha, then
construct every possible segmentation and find the one which globally max-
imizes the recognition rate. This is very advantageous, because there is no
need to recognize which cuts are between the individual characters and which
are not, because all of them are processed in the recognition phase. Only the
most probable answer is then chosen.

Another method is to treat the captcha as a whole and not to bother with
the segmentation. That is certainly a great convenience but constructing an
algorithm which is capable of recognizing characters in a distorted image is a
very difficult task. In recent years there has been a development in this area
using neural networks, which are yielding increasingly better results.
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2. Algorithm overview

2.2 Pipeline

The approach of my choice is the first one since it is a simple yet proven
method which has good options for customization. The general pipeline of
the algorithm is as follows:

1. Pre-processing: The image is converted to a greyscale image and then
to a binary matrix. Most of the distortion and noise is also removed.

2. Segmentation: The characters in the image are identified and isolated.
This step can produce multiple possible segmentations.

3. Post-segmentation: The isolated characters are sanitized of the re-
maining noise and resized in order to standardize them for the classifier
algorithm.

4. Recognition: A learned classifier is used to recognize all the isolated
characters.

5. Post-processing: Of all possible answers, the one maximizing the re-
cognition rate is chosen. It is most likely to be the correct answer.

12



Chapter 3

Pre-processing

3.1 Image conversion

In this step, the color image is converted to a greyscale one. A colorful im-
age of a common quality uses 8 bits per pixel per channel, which sums to a
total 24 bits for RGB images. Nonetheless, a greyscale image needs only one
brightness channel so only a third of the memory is used. This in turn saves
us computational time. The image is converted from RGB colorspace to a
greyscale space with the following equation[9] issued in a Rec. 601 standard

Figure 3.1: An example of a cuzk captcha with characters Eg83V

Figure 3.2: The thresholded captcha example
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3. Pre-processing

by the International Telecommunication Union[10]:

RGB[A] to Gray: Y ← 0.299 ·R+ 0.587 ·G+ 0.114 ·B (3.1)

It is then further transformed with a thresholding method to a binary
image. Thresholding is a technique where each pixel is assigned a new value:
pixels with an intensity higher than the threshold are converted to white color
and those with a lower intensity are converted to black. For a given threshold
T the equations is:

f(x) =

{
0 if x < T

1 otherwise
(3.2)

This allows for further optimization in memory management as each pixel
now theoretically uses only one bit. In my experiments, the threshold value
can be set with two approaches. The first one is to empirically determine
the threshold by analysing the samples and manually set the threshold value
which yields the best results. The second approach is to use an automated
algorithm for each captcha. The method of my choice is the one proposed
by Otsu[11]. The threshold is computed by iterating through all possible
thresholds and selecting the one which minimizes the within-class variance
defined as a weighted sum of variances of the two classes. The class probab-
ilities used as weights and the class variances are computed from the image
brightness histogram:

σ2w(t) = ω0(t)σ
2
0(t) + ω1(t)σ

2
1(t) (3.3)

ω0(t) =

t−1∑
i=0

p(i) (3.4)

ω1(t) =
L−1∑
i=t

p(i) (3.5)

3.2 Noise removal

The following section outlines the next step of the algorithm. It consists of
removing the noise from the image.

3.2.1 Morphological operations

The next step is to remove the speckles and the occluding line from the im-
age. One simple approach to remove speckles and occluding lines is to use
morphological operations. They are a very powerful tool in the field of image
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3.2. Noise removal

Figure 3.3: The effect of morphological closing with one iteration

Figure 3.4: Deterioration of character details after three iterations of closing

processing and mathematical morphology. With the closing operation, we can
fill small holes and gaps in the image, and with the opening operation loosely
connected segments are disjointed and small points and lines are removed. In
order to separate the individual letters, we choose the second operation. The
four basic binary morphological operations of dilation ⊕, erosion 	, opening
◦ and closing • are defined as follows:

X ⊕H = {(x, y) : H(x,y) ∩X 6= ∅} (3.6)

X 	H = {(x, y) : H(x,y) ⊆ X} (3.7)

X ◦H = (X 	H)⊕H (3.8)

X •H = (X ⊕H)	H (3.9)

where X is the original image, H the structuring element and H(x,y) the
translation of H by the vector (x, y). The effect of closing operation can
be described as erasing the object border and then regrowing it back. If
in the first step an object is small enough to be considered a border as a
whole, there is subsequently nothing to regrow and thus it is deleted. While
this approach should remove all the speckles effortlessly, it can also destroy
significant features of certain characters such as serifs or the i dots. Therefore
the usage of this method is upon consideration.
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3. Pre-processing

Figure 3.5: Removal of speckles with the flood fill algorithm

The next approach is to count the area of all connected components (i.e.
how many pixels it contains) and delete the ones with area under certain
threshold. The idea is to iterate on each pixel of the image and when a
white pixel is found a flood fill algorithm is used to count the number of
pixels in the area. Individual characters are large objects and such can be
easily distinguished from noise by empirically setting a certain threshold. The
objects with area count under the threshold are then deleted, which results in
an almost noiseless image.

3.2.2 Flood fill algorithm

The flood fill algorithm, also known as bucket fill or seed fill, is a simple
algorithm that determines the area of an object with a certain color in an
image matrix. It can be used in two ways. In the first one, the aim is to count
the number of pixels in the object. In the second one, it is used to paint the
object with a certain color. This property is useful for removing an object,
because we can just set the replacement color to the background one.

3.3 Canny edge detection

3.3.1 Introduction

Edge detection is a standard problem in the field of image processing. It aims
to identify the areas where the image brightness or color intensity changes
sharply or in other words the boundaries of objects within the image. In our
effort to break captchas, it can be successfully employed, for example to detect
the edges of characters on a particularly confusing background. Moreover,
some advanced features do not require the whole letter but only its outline,
which can also be achieved with an edge detector. One of the best known
algorithms is the Canny edge detector. This algorithm was presented by John
Canny in one of his papers[12]. He analyses the problem and introduces the
following criteria:
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3.3. Canny edge detection

Algorithm 1: Flood fill algorithm

Data: Start node, target color, replacement color
Result: Pixel count
if target color is equal to start node color then

return 0
end
Set C to 0
Set Q to empty queue
Add the start node to Q
while Q not empty do

Dequeue node N from Q
if color of N is the target color then

Set the color of N to replacement color
Increase C by 1
Enqueue nodes north, east, south and west from N to Q

end

end
return C

Figure 3.6: Effect of the Canny edge detection algorithm

1. Low error rate: It is vital that the error rate is low. All the edges
should be found and the algorithm should produce no spurious responses.

2. Localization: The distance between the points found by the detector
and the true edge center should be minimal.

3. Minimal response: There should be no other responses to a single
edge but one.

3.3.2 Process

The algorithm consists of these steps:

1. Noise reduction
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3. Pre-processing

In order to fulfil the first criterion we need a way to eliminate noise.
It is achieved by applying a Gaussian kernel filter to convolve with the
image. The equation to calculate the kernel is:

Gxy =
1

2πσ2
exp(−(x− (k + 1))2 + (y − (k + 1))2

2σ2
); 1 ≤ x, y ≤ (2k + 1)

(3.10)
for a kernel size of (2k+1)×(2k+1). The equation for the new smoothed
image, where A is the original image matrix and B is the result3, is this:

B = G ∗A (3.11)

It will slightly smooth the image reducing the effect of noise on the
detector while preserving its ability to find edges.

2. Finding intensity gradient

The smoothed image is then filtered with an edge detection operator.
Canny himself did an extensive research in this aspect and found an
optimal function, which is described by a sum of four exponential terms.
However in order to effectively compute the two-dimensional extension
of the filter, he found that a close approximation is the first derivative
of a Gaussian G′(x), where

G(x) = e−
x2

2σ2 (3.12)

To this day, a number of edge detection operators have been proposed,
each of them having different properties and results. A popular operator,
which has also been chosen in this paper, is the Sobel operator[13]:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗A (3.13)

Gy =

−1 −2 −1
0 0 0

+1 +2 +1

 ∗A (3.14)

which gives us the approximated first derivative in horizontal and ver-
tical direction. Using this tool, we can easily calculate the edge gradient
map G. The angle of each edge is also calculated by means of the arctan-
gent function with two arguments.

3Note that the ∗ symbol denotes the convolution operation
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3.3. Canny edge detection

G =
√

Gx
2 + Gy

2 (3.15)

Θ = atan2 (Gy,Gx) (3.16)

As we are working on a pixel matrix, the edge direction angles are roun-
ded to the nearest vertical, horizontal or diagonal lines, which correspond
to 0◦, 90◦, 45◦ and 135◦ respectively.

3. Non-maximum suppression

Given the minimal response criterion, we apply an edge thinning tech-
nique called the non-maximum suppression. After applying the smooth-
ing filter and calculating the intensity gradient, the edge is still somewhat
blurred. All pixels which are not a true edge but are adjacent to it are
therefore suppressed. It is done by comparing the pixel edge strength
value in the gradient map to pixels which lay perpendicular to its direc-
tion and are facing the same direction, and suppressing all but a local
maximum. For example a pixel P is an edge in vertical direction. It is
compared with its neighbors on the horizontal line. If they have a lower
value than P , it is the local maximum and they are suppressed.

4. Hysteresis thresholding

So far we have had a close approximation of the image edges. Never-
theless, still a few of the edges are spurious responses caused by various
noise. In order to eliminate them, we apply a double threshold. The first
threshold value is higher and selects the sure edges which will be kept.
The second threshold value is lower and eliminates non-edges which are
below the lower threshold and are then deleted. The pixels whose values
are between the two thresholds indicate weak edges which can be either
real edges or just noise. To distinguish between them, we look at their
position in the image. If they are connected to a sure edge, they are
also considered a real edge, otherwise they are treated as noise and are
thus deleted. The two threshold values are usually set by the user, as
different images have different properties. They can also be determined
using the Otsu’s thresholding method already mentioned earlier in 3.1.
The final image is a close representation of the image edges.
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Chapter 4

Segmentation and
post-segmentation

Due to the increasingly greater success rates of machine learning algorithms
at recognizing individual characters, it has been generally acknowledged that
captchas security lies in withstanding the segmentation. Most captchas have
employed at least some form of anti-segmentation techniques. In my research
various segmentation methods were studied and assessed and subsequently the
following segmentation algorithm was designed.

In our case, we have been fairly successful in eliminating the noise from
the images. With our simplistic approach, only the individual characters and
a few lines remain. At first we isolate all the objects left in the image, which
is done by iterating through every pixel. When an unlabelled pixel with a
foreground color is found, the flood fill algorithm is used to paint it a new
unique color, which also serves as a label. The preprocessing stage of the
algorithm is not completely efficient, so some occasional lines remain in the
image. They can be either connected to a character or isolated. Due to the
nature of the lines used, their position is generally horizontal. That is unlike
any of the characters the captchas contain and as such the isolated lines can
be easily eliminated by deleting all objects with their height under certain
empirically set threshold.

If the number of the acquired objects is the desired number of characters,
the captcha is considered successfully segmented, and we move to the next
step. In the other case, we have two possibilities. The first one is that the
number of objects is greater than number of characters. This implies that
there are some speckles or line segments left. They are eliminated by iterating
through all the objects and deleting the ones with the lowest pixel count.
This usually provides good results. The other possibility is that we have
fewer objects than the number of characters which indicates a connection of
multiple characters either by a remaining line or by collapsing. This situation
is resolved with an x-axis projection algorithm.
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4. Segmentation and post-segmentation

Figure 4.1: Partial segmentation with two connected characters

Figure 4.2: Segmentation attempt with the cut in the middle of a character

Figure 4.3: Correct segmentation with the cut between two characters

4.1 X-axis projection

The idea of X-axis projection is based on the notion that when two or more
characters are joined, the pixel count between them is generally lower than
in the centre of the character. First, we construct the X-axis projection by
summing the pixels of each column. In order to reduce the effect of noise and
small count fluctuation, a smoothing filter is applied to the projection. Next,
all local minima are found which will be later considered for cutting points.
Note that some adjacent columns can have the same pixel count and be all
at the local minima. In that case we consider only the middle one to be a
cutting point. The next step is to remove all local minima which have their
pixel count under empirically set threshold to eliminate most cutting points
positioned in the middle of a character. This gives us a number of possible
ways to segment the joined characters. Note that more cutting points than
desired are usually found. It is nevertheless not an issue, because we will
retain all the possible segmentations, recognize them and select the one which
maximizes the classification score.
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4.2. Features

4.2 Features

After successfully segmenting the image and obtaining the individual letters,
they are further transformed to prepare for the classifier and to optimize its
performance. It operates on vectors with the same length and so the data has
to be stored in a matrix with fixed dimensions. Because every character has
different size, we need decide how the data will be handled.

The most primitive approach is to use the raw data which are in other
words the portion of the image matrix containing the character. This approach
can be divided into two options: In the first one, the whole object is treated as
the character and is simply resized to the desired proportions. It stretches the
thin characters and shrinks the wide ones. The same characters are stretched
equally so it does not impede the classifier performance. The second assumes
the object contains some remaining noise. In order to reduce its effect on the
performance, the center of mass is calculated and the center of the image is
shifted to it. This reduces the effect of any remaining lines connected to the
character.

These approaches have a huge disadvantage in containing an unnecessarily
large amount of data, which impairs the computational capabilities of the
classifier. It can be partially reduced by scaling the character down. Its main
advantage lies in its simplicity and a sufficient resistance to noise. A further
improvement can be made by using a set of weights preferring the center of
the character. The idea behind this is that the center is less affected by the
distorting noise than the outward regions which can for example be overlain
by another character.

A more progressive approach is to extract advanced features from the raw
data which accurately distinguish between the characters. They significantly
reduce the amount of data we have obtained making it easier to work with.
Their main advantage though lies in their properties, because depending on
what features we extract, they can be invariant to translation, scale, rotation,
skewing, stretching, mirroring, and so on. They also offer various resistance
to noise.

4.2.1 Hu moments

The features of my choice are Hu moments. They are a set of invariants derived
from image central moments which are particular weighted averages of the
intensities of the images’ pixels. Simple image properties can be derived from
these moments, for example the area, the centroid or its orientation. These
invariants are by construction invariant to translation and can be generalized
to scale invariance. In the work of Hu et al[14], moments invariant to rotation
were constructed conveniently counteracting the effect of character rotation
in captcha designs. The central image moments invariant to translations for

23



4. Segmentation and post-segmentation

greyscale images with pixel intensities I(x, y) are defined as follows:

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y) (4.1)

These can be generalized to moments by normalization with scaled zero-
th central moment. The resulting moments are invariant to translation and
scaling.

ηij =
µij

µ
(1+ i+j

2 )
00

(4.2)

where i+j ≥ 2. In his work, Hu proposed moments invariant to translation,
scale, and additionally to rotation. They can be constructed as follows:

I1 = η20 + η02 (4.3)

I2 = (η20 − η02)2 + 4η211 (4.4)

I3 = (η30 − 3η12)
2 + (3η21 − η03)2 (4.5)

I4 = (η30 + η12)
2 + (η21 + η03)

2 (4.6)

I5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]
(4.7)

I6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]

+ 4η11(η30 + η12)(η21 + η03)
(4.8)

I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

− (η30 − 3η12)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]
(4.9)
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Chapter 5

Recognition

Recognition is the last part of the captcha attack pipeline. It works in two
modes. In the learning mode, the algorithm is told what the deciphered
captcha text is and it uses the information to learn what each letter looks
like and stores it in its database. In the testing mode, this stage is used to
recognize each segmented letter and produce the most probable answer.

There are three most frequently used classifiers for breaking captcha. The
first one is a SVM classifier which stands for “Support Vector Machine”. In
short, it is a supervised learning algorithm which constructs an optimal hyper-
plane boundary in an n-dimensional space between two classes. In addition
to linear classification, it can be generalized to non-linear classification with
the use of a kernel. Its disadvantage is being prone to over-fitting.

The next common classifier family is an Artificial Neural Network or ANN
for short. It is a computational model inspired by biological neural networks
with layers of interconnected neurons. Each neuron processes its input with a
weighted function and sends the output signal to the next neuron layer. It is
a non-parametric model and as such does not need a statistical background to
set the right parameters. Another advantage is its ability to learn detecting all
possible interactions between the variables. Its disadvantages are that it is a
“black box”, we do not know the inner workings of the network and cannot use
it to our advantage. It is also computationally demanding and complicated to
implement. For these reasons, it is not the algorithm of my choice. For more
information on both classifiers please refer to [15].

5.1 K-nearest neighbors

The last classifier and the classifier of my choice is the K-nearest neighbors.
It is a simple algorithm with only a few parameters, but with good results.
Unlike the SVM algorithm, the KNN permits discontinuous classes, which is
very useful in classifying multiple fonts and letter weights into single class,
making it a very variable algorithm. It is an example of the so-called “lazy-
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5. Recognition

learning” algorithm where in the training mode all examples are only stored
in a database and all the computing is done in the testing phase.

Now I will give a short summary of how the algorithm works. First we
need to learn the classifier on a training set which consists of labelling and
storing the feature vectors in a database. Then, in order to classify a given
point, we compute how far it is from each of the learned examples and choose
k nearest neighbors. The distance can be calculated with one of numerous
metrics. They will be discussed later in this work. In the last step, a label
is assigned to the given point based on the majority vote of its neighbors. It
can also be chosen based on a weighted vote, where the weight w is usually
determined as w = 1

d with d as the distance from the given point.
This classifier offers a few parameters to optimize the performance with.

The most prominent is the choice of k or, in other words, how many nearest
neighbors will compete in the final vote. Low number of neighbors may lead
to “overfitting”, that is a state where the model is highly sensitive to noise
and random error. The classifier then chooses the label based on only the
few nearest neighbors which do not have to necessarily correspond with the
majority of the class. High number of neighbors will however result in “un-
derfitting” where the model generalizes the underlying relationships too much
and results in poor classifier performance. Next area of optimization is the
decision between the majority vote and the weighted vote. It results in only a
moderate difference between the outcomes, but can be easily used in the fine
tuning of the algorithm.

5.2 Metrics

The last choice is between different distance metrics. There is an extensive
number of ways to compute the distance so I will mention only the most
common ones. A distance function or a metric is a function that defines a
distance between each vector within a set. They play a vital role in machine
learning and in classification, because they provide us a tool to measure how
similar or distant two vectors are. A function d : X ×X → R on a set X is a
metric if following conditions are satisfied:

d (x, y) ≥ 0 (non-negativity) (5.1)

d (x, y) = 0 if and only if x = y (identity of indiscernibles) (5.2)

d (x, y) = d (y, x) (symmetry) (5.3)

d (x, y) ≤ d (x, z) + d (z, y) (triangle inequality) (5.4)

5.2.1 Euclidean metric

Also called the Pythagorean distance, it is the most common and one of the
most basic distances. In Euclidean space, it is the length of a line connecting
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5.2. Metrics

to points. Let dE be the Euclidean metric between two vectors on the Rn

space. It is defined by[16, p. 94]

dE = ‖x− y‖2 = 2

√√√√ n∑
i=1

(xi − yi)2 (5.5)

5.2.2 Manhattan distance

In the case where we use the distance to compare the results of k nearest
neighbors in the majority vote in the last step of the KNN algorithm, the
square and the square root operations can be removed with the same result.
The outcome is the city block distance named after the grid layout of the
streets of Manhattan where it is the shortest distance a taxicab drive take
between two intersections. The optimized equation results in[16, p. 323]:

dM (x, y) = ‖x− y‖1 =
n∑

i=1

|xi − yi| (5.6)

Note that because we are not working on real numbers but only on binary
vectors x, y ∈ {1, 0}, the distance is equal to the Hamming distance which is,
in other words, the total number of different bits of two binary vectors.

5.2.3 Cosine distance

A cosine distance is a dissimilarity measure of two vectors measuring the
cosine of the angle between them. The result is 0 for vectors with the same
orientation and 1 for angles perpendicular to each other. As such it does not
measure the magnitude of the factors but rather the orientation.

dC (x, y) = 1−
∑n

i=1 xi ∗ yi√∑n
i=1 x

2
i ∗

√∑n
i=1 y

2
i

(5.7)

5.2.4 Jaccard distance

The Jaccard distance is again a dissimilarity measure of two vectors. In some
cases the presence of an object does not hold the same weight as its absence.
Therefore the Jaccard distance takes into account only the objects which are
present in at least one of the sets.

dJ (A,B) = 1− A ∩B
A ∪B

(5.8)
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Chapter 6

Experimentation

In this chapter, the implemented algorithm is tested on real captcha images
in multiple experiments. Various parameters are tried and evaluated.

As previously stated, a captcha is considered compromised, if at least 1%
of attacks are successful. Accuracy is nevertheless not the only criterion. In
order to be effective, the algorithm has to perform in sufficiently short time.
A solution in which a captcha can be attacked 10 times per second, but has
only a 20% recognition rate, is more effective than a solution with recognition
rate of 90% with attacks only once a second.

6.1 Data

Before the algorithm can be used to break the captcha, the KNN classifier
has to be learned first on a training dataset. To train the classifier, a large
number of captcha images has to be acquired and manually labelled. It can
be quite a challenge, because the more difficult the captcha is, the lower is
the human recognition rate. The resulting errors in the labelled data lead
to an incorrectly learned classifier and a reduced recognition accuracy. The
recognition rate is also directly dependent on the data amount, but acquiring
a sufficient volume can be quite time consuming, which can deter some of the
attackers. Also to test the recognition rate correctly, the classifier must learn
on a different dataset than the testing set. This fact further increases the
amount of data that had to be acquired.

6.1.1 ČÚZK data

Fortunately for the attacker, the captcha on cuzk has a serious design flaw.
The captcha shown on the image is not a standard GIF or JPEG format
but rather a “.axd” file, which is a HTTP Handler file used by ASP.NET
applications and is generated on runtime. Simply refreshing the image (not
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6. Experimentation

the whole page) then generates a new captcha challenge containing the same
characters.

This flaw allows us to write a simple script which refreshes and downloads
the image numerous times in a row. Labelling the data is then significantly
easier considering only one character sequence for the whole set of images has
to be recognized. It also makes it much more accurate, because if any of the
characters in a captcha is for some reason illegible, that image can be skipped
and the characters can be recognized based on another legible image.

For the following experiments, 21 sets of captchas were downloaded and
labelled for learning purposes. Each set contains 100 different images. The
resulting training dataset contains approximately 10, 500 characters. Repres-
entation of characters in the dataset is relatively uniform and so an average
of roughly 170 examples per character is acquired. The experiments were
conducted on the whole set or on a subset. The independent testing dataset
contains 100 unique manually labelled captcha images.

6.1.2 mojedatovaschranka data

This website does not contain any similar security flaw and accordingly all
data had to be labelled manually. A smaller training dataset of only 25 images
with 125 individual character examples was thus obtained. However, as this
scheme contains only numerics and virtually no noise, a set of average 12.5
unique examples per character is sufficient. The testing dataset contained 50
images.

6.1.3 ulozto data

A dataset containing 50 images was stored and manually labelled. It was later
used as a testing dataset with a training dataset from previous experiments.
Therefore no training database of its own was required.

6.2 Experiments

This section summarizes the experiments that have been conducted.

6.2.1 Pre-processing optimization

Optimizing the parameters of the pre-processing stage can have a great effect
on the algorithm efficiency. First we compare whether it is better to stretch
the characters to fit in the bounding box, in which they will be stored, or to
leave them in their original scale. When the scale is preserved, the characters
are centered on their center of weight to increase the performance. Examples
can be seen in Fig 6.1.
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6.2. Experiments

(a) Centred data (b) Resized data

Figure 6.1: An example of different storing modes with the character f

Figure 6.2: Recognition rates based on the data storage mode

As we can see from the graph in Fig 6.2, the two modes achieved similar
results. The centered mode performed slightly better peaking at 38%, which
can be attributed to better resistance to noise. Both were trained on a dataset
containing 4, 120 characters. The average time to solve a captcha was 0.75
seconds.

Next we analyze whether the size of the stored characters impacts the
classifier performance. Three different sizes were tested of 20 × 20, 30 × 30
and 40× 40 pixels per character. The results in graph in Fig 6.3 suggest that
the smaller size decreases recognition rates only slightly. However, there was
an increase of 16% in average runtime, which suggests that storing smaller
samples is overall beneficial.
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6. Experimentation

Figure 6.3: Recognition rates based on the data storage size

6.2.2 Hu moments

In this experiment, we test whether Hu moments are going to perform well
enough and produce sufficient results. A training dataset was created con-
taining again 4, 120 characters. Recognition of each of the 100 images from
the testing dataset was attempted, but it was a total failure with 0% success
rate. So as to find out if at least some of the characters can be recognized, the
dataset was normalized to the range (0, 1) to eliminate the effect of different
scale of attributes and then cross-validated. The resulting recognition rate
was 13.86%. The confusion matrix can be seen in Fig 6.4. The low accuracy
results presumably from the low tolerance to noise and the choice of KNN
algorithm. The main motivation behing Hu moments to reduce the amount
of data and lower the calculation time. Nevertheless, the cost of computing
the features is far higher than the cost of calculating the distances on smaller
vectors leading to up to 55% increase in computational time.

6.2.3 Classification optimization

The last area of optimization is the recognition stage. Numerous distance
metrics are analysed and the effect on various number of nearest neighbors
in the KNN algorithm is evaluated. The learning dataset size was increased
to 8, 315 entries and the testing dataset is the standard 100 images. The
results peaking at 46% can be seen in Fig 6.5. The bigger learning dataset
had increased the recognition rates by the average of 5% without hardly any
deceleration. We can see that all the metrics produce similar results with
the Manhattan distance achieving the highest recognition rate. Moreover,
Manhattan distance was calculated in the shortest span of time seen in Table
6.1 making it the best distance to use. The results refuted the idea that
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6.2. Experiments

Figure 6.4: Confusion matrix using Hu moments. On the vertical resp. hori-
zontal axis is the predicted resp. true value

Distances Manhattan Cosine Jaccard Weighted Manhattan

Total time 106 s 190 s 158 s 202 s

Time relative to fastest 1.00 1.79 1.49 1.91

Table 6.1: Table of calculation times depending on metric type

weighing the features prioritizing the inner region of the character will increase
the recognition rate.

The performance of the dataset containing 8, 315 entries has been assessed
in a tenfold cross-validation test. This means ten experiments were run each
having one tenth of the data as learning data and the rest as testing data. We
were able to achieve an 85.5% accuracy. We were not able to achieve results
comparable to modern optimized classifiers, but they are more than sufficient
for our algorithm. The confusion matrix produced can be seen in Fig 6.6. We
can clearly see that similar characters are often mistaken with each other.
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6. Experimentation

Figure 6.5: Graph of recognition rates of different distance metrics depending
on the number of nearest neighbors

Figure 6.6: Confusion matrix of training dataset.
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6.2. Experiments

Figure 6.7: Graph of different dataset accuracy rates

6.2.4 Application on different solution

These experiments will be dealing with using the previously trained algorithm
on different captcha solutions. The first will be the ulozto captcha with 50 im-
ages in the testing dataset. When the dataset of 4, 120 entries of 20x20 pixels
with the Jaccard distance was used, the algorithm segmented and recognized
up to 14% of the images. Even though the accuracy is pretty low, it is still far
above the 1% threshold for the captcha to be compromised. Bearing in mind
that the classifier was not trained on the attacked captcha but on a different
one, it is actually quite a big success.

Next, the trained algorithm was deployed on the mojedatovaschranka
captcha. After optimizing the parameters, the resulting recognition rate was
up to 28% with the original dataset containing both numbers and letters. This
captcha solution does not contain any letters so they can be removed from the
dataset. Eliminating confusion of g with 9 or l with l etc. increased the
recognition rate to 38%. The reduction of size had the benefit of up to three
times faster calculation speed.

To further examine the dataset influence on the classifier accuracy, an
independent training dataset for the mojedatovaschranka captcha was created
with 25 images containing total of 125 entries. It may seem to be a rather
small dataset, but as the solution contains only 10 numerals, the average is 12.5
entries per character, which turns out to be sufficient. The Jaccard distance
metric yielded the best results with an impressive 82% recognition rate. The
graph containing the comparison between different training datasets can be
seen in Fig 6.7.
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Conclusion

This thesis aimed to evaluate the effectiveness of various feature designs in
text-based captcha schemes. The main goal was to implement an algorithm
capable of recognizing characters in various solutions.

First, numerous anti-recognition and anti-segmentation features were de-
scribed, and their impact was evaluated. Then, an algorithm for character
recognition in captcha solutions was presented. It involved a custom segment-
ation algorithm capable of isolating the individual characters based on density
of pixels in the image.

The proposed algorithm was successfully implemented and achieved up to
46% recognition rate on the cuzk solution and 82% on the mojedatovaschranka
solution. A recognition rate of 14% was achieved on the ulozto solution, even
though the algorithm was trained on a different solution, proving to a certain
degree that the algorithm has a general application.

The algorithm can be further developed by improving the pre-processing
stage to preserve all the character features while removing more noise. Also a
different classifier, such as a neural network, could be used to achieve better
recognition rates.
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Appendix A

Acronyms

CAPTCHA Completely Automated Public Turing test to tell Computers
and Humans Apart

SVM Support Vector Machine

KNN k-Nearest Neighbors

ANN Artificial Neural Network

RGB Red Green Blue

JPEG Joint Photographic Experts Group

GIF Graphic Interchange Format

HTTP Hypertext Transfer Protocol
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Appendix B

Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

impl........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
BP Pistora Matous 2016.pdf ......... the thesis text in PDF format
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