
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague September 23, 2015

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Evaluation of XPath queries over XML documents using SparkSQL framework

 Student: Bc. Radoslav Hricov

 Supervisor: Ing. Adam Šenk

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2016/17

Instructions

SparkSQL framework enables distributed and parallel data processing of various formats using SQL-like
query language. The main goal of the master thesis is to use the SparkSQL framework to implement a subset
of expressions from the XPath query language, which is used for querying XML data.

1. Get acquainted with the Apache Spark engine, mainly focus on its SparkSQL framework.
2. Study the works related to the process of mapping the XML database technology (XML documents) to the
relational database technology.
3. Based on your knowledge, design a query engine that will be able to evaluate XPath queries over XML
documents.
4. Implement a prototype of the designed solution using the SparkSQL framework.
5. Perform suitable testing on the implemented prototype, primarily aim on its functional properties.
6. Create a summary of the performed testing and assess the possibility of its deployment in a highly
distributed environment.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Evaluation of XPath queries over
XML documents using SparkSQL
framework

Bc. Radoslav Hricov

Supervisor: Ing. Adam Šenk

5th February 2016

Acknowledgements

I would like to express sincere thanks to my supervisor Ing. Adam Šenk
for his helpful advices and comments that helped me to finish this master’s
thesis.

Also I would like to thank Prof. Dr. Wolfgang Benn and Johannes
Fliege from Technische Universität Chemnitz, Faculty of Computer Science
for all their help and the opportunity to work on my master’s thesis abroad
at university in Chemnitz.

Last but not the least, I would like to express my heartfelt gratitude to
my parents, all my family and friends for the support not only during the
work on the thesis, but during my whole university study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adher-
ing to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right
to conclude a license agreement on the utilization of this thesis as school
work under the provisions of Article 60(1) of the Act.

In Prague on 5th February 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Radoslav Hricov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and
its usage without author’s permission is prohibited (with exceptions defined
by the Copyright Act).

Citation of this thesis
Hricov, Radoslav. Evaluation of XPath queries over XML documents using
SparkSQL framework. Master’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2016.

Abstract

The main goal of this thesis is to use Spark SQL framework to implement
a subset of expressions from XPath query language. The first part of this
thesis is focused on introducing the Apache Spark project. The second part
covers analysis of mapping XML documents into the tabular form using
an encoding of nodes that keeps a document order. Also the approach to
the solution that uses Spark’s features is described in the second part. The
third part of the thesis is focused on implementation and testing of designed
solution.

Keywords XML, XPath, SQL, Spark, Spark SQL, DataFrame, Dewey
order encoding

Abstrakt

Cieľom tejto práce je implementovať podmnožinu výrazov jazyka XPath
pomocou systému Spark SQL. Prvá časť práce je zameraná na predstavenie
projektu Apache Spark. Druhá časť pokrýva analýzu možnosti mapovania

ix

XML dokumentov do formy tabuľky použitím kódovania prvkov, ktoré
zachováva ich poradie v rámci dokumentu. V druhej časti je taktiež popísaných
niekoľko spôsobov riešenia, ktoré využívajú funkcie systému Spark. Tretia
časť tejto práce je zameraná na implementáciu a testovanie navrhnutého
riešenia.

Kľúčové slová XML, XPath, SQL, Spark, Spark SQL, DataFrame, Dewey
order encoding

x

Contents

Introduction 1

1 Technologies 3
1.1 XML . 3
1.2 XPath . 5
1.3 SQL . 8

2 Apache Spark 11
2.1 Spark Core . 11
2.2 Spark’s relation to Hadoop 16
2.3 Spark SQL . 19
2.4 Running on cluster . 21

3 Analysis and design of solution 23
3.1 Transforming of XML document to relational table 23
3.2 Global order encoding . 24
3.3 Local order encoding . 25
3.4 Dewey order encoding . 26
3.5 Summary . 26

4 Our approach 29
4.1 Pure SQL method . 29
4.2 Join-based SQL . 31
4.3 SQL query via DataFrame API 33
4.4 Alternative methods without joins 35
4.5 Left semi join . 36
4.6 Broadcasted lookup collection 37

xi

4.7 Getting result . 39
4.8 Summary . 40

5 Implementation 41
5.1 XML processor . 42
5.2 XPath executor . 46
5.3 Working with cluster . 55
5.4 Summary . 57

6 Testing and Experiments 59
6.1 Manual testing . 59
6.2 Unit testing . 59
6.3 Experiments . 60
6.4 Summary . 62

Conclusion 63

Bibliography 65

A Acronyms 69

B Contents of enclosed CD 71

C User manual 73
C.1 XML processor . 73
C.2 XPath executor . 73

D Tables of transformed XML document 75

xii

List of Figures

1.1 XPath Axes [1] . 6

2.1 Spark Stack [2] . 15
2.2 Directed Acyclic Graph . 18
2.3 Spark SQL query planning [3] 20

3.1 Global order encoding . 24
3.2 Local order encoding . 25
3.3 Dewey order encoding . 26

5.1 Local cooperation of applications 42
5.2 Nodes’ table of transformed XML 43
5.3 Paths’ table of transformed XML 44
5.4 Cooperation of applications and standalone Spark cluster 55
5.5 Performance of cluster and local mode 57

6.1 Performance of proposed methods 61

xiii

List of Tables

4.1 Cartesian product versus Right JOIN 33
4.2 SQL versus DataFrame . 34
4.3 LEFT JOIN versus LEFT SEMI JOIN 37
4.4 LEFT SEMI JOIN versus Lookup collection 39

5.1 Size comparison of generated tables 45
5.2 Performance improvement by using broadcast variable 52
5.3 Performance improvement by repartition 53
5.4 Performance improvement by using caching 54
5.5 Performance of cluster and local mode 56

6.1 Summarizing table of tested queries 60
6.2 Performance of proposed methods in seconds 61

xv

Introduction

Nowadays XML is a popular language for its platform independent way of
storing data. By using the XPath query language it is possible to create
queries to select data stored in XML documents. In the IT world there exist
solutions that map XML semistructured data into the relational tables to
be processed via SQL. In connection with it, one of the options how to
evaluate XPath queries is to map them to the SQL queries.

Apache Spark is a fast evolving engine for in-memory big data processing
that powers several modules. One of the modules is Spark SQL that allows
working with structured data using SQL-like query language or domain-
specific language of DataFrame.

Since Spark SQL works with the structured data, firstly the process of
mapping XML tree data structure to the structured tabular format must
be realized.

The main goal of this master’s thesis is to use Spark SQL framework to
implement a subset of expressions from XPath query language.

Apache Spark is a quite new technology. Through this thesis we would
like to get acquainted with the Spark engine mainly with its module SQL
and recognize its possibilities and potential limitations.

1

Chapter 1
Technologies

This chapter covers the basic technologies that relate to this thesis. We
describe an XML as a popular language used for data storing and sharing
them over the web. In connection with XML there exists a query language
called XPath that is used to locate and process data stored in XML docu-
ments. In this thesis we translate XPath queries to another query language,
which is allowed in Spark SQL engine, called SQL.

1.1 XML
The XML is an abbreviation of Extensible Markup Language [4]. It was
designed as a platform-independent easy to read language for storing data
and exchanging them over the web. Extensible Markup Language is focused
on the meaning of data. Unlike HTML, XML has no predefined tags. Tags
are created by author of the XML document according to his needs. The
XML document is built by two component units:

• Element

• Attribute

Element is the basic logical unit of XML document. Every element
starts with an opening tag and ends with a closing tag. The name of the
element is given by tag. Tags always begin with < and end with >. Between
these two characters is the name of element, for example <element>. The
closing tag is a bit different. It has backslash before the element name
such as </element>. Elements can contain a text node, attributes or other
elements. A nesting of element nodes creates a tree structure of the XML
document where inner nodes are XML elements and leaves of tree represent

3

1. Technologies

text nodes. According to the XML specification there also exist elements
without the closing tag. It is called a self-closing tag and it is used as
an alternative expression for an empty element. In this case the element
<element></element> is equivalent to the self-closing tag <element />. There
exists one more special element type called a mixed content element. The
mixed content means that it can contain attributes, text nodes and other
elements nested within element. The XML elements are simply extensible.
It means that elements can be extended to carry more information without
the impact on the application that processes the XML document.

Attributes carry additional information about the element. It is a pair
of an attribute’s name and value that relate to the particular element. The
attribute’s specification is located in the opening tag of the element and
it is always behind the element name. There can be more attributes in
a row, but the value of each attribute must be quoted such as <element
attribute1="attr1" attribute2="attr2"> </element>. It depends on the au-
thor of XML document whether the new element or attribute is used for
adding information to extend the XML document.

Following example shows a simple XML document containing elements,
attributes and text nodes.

<bookstore>
<book category="web">

<title lang="en">XQuery Kick Start</title>
<author>James McGovern</author>
<author>Per Bothner</author>
<author>Kurt Cagle</author>
<author>James Linn</author>
<author>Vaidyanathan Nagarajan</author>
<year>2003</year>
<price>49.99</price>
<edition>2</edition>
<pages>765</pages>

</book>
<cd>

<title>Love, Lust, Faith and Dreams</title>
<author>30 Seconds to Mars</author>
<year>2013</year>
<price>25.55</price>
<genre>Alternative rock</genre>

</cd>
<book category="web" cover="paperback">

4

1.2. XPath

<title lang="en">Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95</price>

</book>
</bookstore>

Extensible Markup Language is derived from SGML and it is a W3C
recommendation. Nowadays XML is very popular, because it can carry data
and it is often used for a data exchange within web services. For example a
SOAP protocol for exchanging messages between independent applications
is fully based on the XML.

XML documents can be processed by XSL technologies including XSLT,
XPath and XQuery. In the following chapter XPath query language is
described because it is a technology used in this thesis.

1.2 XPath
One of the approaches that allow processing the XML documents is XPath.
XPath is a query language for selecting and extracting information from
the XML document defined by W3C [5]. The name XPath is an abbrevi-
ation which stands for XML Path language and it is derived from ability to
address the nodes of XML tree in hierarchical way. For this purpose, the
path notation is used to navigate through the tree structure. The path is a
sequence of steps separated with a slash or double slash, where every step
is a move in axis level and points to one or more XML component units.
Each path step consists of three parts:

• Axis

• Node test

• One or more non-compulsory optional predicates

An axis defines a direction for a step move and it is possible to navigate
by forward or reverse steps. In the following Figure 1.1 there are shown
some XPath axes in a hierarchical arrangement and also their relations to
each other. Forward axes are child, descendant, attribute (not shown in
Figure 1.1), self, descendant-or-self, following-sibling, following, namespace
(not shown in Figure 1.1). Axes parent, ancestor, preceding-sibling, pre-
ceding and ancestor-or-self belong into the second group – reverse axes.
Forward axes provide access to the nodes which are below or on the same

5

1. Technologies

level within XML document according to the document order. The reverse
axes provide access to the nodes which are above, or in case of ancestor-
or-self axis, on the same level as the context node. The context node is
currently processed node from a set of nodes that are processed by XPath
processor.

Figure 1.1: XPath Axes [1]

A node test provides a filtration based on the name or kind from the
desired axis. By name, filtered are all elements from the context node
which have the same name as it is desired. Instead of the concrete name, a
wildcard character asterisk to select all element nodes relating to the desired
axis can be also used. The filtration based on kind means that it is possible
to select a specific component items of XML document, for example all
components which are either comment, node of any type, text, element,
attribute or processing instruction can be selected.

6

1.2. XPath

Predicate is optional part of the XPath expression and makes the node
test more specific. Predicate is written in square brackets at the position
following the node test part. For example if the context node has more
children with the same name it is possible to point to the certain node by
using predicate such as

/child::bookstore/child::book[2]

for selecting only the second book node that is a child element of the element
bookstore. In another case, for example, it is possible to select all descendant
elements whose element price is lower than 100 as follows

/descendant::*[attribute::price < 100]

XPath query steps can be written in a normal – unabbreviated or in
abbreviated syntax. In unabbreviated syntax there is always defined the
axis before the node test delimited by ::. In abbreviated syntax, in some
cases the axis name can be omitted. For example the child axis can be
omitted, so the

/child::bookstore/child::book

in unabbreviated form can be abbreviate to

/bookstore/book

Similarly works the descendant axis. Its abbreviation is //, so expression

/child::bookstore/descendant::author

can be alter with

/bookstore//author

The selection of an attribute can also be done without defining the axis.
Axis attribute:: can be replaced by @, so

//author/@id

is short for

/descendant::author/attribute::id.

For addressing parent axis from the context node the abbreviation .. can
be used with the same meaning as /parent::node().

The result of XPath step and also of whole query may be one or more
XML component units. The result may not contain duplicates and it is
always returned in the document order.

7

1. Technologies

1.3 SQL
A database management system allows user to store, retrieve, modify or
delete of data in an efficient way by using a special query language. The
abbreviation SQL stands for a Structured Query Language [6]. By means
of SQL it is described what should be done with data, not how to do it.
A concept of Structured Query Language is based on the tuple relational
calculus (relational algebra) and its queries are built as the simple and un-
derstandable English sentences. Originally the SQL was made by IBM in
1970 and it was developed for managing relational databases and manipu-
lating data. The SQL consists of four types of commands – DDL, DML,
DCL and TCL.

DDL stands for Data Definition/Description Language. Database admin-
istrators use these commands of the language to create databases and
define a structure of the tables in database. DDL contains CREATE,
ALTER, RENAME and DROP commands.

DML is Data Manipulation Language that is mainly used for insert, obtain
and modify data. The language involves commands like SELECT,
INSERT INTO, UPDATE, DELETE. These commands are often used
by database users.

DCL is Data Control Language and it is a part of SQL language that is
used by database administrators to protect the database. GRANT,
DENY and REVOKE are DCL’s commands.

TCL stands for Transaction Control language and it is a subset of the SQL
language that allows managing of transactions in database. For this
purpose the commands such as COMMIT, ROLLBACK and SAVE-
POINT are used.

Some of the mentioned commands can require additional keywords or
clauses to make them more comprehensive.

The Structured Query Language also provides several built in functions.
We can divide them into two groups – aggregate functions and scalar func-
tions. Aggregate functions consume data from a column and return the
single–value result. This group includes functions like COUNT() which re-
turns count of inputted rows or function MAX() that returns the maximal
value from inputted column. Scalar functions process an input value and
return a single value. The function is applied on each record in a column.
For example function UCASE() which converts text to upper case or function
LEN() which returns the length of text are the scalar functions.

8

1.3. SQL

Although SQL is an ANSI standard, various versions exist with differ-
ences depending on the vendor of database. All of these variations support
at least the set of basic SQL operations and functions, but sometimes they
are extended by features and capabilities which are not portable among
different RDBMSs.

A part of the SQL standard is functionality that allows a creation of
custom functions. This capability is called User-Defined Functions. As it
is written above, vendors customize SQL and not every vendor allows func-
tions defined by user. For implementing User Defined Functions, procedural
languages are often used, for example PL/SQL, Java and C# are used in
Oracle database, Java and C# in IBM DB2, Transact-SQL, C and group
of .NET languages are used in Microsoft SQL Server.

SQL queries created by database users or administrators are processed
by RDBMS. There are several steps which are done by RDBMS before the
query is executed:

• Query parsing and validating – query is split to the words and then it
is checked if query has correct syntax. A validation is process in which
the semantic errors are checked and it also checks if desired names of
tables and names of columns exist and are in database catalog.

• Execution plan generating – in this process an access plan for the
query is generated. RDBMS can optimize generated access plan ac-
cording its statistic.

• Execution plan executing – in the last step the query is executed by
running the execution plan.

9

Chapter 2
Apache Spark

In this chapter the Spark engine and its module Spark SQL are described
since they are the main technologies we have worked with. We describe
relation between two popular engines that are aimed to the processing of
big data – Spark and Hadoop. Both are considered as top–level Apache
projects. In the end of this chapter we introduce a cluster mode of Spark.

2.1 Spark Core
Apache Spark is a multipurpose cluster computing system for a large-scale
data processing. Spark is open source engine originally developed by UC
Berkley AMPLab and later in 2010 adopted by Apache Software Founda-
tion. Spark provides a fast in memory computing and its ecosystem con-
sists of higher–level combinable tools including Spark Streaming, Data-
frames and SQL, MLlib for machine learning and GraphX for graph pro-
cessing [2].The core engine of Spark provides scheduling, distributing and
monitoring of applications across the computing cluster. Spark is imple-
mented in Scala that runs on Java Virtual Machine. API of Spark and its
tools are available in Scala, Java, Python and R.

Running Spark provides a web user interface for checking and monitoring
statuses, settings or results of Spark and Spark jobs [7].

Spark has become popular among the companies such as Amazon, Baidu,
Databricks, eBay, TripAdvisor, Yahoo! and others that use Spark within
various business spheres [8].

To use Spark engine a driver program is needed. Developers implement
the driver program to define a processes that should run in parallel on
a cluster. A brain of the driver program is SparkContext object that is

11

2. Apache Spark

a connection to Spark and it is often used for creating RDDs, broadcast
variables or accumulators on computing cluster.

RDD that is an abbreviation of Resilient Distributed Dataset is a Spark’s
main abstraction. It is a collection of objects that can be processed in
parallel. More about RDD is written in Chapter 2.1.1. We also describe
accumulators and broadcast variables in the separate Chapter 2.1.2.

In processing of large datasets speed plays an important role. Spark
deals with speed mainly via in–memory computing, but the platform is
also efficient on a disk. In 2014 Spark won the competition in large–scale
sorting and beat the previous record held by Hadoop MapReduce that used
2100 nodes to sort around 100TB of data in 72 minutes. Spark was able
to do sorting on ten times fewer machines and it was approximately three
times faster [9].

According to the official web page of Spark project, in comparison with
Hadoop MapReduce, the applications on Spark can be 10x faster on disk
and up to 100x faster in memory [2].

2.1.1 RDD
The main Spark’s abstraction is an immutable collection called RDD. RDD
stands for Resilient Distributed Dataset and it is a collection of objects that
may be processed in parallel [7]. RDD makes Spark fault resilient, because
every RDD has information about its creation from the other RDD, so it is
easy to reconstruct just the lost partitions [10].

There are four ways how to create the resilient distributed dataset col-
lection in Spark:

• File system – Spark provides a possibility to create a dataset from the
same storages as Hadoop does. It includes a local file system, Hadoop
Distributed File System, HBase and others. Also type of supported
files is the same as in Hadoop including text files or SequenceFiles.

• Parallelizing – it is a process of transforming of existing collection in
driver program into the parallelized collection. In this process the
resilient distributed dataset which can be processed in parallel is cre-
ated.

• Transforming – seeing that the RDD is immutable collection of objects,
every operation that returns RDD always returns a new distributed
collection and the already processed collection stays unchanged.

12

2.1. Spark Core

• Changing persistency – for a faster running of actions on RDDs, Spark
allows persisting and caching of existing RDD in any step of driver
program. It means that RDD collection stored in memory across
the nodes can be used for further actions and can avoid repeating
of lazy operations on RDD. It is mostly used within iterative
algorithms or in a really fast interactive use. It is possible to store
RDD either into the memory or on the disk of executor.
The caching in Spark is also fault resilient, so if something went
wrong with the stored partition of RDD it would be recreated by
applying operations on the original RDD.

It is important to know that a transformation on RDD is a lazy
operation. New RDD is not computed immediately, instead of it,
the called operations are remembered and computed at the moment
when the result of operations is needed. So the result is a new
RDD derived from the original RDD by executing all the called
operations. The efficiency is expected from this design, it is because
Spark does not return large dataset back to the driver program
after each operation. It returns only the final dataset after executing all
operations.

As it was mentioned, two types of operations, transformations and
actions, can be performed on the RDD. A typical example
of transformation is map that calls a function on each element
of dataset and returns a new RDD due to its immutability. Other
transformations are for example filter, coalesce, repartition, union,
join, Cartesian, groupByKey/sortByKey and others. On the other hand,
the operations called actions such as reduce or count aggregate
all elements of dataset and send result to the driver program.
The other typical actions are collect, take, saveAsTextFile or foreach.
The actions are those operations that invoke the computation of lazy
transformations.

2.1.2 Variables sharing
A driver program usually contains functions that are passed to the Spark
to be executed on the cluster nodes. Each variable in a function is newly
copied to the cluster nodes, so the changes performed on the variables are
not propagated back to the driver program or to the other executors. To
deal with this problem Spark provides broadcast variables and accumulat-
ors as a way for sharing variables [11].

13

2. Apache Spark

Broadcast variables
Broadcast variables provide a possibility to effective sending
of variables to all the executors. For the executors these
shared broadcast variables are just read-only values. Also
in this case Spark works fast by using effective broadcast
algorithms. If we know that we will use same data in several
operations, the broadcast variables are the way how to cache
data such as datasets on executors and minimize a communication
load.

Accumulators
On the other hand Spark provides accumulators. The accumulat-
ors enable the driver program to aggregate values from the worker
nodes. The accumulators are often used in case of a need
to count some event. For example, for a debugging purpose
sometimes it is useful to count how many times the function
was called. From the executors’ point of view, the accumulators
are write–only variables, so workers cannot access to
the value of accumulator. Only driver program is able to see
the value of accumulator. The efficiency is expected from
this design, because not every change of accumulator is
propagated to the other executors. Accumulators of primitive
data types such as int, double, float and long are available
in Spark. Spark also allows to use custom accumulators types
and user defined aggregation function. Instead of the addition
operation the aggregate function can be altered, for example, it
can be altered by finding the average from the accumulated
values. This altered aggregating function must be commutative and
associative.

2.1.3 Spark stack of library
A project Spark consists of Spark core engine and several built-in
modules. It is possible to make a combination of more modules
within the one driver program. The interoperability of several
modules is a crucial advantage of Spark. If the Spark core is
improved it can also have an enhanced impact on the performance
of modules. On the other hand, instead of maintaining more
independent systems we can have just Spark for the same
purpose. In this section we describe Spark’s modules shown in the Fig-
ure 2.1.

14

2.1. Spark Core

Figure 2.1: Spark Stack [2]

Spark Streaming
Spark module Spark Streaming enables a live data stream processing.
Spark Streaming supports sources such as Kafka, Flume Twitter, Kin-
esis and TCP sockets. Streams can be processed by the functions
included in Streaming API and the processed streams can be stored
in databases or filesystems, or be processed by another Spark exten-
sion. Under the hood Spark Streaming works as follows as it was
mentioned in [12], that follows original paper [13]. It receives live
input data streams and divides the data into batches, which are then
processed by the Spark engine to generate the final stream of results
in batches. The main abstraction is discretized stream called Dstream
that is a sequence of RDDs.

DataFrames and SQL
Spark SQL enables processing of structured data via SQL and by
using DataFrame API. A DataFrame is a distributed collection of
data that is similar to database table, so each item of collection is a
row representing a record. Spark SQL plays a big role in this thesis so
we decided to describe it and its main abstraction DataFrame more
detailed in a separate Chapter 2.3.

MLlib for machine learning
By MLlib extension Spark provides a machine learning functional-
ity. It consists of common learning algorithms and utilities, including
classification, regression, clustering, collaborative filtering and dimen-
sionality reduction [14]. MLlib consists of two packages mllib and ml.
The first is built on the top of RDD, the second is built on the top of
DataFrames and it is recommended to use ml for its greater versatility

15

2. Apache Spark

and flexibility and ability that allows constructing machine learning
pipelines.

GraphX
GraphX is an extension of Spark for manipulating graphs that provides
graph parallel computations. Directed multigraph with properties at-
tached to each edge and vertex is GraghX abstraction called Graph
which extends RDD [15].

2.2 Spark’s relation to Hadoop
In community of people who want to process larger amounts of data, a
frequently asked question is whether it is better to use Hadoop MapReduce
or Spark. In our case, the usage of Spark engine and its module Spark SQL
was determined in the assignment of this work. In this section we compare
two Apache projects Spark and popular Hadoop. We describe the essential
similarities and differences between Spark and Hadoop’s MapReduce as
engines for a parallel – big data processing. We show why Spark could
be better, in meaning that it should be faster, than Hadoop MapReduce
module. Hadoop and Spark are both considered as the top-level Apache
projects which means, that the projects are managed and developed by
principles of Apache Software Foundation.

2.2.1 Hadoop versus Spark

Hadoop is an open–source framework that provides a distributed comput-
ing across the cluster and its computations are based on a map/reduce
programming model. Hadoop consists of several modules whereby one of
them is a MapReduce module. Spark extends and improves the MapRe-
duce model and allows efficient computations, querying, stream and graph
processing and machine learning. It must be said that Spark is not depend-
ent on Hadoop however it can load data from and store them to Hadoop’s
HDFS.

Hadoop MapReduce is a disk based engine for processing and analyzing
big data. To use the engine, developers write directly map and reduce
jobs, on the other hand to run computation on Spark, it allows using the
functions of API [11].

16

2.2. Spark’s relation to Hadoop

2.2.1.1 Execution model

MapReduce jobs consist of the processing step map, the synchronization
shuffle and collecting the results from worker nodes called reduce step.
During the shuffle phase, the result of mapping is merged and prepared
for reducing. If user needs complicated data processing and more map/re-
duce jobs have to be executed consecutively, MapReduce may be slow [16].
It happens when the result of each following job depends on the result of
the previous job and a following job cannot start until the preceding is not
done. In Hadoop MapReduce computed data are stored to the disk after
each map or reduce operation, so MapReduce jobs are executed sequen-
tially. Reason why Spark can be really faster is that it provides in–memory
caching, it does in–memory processing of data and within a sequence of op-
erations it does not use the two–stage map/reduce paradigm. Spark brings
an alternative approach to the problem of sequences of operations that is
referred as Directed Acyclic Graphs [10].

From a cost point of view there exists a disadvantage of Spark. While
it performs an in–memory computing, data must fit into memory for the
optimal performance.

2.2.1.2 Fault tolerance

This two projects that are being described use different approaches to
the failure avoidance. Hadoop uses persisting data on a disk and replic-
ation whilst Spark uses Resilient Distributed Datasets that exist mostly
in memory and may be reconstructed when failure occurs since RDD has
information about its creation. RDDs may also be persisted on disk on
demand.

2.2.2 Directed acyclic graphs
In Spark a directed acyclic graph is a graph where vertices are transforma-
tions called on distributed dataset. DAG represents a model for scheduling
work. An acyclicity is required seeing that the already executed transform-
ations should not be executed once again, and via directionality it indicates
an order of jobs. Unlike the map/reduce paradigm, DAG can be optimized
and executing of independent DAG steps may be run in parallel. Since
DAG contains information about processing data from the one state to the
other, it can be easily used for reconstructing data in case of data loss.
Advantage of systems using DAGs over map/reduce model is that DAG is

17

2. Apache Spark

executed whole at once on data in memory and does not require repeatedly
reading data from disk [16].

Spark extends the idea of DAG and supports in–memory data sharing
across DAGs. It can increase the speed of different jobs on the same data.

A DAG execution in Spark relates with the lazy evaluation on RDD and
DataFrame, and it can reduce network communication. Figure 2.2 shows
simple DAG that was created by Spark web UI.

Figure 2.2: Directed Acyclic Graph

2.2.3 Summary
Although Hadoop has more disadvantages compared to the newer Spark,
it is still useful in some cases. On the other hand, Spark comes with an
admirable performance provided by in–memory data processing. Thanks
to the tight integration with Hadoop, Spark is able to use the same data
sources and formats as Hadoop does. If the user of Hadoop decides to start
using Spark he does not need to migrate his large amounts of data else-
where, seeing that Spark may use Hadoop Distributed File System. Text
written above shows why we decided for using Spark instead of the Hadoop
MapReduce engine.

18

2.3. Spark SQL

2.3 Spark SQL
For scientists, analytics or general business users it is easy to use the Struc-
tured Query Language and create queries to examine data because it is a
standard language that they know. Spark SQL, as the Spark module, en-
ables these users to query and process structured and semistructured data
via SQL or HiveQL languages [3]. The Spark SQL module has background
in project Shark. It is an old project SQL–on–Spark from University of
California, Berkeley, which altered Apache Hive to run on Spark.

Apache Hive is data warehouse software which facilitates querying and
managing large datasets residing in distributed storage. HiveQL is SQL-like
language that is used to query structured data in Hive [17].

Spark SQL inherited only the best features of Shark. With the new
Spark SQL module came better integration with the Spark core and other
modules.

Spark SQL consists of three components. The first, a Catalyst Optimizer
is responsible for a query optimization and code generation. The second,
a Spark SQL Core executes queries as RDDs and allows reading parquet,
CSV, JSON and other data formats. The third is a Hive support that
enables using Hive on Spark.

Catalyst optimizer is a basic component of Spark SQL and it supports
both a rule and a cost based optimization. It executes four phases:

• Analysis of logical plan

• Logical plan optimization

• Physical plan generation (sometimes it may create more plans, but
based on the cost just one is chosen)

• Code generation

The computation of Spark SQL starts with the analysis of an abstract syn-
tax tree built from SQL or DataFrame object. Then, the unresolved (not
know yet) attributes such as columns names and their types, or whether the
desired columns belong to some table, are resolved by using Catalog object.
By logical optimizations the rule based optimizations are performed to the
logical plan. During this phase a constant folding, a projection pruning,
Boolean expressions simplification, null propagation and other optimiza-
tions are realized [3]. Physical planning generates one or more physical
plans. It takes optimized logical plan and applies operators of Spark exe-
cution engine. Based on the cost it chooses the best plan. Note that cost

19

2. Apache Spark

based optimization is used only within join algorithms. For a small relations
a broadcast join is automatically used. In the last step of query optimiza-
tion a Java bytecode is generated to be executed on separated machines [3].
Following Figure 2.3 shows how the queries are being planned.

Figure 2.3: Spark SQL query planning [3]

Spark SQL works with a special kind of RDD called DataFrame. Data-
Frame is also known as the SchemaRDD that is its older version. General
RDD is a collection of objects. SchemaRDD is very similar to database
table, so object is a row representing a record. Especially, the Schem-
aRDD allows using the SQL queries, it also provides a more efficient way of
working with data by utilizing its schema. Renaming from SchemaRDD to
DataFrame happened by upgrading to Spark 1.3 version. DataFrame still
represents a distributed data collection but it does not inherit from RDD
anymore. DataFrame can be always converted to RDD collection and by
own implementation it provides most of the functionality of RDD. A big
advantage of DataFrame is its higher performance of computation against
the RDD. A DataFrame can be built from several sources such as Hive
tables, existing RDD or text files.

There exist two possibilities of converting RDD to DataFrame:

• Reflection – calling createDataFrame function on RDD requires Class
object that provides a schema for a newly created DataFrame.

• Construction of schema – a schema may be represented as a Struct-
Type object that infers structure encoded in a String. A new Data-
Frame is created by applying schema on RDD.

DataFrame also provides a domain-specific language. It means, that it
is possible to use built-in functions from API instead of direct evaluation
of SQL query. For example query

SELECT * FROM dataFramePeople WHERE age>19

can be directly written in driver program as follows

20

2.4. Running on cluster

dataFramePeople.filter(dataFramePeople.col(”age”).gt(19)).show()

DataFrame admittedly provides more domain-specific functions, for more
detailed description read documentation [18].

Such as RDDs, also DataFrames are lazy evaluated, so operations on
DataFrame are executed when the result is required by invoking action.

On the top of each Spark SQL application is SQLContext or HiveContext
which use a SparkContext and bring all SQL functionality to the Spark.
Spark SQL offers a feature that extends its functionality by registering
user-defined functions which may be used in SQL queries. User defined
functions are registered via SQLContext.

2.4 Running on cluster
Spark running in a distributed mode uses master–slave architecture where
one node called driver coordinates numerous distributed workers [7].

Firstly, the terms that are used in this work are described.

• Driver – main process that runs Main() function of driver program, it
creates SparkContext and prepares and schedules tasks.

• Worker – node of cluster that executes received application code.

• Executor – process created on the worker node, it executes individual
tasks. Every executor is run in separate process.

• Task – the smallest piece of work that is executed by executor.

• Job – if an action in driver program is called, a job consisting of multiple
tasks is computed in parallel.

• Stages – job divided into smaller tasks that are depended on each other.

Spark provides a possibility to run applications on a cluster via cluster
managers such as Mesos and Yarn.

Apache Mesos is a cluster manager that abstracts CPU, memory, stor-
age, and other compute resources away from machines (physical or virtual),
enabling fault-tolerant and elastic distributed systems to easily be built and
run effectively [19]. Hadoop Yarn is one of the Hadoop’s modules, it is a
framework for job scheduling and cluster resource management [20].

Spark also provides its own built–in standalone cluster manager. For
running applications on the standalone cluster the Spark engine currently
allows two deploy modes:

21

2. Apache Spark

• Client mode – driver is run in the same process as a client that sub-
mitted the application. So if you run your application from a local
machine, the driver process is running on your local machine. This
can cause an unwanted effect since a frequent transfer of data among
local driver and workers may be slower than in cluster mode. This
mode is Spark’s default mode.

• Cluster mode – application is submitted to the cluster and driver pro-
gram is run from one of the worker nodes.

A brain of the driver program is a SparkContext object that manages
processes on a cluster. It also notifies executors that are created on the
cluster nodes and sends them JAR (in case Java and Scala) containing the
application code. Finally it creates tasks for executors to be executed by
them. On the worker nodes transformations are executed. Actions usually
activate a transfer data from the worker nodes to the driver node, so if total
amount of data on the worker nodes is larger than the available memory on
the driver node it can be a problem that causes collapse of driver node.

Instead of adjusting the required setting parameters of SparkContext to
run application according to them, the Spark submit script may be used.
With the Spark submit script, the application packed in JAR is automatic-
ally submitted to the worker nodes. Through SparkContext and by submit
script, the resources such as memory or number of CPU cores of executors
and driver may be scheduled.

However just modes using cluster were described, the Spark engine
provides a local mode too. In local mode the Spark driver and executor
run in the same Java process [7].

22

Chapter 3
Analysis and design of solution

XML has become one of the most popular data format for data stor-
ing and exchanging them over the web. Normally, the XML documents
are mostly processed by using the appropriate XML processing languages
such as XPath or XQuery. However there exist attempts to process XML
documents by using relational databases. Relational databases store
non–structured data, so several approaches that map XML document to
the relational table were invented. For this purpose both a schema map-
ping and an order mapping can be used. Depending on the approach, with
the schema mapping usually more than one table is created due to different
structures of XML subtrees. In this paper [21], there is described an al-
gorithm for lossless schema mapping to generate a database schema from a
DTD, which makes several improvements over existing algorithms. Also the
other strategies for mapping XML to the relation table have been proposed
by researchers such as [22] [23] or [24].

3.1 Transforming of XML document to
relational table

The main programming abstraction of Spark SQL is DataFrame, distributed
collection that is similar to the relational table. In this thesis we would
like to process XML documents, so we need some mechanism that allows
a transformation of an XML tree data model to the unordered relational
data model. Tree structure of XML document is ordered data model based
on the document order, or more precisely said, it is based on the order of
each element within XML document. In this thesis we mainly focus on the
selection of nodes, and we want to be able to reconstruct selected nodes

23

3. Analysis and design of solution

back to the valid and ordered XML. Accordingly we are not interested in
the insertion or deletion of nodes. The transformation of XML document
must fulfil a requirement of possibility to transform from the unordered
relational model back to the XML document. Hence we decided to follow
the paper [24] since it shows that XML’s ordered data model can indeed be
efficiently supported by a relational database system. This is accomplished
by encoding order as a data value.

In the following sections three methods to the transformation of XML
documents into the tables are presented and one of them will be chosen.
Also the creation of the Edge table that includes order information as a
result of the transformation, is described below.

3.2 Global order encoding
In a global order encoding, each node is assigned a number according to
the pre–order tree traversal. The pre–order traversal function assigns num-
ber to the root node then calls recursively the pre–order assignation to its
child nodes from the left to the right. The result of this assignation is
number representing an absolute position of node within XML document.
Figure 3.1 shows how global order encoding is working. Note that the
light–blue ellipses are element nodes and the light–green ellipses are text
nodes.

Figure 3.1: Global order encoding

With the global order encoding it is easy to find a result of queries like
following-sibling or following because its Edge table may contain an ID of
the last descendant of a context node. So the Edge table can be designed

24

3.3. Local order encoding

as Edge(id, parentId, lastDescId, pathId, value). Global order encoding
is the best on the queries evaluation, but not so good in the insertion
of new nodes. When a new node is inserted, the IDs of nodes following
the new inserted ones must be actualized. Although it looks like that the
floating–point values could solve renumbering problem, actually it could
just partially. In fact, integer and real are both stored by the same count of
bits. The floating–point values could improve the performance of inserting,
but in the worst case, when the count of inserted nodes is greater than
available values nevertheless the renumbering must be performed.

3.3 Local order encoding
Nodes in a local order encoding are marked by number depending on their
order among their siblings. For a better picture see Figure 3.2. It is easy
to insert new node because just siblings following the new node have to
be incremented. As it was mentioned in global order encoding, the float-
ing–point values may also help, but with the same limitation. On the other
hand, evaluation of queries, mainly following and preceding axis are diffi-
cult to execute while there is no available global order information. Edge
table of local order encoding can be designed as Edge(id, parentId, sIndex,
pathId, value). Since the ID assigned to the node does not provide inform-
ation about the position among its siblings, the sIndex as position must
be added. In this case ID is unique identifier that does not relate to the
document order, so it is not assigned according to the document order.

Figure 3.2: Local order encoding

25

3. Analysis and design of solution

3.4 Dewey order encoding
A dewey order encoding is a mix of the global and the local order encodings.
In dewey order encoding each node is not assigned just by a single number,
but it is assigned by path. The path represents a traverse from the root
node of document to any concrete node of XML document. Each step of
path represents a local order position information of ancestor node, but the
complex path represents absolute node position within XML document. An
evaluation of query within dewey encoding is very similar to the querying
with global order encoding. Otherwise, inserting of new nodes cause that
axis following–siblings and also their descendants must be updated. Despite
that the dewey order encoding uses advantages of two preceding methods,
one disadvantage should be mentioned. If the XML tree is too deep, the
dewey path may require more space to be stored while it is not a single value
anymore. It must be stored as a vector or string. Seeing that Dewey path
include enough information about the position in XML document, the Edge
table may be defined as Edge(dewey, pathId, value). Dewey order encoding
is shown in the Figure 3.3.

Figure 3.3: Dewey order encoding

3.5 Summary
Although Spark SQL supports JSON files it is not an advantage for this
thesis, because it is a special type of JSON file with an atypical design.
This special JSON consist of separated valid JSON objects that have the
same schema. Same schema is important for a DataFrame creation since

26

3.5. Summary

the schema of DataFrame is derived directly from JSON and it does not
need to be defined in a program code. As a consequence, a regular multi-
line JSON file will most often fail [25]. Instead of JSON we decided to use
a simple text file that includes rows of transformed XML. From the three
mentioned encodings the dewey order encoding will be used since it is the
universal solution and the information stored in dewey path are sufficient.
In compare with the global encoding it can be a bit slower depending on
the comparison of the paths. Dewey path implicitly contains information
about the node’s ancestor nodes and also the position among the siblings.
This thesis could be extended in a future by implementing a possibility to
perform updates on really large XML files. Thus dewey encoding is the
best option for our purposes.

In the further sections we use terms edge table and nodes table in the
same meaning.

27

Chapter 4
Our approach

In this chapter five methods are described. Firstly we introduce a trivial
method and then in the next sections it will be improved. First two ways
use the SQL queries to evaluate XPath queries. The others use a domain
specific language of Spark SQL API. The single methods are compared and
we provide the results of local performance testing. The reason why we
provide just local testing is that our early idea was to test functionality of
Spark SQL API and find out whether it is usable to solve our problem. To
ensure consistency of experiments each experiment was executed 10 times,
whereby the first attempt was excluded since it was absolutely different
from the others, and other measured times were averaged.

All local experiments were run on virtual machine hosted on an Intel
Core i3 350M 2.27 GHz processor, with 8GB DDR3 RAM and 100Mbps
LAN network, and with installed Windows 8.1 Pro 64-bit operating system.
Virtual machine has allocated 2 CPU cores and 5GB RAM, and operating
system Ubuntu 14.04 64-bit has been being run on it. All experiments
were run on Spark in version 1.5.2, for which 512MB of memory has been
allocated. A complex performance comparison of all methods is in the
Chapter 6.3. Information about tested tables containing transformed XML
documents are in Table 5.1.

4.1 Pure SQL method
In the early familiarization with the Spark SQL module we tried to directly
translate an XPath query to the SQL query. For a faster local testing we
were working with a small table of nodes containing 60 rows. The partial
table of nodes can be found in Chapter 5.1. In all our tests we performed

29

4. Our approach

translations of simple XPath queries that covered all XPath axes. The
following example shows how XPath query:

//book/author

was translated to the SQL query using our first method:

(SELECT p2.dewey, p2.pathId, p2.type, p2.value FROM nodes p2,
(SELECT p1.dewey, p1.pathId, p1.type, p1.value FROM nodes p1,
(SELECT p0.dewey, p0.pathId, p0.type, p0.value FROM nodes p0,
(SELECT ’0’ as dewey) n0

WHERE p0.type=1 AND n0.dewey <= p0.dewey
AND p0.value=’book’
AND isPrefix(n0.dewey, p0.dewey)) n1

WHERE p1.type=1 AND n1.dewey < p1.dewey
AND p1.value=’author’
AND isChild(n1.dewey, p1.dewey)) n2

WHERE n2.dewey <= p2.dewey AND isPrefix(n2.dewey, p2.dewey)

Generated SQL query starts with a selection of an auxiliary node that
represents a parent of the root node. It is an alternative to a document
statement doc("xmlFile.xml") in XPath. Then, the inputted XPath query
is translated step by step. After the translation of the last step, one more
selection and filtration is needed. It completes the result of query by select-
ing all descendant or self nodes of previously selected nodes. It is because
the XPath steps traverse through the nodes, so by last extra step their
content is appended.

On our small testing file it was relatively fast to compute a result, but
problems with performance began during the processing larger table of
nodes containing 791922 rows. After we examined an execution plan we
found out, that for this naive method the Cartesian product followed by
filtration was executed. Cartesian product makes a set of all pairs from the
first and the second table. Joined table contains n*m (n and m represent
number of rows in tables) records so applied filter has to run over the all
records and it takes too much time. In this case the Cartesian product was
bottleneck of the first method. The following physical plan is generated for
the previously referred SQL query:

TungstenProject [dewey#0,pathId#1,type#2,value#3]
Filter ((dewey#35 <= dewey#0) && UDF(dewey#35,dewey#0))
CartesianProduct
Scan PhysicalRDD[dewey#0,pathId#1,type#2,value#3]

30

4.2. Join-based SQL

ConvertToSafe
TungstenProject [dewey#35]
Filter ((dewey#31 < dewey#35) && UDF(dewey#31,dewey#35))
CartesianProduct
ConvertToSafe
TungstenProject [dewey#35]
Filter ((type#37 = 1) && (value#38 = author))
Scan PhysicalRDD[dewey#35,pathId#36,type#37,value#38]

ConvertToSafe
TungstenProject [dewey#31]
Filter ((dewey#21 <= dewey#31) && UDF(dewey#21,dewey#31))
CartesianProduct
ConvertToSafe
TungstenProject [dewey#31]
Filter ((type#33 = 1) && (value#34 = book))
Scan PhysicalRDD[dewey#31,pathId#32,type#33,value#34]

ConvertToSafe
TungstenProject [0 AS dewey#21]
Scan OneRowRelation[]

A User Defined Function (marked as UDF in physical plan) checks desired
relation between two dewey paths.

4.2 Join-based SQL
In this case the best solution is to avoid Cartesian product and apply a
SQL JOIN clause instead. Hence the JOIN ON conditions were defined
to join results of single XPath steps. The idea is to select nodes that are
candidates for a next context node, then combine them with the current
context node and based on the relation do filtration of suitable nodes from
joined pairs by using user defined functions. Note, that the context node is
a set of nodes returned by executing one step of XPath query. We use this
term in further chapters.

By analyzing Spark’s execution plans we finally decided for RIGHT
JOIN (LEFT JOIN is also acceptable but it depends on the order in which
XPaths steps are joined). Although the type of JOIN was defined, in some
cases Spark has generated Cartesian product because joins conditions were
not strong enough. Conditions were based on non–equality of dewey paths,
and the user defined functions were used in a filter condition. To solve this,
the join condition had to be enhanced, so instead of filtering based on user

31

4. Our approach

defined function we add required UDF into the join condition. It must be
said that also a JOIN, whose condition is based only on the user defined
function that require arguments from the both left and right table, invokes
the Cartesian product because all pairs must be processed by UDF. After
the mentioned changes were applied, for XPath query:

//book/author

the SQL query is generated as follows:

SELECT p2.dewey, p2.pathId, p2.type, p2.value FROM nodes p2
RIGHT JOIN

(SELECT p1.dewey, p1.pathId, p1.type, p1.value FROM nodes p1
RIGHT JOIN

(SELECT p0.dewey, p0.pathId, p0.type, p0.value FROM nodes p0
RIGHT JOIN

(SELECT ’0’ as dewey) n0
ON p0.type=1 AND n0.dewey < p0.dewey

AND p0.value=’book’
AND isPrefix(n0.dewey, p0.dewey)
WHERE p0.dewey IS NOT NULL) n1

ON p1.type=1 AND n1.dewey < p1.dewey
AND p1.value=’author’
AND isChild(n1.dewey, p1.dewey)
WHERE p1.dewey IS NOT NULL) n2

ON n2.dewey <= p2.dewey AND isPrefix(n2.dewey, p2.dewey)
WHERE p2.dewey IS NOT NULL

The following physical plan was generated before the last mentioned
SQL query was evaluated’:

TungstenProject [dewey#0,pathId#1,type#2,value#3]
Filter isnotnull(dewey#0)
BroadcastNestedLoopJoin BuildLeft, RightOuter,

Some(((dewey#16 <= dewey#0) && UDF(dewey#16,dewey#0)))
ConvertToUnsafe
Scan PhysicalRDD[dewey#0,pathId#1,type#2,value#3]

TungstenProject [dewey#16,pathId#17,type#18,value#19]
Filter isnotnull(dewey#16)
BroadcastNestedLoopJoin BuildRight, RightOuter,

Some(((dewey#12 < dewey#16) && UDF(dewey#12,dewey#16)))
ConvertToUnsafe

32

4.3. SQL query via DataFrame API

Filter ((type#18 = 1) && (value#19 = author))
Scan PhysicalRDD[dewey#16,pathId#17,type#18,value#19]

TungstenProject [dewey#12,pathId#13,type#14,value#15]
Filter isnotnull(dewey#12)
BroadcastNestedLoopJoin BuildRight, RightOuter,

Some(((dewey#11 < dewey#12) && UDF(dewey#11,dewey#12)))
ConvertToUnsafe
Filter ((type#14 = 1) && (value#15 = book))
Scan PhysicalRDD[dewey#12,pathId#13,type#14,value#15]

TungstenProject [0 AS dewey#11]
Scan OneRowRelation[]

After the changes were done the performance was admittedly better
than the performance of method using the Cartesian product. By Table 4.1
we attach a comparison of two previously mentioned methods.

Table 4.1: Cartesian product versus Right JOIN

Table Method Query Time[s]
1 Books Cart. prod //book/author 9.790
2 Books RIGHT JOIN //book/author 8.372
3 Nasa Cart. prod //author/suffix 1200*
4 Nasa RIGHT JOIN //author/suffix 232.695

As we can see, the usage of OUTER JOIN and proper definition of JOIN
conditions have crucial impact on the performance. After twenty minutes
of computing we were forced to cancel the third measurement marked with
asterix. We realized that Cartesian product in Spark is really slow.

On a Spark cluster we did a test. We applied the Cartesian product on
two tables with size 8MB and 9.8MB and both contained about 265 000
rows. After 24 hours less than one third of result was computed and Spark
stored more than 60GB of data on disk.

4.3 SQL query via DataFrame API
So far we have worked only with pure SQL queries, but DataFrame con-
tains its own API that may be used to obtain the same results as by using
SQL queries. We rewrote the previous SQL query that used RIGHT JOIN
by calling a certain combination of functions from API. By using API we
changed the order of processed axes, so instead of RIGHT JOIN the LEFT
JOIN was applied. Generated physical plan is similar to the previous one:

33

4. Our approach

TungstenProject [dewey#13,pathId#14,type#15,value#16]
BroadcastNestedLoopJoin BuildRight, LeftOuter,

Some(((dewey#9 <= dewey#13) && UDF(dewey#9,dewey#13)))
TungstenProject [dewey#9]
Filter AtLeastNNulls(n, dewey#9)
BroadcastNestedLoopJoin BuildRight, LeftOuter,

Some(((dewey#5 < dewey#9) && UDF(dewey#5,dewey#9)))
TungstenProject [dewey#5]
Filter AtLeastNNulls(n, dewey#5)
BroadcastNestedLoopJoin BuildLeft, LeftOuter,

Some(((dewey#4 < dewey#5) && UDF(dewey#4,dewey#5)))
TungstenProject [00 AS dewey#4]
Scan OneRowRelation[]

ConvertToUnsafe
Filter ((value#8 = bookstore) && (type#7 = 1))
Scan PhysicalRDD[dewey#5,pathId#6,type#7,value#8]

ConvertToUnsafe
Filter ((value#12 = book) && (type#11 = 1))
Scan PhysicalRDD[dewey#9,pathId#10,type#11,value#12]

ConvertToUnsafe
Scan PhysicalRDD[dewey#13,pathId#14,type#15,value#16]

Since we know that SQL and DataFrame share the same optimization
pipeline (shown in Figure 2.3), the physical plans vary in small details
depending on the implementation and they actually do the same work.
Broadcast Nested Loop Join is realized in Spark for OUTER JOINs. It
compares the sizes of tables to be joined and broadcasts a smaller one across
the workers. Table 4.2 shows the time comparison of the computation using
SQL and DataFrame.

Table 4.2: SQL versus DataFrame

Table Method Query Time[s]
1 Books DataFrame //book/author 8.313
2 Books SQL //book/author 8.372
3 Nasa DataFrame //author/suffix 231.989
4 Nasa SQL //author/suffix 232.695
5 Nasa DataFrame //suffix 219.012
6 Nasa SQL //suffix 217.818

As it was expected the duration of the computations are almost the
same since optimizer generates the same physical plan.

34

4.4. Alternative methods without joins

4.4 Alternative methods without joins
After the previous findings and since we assumed that a computation could
be faster, we decided to restrict the usage of JOIN in our further ideas.
Several alternatives such as nested queries, SQL IN operator or SQL UNION
statement have been tested but they led into the failure.

We had some ideas that essentially do not use joins. To simplify the
previous methods we wanted to select those nodes of some XPath step that
are in desired relation with at least one node from the nodes of previously
evaluated XPath step. For this purpose the best option is to use IN operator
such as:

//book/author

expressed by SQL:

SELECT * FROM nodes_table WHERE value=’author’ AND parent(dewey) IN
(SELECT dewey FROM nodes_table WHERE value=’book’)

In order for Spark to be able to understand the query, it must be rewritten
to the following form:

SELECT * FROM nodes_table WHERE value=’author’ AND parent(dewey) IN
(SELECT dewey FROM (SELECT * FROM nodes_table WHERE value=’book’) A)

Parent() is a user defined function that cuts the last part of inputted dewey
path, so since dewey path contains information about all ancestors, this
function returns the dewey path of its parent node. This is the valid SQL
query and both, the query and the nested query, are executable, but unfor-
tunately Spark does not think the same. Spark is not able to execute nested
SELECT following the WHERE clause. Neither by using Spark SQL API
it is possible because Spark evaluates it in different way as it is expected.
For example, we translated previous SQL query by using Spark SQL API
such as:

schemaNodes.where(
schemaNodes.filter("value=’author’").col("dewey").isin(

schemaNodes.filter("value=’book’").col("dewey")));

Spark understands it wrong and generates the following physical plan:

Filter dewey#0 IN (dewey#0)
Scan PhysicalRDD[dewey#0,pathId#1,type#2,value#3]

35

4. Our approach

According to the physical plan Spark does not see the required, based on
name filters that are important in this case and in addition, the filter shown
in physical plan is always evaluated as true, so whole table is returned.
Also using two separated DataFrames on IN statement had no effect, while
without a join Spark had no information about the nodes from the second
table.

Since there is no direct column to join two DataFrames we realized
that instead of the join, a union of DataFrames could work for us. The
idea was based on the union of the results of filtrations of two successively
evaluated XPath steps. Then, as we had one united DataFrame we applied
filtrations again and we used IN operator, such as in the following example
with separated DataFrames:

DataFrame a = sqlContext.createDataFrame(dewey, Node.class).
filter("value=’author’");

DataFrame b = sqlContext.createDataFrame(dewey, Node.class).
filter("value=’book’");

DataFrame c = a.unionAll(b);
DataFrame result = c.where(c.filter("value=’author’").

col("dewey").isin(
c.filter("value=’book’").col("dewey")));

Also this example should return a DataFrame with no rows because it should
check if each author’s dewey path is somewhere in a set of dewey paths of
all books. But it again led to unexpected behavior of Spark that ignored
WHERE condition and checked if each dewey path is the same dewey path
(it does not matter if it is author or book) so condition was always fulfilled.
Generated physical plan shows the problem where dewey#4 and dewey#8
point to the same field of each record:

Union
Filter ((value#7 = author) && dewey#4 IN (dewey#4))
Scan PhysicalRDD[dewey#4,pathId#5,type#6,value#7]

Filter ((value#11 = book) && dewey#8 IN (dewey#8))
Scan PhysicalRDD[dewey#8,pathId#9,type#10,value#11]

4.5 Left semi join
As we mentioned, the IN clause may be used just with joined table. We
realized that Spark SQL provides LEFT SEMI JOIN that is more effective

36

4.6. Broadcasted lookup collection

than our all previous attempts. Firstly we have to explain how LEFT SEMI
JOIN works. Semi means that the result contains just rows returned from
one table. In case of LEFT SEMI JOIN just the rows from the left table
are returned. LEFT SEMI JOIN is based on existence of records in right
table. It means that if there exists a record in the right table that fulfill
JOIN ON condition, just a record from the left table is returned.

By this method we implemented a translation of XPath steps only for
parent, child, ancestor, ancestor-and-self, descendant and descendant-or-
self axes. Other axes have to be implemented by different manner that
does not use LEFT SEMI JOIN, but uses, for example user defined func-
tions. It is because the implemented axes are based on prefixes. The
Table 4.3 shows the duration comparison of computation using LEFT JOIN
and LEFT SEMI JOIN both via DataFrames, and both are applied without
caching.

Table 4.3: LEFT JOIN versus LEFT SEMI JOIN

Table Method Query Time[s]
1 Books LEFT JOIN //book/author 8.313
2 Books LEFT SEMI JOIN //book/author 4.687
3 Nasa LEFT JOIN //author/suffix 231.989
4 Nasa LEFT SEMI JOIN //author/suffix 18.748
5 Nasa LEFT JOIN //suffix 219.012
6 Nasa LEFT SEMI JOIN //suffix 13.336

During the implementation of this method we have found a new faster
solution that for the XPath steps evaluation does not use the joins. Hence
we decided to not continue on development of this method and we rather
wanted to improve the new solution. The method that in a principle does
not use the joins is described in Chapter 4.6. It must be noted, that in the
next comparison of methods, the LEFT SEMI JOIN that uses caching is
applied.

4.6 Broadcasted lookup collection
In various Spark tutorials while using the JOIN statement it is recommen-
ded to set a table that is repeatedly used in joins as a broadcast variable
and then join it. This table is often consider as a lookup table.

37

4. Our approach

Since when we know that it is impossible to work with two Data-
Frames in the same time without joining them together, we had to find out
how to deal with this limitation. We adapt the idea of lookup table,
but since we had bad experience with the joins, we wanted to
avoid them. Our idea of avoidance of the JOIN clause is creation
of a collection from the context node by applying collect action
on the DataFrame. Firstly, the action collect creates a collection of Strings
where each element is dewey path. Then we register a user defined
function, and during the registration, the broadcast variable
from the collection is created. Input parameter of the user defined
function is a dewey path of candidate for a member of new context
node. The candidates for a new context node are all rows whose value
of column value fulfill the node test of XPath step. Called UDF checks
whether the relationship between inputted dewey path and the dewey
paths in the collection of context node is as it is desired. If UDF is
evaluated as true, a currently checked node will be member of next
lookup table. Advantage of this method is that each executor may
have its own partitions of input file in memory and just lookup
collections are collected to the driver and then broadcasted among other
executors.

The user defined functions used in this method are different
from those that are used in the Pure SQL method mentioned in Chapter 4.1.
We created UDF separately for each axis. The difference is that
these functions firstly create broadcast variable and then, according
to the axis specifier they detect whether examined node belongs
to the axis that was desired. Instead of two input parameters, just one is
required by UDFs in this method, seeing that they use
the broadcast variable. Principle of UDF relation checking is described
in Chapter 5.2.1.

Also in this method the evaluation starts with a selection
of parent node of root node and then, the independent XPath steps
are evaluated step by step. By the evaluation of the last XPath step
the result nodes are gotten, but they still do not contain their content
such as text nodes or other descendant elements. The last step of
the evaluation that returns nodes that are the correct result of XPath query
is described in Chapter 4.7.

Table 4.4 shows a comparison of the method using LEFT SEMI JOIN
and the method using lookup collections. Unlike the previous
measurement in Chapter 4.5, in this case both methods firstly cache parti-
tions of processed DataFrame into the memory.

38

4.7. Getting result

Table 4.4: LEFT SEMI JOIN versus Lookup collection

Table Method Query Time[s]
1 Books Lookup col. //book/author 2.442
2 Books LEFT SEMI JOIN //book/author 3.064
3 Nasa Lookup col. //author/suffix 7.024
4 Nasa LEFT SEMI JOIN //author/suffix 9.492
5 Nasa Lookup col. //suffix 5.856
6 Nasa LEFT SEMI JOIN //suffix 7.235
7 Protein Lookup col. //formal 418.305
8 Protein LEFT SEMI JOIN //formal 423.819
9 Protein Lookup col. //organism/formal 1088.489
10 Protein LEFT SEMI JOIN //organism/formal 3441.569

4.7 Getting result
By evaluation of the last XPath step we still do not have the whole result.
We have just nodes that do not contain their nested – descendant nodes.
Methods mentioned in this chapter cannot be used for this purpose since
they traverse just through the element nodes. Their problem is that their
results do not contain text nodes and they return distinct results. In the
final we want to have a set of the result nodes, so the fact must be con-
sidered that the absolute evaluation of some axes can return duplicates. It
is because the result is set that contains all result nodes and their nested
nodes.

We tried more methods such as Cartesian product, OUTER JOINS or
sequential search of descendant nodes but they always were bottlenecks.
Mostly, the computation of the final result took more than the evaluation
of XPath steps.

We finally create a user defined function and via the UDF one more
column is added to the DataFrame that is being processed. The new column
contains a number that indicates how many times current node is in the
result set. Then the flatMap transformation, that returns RDD containing
duplicates according to the number in the last column, is invoked. RDD is
then easily converted back to the DataFrame.

This method of getting the final result is used within methods using
LEFT SEMI JOIN and broadcasted lookup table. Trivial SQL method
used the Cartesian product, and the OUTER JOIN is used within methods
that use LEFT/RIGHT JOIN within SQL and DataFrame API.

39

4. Our approach

4.8 Summary
We introduced five methods of our approach. We have started with the
trivial method that uses the Cartesian product to join the single XPath
steps. From our measurements we can see that Cartesian product is usable
just with the small tables.

By analysis of the physical plans of our methods we were able to improve
them.

We also designed multiple methods, but Spark showed its limitations and
some of them could not be realized. Finally we designed the method that
uses the one of the biggest advantage of Spark called broadcast variables.
As it is shown in our measurements it is the fastest method from the all
that we have introduced.

40

Chapter 5
Implementation

On the beginning of the problem we have an XML file and an XPath
query as input values. We are working with DataFrames that are
the main abstraction of Spark SQL. It is a distributed collection that
may be considered as a relational table.

Hence, firstly the XML document must be transformed into
the relational table to be able to be processed via Spark SQL API.
In Chapter 3.1 we have already described chosen encoding that will be
used for the XML document transformation.

Then we have an XPath query that must be translated
into the SQL query to be able to be evaluated in the SQL module
of Spark. According to the facts written above we developed two
applications. The first is XML processor that transforms XML
document into the relational table. The second one is a driver program for
Spark that processes XPath query, by using SQL query or
via Spark SQL API applies it on DataFrame built from the transformed
XML document, and returns the final table of nodes that may be
further processed.

The Figure 5.1 shows how two mentioned applications locally
cooperate to return a result of XPath query. In the following figure,
the transformed XML document is stored as a text file. Both, the text
file and the XPath query input as parameters into the driver program
that is then run on Spark. A result of evaluation of XPath query in driver
program is a JSON file stored in HDFS.

In the following sections we describe our approach that is used
to accomplish the goals of this thesis and also issues that happened
during the realization are mentioned.

41

5. Implementation

Figure 5.1: Local cooperation of applications

5.1 XML processor
At first, the XML processor is introduced. It was developed according to the
analysis in Chapter 3.1. The XML processor was created as a standalone
application. It means, that it may be used also without using our second
application or the Spark engine. In our prototype application we decided
to omit some XML components such as attributes, namespaces and others
since they are just another types of XML nodes. Therefore we process just
elements and text nodes.

The process of transformation begins with a numbering of elements and
text nodes. Based on the pre–order traversal of XML tree, a dewey path is
assigned to each node. In the second phase of the transformation, the dewey
paths are recomputed to preserve the document order information and it
also makes the paths comparable as String. For example, a comparison of
dewey paths 0.1.2.15.7 and 0.1.2.2.7 gives a result where 0.1.2.15.7
is lexicographically less than 0.1.2.2.7 because on the same position 1 is
less than 2 and it violates the document order. Hence, the path 0.1.2.15.7
is in the second phase recomputed to the 00.01.02.15.07 and 0.1.2.2.7
to the 00.01.02.02.07. Now each part (parts are separated by dots) of
dewey paths has the same length. The number of zeros in prefix depends
on the number of digits of the highest value of dewey path part among all
dewey paths. This also helps in SQL ORDER BY operation.

During the first – numbering phase also the paths to the certain nodes
built from the names of nodes are created and it depends on user whether
the table of paths will also be generated and saved as a file. Figures 5.2
and 5.3 shows how XML document from Chapter 1.1 is transformed into

42

5.1. XML processor

the relational table. We provide just uncompleted tables. The complex
tables are available in Appendix D.

+--------------+------+----+--------------------+
| dewey|pathId|type| value|
+--------------+------+----+--------------------+
00.01	0	1	bookstore
00.01.01	1	1	book
00.01.01.01	2	1	title
00.01.01.01.01	3	3	XQuery Kick Start
00.01.01.02	4	1	author
00.01.01.02.01	5	3	James McGovern
...
00.01.01.07	6	1	year
00.01.01.07.01	7	3	2003
00.01.01.08	8	1	price
00.01.01.08.01	9	3	49.99
00.01.01.09	10	1	edition
00.01.01.09.01	11	3	2
00.01.01.10	12	1	pages
00.01.01.10.01	13	3	765
00.01.02	14	1	cd
00.01.02.01	15	1	title
00.01.02.01.01	16	3	Love, Lust, Faith...
...
00.01.03	1	1	book
00.01.03.01	2	1	title
00.01.03.01.01	3	3	Learning XML
...
+--------------+------+----+--------------------+

Figure 5.2: Nodes’ table of transformed XML

Note that a type 1 represents an element node and a type 3 repres-
ents a text node according to the W3C node representation. However it is
not shown in the example above, but the mixed content elements are also
supported. Since we need to have one record in one row because of the
usability in our second application, a new line character in value string had
to be escaped, so \n is replaced by *//n*. It is certain that escaping string
is unique, so it is possible to reconstruct the value to its original state.

43

5. Implementation

The second generated table – the table of paths is usually smaller since
one path can address more than one XML node. The Figure 5.3 shows the
table containing paths.

+------+------------------------------+
|pathId| path|
+------+------------------------------+
0	bookstore
1	bookstore/book
2	bookstore/book/title
3	bookstore/book/title/#text
4	bookstore/book/author
5	bookstore/book/author/#text
6	bookstore/book/year
7	bookstore/book/year/#text
8	bookstore/book/price
9	bookstore/book/price/#text
10	bookstore/book/edition
11	bookstore/book/edition/#text
12	bookstore/book/pages
13	bookstore/book/pages/#text
14	bookstore/cd
15	bookstore/cd/title
16	bookstore/cd/title/#text
...	...
+------+------------------------------+

Figure 5.3: Paths’ table of transformed XML

Our early approach used Document Object Model paradigm, so while
small XML documents were processed, the processing was successful since
XML document fits into the memory. A problem occurred during the pro-
cessing larger XML document that was about 700MB because the whole
DOM object did not fit into the memory. It was necessary to use another
technique for working with larger XML files, so a different transformation
that uses a SAX parser was implemented.

The SAX parser is an event driven parser that is alternative to DOM.
Unlike DOM, it does not process an XML document at once. It reads an
XML sequentially and allows processing of separated XML shreds.

44

5.1. XML processor

As it has been mentioned, the XML document is processed in two
phases. With the SAX’s sequential processing, not the whole document
is in memory, so the result of the first phase must be stored into a tempor-
ary file and then, the second phase may start.

To run transformation, our application requires two parameters. First
is a path to the XML file on local disk. This path is also used to create the
directory where the file containing the result table will be stored. A new
created file is text file and its original name is extended by suffix _dewey.

The second parameter sets a mode, how the application should be run.
It has three running strategies. Input parameter set as 0 activates a trans-
formation that uses the SAX parser. It is recommended to use this mode for
larger XML documents. It generates a table with structure Edge(deweyId,
type, value). DeweyId represents a dewey path from the root node of XML
document to a single node. In the further work we use term dewey path
that better expresses meaning of the deweyId. Next two modes use DOM,
so the processed document must fit into the memory. If parameter is set to
1, a structure of generated rows is the same as in the previous mode. On
the other hand, if the second parameter is set to anything else except 0 and
1, rows are stored as Edge(deweyId, type, value, pathId) and additionally,
the second text file that contains paths to the specific nodes with structure
Path(pathId, path) is created.

We also decided to keep the transformation using DOM, because by
using DOM we implemented the transformation of XML document into the
relational table according to the original paper [24] that was followed.

Seeing that each XML node of XML document is extended by the dewey
path and the node type, the size of output file is bigger than the size of
original XML file. In following Table 5.1 we provide a view to the size
comparison of the original XML file and the file containing the result of
transformation. The sizes of files do not include the size of table of paths.
All mentioned XML and first two text files are available on attached CD.

Table 5.1: Size comparison of generated tables

XML file Text file Number of rows
books.xml 1.1 kB 1.4 kB 60
nasa.xml 25.1 MB 45.8 MB 791 922

proteins.xml 716.9 MB 2.3 GB 37 260 927

In our further work the Edge table without the paths is used. For a
testing purpose the XML document was transformed by option 0 and for
smaller files by option 1.

45

5. Implementation

5.2 XPath executor
Our second application is a driver program for Spark. We will use the Edge
table generated by the previously mentioned transforming application by
option 0 or 1. It means that a column pathId is not important for our
processing seeing that all necessary information are included in the dewey
path and pathIds can help just with the processing of child axis. However we
chose the dewey order encoding due to its sufficient performance in nodes
selection and in updating, in this work just a node selection will be imple-
mented. Although the transforming application supports the mixed content
nodes, this feature is not supported by XPath executor. Spark provides API
in Scala, Java, Python and R. We decided to implement our driver program
in Java. Since Spark SQL provides two alternatives of querying data by us-
ing SQL queries and/or DataFrame API, we decided to explore them both.
In this chapter we describe an implementation of driver program for Spark
that is used to accomplish the goals of thesis. We also describe specific
problems we had to face during the implementation of Spark’s driver pro-
gram.

5.2.1 Supported XPath features
XPath is a complex query language with many possibilities. In this thesis
we decided to focus on XPath axes. Here is a description of our ideas that
are a basis for a translation of XPath axes into the SQL queries. The ideas
are applied in our driver program. The translation of particular axes is
based on the comparison of dewey paths. It is necessary to say that it is
a view from the context node. On the beginning of translation of every
XPath query the context node is the document root, then context node is
the result of the most recently executed XPath step. We use term context
node that represents set of resultant nodes after the XPath step evaluation.
In the following list the approaches to the various XPath axes are described.

• Child – A translation of the child axis means, that nodes with the dewey
path greater than dewey paths of the nodes within the context node
should be found and returned. A potential child’s dewey path starts
with one of the node’s dewey path from the context node. The dewey
path of child node of some node is lexicographically greater and it
contains one more path part, such as 00.01.01 is the child element of
00.01.

• Descendant – All nodes whose dewey path is lexicographically greater
than dewey paths of the context node are selected. Their dewey path

46

5.2. XPath executor

also starts with one of the node’s dewey path from the context node.
Difference is that descendant nodes may have more than one extra
path part.

• Descendant or self – Translation of this axis is based on the Descend-
ant axis, but the self nodes are included into the selection. Hence the
nodes whose dewey path is lexicographically greater than, or equal to
the context node are taken.

• Following sibling – Nodes with the dewey path lexicographically greater
than the paths of the context node are selected. For following sibling
axis is important to select nodes with the same path length as the
context node. Dewey paths differ in their last part such as 00.01.01
and 00.01.02. That also means that they have the same parent.

• Preceding sibling – This translation is the same as in the previous case,
but firstly, the lexicographically lower nodes are chosen.

• Following – Nodes whose dewey path is lexicographically greater than
context node are filtered in this case. Common attribute of nodes
paths of following axis is that they do not contain dewey paths of
context node as a prefix of their paths.

• Preceding – Dewey paths of nodes in preceding axis are lexicograph-
ically less than those in context node. They are not prefixes of any
path of context node and additionally also paths of context node are
not prefixes of desired nodes.

• Self – It could be naive to translate a self axis by “do nothing”. It should
be considered that XPath allows filtering based on the node name, in
this case just nodes where dewey path equals to the previous chosen
nodes – context node are extracted.

• Parent – Nodes with dewey path lexicographically lower then paths of
context node are chosen in parent axis. Relation between a node and
its parent node is the same as in child axis but in inverted meaning.
The parent nodes are prefixes for the context node.

• Ancestor – All nodes with lexicographically less dewey path than con-
text nodes, and those that are prefixes to the paths from the context
node are selected.

• Ancestor or self – This axis is similar to the ancestor axis, but firstly,
the nodes whose path is lexicographically less than, or equal to context
node are chosen.

47

5. Implementation

If a concrete name in the node test part of desired axis is set, firstly,
a dataset is filtered by the name and then the filtration through axis is
applied.

5.2.2 Reading files
A file containing table of transformed XML document is stored on a disk.
If we want to see advantages of Spark we have to run our driver program
on a cluster and in the cluster mode. It means that the file should be
accessible for Spark driver and all worker nodes. Easier way to do this is
usage of Hadoop Distributed File System since it is supported by Spark.
Since when the file is accessible for members of Spark cluster it may be read.
Firstly we used Spark core to create RDD of XML nodes. Each row is read
and split to the Node object. Node object is then passed to RDD. Spark
SQL is working mainly with the DataFrames. DataFrame may be created
directly from RDD, but it is necessary to define a schema of table. We
created a class Node, and by reflection the schema defined through Node
class was applied on the RDD. Finally, a DataFrame was created from the
RDD.

5.2.3 XPath parser
We implemented a simple XPath parser that parses XPath queries which
were inputted as a parameter of driver program. A support for abbreviated
forms of some XPath steps was added to the parser. In this prototype
application the abbreviated forms of child axis as / and descendant as //
are allowed. Also the wildcard *, that is an alias for any element node may
be used in the queries that are parsed by parser.

Whole query is split to the separated XPath steps and the abbreviated
forms are resolved. Then all steps are evaluated step by step according to
the desired axis. The step by step evaluation is implemented by indirect
recursive algorithm. It means that every next step is dependent on the
result of previously evaluated step.

This parser is working just with axes that were mentioned in the
Chapter 5.2.1 and does not support predicates.

5.2.4 User Defined Functions
Since Spark SQL allows the usage of the User Defined Functions, we created
several own functions that are useful in the translations of queries. This
functions are used for the better nodes filtering based on the comparison

48

5.2. XPath executor

of nodes’ relations. In our SQL queries the following user defined functions
are used:

• isChild – UDF isChild checks if two input arguments differ in a length of
dewey path (children node has one more path part) and if the second
argument includes entire path of its potential parent. If conditions
are fulfilled the true value is returned. By changing the order of
parameters the user defined function isChild may be used for checking
whether node is parent node of some other node.

• isPrefix – Two dewey paths are taken as arguments to this function.
True value is returned if the first argument is lexicographically less
than, or equals to the second argument and the first is included within
second. We can simply match if the first path is prefix of the second
because every dewey path starts with the part containing one or more
zeros such as 00.01.02. Zeros are located always as the first part of
dewey path and not at the other position.

• isSibling – This user defined function returns true if two inputted dewey
paths have the same length and differ just in the last part of their
paths. It also means that two parameters belongs under the same
parent.

Note that the user defined functions implemented in the broadcast
lookup collection method extend the main idea of the functions mentioned
above.

5.2.5 Driver program modes
Using the strategy design pattern, three strategies of application run was
created. The strategies are characterized in more detail in Chapter 4. In
the final driver program three modes are available:

• SQL – uses pure SQL that is evaluated directly. This mode is based on
the RIGHT JOIN as it was described in Chapter 4.2.

• DSL with JOIN – uses a domain specific language of Spark SQL. Trans-
lation of XPath steps is implemented by using LEFT SEMI JOIN
according to the Chapter 4.5.

• DSL without JOIN – uses Spark SQL API to translate XPath query
using broadcasted collection as it is mentioned in Chapter 4.6.

49

5. Implementation

The first input parameter of the driver program indicates a path to the
text file containing a transformed XML document. The second parameter
expects an XPath query that will be evaluated, and the third parameter
sets a running mode.

5.2.6 Result of evaluated XPath query
Our first idea was to build a new XML document after the successful eval-
uation of XPath query over the transformed XML document. Admittedly
a newly created document should have been constructed in the document
order according to the original XML document.

If we want to build an XML document in a parallel way, it is hardly
possible and impractical. Even though each executor has its own partitions
and theoretically can build XMLs from them, the final XML document
cannot be built because executors do not have information about the nesting
of XML elements.

Seeing that some actions called on DataFrame, we consider mainly col-
lect, can require a transfer data from executors to a single driver, it could
be a problem when data are larger than available driver’s memory. Hence
we decided to store results in a way that do not require collecting data to
the driver. Accordingly, the result is not stored as a single XML file, but it
is stored as a table including schema of stored data.

5.2.6.1 Output formats

Spark offers a possibility to save DataFrame in various formats that keep a
schema of data such as Parquet file or JSON. Note that it is not JSON of
XML, but it is a JSON of rows from the DataFrame where each line is a valid
JSON object [2]. Spark SQL also supports writing data to Apache Hive that
is data warehouse software which facilitates querying and managing large
datasets residing in distributed storage [17]. Since that DataFrame can
be easily converted to the RDD, this ability extends the available output
formats by text file and Hadoop SequenceFile.

5.2.6.2 Saving of result

On the beginning of processing text file of transformed XML document,
the file is read from a Hadoop Distributed File System because it is easily
accessible for members of cluster. The same idea was applied to the storing
of result. After the processing, the result is stored back to the HDFS, to
the directory result that is located in the same directory whence the text

50

5.2. XPath executor

file was read. By default the result is not saved into the single file, but into
the set of numerous files according to the count of partitions. Implicitly one
partition may be set and then result will be stored in one file. During the
storing process a method toString() is called on each element of DataFrame
and elements are stored one by one per line. The result stored in Hadoop
Distributed File System may be easily processed again by Spark or by other
technologies that support HDFS.

After executing all transformations and actions, the final result is ordered
set of XML nodes. This set can contain duplicates. Normally, XPath pro-
cessors that evaluate XPath queries always return a set of unique nodes and
returned nodes can contain other nested nodes. By evaluation of queries
that use for example preceding or following axis, the returned nodes can
also be nested in some other returned nodes. Reason why we have duplic-
ates is, that we work with a set of self-contained nodes (without any nested
nodes). Even though we have duplicates, they will be stored on different
levels in potential resulting XML document.

Finally we decided to store result as a JSON file. Even though it is the
specially formed JSON it still can be processed by other technologies that
do not support other output formats available in Spark.

5.2.6.3 Building XML

While we were working with Spark just locally and we processed just small
XML documents we used Document Object Model to build an XML file
from the resultant nodes. We implemented methods that transform nodes
back to the XML file and keep document order according to the original
XML. The first method uses DOM representation and as we mentioned in
Chapter 5.1 it is sufficient only when DOM object fits into the memory. So
with larger results it fails. We provide an example of the reverse transform-
ation back to the XML file that uses DOM.

This method takes the first node from the result and creates a new
element in DOM. Then all its child nodes are selected and assigned to their
parent. If some node was already assigned it is deleted from the set of
resultant nodes. These steps are repeated for each child until there is no
other child node or the set is empty. If there are still some nodes in the
resultant set, the algorithm continues and creates following sibling for the
first created element.

Since it is easy to rewrite DOM method to sequential manual creation of
XML elements, we provide also an algorithm for processing of larger results.
The difference is, that the manual creation uses a collection for nodes that
are out of the document order and that will be processed later, and each

51

5. Implementation

processed node is directly written into the file. In the manual creation the
nodes are read sequentially.

Both methods do not require resultant nodes to be in document order,
but the resultant set must be sorted. Note that nodes in the document
order and sorted nodes are not the same since resultant set can contain
duplicates.

5.2.7 Performance improvements
In this section we describe how to speedup Spark’s driver program. Spark
has various options to be configured to run application faster. They are
mostly set via SparkContext or via Spark’s submit script. For example,
number of driver’s and workers’ cores and their total memory, maximum
size of transported data, maximal size of result, buffer size of Kryo serializer
and others may be set to appropriate values. However, the speedup may
be also done programmatically by using Spark’s features such as broad-
cast variables, persistence and repartition. In the following sections three
methods that could be helpful are described.

5.2.7.1 Shuffle and broadcast variables

Execution of certain operations in Spark such as join or groupBykey and
others can invoke shuffle of data across the network. The shuffle usually
causes data transfer across executors which is expensive operation since it
is performed as all–to–all operation and it involves data serialization and
network I/O. Too much network communication has a negative impact on
the performance [25]. Working with two DataFrames where one of them
is smaller than the second, and that fits into the memory, the broadcast
variable can be useful to avoid the shuffle operation. It is preferable to
broadcast smaller DataFrame and use it as an immutable lookup table.
In the following Table 5.2 we compare a time of computations with and
without using broadcast variable. We tested broadcast variables on the
simple join of two tables where one was more than hundred times smaller.

Table 5.2: Performance improvement by using broadcast variable

Broadcast variable Time[s]
1 True 134.255
2 False 147.193

As can be seen there is a significant difference between usages of broad-
cast variable.

52

5.2. XPath executor

5.2.7.2 Partitions

In Spark, read data are split into the several partitions that are distributed
over executors. An advantage is that the total number of partitions is con-
figurable. Having numerous executors and working with just one partition
has no sense. By default Spark splits data at least to the number of parti-
tions which relates to the number of cores that are available on all executor
nodes whereby default maximal size of partition is 128MB in a cluster mode
and 32MB in a local mode. Very large partitions and on the other hand
very small partitions might have bad impact on the performance. If re-
quired count of partitions is set to the bigger value than the count of read
items, the empty partitions are created, so it also is not a good idea. Count
of partitions should be balanced. In Table 5.3 we show how the number of
partitions can affect the performance. Some transformations such as join
can automatically increase number of partitions when it is needed. Hence
Spark provides a coalesce method that decreases the number of partitions
and does not shuffle data over the network. We tested various size of par-
titions on our biggest table by using early version of broadcasted lookup
table method that used a join as the last step of algorithm. Table 5.3 shown
below presents an impact of number of partition on the performance.

Table 5.3: Performance improvement by repartition

Partitions count Time[s]
1 17 1163
2 100 744
3 200 713
4 500 841
5 1000 824
5 5000 976

Table 5.3 shows that it has sense to consider number of partitions but
it depends on the used transformations and actions. We did one more test
in which rows were just filtered and modified, so these operations did not
require a transfer data to other executors, since executors have worked only
with their partitions. Result of the test showed that in this case it was
better to keep a default partitioning.

5.2.7.3 Caching and persistence

RDD and DataFrame as distributed collections in Spark are always com-
puted in the moment when the action is called. So if more actions are

53

5. Implementation

called on the same collection, by default it is recomputed repeatedly. From
a time point of view it can be costly to repeat the same computation more
times. Spark provides a possibility to make a checkpoint for the further
computations. It is allowed by persisting RDD and DataFrame into the
memory or on a disk. Spark allows several storage levels such as memory,
disk, memory and disk (if data do not fit into memory they are persisted to
disk) in serialized or not serialized form. Persisting is not invoked by calling
applicable method, but it is invoked after the first action that is called on
collection. We provide a Table 5.4 containing a time of computations with
and without caching. We were testing on 2.1GB file and we used the fastest
storage level – memory without serialization. To show the difference, we
evaluated longer XPath query.

Table 5.4: Performance improvement by using caching

Cached Time[s]
1 True 1144
2 False 2178

Caching has the sense within data that are repeatedly used. As we can
see from our measurement, when actions are invoked frequently, caching
has really positive impact on performance.

5.2.8 Issues
We have started to work with a 1.1.0 version of Spark and our driver pro-
gram was finally completed in version 1.5.2 released in November 2015, so
we had to face up to a version upgrading. The biggest changes were realized
between versions 1.2 and 1.3 and they led to the code refactoring. In the
following list the changes that had the biggest effect on our application are
mentioned.

• SchemaRDD was renamed to DataFrame, it provides the same func-
tionality, but it does not inherit directly from RDD.

• Creation and registration of UDFs were changed.

• Some changes in SQL API where some methods were marked as de-
precated and replaced by another method.

We developed our driver program in Java. After some time we realized
that it probably was not the best option. Tons of tutorials and also solutions
of frequently problems are showed in Scala, sometimes in Python, but rarely

54

5.3. Working with cluster

in Java. Sometimes it was difficult to translate code from Scala or Python
to Java since APIs differ in some details.

5.3 Working with cluster
During the implementation of our third method we got an access to the
Spark cluster. From this moment we were able to run our driver program
in the cluster mode and see all advantages of parallel computing.

At the beginning of this chapter we showed Figure 5.1 that illustrates
local cooperation of two implemented applications. By using a cluster, the
cooperation is a bit different since the text file to be processed and the
driver program must be available for all members of cluster. The Figure 5.4
shows, how the standalone Spark cluster was used to get the result of XPath
query evaluation.

Figure 5.4: Cooperation of applications and standalone Spark cluster

55

5. Implementation

With a small input file it is not possible to see benefits of computation
on cluster since in some cases communication load can take more time
then computation. The computation on cluster forced us to use the Hadoop
Distributed File System to make our text files visible for workers. On cluster
we continued our test attempts with the bigger files since sufficient amount
of memory was available among the worker nodes.

The parameters of the local testing machine that was used for
experiments were described at the beginning of the Chapter 4.
The available cluster on that the experiments were run consists
of 4 virtual machines hosted on four processors Intel Xeon 3.4 GHz (each
2 physical cores and 4 logical cores, with enabled Hyper Threading),
with 32GB DDR2 RAM and 2x 1Gbps LAN. Each virtual machine
has allocated 6GB RAM (of which 4,8GB were used by Spark)
and 2 CPU cores. Virtual machines were connected via 10Gbps VMXNet3
LAN and installed operating system was Ubuntu 14.04. Version of Spark
that was used for the experiments was 1.5.2, so the same as in experiments
performed locally.

Comparison of computation in local mode and cluster mode
brought expected results. Admittedly computation on cluster with
enabled cluster mode was faster in some cases. Table 5.5 shows time
comparison of local and cluster mode. In these experiments the fastest
method that uses nested lookup collection was used.

Table 5.5: Performance of cluster and local mode

Table Mode Query Time[s]
1 Nasa Local //author/suffix 7.024
2 Nasa Cluster //author/suffix 38.415
3 Protein Local //formal 418.305
4 Protein Cluster //formal 398.701
5 Protein Local //organism/formal 1088.489
6 Protein Cluster //organism/formal 957.729

As it may be seen in Table 5.5 the processing of smaller table
can be faster when it is done locally. It can be caused by the cluster
overhead expenses such as serialization and transporting data among other
workers.

A graph in the Figure 5.5 shows measured times from Table 5.5.

56

5.4. Summary

Figure 5.5: Performance of cluster and local mode

5.4 Summary
In this chapter two applications were described. The first application pre-
pares XML documents to the form to be able to be processed by the second
application. It was developed according to the analysis in Chapter 3.1 and
we showed the resultant tables containing nodes and paths.

The second application is the Spark’s driver program and within its
final version three methods of the approach were implemented. In this
chapter performance of the individual methods was compared. The final
interpretation of performance testing is in the Chapter 6.3.

57

Chapter 6
Testing and Experiments

In this chapter the used test methods are described. Tested attempts are
focused mainly on functionality of our solution. Also the results of perform-
ance testing of implemented methods are presented in this chapter. Within
the functionality testing we decided for manual and unit testing.

6.1 Manual testing
Manual testing is considered as a user testing. During the implementation
of driver program we were working with couple of XML documents and we
created a numerous XPath queries that cover most of query cases. By hand
we tested each step of each XPath query and we aim our attention on the
count of returned nodes. We used BaseX in version 8.3.1 and we run same
partial queries to get number of returned nodes to the comparison. BaseX
is an XML database engine, and XPath and XQuery processor. After that
we compared count of returned nodes from our application and from BaseX.
Comparisons of counts was not sufficient enough since we did not know if
correct nodes were returned. We realized that some automatic tests that
compare results of complex XPath query are needed.

6.2 Unit testing
Unit testing is based on the testing of small pieces – units of the application.
Although we have the separated functions for the translation of each axis, it
is a bit complicated to test them since called transformations are evaluated
lazily. The main idea of the unit testing is to test each small unit separately

59

6. Testing and Experiments

before they are integrated into the bigger units. If smaller units work as it
is expected, most probably bigger units will also work.

We follow this idea and we deal with lazy evaluation. Firstly we wrote
tests just for functions that evaluate child and descendant axes so if these
tests pass we can use them in the other testing queries such as parent,
preceding or following axes that cannot be tested from a document node.
Note that the document node is an alternative to doc("xmlFile.xml") in
XPath and it is the first step of each query in our driver program. Then we
created a set of XPath queries (different from manual testing) that contains
two XPath queries for each axis. The first query has a concrete node test
value, for example /child::book and the second has an undefined node test
such as /child::*. The same XPath queries are used in the tests for all the
implemented methods.

We again used BaseX to evaluate all the created XPath queries. Then
each result of evaluation was transformed to the list of nodes via our XML
transformer and they were stored to the test environment. So we had the
correct results for each XPath query that we would tested. Finally we
could evaluate queries in XPath executor and compare their results with
the results from BaseX. We created eleven test cases, one for each axis. In
each test two queries are tested as it was mentioned.

It is not needed to test the document order of resultant nodes since the
algorithms for the XML file creation presented in the Chapter 5.2.6.3 do
not require it. During the implementation, the unit tests helped with a
bugs finding. All bugs were solved and all the tests have passed.

6.3 Experiments
In this work, in the Chapter 4 we provide several comparisons and in this
section we summarize measured times of different methods. We collected all
measured values into the one summarizing Table 6.2. Table 6.1 summarizes
tested queries and tested tables.

Table 6.1: Summarizing table of tested queries

Query XML file Text file Rows count
Books 2 //book/author 1.1 kB 1.4 kB 60
Nasa 1 //suffix 25.1 MB 45.8 MB 791 922
Nasa 2 //author/suffix 25.1 MB 45.8 MB 791 922

Protein 1 //formal 716.9 MB 2.3 GB 37 260 927
Protein 2 //organism/formal 716.9 MB 2.3 GB 37 260 927

60

6.3. Experiments

All the measurements in the table below were realized locally. The
parameters of the local testing machine that was used for experiments were
described at the beginning of the Chapter 4.

Table 6.2: Performance of proposed methods in seconds

Method/Tab. Books 2 Nasa 1 Nasa 2 Protein 1 Protein 2
Cartesian 9,79 - 1200# - -
SQL JOIN 8,372 217,818 232,70 - -
DF JOIN 8,313 219,012 231,99 - -
SEMI JOIN 4,687 13,336 18,75 - -
SEMI JOIN* 3,064 7,235 9,49 423,819 3441,569
Broadcast coll. 2,442 5,856 7,02 418,305 1088,489

Note that some values were not measured, it is because it has made no
sense since the computation was very slow. The second SEMI JOIN marked
with * is method that uses caching. The measuring of the value marked
with # was interrupted due to its slowness. Measured values are projected
on a graph in Figure 6.1. Numbers in header of table are count of processed
axes.

Figure 6.1: Performance of proposed methods

61

6. Testing and Experiments

It can be seen that method using Cartesian product is really slow. SQL
RIGHT JOIN and DataFrame LEFT JOIN are pulled over the same optim-
ization process 2.3, so if the same physical plan is generated computational
time is almost the same. In the graph, there is one more interesting thing.
We can see positive impact of caching. According to the Table 6.2, the
evaluation of XPath query //author/suffix over the table Nasa is currently
with broadcast lookup collection method more than 150 times faster in com-
parison with the Cartesian product. Since our methods evaluate an XPath
query step by step, impact of the number of evaluated steps can be seen in
the graph. This implies that more XPath steps mean longer computation
duration since there is no optimization used, so all steps are evaluated.

6.4 Summary
Functionality of implemented methods was tested by several tests that were
separately prepared for each axis. All prepared tests passed so we can
suppose that XPath queries are evaluated correctly.

Also the performance of our methods was tested and we found out, that
the creation of new methods led to an increased computational speed.

62

Conclusion

Apache Spark is a new engine that is still in active development. It can be
seen on the number of new releases that have been released relatively often
during the work on this thesis.

The main goal of this master’s thesis was to use Spark SQL framework
to implement a subset of expressions from XPath query language. For this
purpose two applications were designed and developed. The first takes an
XML document and transforms it into the tabular form so it can be used
and processed via the second application. The second application is a driver
program of Spark.

In this thesis, five different methods of our approach were introduced and
also the performance comparison of single methods was presented. However,
in the final driver program there are just three methods implemented. It is
because one method using Cartesian product was extremely slow, and since
it was determined that by executing same query using SQL and DataFrame
the same physical plan is generated, just SQL method was implemented.

While working just locally with really small data, also the method using
Cartesian product was relatively fast. Working with cluster showed that by
processing bigger data, the trivial method have had to be improved.

A subset of expressions from XPath query language that are supported
by the implemented methods contains all XPath axes except the axes of
attribute and namespace.

A functionality of methods was tested by two independent methods,
manually and by unit tests. Several tests were created for single axes.
Within implemented methods all tests successfully passed, so the main goal
of the thesis was fulfilled.

Sometimes it was not easy to understand why an application on cluster
fell down whereas in local mode driver program was successfully executed.

63

Conclusion

However, thanks to the Spark’s web user interface we was able to identify
problem. Measurements on cluster shows that for smaller datasets it is
better to compute data locally due to big overhead on cluster.

64

Bibliography

[1] Umbraco. 2016, [Cited 2016-1-8]. Available from: https:
//our.umbraco.org/media/upload/0562fd58-c6db-4fa8-a432-
68b28f11c3f2/rs/7x1B0.gif

[2] Spark.apache.org. Apache SparkTM- Lightning-Fast Cluster
Computing. 2016, [Cited 2016-1-8]. Available from: http:
//spark.apache.org/

[3] Armbrust, M.; Xin, R. S.; Lian, C.; et al. Spark SQL: Relational data
processing in Spark. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, ACM, 2015, pp. 1383–
1394.

[4] Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; et al. Extensible
markup language (XML). World Wide Web Consortium Recommend-
ation REC-xml-19980210. http://www. w3. org/TR/1998/REC-xml-
19980210, volume 16, 1998.

[5] Clark, J.; DeRose, S.; et al. XML path language (XPath) version 1.0.
1999.

[6] Beaulieu, A. Learning SQL. O’Reilly Media, 2005, ISBN
9780596552923.

[7] Hamstra, M.; Karau, H.; Zaharia, M.; et al. Learning Spark: Lightning-
Fast Big Data Analytics. O’Reilly, 2015, ISBN 9781449358624.

[8] Konwinski, A.; Owen, S. Powered By Spark - Spark - Apache Soft-
ware Foundation. 2015, [Cited 2016-1-9]. Available from: https://
cwiki.apache.org/confluence/display/SPARK/Powered+By+Spark

65

https://our.umbraco.org/media/upload/0562fd58-c6db-4fa8-a432-68b28f11c3f2/rs/7x1B0.gif
https://our.umbraco.org/media/upload/0562fd58-c6db-4fa8-a432-68b28f11c3f2/rs/7x1B0.gif
https://our.umbraco.org/media/upload/0562fd58-c6db-4fa8-a432-68b28f11c3f2/rs/7x1B0.gif
http://spark.apache.org/
http://spark.apache.org/
https://cwiki.apache.org/confluence/display/SPARK/Powered+By+Spark
https://cwiki.apache.org/confluence/display/SPARK/Powered+By+Spark

Bibliography

[9] Xin, R. Spark officially sets a new record in large-scale sorting. 2014,
[Cited 2016-1-8]. Available from: https://databricks.com/blog/
2014/11/05/spark-officially-sets-a-new-record-in-large-
scale-sorting.html

[10] Zaharia, M.; Chowdhury, M.; Das, T.; et al. Resilient distributed data-
sets: A fault-tolerant abstraction for in-memory cluster computing.
In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, USENIX Association, 2012, pp. 2–2.

[11] Zaharia, M.; Chowdhury, M.; Franklin, M. J.; et al. Spark: cluster
computing with working sets. In Proceedings of the 2nd USENIX con-
ference on Hot topics in cloud computing, volume 10, 2010, p. 10.

[12] Spark.apache.org. Spark Streaming - Spark 1.5.2 Documentation. 2016,
[Cited 2016-1-8]. Available from: http://spark.apache.org/docs/
latest/streaming-programming-guide.html

[13] Zaharia, M.; Das, T.; Li, H.; et al. Discretized streams: Fault-tolerant
streaming computation at scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, ACM, 2013, pp.
423–438.

[14] Spark.apache.org. MLlib - Spark 1.5.2 Documentation. 2016, [Cited
2016-1-8]. Available from: http://spark.apache.org/docs/latest/
mllib-guide.html

[15] Xin, R. S.; Crankshaw, D.; Dave, A.; et al. GraphX: Unifying data-
parallel and graph-parallel analytics. arXiv preprint arXiv:1402.2394,
2014.

[16] Olson, M. MapReduce and Spark - Cloudera VISION. 2013, [Cited
2016-1-9]. Available from: http://vision.cloudera.com/mapreduce-
spark/

[17] Hive.apache.org. Apache Hive TM. 2016, [Cited 2016-1-7]. Available
from: https://hive.apache.org/

[18] Spark.apache.org. DataFrame. 2016, [Cited 2016-1-9]. Available from:
http://spark.apache.org/docs/latest/api/java/org/apache/
spark/sql/DataFrame.html

[19] Mesos.apache.org. Apache Mesos. 2016, [Cited 2016-1-9]. Available
from: http://mesos.apache.org/

66

https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/streaming-programming-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/docs/latest/mllib-guide.html
http://vision.cloudera.com/mapreduce-spark/
http://vision.cloudera.com/mapreduce-spark/
https://hive.apache.org/
http://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/DataFrame.html
http://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/DataFrame.html
http://mesos.apache.org/

Bibliography

[20] Hadoop.apache.org. Welcome to ApacheTMHadoop R©! 2016, [Cited
2016-1-9]. Available from: https://hadoop.apache.org/

[21] Atay, M.; Chebotko, A.; Liu, D.; et al. Efficient schema-based XML-
to-Relational data mapping. Information Systems, volume 32, no. 3,
2007: pp. 458–476.

[22] Amer-Yahia, S.; Du, F.; Freire, J. A comprehensive solution to the
XML-to-relational mapping problem. In Proceedings of the 6th annual
ACM international workshop on Web information and data manage-
ment, ACM, 2004, pp. 31–38.

[23] Bourret, R.; Bornhövd, C.; Buchmann, A. A generic load/extract util-
ity for data transfer between XML documents and relational databases.
In Advanced Issues of E-Commerce and Web-Based Information Sys-
tems, 2000. WECWIS 2000. Second International Workshop on, IEEE,
2000, pp. 134–143.

[24] Tatarinov, I.; Viglas, S. D.; Beyer, K.; et al. Storing and querying
ordered XML using a relational database system. In Proceedings of the
2002 ACM SIGMOD international conference on Management of data,
ACM, 2002, pp. 204–215.

[25] Spark.apache.org. Spark Programming Guide - Spark 1.5.2 Doc-
umentation. 2016, [Cited 2016-1-9]. Available from: http://
spark.apache.org/docs/1.5.2/programming-guide.html

67

https://hadoop.apache.org/
http://spark.apache.org/docs/1.5.2/programming-guide.html
http://spark.apache.org/docs/1.5.2/programming-guide.html

Appendix A
Acronyms

ANSI American National Standards Institute

API Application Programming Interface

CPU Central Processing Unit

CSV Comma-Separated Values

DAG Directed Acyclic Graph

DCL Data Control Language

DDL Data Definition Language

DML Data Manipulation Language

DOM Document Object Model

DSL Domain-Specific Language

DTD Document Type Definition

HDFS Hadoop Distributed File System

HTML HyperText Markup Language

JAR Java Archive

JSON JavaScript Object Notation

RDBMS Relational DataBase Management System

RDD Resilient Distributed Dataset

69

A. Acronyms

SAX Simple API for XML

SGML Standard Generalized Markup Language

SOAP Simple Object Access Protocol

SQL Structured Query Language

TCL Transaction Control Language

TCP Transmission Control Protocol

UDF User-Defined Function

UI User Interface

W3C World Wide Web Consortium

XML eXtensible Markup Language

XSL eXtensible Stylesheet Language

XSLT eXtensible Stylesheet Language Transformations

70

Appendix B
Contents of enclosed CD

readme.txt.................the text file with CD contents description
src the directory of source codes

XML_Processor.........................sources of XML processor
target

XMLProcessor-1.0.jarpre-built executable JAR
XPath_Executor....................... sources of XPath executor

target
XPathExec-1.0.jar...............pre-built executable JAR

XML the directory of processed XML and text files
thesis the directory of LATEX source codes of the thesis
thesis.pdf........................... the thesis text in PDF format

71

Appendix C
User manual

This appendix covers a manual for users of two proposed applications. It
contains scripts to run applications from command line.

C.1 XML processor
To run the XML document transformation to the text file containing its
tabular form use the script as follows:

user@ubuntu:~$ java -jar
./XMLProcessor.jar
/home/user/XMLs/bookstore.xml
0

Parameters of XML processor are as follows:

1. Path to the XML document to be transformed

2. Mode (0 - SAX parser; 1 - DOM method; 2 - DOM method with the
generation of the table of paths)

After the application evaluation, the resultant text file is stored into the
same directory, in this case it is stored as /home/user/XMLs/bookstore_dewey.txt.

C.2 XPath executor
To run driver program on Spark, the Spark’s submit script can be used.
We provide example of script that was used to run driver program on the

73

C. User manual

cluster in cluster mode. As first, it is needed to upload driver program to
the HDFS as follows:

user@ubuntu:~$ HADOOP_USER_NAME=hdfs
./hadoop-2.6.2/bin/hdfs dfs -put -f
./XPathExec-1.0.jar
hdfs://addressToHDFS:9000/users/rhr/

The same script can be used to upload text file containing the transformed
XML document to the HDFS.

Then the driver program can be run on cluster as follows:

user@ubuntu:~$./spark-1.5.2/bin/spark-submit
--class "dp.xpathexec.Main"
--master spark://134.109.193.131:6066
--deploy-mode cluster
--executor-cores 1
--executor-memory 2432m
--driver-memory 4864m
--driver-cores 2

hdfs://addressToHDFS:9000/users/rhr/XPathExec-1.0.jar
hdfs://addressToHDFS:9000/users/rhr/bookstore_dewey.txt
/bookstore/book/author
0

Parameters of driver program are as follows:

1. Path to the text file containing transformed XML document

2. XPath query

3. Mode (0 - DSL Broadcast collection; 1 - DSL LEFT SEMI JOIN; 2 -
SQL RIGHT JOIN)

Directory containing the resultant files is stored into the same directory
whence the text file was read, so in this case result is stored into
hdfs://addressToHDFS:9000/users/rhr/result. Note that in local mode, if
the file is read locally, the result is stored to the local machine.

XPath executor was created as Maven project. If it is needed it can be
reinstalled, recompiled or rebuilt by Maven commands.

74

Appendix D
Tables of transformed XML

document

This appendix contains full nodes’ and paths’ table of transformed XML
document from Chapter 1.1. Tables are partially shown in Section 5.1.

Nodes’ table

+--------------+------+----+--------------------+
| dewey|pathId|type| value|
+--------------+------+----+--------------------+
00.01	0	1	bookstore
00.01.01	1	1	book
00.01.01.01	2	1	title
00.01.01.01.01	3	3	XQuery Kick Start
00.01.01.02	4	1	author
00.01.01.02.01	5	3	James McGovern
00.01.01.03	4	1	author
00.01.01.03.01	5	3	Per Bothner
00.01.01.04	4	1	author
00.01.01.04.01	5	3	Kurt Cagle
00.01.01.05	4	1	author
00.01.01.05.01	5	3	James Linn
00.01.01.06	4	1	author
00.01.01.06.01	5	3	Vaidyanathan Naga...
00.01.01.07	6	1	year
00.01.01.07.01	7	3	2003
00.01.01.08	8	1	price
00.01.01.08.01	9	3	49.99

75

D. Tables of transformed XML document

00.01.01.09	10	1	edition
00.01.01.09.01	11	3	2
00.01.01.10	12	1	pages
00.01.01.10.01	13	3	765
00.01.02	14	1	cd
00.01.02.01	15	1	title
00.01.02.01.01	16	3	Love, Lust, Faith...
00.01.02.02	17	1	author
00.01.02.02.01	18	3	30 Seconds to Mars
00.01.02.03	19	1	year
00.01.02.03.01	20	3	2013
00.01.02.04	21	1	price
00.01.02.04.01	22	3	25.55
00.01.02.05	23	1	genre
00.01.02.05.01	24	3	Alternative rock
00.01.03	1	1	book
00.01.03.01	2	1	title
00.01.03.01.01	3	3	Learning XML
00.01.03.02	4	1	author
00.01.03.02.01	5	3	Erik T. Ray
00.01.03.03	6	1	year
00.01.03.03.01	7	3	2003
00.01.03.04	8	1	price
00.01.03.04.01	9	3	39.95
+--------------+------+----+--------------------+

Paths’ table

+------+------------------------------+
|pathId| path|
+------+------------------------------+
0	bookstore
1	bookstore/book
2	bookstore/book/title
3	bookstore/book/title/#text
4	bookstore/book/author
5	bookstore/book/author/#text
6	bookstore/book/year
7	bookstore/book/year/#text
8	bookstore/book/price
9	bookstore/book/price/#text

76

10	bookstore/book/edition
11	bookstore/book/edition/#text
12	bookstore/book/pages
13	bookstore/book/pages/#text
14	bookstore/cd
15	bookstore/cd/title
16	bookstore/cd/title/#text
17	bookstore/cd/author
18	bookstore/cd/author/#text
19	bookstore/cd/year
20	bookstore/cd/year/#text
21	bookstore/cd/price
22	bookstore/cd/price/#text
23	bookstore/cd/genre
24	bookstore/cd/genre/#text
+------+------------------------------+

77

	Introduction
	Technologies
	XML
	XPath
	SQL

	Apache Spark
	Spark Core
	Spark's relation to Hadoop
	Spark SQL
	Running on cluster

	Analysis and design of solution
	Transforming of XML document to relational table
	Global order encoding
	Local order encoding
	Dewey order encoding
	Summary

	Our approach
	Pure SQL method
	Join-based SQL
	SQL query via DataFrame API
	Alternative methods without joins
	Left semi join
	Broadcasted lookup collection
	Getting result
	Summary

	Implementation
	XML processor
	XPath executor
	Working with cluster
	Summary

	Testing and Experiments
	Manual testing
	Unit testing
	Experiments
	Summary

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD
	User manual
	XML processor
	XPath executor

	Tables of transformed XML document

