
L.S.

Ing. Michal Valenta, Ph.D.
Head of Department

prof. Ing. Pavel Tvrdík, CSc.
Dean

Prague January 24, 2016

CZECH TECHNICAL UNIVERSITY IN 	PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF MASTER’S THESIS

 Title: Mobile app for Hrave.cz

 Student: Bc. Ondřej Paška

 Supervisor: Ing. Ondřej Menčl

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2016/17

Instructions

The web portal Hrave.cz, which belongs to the Educasoft company, aims to prepare high-school students for
their state final exams and to prepare them for entrance exams for universities. It includes lectures and many
different types of exercises and includes some gamification machanisms. The task is to create a mobile
application that replicates most of the functions of the portal. The app will communicate with the existing
API server. It is expected to include user login and registration, user progress visualization, lectures, and all
types of exercises. The app should be modular and ready to be easily maintained and extended. Design and
graphics assets for the UI will be provided by the graphics department of the Educasoft company.
1. Analyze the web application and specify functional and non-functional requirements for a mobile
application.
2. Design the mobile application.
3. Choose an implementation platform.
4. Implement the application, test it, and document it.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of theoretical computer science

Master’s thesis

Mobile app for Hrave.cz

Bc. Ondřej Paška

Supervisor: Ing. Ondřej Menčl

9th May 2016

Acknowledgements

I would like to thank my family for their support during my studies. Special
thanks to Tereza Novická for proofreading and correcting this text.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 9th May 2016 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2016 Ondřej Paška. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Paška, Ondřej. Mobile app for Hrave.cz. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2016.

Abstrakt

Předmětem této diplomové práce je vytvořeńı mobilńı aplikace k existuj́ıćı
e-learningové platformě Hrave.cz. Práce obsahuje popis této služby a rozbor
podobných řešeńı na mobilnách platformách. Jsou probrány možné cesty mo-
bilńıho vývoje. Aplikace je implementována pomoćı multiplatformńıho frame-
worku Adobe AIR pro Android a iOS, otestována a vydána.

Kĺıčová slova LMS, učeńı, maturita, e-learning, mobilni aplikace, Android,
multiplatformńı

Abstract

The goal of this thesis is to create a mobile application for the existing
Hrave.cz e-learning platform. The service is analyzed and similar solutions
on mobile platforms are explored. Possible ways of implementing the mobile
service are discussed. The application is implemented in the Adobe AIR
framework for Android and iOS, tested, and deployed.

Keywords LMS, e-learning, students, Android, mobile, multiplatform

ix

Contents

Introduction 1
Motivation and objectives . 1

1 Analysis 3
1.1 Educasoft s.r.o. 3
1.2 Hrave.cz . 3
1.3 Similar Existing Solutions . 8
1.4 Choosing a Platform . 10
1.5 Requirements . 16

2 Design 19
2.1 Domain model . 19
2.2 Use Case Analysis . 20
2.3 Activity Diagrams . 26
2.4 Hrave API . 26
2.5 Wireframes . 29
2.6 UI . 32

3 Implementation 35
3.1 Tools . 35
3.2 Feathers SDK . 36
3.3 RobotLegs . 38
3.4 Package Description . 40
3.5 Offline Mode . 41
3.6 Graphics . 41
3.7 Content Parsing . 44
3.8 Sound . 46
3.9 Localization . 47
3.10 Persistance . 48
3.11 Performance Profiling . 49

xi

3.12 Login Security . 50

4 Testing 51
4.1 TestFairy . 51
4.2 Usability Testing . 52

5 Deployment 57

Conclusion 59
Future Work . 59

Bibliography 61

A Acronyms 67

B Contents of CD 69

C Application Screenshots 71

D User Guide 77
D.1 Installation . 77
D.2 Registration . 77
D.3 Accessing Lessons Offline . 77

xii

List of Figures

1.1 Part of Hrave lesson tree . 4
1.2 Hrave Question Types . 6
1.3 Maturita SK on Android . 8
1.4 Maturita Quiz on Android . 9
1.5 Duolingo on Android . 11
1.6 Khan Academy on Android . 12

2.1 Hrave Domain Model . 21
2.2 Login Activity Diagram . 26
2.3 Lesson Activity Diagram . 27
2.4 Wireframes I. 29
2.5 Wireframes II. 30
2.6 Screen Flow . 31
2.7 Header Actions . 33

3.1 Multiple Screen Support . 42
3.2 TextFill question type of phones and tablets 43
3.3 Hrave SVG Example . 44
3.4 Example of links in a lesson (mobile app) 45
3.5 Sound Player on Android . 47
3.6 Database Schema . 48
3.7 Adobe Scout . 49

C.1 Application Screenshots I. 72
C.2 Application Screenshots II. 73
C.3 Application Screenshots III. 75

xiii

List of Tables

2.1 Use case coverage of functional requirements 25

xv

Introduction

Motivation and objectives

Utilizing information technology in education is not a new concept. The idea
of electronic learning (or e-learning) is thought by many to be a key to ef-
fectively spreading knowledge in the 21st century[1]. E-learning commonly
complements traditional learning at Czech universities and high schools. In
2010 a standardised test at the end of secondary school (the so-called state
maturita) was introduced to Czech schools[2] and more secondary schools and
universities started using standardised entrance exams called Scio[3]. There
were suddenly two standard exams the majority of students needed to pre-
pared for.

Hrave is a project aimed at helping students preparing for these exams
in a fun and motivational way and has attracted a lot of users since it was
launched in 2014. The service is accessed through a web browser and was de-
signed with desktop computers in mind. The trend, however, is that more and
more people in the Czech Republic access the web through their smartphones
and tablets[4]. Furthermore, people prefer to access services through mobile
apps, rather than mobile web sites.[5] Althought mobile e-learning systems
are common in the US (see section 1.3), there is relatively small competition
in the Czech mobile e-learning market. With this in mind, I agreed to work
with Educasoft company to tap into this market, by creating a mobile app
that enables students to use Hrave e-learning platform on their mobile phones
and tablets. In addition to this, Hrave software can be used as a platform for
any kind of learning, which forms the core of Educasoft B2B operations. The
mobile app should also work within these other domains.

In this thesis I will first describe the existing Hrave platform and the way
content is created and structured and explore some existing solutions on the
mobile market. Then I will present an analysis of the new mobile system and
discuss the design. Thirdly I will show how I implemented the application and
finally how it was tested and deployed.

1

Chapter 1

Analysis

1.1 Educasoft s.r.o.

The company was created in 2014 with the intention of using modern tech-
nologies in education. Their first project was Hrave.cz, but today they also
extend and support the learning management system (LMS) iTrivio (itrivio.cz)
for managing know-how, learning, and training in schools and businesses.

1.2 Hrave.cz

Hrave is a Czech online learning tool for students. It now has modules for the
final high school exam (maturita), university entrance exams (NSZ - OSP)
and entrance exams for eight-year Gymnasiums (gymnázia). It features:

• Professionally prepared lectures

• Many types of exercises

• Gamification mechanics - experience points (XPs), earning diamonds,
practice arena

• Leaderboards for competing with friends

Some content is provided for free, but to unlock all the lessons, users must
purchase a license in the eShop section of the web. Licenses are usually valid
for one or two years. Registration is required and is possible through email or
with one-click Facebook login.

1.2.1 Architecture

Existing system consists of a server application (backend) and a web applic-
ation (frontend). Backend is written in Java using Hibernate and Spring

3

1. Analysis

Domain

Module

Section

Chapter

Lesson 1 Lesson 2 Lesson 3 Lesson 4

Figure 1.1: Part of Hrave lesson tree

frameworks and frontend uses HTML, CSS and Javascript with JQuery and
Angular frameworks. The communication between frontend and backend hap-
pens throught a HTTP API using JSON data format. Hrave itself is a generic
e-learning platform, which can be licensed for other uses than student prepar-
ation. Hrave.cz is just one domain where it is used.

1.2.2 Lesson Structure

Every module is divided into a set of small self-contained lessons. Lessons
are categorized in a tree structure. The root has children corresponding to
the modules (Maturita, NSZ-OSP, . . .) and those can have arbitrary levels
with the leafs being the lessons themselves. Figure 1.1 shows a part of this
tree. Each lesson is composed of lectures explaining the topic and exercises
(questions).

4

1.2. Hrave.cz

1.2.3 Editor

Lesson content is prepared by teachers or experts in a WYSIWYG HTML
editor. Hrave uses TinyMCE for this, which is an open-source, full-featured,
yet simple to use editor[6]. It allows basic formatting with some predefined
styles, raster and vector images, math notation and equations and sounds.
Youtube videos can be embedded as well.

Users go through a lesson one part at a time and their progress is tracked
and displayed, so they know how well they are doing. Some modules include
a final test, which simulates a real-life exam. This case has a special user
interface (UI) where the user can see all the questions at once and has a time
limit. Only after the test is finished can the student see their evaluation and
review correct answers.

1.2.4 Question Types

Hrave currently supports five different types of questions. Example questions
can be seen in figure 1.2.

Simple question is an open question, where user can submit any text input.
Maximum length can be specified. Evaluation contains a list of possible
answers.

Choice question contains several possibilities that can be selected. Any
number of options can be selected.

Connect question contains several parts that must be matched together.
Left and right parts and their labels are specified.

True/False question contains several statements that the user evaluates
as true or false. Specific labels for the true and false options can be
specified.

TextFill question contains a text with one or more words that must be
chosen from a list.

1.2.5 Gamification

Keeping users engaged is one of the challenges of any e-learning system. Gami-
fication is at the center of many popular e-learning platforms like Codeacademy
and Duolingo[7]. It aims to utilize the way games keep players motivated and
engaged in non-game areas and it has been a big trend in the last couple of
years in both industry and academic research[8].

5

1. Analysis

Figure 1.2: Hrave Question Types

6

1.2. Hrave.cz

Typical gamification mechanics include:

• Points

• Leaderboards

• Achievements

• Badges

• Levels

• Story/Theme

• Clear goals [8]

Research shows that in a given system, gamification increases student par-
ticipation significantly[9]. There are several ways gamification accomplishes
this. Firstly, it targets the users’ emotions by giving them a positive reward
for every task completed, which gives them a sense of achievement. Secondly,
it uses social interactions (e.g. with leaderboards) to utilize a natural need for
status and recognition.[9]

1.2.5.1 Gamification Elements of Hrave.cz

In Hrave, gamification is realized by giving users XPs after each lesson, based
on how well they did. Based on the percentage of correct answers the users
are also awarded a diamond for each completed lesson. A silver diamond is
awarded for getting the minimal required points for the lesson and a gold dia-
mond is awarded for having everything correct. Diamonds are also displayed
for whole chapters of lessons, up through the lesson tree (see figure 1.1), where
they reflect the average achieved diamonds in child branches. For example: if
a user completes half the lessons in a chapter (gets a gold diamond for them)
he gets half a gold diamond for the whole chapter.

Based on their XPs, the users gain ‘levels’ in each module. The aim is to
motivate the student to gain XPs.

Another gamification technique is to include a leaderboard for friends. The
user can connect with friends via email or Facebook and compare their XPs
in each subject (module). This creates healthy competition and additional
motivation for the user.

1.2.5.2 Arena

Lessons for the maturita exam can be practiced in a special game mode called
Arena. Here, the student fights against the personified ‘Evil Maturita’. Ques-
tions are shown and when the user answers correctly, his opponent gets ‘hit’.

7

1. Analysis

User loses hitpoints (health) by answering incorrectly. The user can skip ques-
tions, but does not get to see the correct answers until after a round is over.
Future plans include player-against-player competition. Users receive special
purple diamonds for playing in Arena.

1.3 Similar Existing Solutions

The aim of this thesis is to bring some of this functionality to the mobile
platform. Firstly, let us examine some similar existing solutions. There are
a few mobile applications on AppStore and Google Play that aim to help
students studying for maturita exams, however, most of them suffer from very
poor user ratings. Overall, the competition for the (admittedly small) market
of mobile learning in the Czech Republic seems to be almost non-existent.

1.3.1 Maturita SK

One exception is the Slovakian Maturita SK based on a student website
zones.sk, which is well-liked by its users and has 50 000 - 100 000 down-
loads on Google Play. It offers free study materials from all subjects, but it
has no exercises or gamification mechanics. The quality of the materials varies
substantially. It also suffers from some UI problems - the back arrow does not
work, the text is often weirdly formatted, and some math equations are not
displayed correctly. Some lessons are redirected to Google Drive files.

Figure 1.3: Maturita SK on Android

8

1.3. Similar Existing Solutions

1.3.2 Maturita Quiz

This app is among the first results for the search term ‘maturita’ on both App
Store and Google Play, therefore it should be a direct competitor to Hrave
mobile application. It has support for subjects - Math, Czech, English, and
German. It offers only multiple choice questions with some supplementary
explanations. Some of the topics are for free, for others you have to buy some
in-app currency to unlock them. It also contains bottom-page advertisements.

The UI does not conform to the standards on either platform and is quite
unintuitive and cumbersome. For example, when selecting a subject, the user
must first tap the subject and then click continue, which is quite unnecessary.
Also, when the explanation for a question is displayed, the correct answer can
no longer be seen.

Figure 1.4: Maturita Quiz on Android

1.3.3 Duolingo

With millions of downloads and user ratings above 4.6 stars in both App
Store and Google Play, this application is among the most successful in the
area of mobile learning. It is focused on languages, but is very similar to what
Hrave mobile should be, mainly it features: a lesson structure with topics
and lessons, multiple types of questions, gamification, and friends. One thing
that it lacks is the ability to save lessons for offline use. As of April 2016,
the only course available for Czech speakers is English. All of their content
is available for free without ads. The company’s business model is based
on selling translations from high-level users[7]. The UI is an example of an
uncluttered, well-arranged, and user-friendly design.

9

1. Analysis

Application screens (screenshots taken from Android version 3.20.1):

• Landing screen, the user continues to sign-in or there’s onboarding for
new users. 1.5a

• Sign-in screen 1.5b

• Topic screen, after initial sign-in, this becomes the default screen. Some
gamification notifications can be seen. 1.5c

• Topic introduction screen 1.5d

1.3.4 Khan Academy

The last mobile application I would like to mention is Khan Academy, a pop-
ular video-based learning service available on the web, Android and iOS. It
includes dozens of subjects with many subcategories. Each topic is covered in
a series of 8-15 minute videos with practical exercises in between (these seem
to be missing on mobile devices) and students are motivated by gamification
elements 1.6d. All content is for free. It is in English, however some videos
have Czech subtitles. What is interesting is the possibility to download les-
sons for offline viewing. Users first select a video to be added to their ‘list’
and later they can download any video for offline viewing 1.6c. The Android
application kept displaying the ‘You are offline’ message, even though the in-
ternet connection was active at the time, however online lessons could still be
viewed. The UI can seem too cluttered and confusing.

1.4 Choosing a Platform

When choosing a platform, the goal is usually to cover most of the users
while minimizing the cost. According to IDC[10] worldwide market share of
mobile OS is divided as follows: Google’s Android dominates with 82.8%,
Apple’s iOS is at 13.9%, and a distant third place is held by Windows Phone
with 2.6%, other options are below one percent and therefore not relevant to
this discussion. In the Czech Republic, the trend is similar with Android at
72.5%, iOS at 17.3% and Windows Phone at 5.5% of the market.[11] Android
therefore seems like a must for mobile applications, unless we are targeting a
very specific demographic. For this thesis, it was decided to include iOS as well
in order to capture the most of the market. There are several ways to target
users in both ecosystems. The important thing here is that mobile software
distribution is more restricted than that on traditional desktop computers.

On Android, the default way to get software is from Google Play Store. It
is possible to download and install software from other sources, but it must
be explicitly allowed in the settings.

10

1.4. Choosing a Platform

(a) Landing screen (b) Sign-in screen

(c) Topic screen (d) Drawer navigation

Figure 1.5: Duolingo on Android

11

1. Analysis

(a) Topic screen (b) List of offline content

(c) Main screen (d) Gamification elements

Figure 1.6: Khan Academy on Android

12

1.4. Choosing a Platform

On iOS, the AppStore is the software distribution platform and software
from other sources is not permitted.

In the next section, I will discuss several options for multiplatform devel-
opment of mobile applications.

1.4.1 Web Apps

The easiest way to allow mobile users to access the existing website is through
the mobile web browser. This approach, however, has several disadvantages
[12].

• The existing website would have to be rewritten to be more responsive.

• The result looks and feels different, and usability becomes an issue.

• Cannot access native components (push notifications, vibrations, etc. . .)

• Works only online

Also, as was already mentioned, users prefer to interact with services
throught apps on their mobile devices[5].

1.4.2 Native

The best solution would be to create a native application for each platform.
That, however, would be unfeasible for a single developer with the time alloc-
ation, and there was no budget for a second mobile developer at the company.
Furthermore, native iOS development is only possible on Apple computers[13],
which means more cost and inconvenience. Therefore I looked for a crossplat-
form solution which would enable me to use a single codebase to target both
platforms.

1.4.3 Hybrid Apps

Hybrid apps ship as native apps, but under the hood they use a web view to
display content made by web technologies like HTML, CSS, and JavaScript.
Apache Cordoba is one of the most popular hybrid app frameworks at this
moment. It started as PhoneGap, but was opensourced and contributed to
the Apache Software Foundation (ASF)[14]. Looking through their showcase
applications, they mostly suffered both bad performance and user interface.
Furthermore, the build process seems to be greatly convoluted, to the point
that Adobe provides a cloud tool for it[15]. Facebook CEO Mark Zucker-
berg said that pursuing the hybrid approach on mobile was one of his biggest
mistakes[16].

One of the advantages of this approach is that there are a lot of quality UI
frameworks specifically made for mobile[17] and most importantly, it would

13

1. Analysis

make it naturally easier to display the lesson content, which is structured in
HTML and styled with CSS.

1.4.4 ReactNative

ReactNative, a new opensource framework that emerged recently, is worth
mentioning. It is backed by Facebook [18] and it lies somewhere on the border
between the hybrid and native approach. It uses Javascript (it is based on
React.js) to create and work with native components. With this approach,
you still need to write a substantial amount of platform specific code, but can
keep a common Javascript code core. The final application looks and behaves
exactly like a native app. React Native is still very new (the latest version
is V0.22) and under development. OS X is needed for iOS development and
Android development on Windows is marked as ‘experimental’[18]. For these
reasons I decided not to experiment with it just yet, but it is definitely worth
following in the future.

1.4.5 Adobe AIR

I will now briefly describe Adobe AIR and how it evolved in recent years and
then weigh its advantages and disadvantages.

1.4.5.1 Overview

Adobe AIR is a multiplatform development framework created by Adobe[19].
It is based around Flash technologies, but has native capabilities like file sys-
tem access, web sockets, local databases, and others. Applications for it are
written in ActionScript 3 (AS3) and they behave and run just like native apps
on target devices[20]. Its target platforms are Windows, Mac OS, Android,
iOS, and BlackBerry Tablet OS[21].

1.4.5.2 ActionScript 3

ActionScript 3 is based on EcmaScript, the international standardized pro-
gramming language for scripting, which is also the basis for JavaScript, how-
ever ActionScript is statically typed, so it is more similar to TypeScript in this
respect. It is a very mature language and has features including native XML
support, 2D and 3D graphics acceleration, and concurrency on all platforms
(via Workers)[22].

1.4.5.3 Native Extensions

AIR Native Extensions (ANEs) give developers the freedom to create certain
parts of their program in the native code of their target platform[20]. This way
it is possible to have a common code base and still leverage the capabilities

14

1.4. Choosing a Platform

of each platform. Some ANEs are provided by Adobe for free (e.g. vibration
and GameCenter), some can be purchased from third party companies, and
others can be found open-sourced online.

1.4.5.4 Stage3D

The introduction of Stage3D API in Flash Player 11 enabled developers to use
the GPU to accelerate graphics on all platforms[23]. The Starling framework
was created to shield the developer from the complexities of Stage3D when
creating 2D content. It delivers the performance needed for interactive content
on mobile devices and it was officially supported by Adobe[24]. Starling is
still actively maintained and new features and performance enhancements are
added regularly. It has also a very active and welcoming community online[25].

1.4.5.5 Feathers

Starling is a game engine and was designed and optimised to deliver great
performance on mobile. This, coupled with the fact that mobile devices are
getting more powerful each year, encouraged developers to develop non-game
mobile applications in that framework. Feathers is a UI framework, built on
top of Starling, that makes it possible to easily create extensible, skinable
components, and supports layouts and themes[26]. In 2015 Feathers came
out with Feathers SDK: a toolbox that enables developers to declare Feathers
or even custom components in MXML files. They will be described in more
detail in section 3.2.

To summarize the advantages of Adobe AIR:

• Delivers consistent results on all platforms with code crosscompilation
for iOS.

• Is a mature technology with many tools and libraries available.

• Can access platform specific code with ANEs.

• Makes it possible to develop iOS applications on Windows.

• Free for commercial development

The disadvantages of creating apps in Adobe AIR include:

• The result will not feel truly native.

• Some features might only be accessed in a round-about way through an
ANE.

• Unlike hybrid-apps, it only supports a small subset of HTML and CSS.

• The runtime adds additional 9MB to the resulting package.

15

1. Analysis

1.4.6 Conclusion

In the end I decided to implement the applications for both platforms (An-
droid and iOS) with Adobe AIR. I must admit this is partly because of my
positive experience with it in my previous projects. Looking at the competing
approaches, none of their specifications convinced me to switch from Adobe
AIR, with the exception of native development, which I would recommend to
the company if they had more resources.

Further information about Adobe AIR can be also found in my bachelor
thesis [27].

1.5 Requirements

Hrave mobile application is intended as an addition to the website, its scope
was limited so that it would be manageable by a single developer in the course
of several months. Specifically, the following parts are not going to be part
of the design and implementation, but they could be added in the future:

• eShop - users will only have the licenses they bought through the website

• Arena

• Administration or content management, users will not create or edit any
content

• Final exam preparation

• Facebook integration (will be added in a later version)

1.5.1 Functional Requirements

With the scope in mind we can formulate the following functional require-
ments:

F1 User management - login with credentials (email, password), simplified
registration with email only, users can see their profile information and
log out.

F2 Content navigation - users can navigate the content structure, they will
see which lessons are available and which are locked for them (because
they do not have a valid license).

F3 Lesson display - all lesson content must be displayed, including pictures,
sounds, diagrams, and equations.

F4 Questions and answers - all question types must be supported and
after evaluation, correct answers and hints must be shown.

16

1.5. Requirements

F5 XPs and diamonds - XPs and diamonds will be awarded and displayed.
Users can see the level they achieved in each module.

F6 Friends leaderboards - users will see their progress compared to their
friends.

F7 Friends management - users can find, invite and connect with friends

F8 Offline content - users can save lessons to use without an internet con-
nection. This is a crucial part of the app, because makes it possible for
students to study on the go, for example on the subway.

1.5.2 Non-Functional Requirements

Hrave API - the application will work with the current Hrave server through
existing API

Android platform - the application will work on Android OS with minimum
supported API level 15 (version ”Ice Cream Sandwich”) on both tablets
and phones

iOS platform - the application will work on iOS 7 and above on all iPhones
and iPads.

Offline mode - the application must handle changes in internet connectivity

Usability - the application should conform to the norms on the given plat-
form and follow basic usability principles

17

Chapter 2

Design

2.1 Domain model

To have a clear grasp of the system, it is useful to describe all the entities
in the system and their relations. The domain model for Hrave with all the
relevant entities is shown in figure 2.1. Some properties are omitted for clarity.
Next I will describe important entities in the system.

Domain Hrave is a generic educational software. A concrete deployment
is called a domain. The user is tied with a single domain, however a
real person can have accounts on more than one domain and have the
same (or different) credentials on all of them. Hrave.cz is a domain.
A Domain has a root entry, that is the root of the lesson tree (which
typically contains modules).

Entry is any node in the lesson tree (see 1.1). The access type defines if it is
free for users or if it must be unlocked by a license.

Module is the root of the lesson tree. At Hrave.cz these are subjects like
Math and English.

Section is another layer in the lesson tree. There can be an arbitrary number
of them. They can contain other sections or chapters.

Chapter is a section that contains lessons.

Lesson is an educational unit, designed to teach a specific topic. It consists
of content parts.

ContentPart is a part of a lesson. It can be a non-interactive text (explan-
ation) or a question part. Question parts contain a task and interactive
question (depending on the type).

19

2. Design

License Each entry (module, section, chapter, lesson) can be free or it can
require a license. Users can have multiple licenses.

2.2 Use Case Analysis

Use cases are very useful by listing concrete steps that realize a certain goal
in our system. Every functional requirement should be covered by at least
one use case. The use cases might be altered when internet connection is not
available - I will call this the offline mode.

UC1 Sign in is required for the user to use access the content. Sign in will
be required only once, afterwards it will be automatic. In offline mode,
the user does not need to (cannot) sign in, in order to view his saved
lessons. If there are no saved lessons, no action is available.

1. The user taps the Login button.

2. Application shows the input boxes for email and password.

3. The user enters credentials and presses the Login button.

4. If the data is invalid, a dialog describing the error is displayed (e.g.
empty email / wrong credentials / server cannot be reached). If the
data is valid for more than one domain, the user is first asked to
choose a domain. Otherwise the user is logged in - the main screen
with modules is shown.

UC2 Register is possible with email only. After successfully registering, the
user can login with new credentials. This is not possible in offline mode.

1. The user taps the register button.

2. Application shows the input box for email, a checkbox for agree-
ing with terms and conditions, and a link to see the terms and
conditions.

3. The user inputs an email address and can optionally view the terms
and check the checkbox.

4. The user clicks on the register button.

5. If the checkbox is unchecked, a warning is displayed, otherwise the
user email is sent to the server and a response is displayed (e.g.
user registered / email already in use / email invalid).

UC3 Sign out is possible if the user is signed in.

1. The user taps the logout button

2. The screen with sign-in and register buttons is shown

20

2.2. Use Case Analysis

Module

LicenseType
-id
-name

License
-id
-expiration

User
-name
-nickname
-email
-xp

TextFill TrueFalse Connect

Simple

Choice

QuestionPart
TextPart

-text

Lesson

Chapter

Section

ContentPart
- xp

Domain
-id
-url
-name Entry

- id
- name
- accessType

0..n
0..nhas solution

0..n

1
belongs to

0..1

1

has root

is friends with

is child of

0..n 1
is of type

1 0..n
has

0..n

1

1

1..n
contains1

1..n

contains

1

1..n

contains

 0..n

1

unlocks

0..n

1

0..n

1

0..n

1

1 1..n
contains

0..n 0..n
has task

0..n 1

Figure 2.1: Hrave Domain Model

21

2. Design

UC4 View profile information The user can view information about their
account, including which licenses they purchased. This information can
only be edited on the web. Not available in offline mode.

1. The user taps the user button

2. The screen with information is shown

UC5 Display modules Modules constitute the topmost navigation in the
application. They are displayed in the main menu, which is only access-
ible to logged-in users. Works the same in offline mode.

1. The user navigates to the main screen.

UC6 Display section A section is any node in the lesson tree (see figure 1.1)
that is not a module or a chapter. A section may contain other section
or chapters (but never a mix of these two). In offline mode, items that
are not cached or downloaded are disabled. Items that are locked for
the user (requiring a license) are displayed with a lock.

First scenario

1. The user enters a module

2. Application shows a list of sections

Second scenario

1. The user selects a section or chapter

2. If it is locked, the application shows an information message

3. Otherwise the application shows a list of chapters

UC7 Display lesson list is analogous to previous case.

1. The user enters a chapter

2. Application shows a list of lessons

UC8 Play lesson Lessons comprise the core of the application and they are
the place where users will spend most of their time. Lessons contain an
arbitrary number of parts (either topic explanations or questions). In
offline mode - UC15.

1. The user enters a lesson.

2. Application shows the first part of the lesson.

3. The user reads the text or answers a question and taps the continue
button.

4. If the previous part was a question, the application shows the eval-
uation of the question. The application shows the next part.

22

2.2. Use Case Analysis

5. The last two steps continue until there are no more parts to show.

6. Application shows the evaluation for the whole lesson including
XPs.

UC9 See progress Users can see how far they progressed in a given mod-
ule, chapter, or lesson. For chapters and lessons, this has the form of
diamonds (silver and gold). For modules, they can see their XPs and
level. In offline mode, progress can still be seen reflecting the last time
the user was online. It might not be accurate, because the user might
play on the web in the meantime, altering gaining XPs.

First scenario

1. The user enters a module

2. Application shows XPs and level.

Second scenario

1. In a section, the application shows the progress next to each chapter
or lesson in the list.

UC10 Show friends leaderboard For each module, there is a leaderboard
where users can compare their progress with friends. Adding this as a
special screen would make it difficult to discover, but putting it inside
the module would take up too much space. It was decided to make it
appear after the user taps the friend icon in the header or taps their
module progress panel. It appears below the progress panel, sliding
down from it. If the user has not connected with any friends, a message
is shown instead of a list, encouraging the user to find and connect with
friends. Not available in offline mode.

1. The user enters a module

2. Application shows a list of chapters and above them it shows the
user progress for the module.

3. The user taps the friend icon or the progress panel

4. Application shows the leaderboard for the selected module

UC11 Invite friend To compare scores with a friend, it is possible to invite
them via email. If the email is associated with a user in the domain, a
friend request is sent, otherwise an invitation email is sent. Not available
in offline mode.

1. The user enters a module

2. Application shows a list of chapters and above them it shows the
user progress for the module.

23

2. Design

3. The user taps the friend icon or the progress panel

4. The user taps the invite friend button

UC12 Send friend request To compare scores with a friend, the two users
must first connect. This is done via friend requests. If the email is
known, the invite friend option is available. Otherwise the user can
find their friend by their nickname. A minimum of three characters is
required for a nickname search. If a user is found that has sent a friend
request, user can accept it in the search results. User already in friend
list are not included in search results. Not available in offline mode.

1. The user enters a module.

2. Application shows a list of chapters and above them it shows the
user’s progress for the module.

3. The user taps the friend icon or the progress panel.

4. The user taps search button.

5. Application shows a search dialog with an input field.

6. The user inputs at least three characters and taps ‘search’.

7. Application shows a list of users.

8. The user taps the send friend request button next to a selected
user.

UC13 Accept/Refuse friend request Friend requests can be accepted or
refused. Use cases are very similar.

1. The user enters a module.

2. If there are any friend requests, the friend icon in the header is
highlighted, if there are two or more, the number is shown.

3. The user taps the friend icon or the progress panel

4. The user taps the friend request button (which also shows the num-
ber of requests)

5. Application shows a list of friend requests.

6. The user taps the accept or refuse button next to a selected request

UC14 Save lesson offline To keep things simple, only whole chapters con-
taining lessons can be downloaded for offline use. This can be done by
pressing a button in the top panel inside the chapter. A download is
only available if there is active internet connection and if the chapter
was not yet downloaded. Not available in offline mode.

1. The user navigates to a chapter containing lessons.

24

2.2. Use Case Analysis

2. Application shows a list of lessons and a download button in the
panel.

3. The user taps the download button.

4. Application shows a progress bar.

5. Application finishes the download and UI changes to reflect that
lessons have been downloaded.

UC15 Play lesson offline This is similar to UC8, however, only downloaded
lessons are available.

UC16 Resume previous When the application is closed during a lesson or
deeper in a lesson tree navigation, the position gets saved. It can be
restored after the application is restarted. A saved position older than
4 days is considered irrelevant. Lessons are always restarted from the
beginning.

1. Application shows a list of modules with a continue button next to
previously closed module.

2. The user selects the continue button.

3. Application shows the previously closed lesson or section.

Requirements

Use Cases F1 F2 F3 F4 F5 F6 F7 F8

UC1

UC2

UC3

UC4

UC5

UC6

UC7

UC8

UC9

UC10

UC11

UC12

UC13

UC14

UC15

UC16

Table 2.1: Use case coverage of functional requirements

25

2. Design

User picks a
domain

User is logged in

Show error

User confirms
email to activate

account

User fills form and
confirms

User inputs credentials
and confirms

Show register form

Show login form

Autologin

[One domain]

[More domains]

[No]

[Yes]

 Credentials valid?

[Not registered]

[No]

[Already
registered]

[Otherwise]

[Yes]

 Success?

[Has stored
credentials]

Figure 2.2: Login Activity Diagram

2.3 Activity Diagrams

Use cases and user scenarios are immensely helpful for understanding the
system from the user point of view. To better understand certain scenarios
from the system point of view, activity diagrams can be used. In figure 2.2,
you can see a login activity diagram and in figure 2.3 the activity in a lesson.

2.4 Hrave API

To communicate with the server, this mobile application will use the same API
the javascript frontend is using. The API is not stateless, the user is identified
by a session ID which is tied with a state on the server, most importantly to

26

2.4. Hrave API

Update progress display

Show lesson
evaluation

show question
evaluation

user inputs
answers and confirms

reset progress

show next lesson
part

show lesson title

[Yes]

[Question]

[No]

Are there more parts?

[Text part]

Figure 2.3: Lesson Activity Diagram

27

2. Design

the user and which lesson (if any) is opened. On the web, the sessionID is
saved in a cookie object. On mobile, this is not an option, so it is appended
as an argument to any URL request. All requests are sent over HTTP using
the POST method. Data are encoded with JSON.

These are some of the relevant parts:

/loginSession.do This request takes the parameters login, passwd, domainId
and returns a new session ID that should identify all future requests.

/getUserDomains.srv This request takes the parameters login and passwd
and returns all domains that have a user that has these credentials.

/logoutSession.do This request simply ends a session. The session ID can
be discarded.

/registerMail.srv This request takes an email and domainId and creates a
new user on the server. It sends a confirmation email to the user.

/openDisplayObject.srv This request takes an id parameter, which is a
lesson to be opened. The user can only have one lesson opened at a
time. This is mainly to prevent students from sharing a license.

/evaluateAnswer2.srv Takes the parameters qId and answerJson. Returns
the evaluation of the answers as well as possible additional text parts
as explanation. Also saves the result, for final lesson evaluation. If it is
called with ID that belongs to a question in a lesson that is not opened
in this session, it returns a error.

/closeDisplayObject.srv Closes the lesson, so no more answers can be eval-
uated in it.

/getECResults2.srv Returns a lesson evaluation, based on all question eval-
uations. Allots XPs to the user.

/getPageData.srv This request takes the id of an entry and returns all
information including XPs and children objects. This is used in every
step, when the user is navigating the lesson tree.

/friendsActionEndpoint.do This request is used to manage and interact
with friends. It takes an action parameter and possible other data de-
pending on the action. The action can be one of the following: get-
FriendRequests, emailFriendRequest, friendFindByNick, friendRequest-
Send, friendRequestAccept, friendRequestRefuse. These action names
should be self-explanatory.

28

2.5. Wireframes

2.5 Wireframes

At this point in the development, I began to work with the graphic designer
at Educasoft, Petr Miloš, on the concrete look of the app. This next chapter
therefore comprises the result of the collaboration, where we combined my
knowledge of mobile systems and Petr’s experience with graphic design, UI,
and user experience (UX). We used the use cases as a starting point. Some
features were redesigned in the final application, for example, there is no
‘menu’ button in the header.

The flow of the screens is shown in diagram 2.6.

(a) Section Screen (b) Section Screen

Figure 2.4: Wireframes I.

29

2. Design

(a) Start Screen (b) Sign-in Screen

(c) Register Screen (d) Modules Screen

Figure 2.5: Wireframes II.

30

2.5. Wireframes

Module

Invite Friends

Friend
Requests

Find Friends

select child
section

Lesson
EvaluationLesson

Section

Domain
homepage

Chapter

Domain Picker

Login

Registration

User Profile

StartPage

select chapterback

back select section

[One domain]

 logout

back

back

back

repeat lesson / next lesson

show profile

finish lesson

select lesson

select module

domain picked

[more domains]

Figure 2.6: Screen Flow

31

2. Design

2.6 UI

2.6.1 Navigation

Navigation in mobile applications is often solved by a left navigation drawer
menu that is opened either by a swipe gesture or by tapping the so-called
‘hamburger icon’ in the header. This solution allows for substantial number
of options, but it also has significant disadvantages. It has low-discoverability,
requires two taps for any navigation, clashes with the back button in the
header, and it is not glanceable (e.g. cannot notify the user that there is a
new message in their inbox by placing a number next to the inbox button,
because they will not see the button unless they open the drawer)[28].

The solution for Hrave was to place the action buttons directly in the
header. Since accessing the user profile is not a very common action, its
button was placed only at the top navigation screen with modules. Any other
screen will have a back button on the left, so there is only space for buttons
on the right. Inside a module, we can see the ‘friends’ button, which opens
the leaderboards for this module and buttons for friends management. When
the user has a friend request, it shows the number on top of the icon to draw
attention to this fact. In a chapter, there is a download button, and in a
lesson, there is a button with a diamond that opens and closes the lesson
progress display. In the offline mode there is a button on the right, indicating
the offline state. When tapped, it opens a dialog explaining the offline mode
with the option to try to reconnect. Friends and download buttons are not
visible in offline mode.

With this design, there are no menus. All the items are clearly visible,
when appropriate and it fits with the design guidelines on both platforms.
See figure 2.7 for all the actions in headers.

32

2.6. UI

Figure 2.7: Header Actions

33

Chapter 3

Implementation

I had access to the source code for the javascript frontend which I used as
documentation for the server API and other features. Some parts could be
ported to AS3, like lesson content parsing, most of the other things however
had to be built from scratch to ensure modularity, readability, and extensibility
of the new code.

3.1 Tools

To manage the implementation process, I used several handy tools. For bug
tracking and task management I used Asana[29] which was already in use by
the Educasoft company. It includes all the usual features, while being very
easy to use.

To track the time I spent on implementation, I used Toggl, which is an
online time tracker with reporting features.[30] I found it very easy to use.

3.1.1 Versioning

For source-code management and versioning, I used Apache Subversion (SVN).
I added a new project folder to the existing repository running on Educasoft
servers. For my purposes it was convenient, thanks partly to the TortioseSVN
client application. If it was not for the fact that it was the established version
control system (VCS) at the company, I would consider using a decentralized
VCS like Git or Mercurial. In these systems, each checkout is a full repository
with a complete commit history and they offer easier branch control[31]. For
a single developer with a fairly short development time, SVN was satisfactory
and I did not encounter any issues. I usually committed all changes after each
implemented feature or bugfix.

35

3. Implementation

3.1.2 IDE

To develop software with Adobe AIR there is a choice of integrated develop-
ment environments (IDEs). We could, of course, use any text editing software,
but an IDE will make development faster, enable quick refactoring and easy
debugging.

Popular choices for an IDE include the Adobe Flash Builder, IntelliJ IDEA
and the free and open-source Flash Develop. I decided to use Flash Builder,
which is built on the Eclipse platform and features an interactive debugger
and the Android USB debugging feature.

3.2 Feathers SDK

Feathers UI is a collection of components built upon the Starling framework,
that supports many commonly used controls and layouts and is fully skinnable.
Feathers SDK is a new free and open-source tool from Bowler Hat. Firstly,
it simplifies the process of managing different versions of Adobe AIR SDK,
Starling, and Feathers, with the SDK Manager program. Most importantly,
it allows developers to statically declare components in MXML files. These
were originally used with the Flex framework, but they were remade to work
with Feathers and therefore deliver a great performance on mobile[26].

The following code example shows how it is possible to reference declared
components and mix declarations with code. The code example creates an
application with a slider with values from zero to a hundred, a label that
always shows the current value, and a button that prints the current value to
the console.

36

3.2. Feathers SDK

<f:Application xmlns:f="library://.feathersui.com/mxml"
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 theme="feather.themes.MetalWorksMobileTheme">
 <f:LayoutGroup>
 <f:layout>
 <f:HorizontalLayout padding="10"/>
 </f:layout>

 <f:Slider id="slider" minimum="0" maximum="100" value="10"/>
 <f:Label text="{slider.value}"/>
 <f:Button triggered="button_triggeredHandler(event)"/>
 </f:LayoutGroup>

 <fx:Script>
 <![CDATA[

 private function button_triggeredHandler(event:Event):void
 {
 trace("slider value changed! " + this.slider.value);
 }

]]>
 </fx:Script>
</f:Application>

This is similar to Android development, where layouts and visual elements
can be declared in XML files[32], however, it differs in several aspects: Let me
demonstrate on a simple example, with a button and a function that is called
when it is pressed.

In Android, we can declare the button and set a unique ID, because we
need to reference it later.

<Button android:id="@+id/my_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/my_button_text"/>

Then in our code we need to get the reference to that button by calling a
function:

Button button = (Button) findViewById(R.id.my_button);

Then we can attach a listener to it.

button.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 // Perform action on click

 }

});

It is also possible to assign a method directly to the button in XML, but
it has to be in the activity class and be public[33]. The popular library Butter
Knife makes it possible to use annotations with IDs to automatically bind
views from a layout to fields in a class,[34] this however makes it necessary to

37

3. Implementation

declare the variables as fields, even though they might only be needed locally.

Now in Adobe AIR with Feathers SDK we declare our button and we can
attach a listener function directly. AS3 has function references, so this could
be any private or public method.

<f:Button id="my_button"

 label="my_button_text"

 triggered="onClick(event)" />

<fx:Script>

 <![CDATA[

 private function onClick(event:Event):void

 {

 // Perform action on click

 }]]>

</fx:Script>

If we wanted to manipulate the button in the program, we could reference
it just by typing its ID, because the compiler has information about declared
components in the MXML file. It is even accessible from outside of the MXML
file just like a public variable. This saves us from writing a lot of boilerplate
code.

One thing to note here is that Android has great localization support and
all the strings are declared in a strings.xml file and referenced by the @string
notation. In section 3.9, I describe a custom localization mechanism.

In conclusion, in both Android and Feathers, declaring UI elements and
layouts makes code much more readable. Because the components in Feathers
MXML are accessible directly from the code, they are easier to work with.

3.2.1 Application Descriptor File

Each Adobe AIR application has a descriptor XML file, which includes essen-
tial information like display name, version, and icons. Depending on target
platforms, it can also include Android Manifest additions like permissions and
iOS info additions.

3.3 RobotLegs

To organize the code, I used the RobotLegs framework[35]. Firstly, it provides
a dependency injection mechanism. In common object oriented programming,
one object often needs to access the functionality of another object. Normally,
the object would itself be responsible for getting the reference needed. With
dependency injection however, it can just declare the dependency and it will
be automatically injected by the framework, which allows for loosely coupled
solutions that are easier to test[36]. RobotLegs uses annotations to declare
dependencies.

38

3.3. RobotLegs

For example:

[I n j e c t]
public var myDependency : MyClass ; //unnamed i n j e c t i o n

The class that handles injections is an Injector and it is available in a
Context class, which is a central part of every RobotLegs application. To
map a singleton to the aforementioned dependency we can call:

i n j e c t o r . mapSingleton (MyClass) ;

There are, of course, more options. We can map a new instance of MyClass
every time it is needed or map a specific instance (not a singleton) or use
injection in the constructor or with a setter function. We can declare de-
pendencies with interfaces and then inject concrete implementations, which
is ideal for testing. Dependencies can also be named to provide additional
information[37].

3.3.1 MVC

RobotLegs is built around the MVCS architecture pattern. This is like the
classic Model-View-Controller (MVC) with the addition of a fourth actor
called Service. The goal of this pattern is to promote loose coupling, or-
ganization of code, and reusability[38]. Importantly, the architecture is very
loosely enforced, so it is possible to use only parts we need and organize other
parts differently.

3.3.1.1 View & Mediators

With Feathers SDK the UI components are defined in MXML files and ideally
they should not contain any application logic. For that they are coupled with
a Mediator. The coupling is defined in the Context class.

mediatorMap . mapView(viewClassOrName , mediatorClass) ;

A Mediator is created automatically when the view is placed on stage (becomes
visible). The View listens to user actions and dispatches events. The Mediator
handles these events and responds according to the application logic[38]. This
means that views have no dependencies and are easily reusable.

One example of this - when we agreed with the graphic designer that the
login screen should not be a whole screen, but merely a panel that slides
in from below, I only needed to slightly change the view, but the mediator
required no change at all, and all the application logic stayed intact.

3.3.1.2 Commands

Commands represent the controller tier in RobotLegs. They are designed to
perform a single task in the application. They are invoked by events and can

39

3. Implementation

perform actions on other actors in the system. They are usually created in
response to an event, they perform a task, and are immediately discarded.

3.3.1.3 Model

Models should encapsulate and provide access to data in the application. They
can send event notifications about data changes.

3.3.1.4 Service

The last of the MVCS actors is Service, which should provide an API for
communication with some outside entities like web services and file systems.
Typically, we should ask a Service for some resource and then listen for events
that signal the success or failure of the operation. Purely out of convenience,
I used callbacks for this purpose, so when we call a function on a Service, we
also supply a function to be called for success and for failure (error).

3.4 Package Description

The package structure loosely copies the MVCS architecture.

Command contains Command classes, for example UserLoggedOutCommand,
DeactivateCommand.

Event contains custom Events.

Mediator contains Mediator classes for each view. Typically, there is one
mediator per screen view, plus there are some subcomponents that have
their own Mediator.

Model contains Model classes. The application has one central model class -
HraveModel, that takes care of loading and caching the lesson tree and
content. Also in this package there are the value object (VO) classes,
simple, strongly typed classes used to store information retrieved from
the server, so that it does not have to be passed around in dynamic
objects parsed from JSON.

Service contains Service classes.

Util contains usually portable utility functions.

View contains all the MXML files, defining the Views.

40

3.5. Offline Mode

3.5 Offline Mode

The application must work both with and without an active internet connec-
tion. This is a global state that influences behavior across all components.
The app monitors the connection and reacts appropriately. There is a Net-
workInterface API in Adobe AIR that makes it possible to find out if the user
has active wifi or mobile internet. However, practically, it does not guarantee
an internet connection. Therefore I only listen for the ‘network change’ event,
in reaction to which I perform a simple internet request and wait for the HTTP
status 200 (OK) or an error. If we lose internet connection, an event is dis-
patched through the application. There is a special ConnectionLostCommand
(see section 3.3.1.2) that handles this situation.

If the user has any saved lessons and loses connection, the application
simply lets him browse all his downloaded content. If there are no saved
lessons, the application will not allow the user to continue until there is a
connection (there is a ‘retry’ button).

3.6 Graphics

Mobile applications must deal with a vast range of devices with wildly dif-
ferent screen sizes and resolutions. A strategy is needed to assure a usable
and clear graphical interface with all of these devices. A naive solution is to
design everything for a specific resolution and then either stretch the graphics
canvas to fit the whole screen or to leave black stripes around it (this is called
letterboxing). This gives us either blurred content or if we choose a very high
target resolution, the controls could end up being too small to be usable. I
will now describe the approach I used.

I took the concept of the density independent pixel (dp) unit from Android.[39]
This is a virtual pixel unit that will stay approximately the same physical size
on the screen independently of its resolution and size. It is equal to one phys-
ical pixel on a 160 dpi (dots per inch) screen. If we define the dimensions of
our UI controls with this unit, we do not have to worry about it being too
small to touch or too large on devices with large screens like tablets. I can
calculate how many actual pixels correspond to 1 dp on the current device as
device dpi/160 and I call this the dp scale.

Starling is built upon the Stage3D API, therefore it uses the GPU to dis-
play graphics. All graphics must be first converted to textures to be displayed.
The graphic designer prepared all references and assets in vectors and sized
them as if for a device with 160 dpi. I resized the assets by 200% and then
packed them into a texture atlas.

To use a texture atlas is a common optimization technique used by any
engine working with the GPU. Because it is costly to swap textures on the
GPU, we pack all the small textures into a large one and add a XML descrip-

41

3. Implementation

Figure 3.1: Multiple Screen Support

tion of where the smaller textures are to be found. This means that during
runtime there is no need to change textures for each image, we can simply
supply different texture coordinates to the GPU[40]. Starling has a built-in
support for texture atlases.

It also offers the possibility to pass a scale parameter with a texture,
so when we pass the texture atlas, I supply a scale of 2 to account for my
upscaling. This way I can measure everything with dp units and when I get a
texture I can simply scale it up by the dp scale to get the intended size. With
this technique, relative positioning and layouts, everything looks as close as
possible to the graphic design, and all controls have reasonable sizes on all
devices. Testing showed that the textures are sufficiently crisp even on high
density screens. In figure 3.1 the same lesson is shown on two very different
devices. We can see that on tablets the extra space is used to display more
content.

42

3.6. Graphics

Figure 3.2: TextFill question type of phones and tablets

3.6.1 Controls

Feather’s themes make it possible to completely separate logic from appear-
ance. Similarly to CSS, it makes it possible to skin any component of a certain
type or all components with a specific ‘styleName’. The component is then
passed as an argument to a style function we provide, so that the skin, dimen-
sions, and other properties can be set.

To quickly start prototyping it is easy to download and integrate one of
the example themes and gradually override some of its functions.

With the Connect question type (see figure 1.2), the user has to pick from
a set of options. This is usually done with a Picker control on mobile. It is
not possible or necessary to show all options all of the time, therefore just a
button is shown with an arrow to indicate there is a list of options and when it
is pressed, a picker is shown for all options across the screen. With Feather’s
themes it is possible for one component to behave differently on tablets and
phones. I utilized this feature and on tablets the options are shown on top of
the pressed button (see figure 3.2). The same happens with TextFill questions.

43

3. Implementation

3.7 Content Parsing

The content for the lessons is created with an WYSIWYG HTML editor, there-
fore an important part of the implementation was to try to display everything
as closely as possible to what is rendered on the web. The AS3 has only a
limited support for HTML and CSS. It supports some basic formatting, but
on mobile it does not support links, images, or tables. To work around this
constraint, I firstly had to parse the HTML to make it easier to work with.
I used the open-source AS3 HTML Parser Library by Ryan Groe[41]. It was
clear that I would not be able to render the unsupported elements inline with
the rest of the content, however, since the horizontal space is very limited on
mobile anyway, I can put these special elements on a new line of their own.

The process was to go through the HTML tree and take out the special
elements and render them once all the previous tags were closed. The rest of
the formatted HTML must also be fixed to account for the messiness inherent
in a WYSIWYG system like empty tags and multiple newline characters.

3.7.1 Images

Images in HTML are not supported in Adobe AIR on mobile platforms. Imple-
menting support for ordinary images in png or jpeg format was very straight-
forward. However, for equations and other vector images the editor supports
the scalable vector graphics (SVG) format. Images in this format are described
with XML as a collection of objects (lines, fills, text objects, etc. . .)[42]. It is
possible to use SVG in Adobe AIR, but it has to be embedded at runtime. For
dynamic SVG, I found an open-source library called Svgweb which was ori-
ginally developed to display SVG in web browsers using the Flash plugin[43].
It creates the vector image by utilizing the Flash display graphics API that
can be used to create vector shapes[44].

=

=

=

=

=

Figure 3.3: Hrave SVG Example

To use these images in Stage3D
they have to be rasterized, which
is possible, because every object in
Flash display list can be drawn into
a Bitmap[45]. The advantage of this
is that we can create the vector im-
age in the target scale, so that it will
be perfectly crisp even on high dens-
ity screens regardless of the original
dimensions on the web.

After testing the images in Hrave
lessons, I found the library to be
working mostly correctly, however
for a few images the rendering just
failed and rendered nothing at all.

44

3.7. Content Parsing

I fixed a minor issue in the source for one specific image, but so far the only
solution for other images was to recreate them with simple elements in SVG
or to convert them to some raster format.

Another issue is that some lessons contain inline equations with text right
before and after. Therefore with my solution there is a gap in the text and
subsequently there is the image. One solution is to adjust all lessons with this
restriction in mind. A more complicated solution would be to try to emulate
the HTML rendering process.

3.7.2 Tables

To recreate tables I utilized the Feathers layouts. The table itself is a container
with a vertical layout and for each row I create a new group with a horizontal
layout. For each cell I create yet another group and render the inner HTML
inside (this is recursive, so there can be text, images, even other tables). The
only problem is setting the dimensions of the cells and the rows. Fortunately,
I found that the dimensions are mostly set in the HTML ‘style’ property,
therefore I could use it directly. If the cells have no width property, the width
of the table is divided equally among them. If the table is wider than the
current screen, it is compressed to fit.

3.7.3 Links

The HTML text can contain links. These can be links to anywhere on the web,
but often they reference parts of other lessons like definitions or theory parts.
On the web they open the content in another window in a special ‘view-only’
mode.

Figure 3.4: Example of links in a lesson
(mobile app)

On mobile I added them to
a list at the end of the lesson.
If the link targets a lesson part,
it is opened in a full-screen win-
dow inside the app. The lesson
part may contain links as well,
so these windows are stacked on
top of each other. External links
are marked with a special icon.
If the user taps on them a dialog
is shown, warning the user that
they are about to leave the ap-
plication. They open the default
internet browser.

45

3. Implementation

3.7.4 Videos

Videos from YouTube can be embedded in a lesson. To support these lessons
I simply added another type of link at the end of the lesson, which opens the
video in a YouTube app (if it is installed on the device). On Android, the user
can navigate back using the back button. On iOS they have to go back either
by pressing the home button and opening the app again or through the list of
opened apps (double pressing the home button). When users taps the video
link, a dialog is displayed, warning them that they are about to leave the app
and have to return to continue the lesson after they finish with the video. The
disadvantage of this approach is that, if the device is low on memory, it may
dispose of the Hrave application that is running in the background when the
video is played. When the user returns, the lesson has to be started from the
beginning.

3.8 Sound

Some lessons contain sounds, for example some English lessons contain listen-
ing exercises. The main problem here was that all the sounds on the server
are saved in a Ogg Vorbis format, which is not supported by the Adobe
AIR runtime. Android however supports Ogg Vorbis streaming through the
MediaPlayer[46], so I decided to use an ANE to implement this functionality. I
found an open-source ANE for accessing the MediaPlayer from FreshPlanet[47].
However it lacked functions for stopping and resuming the sound and most
importantly, it would not compile with my application. I decided to create
my own ANE based on this one.

There are several steps needed in order to create an ANE for Android:[48]

1. To create the Android functionality, the Android SDK has to be set up.

2. We create a new Android project and add two JAR files from the Adobe
AIR SDK. These will allow us to use special wrapping objects to trans-
form data from Java value types to ActionScript value types.

3. We create a class that will act as an interface between the ActionScript
and Java code. It will implement the FREExtension interface.

4. For each method we would like to use, we create a special class that
implements FREFunction interface. In the extension class we will create
a method that takes a function name as a parameter, and returns an
instance of the correct FREFunction class.

5. Export the Android project as a JAR file.

6. Now for the ActionScript part of the ANE. We create a class that will
create a context that will serve as a bridge between the extension and

46

3.9. Localization

the ActionScript program. Then we create a method for each function
of the ANE and use the extContext.call method to delegate the work to
the Java part of the ANE.

7. We export this part as a AS3 library.

8. Now we have a Android JAR file and the AS3 library. To combine them,
we first need an extension descriptor in XML. There, we set an ID for the
extension and specify the fully qualified class name of the FREExtension
class from the JAR file.

9. With the command line tool adt from Adobe AIR SDK we then package
these files into a single .ane file, which we can include in our application.

Figure 3.5: Sound Player on Android

This approach worked and I created a simple sound player component
which worked on Android.

On iOS, however, there is no support for Ogg audio playback. The source-
code for Ogg decompression is freely available, so one option for iOS would
be to compile this code for iOS to play the decompressed audio with iOS
Audio Queues Services[49] and bundle this into an ANE. iOS ANE can only
be compiled on a computer running OS X, which was not available to me.

Another option is simply to keep all files on the server in the MP3 format.
So far this has not been solved, so audio works on Android devices only.

3.9 Localization

Although currently Hrave is only used in the Czech Republic, it is prepared
for any localization. To support this in my application, I, once again, took
inspiration from Android[50]. All strings are defined in a string.xml file, that
resides in a folder named as the locale shortcut (e.g. cz or en). This file is

47

3. Implementation

loaded and parsed on startup by a singleton class Resources. When I need
to use any text in the application I call the Resources.string method and
put the string identifier as an argument. Optionally the string can contain a
placeholder for a value, the following example shows the format:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="friend_invite_sent">Invite sent to email %1$s.</string>
<resources>

Localization is used for texts in the application like button labels and alert
messages. The content of the lessons is not affected.

3.10 Persistance

There are multiple instances of caching and persisting data in the application.
Firstly, whenever it displays a module, section or a chapter the parsed data
needed to display that screen are cached. Therefore when the user navigates
through the lesson tree, the application only pauses to load once for every
screen. When the user returns to it, it gets displayed without any loading.
This is cached in memory, therefore it is not persisted between user sessions.
The model keeps a tree of loaded entries, because when the user gains XPs in
a lesson all its ancestors in the tree must be invalidated to reflect the change.

Entry

+id : integer
+updatedAt : integer
+content : text

Figure 3.6: Database
Schema

Secondly, when we receive data from the
getPageData.srv request, they get automatically
saved in a text form in a local database. Adobe
AIR supports SQLite, the light-weight relational
database engine[51]. The database itself is stored
in a single file and data is accessed through SQL
queries. The one in the Hrave application only
has one table with three columns (see figure 3.6).

When the user downloads a chapter for offline
use, first all the lesson data are requested from
the server and saved in the local database, then
all the lesson content is parsed and all the images
are downloaded to the disk. A timestamp is also saved. In the future, there
should be a mechanism that would update downloaded lessons, if the content
changes. Also it should be possible for the user to delete downloaded lessons
and see how much storage they occupy.

Lastly, all the other information that needs to be persisted between user
sessions is saved with the SharedObject API. This is a simple mechanism in
Adobe AIR to save simple objects under a name, similar to SharedPreferences
in Android. Properties saved this way include the user login and the last
opened location.

48

3.11. Performance Profiling

3.11 Performance Profiling

Mobile devices are still significantly less powerful than desktop computers
and especially since I am not using native components, it is important to
optimize performance to ensure a positive user experience. Adobe developed
an advanced profiler for AS3 with CPU usage, function sampler, memory
allocation tracking and even a detailed Stage3D usage analysis, including a
command-by-command replay[52]. It can also be used on Android.

In development, I noticed a performance issue in going to previous screen
using the back button. There would be a significant pause of up to 800ms
between the release of the back button and the switching of the screens. I
profiled it and found out that when the previous screen is recreated, it already
has all the data, so it renders all the buttons at once. Each button has a label
with the name of the section or chapter and the creation of these labels is
what was causing the delay, the profiler revealed.

With Feathers, when we want to display text and we are not using a bitmap
font, the text gets rendered by the Flash text engine and then it is drawn into
a bitmap and uploaded to the GPU.[53] Doing this multiple times per frame
is ill-advised. To fix this issue I added a small pause before each button is
added to the list. Therefore as soon as we hit the back button, the screen
transition begins. After that, one by one, the buttons are drawn on stage.
This significantly improved the responsiveness of the application.

Figure 3.7: Adobe Scout

49

3. Implementation

3.12 Login Security

When the application is first opened, it requires a login. After a successful
login, it should not keep asking for it every time it is opened. The credentials
must be persisted, however it would not be secure to store the user’s pass-
word in the application storage, where it could be discovered and potentially
exploited.

The solution was to send the password to the server only during the first
login. Then the server returns a salted hash, which is then stored instead of
the password. On subsequent logins only the hash is sent. This is still not
ideal, but at least the original password will not be visible to an attacker.

50

Chapter 4

Testing

One of the advantages of using Adobe AIR was that I could run the code on
a desktop computer without any emulator and quickly test new code. This
way the majority of bugs were caught. Only after a feature was tested on
desktop did I test on a real device. I had these devices available to me for
development:

1. Samsung Galaxy S3

2. LG Nexus 5X

3. iPhone 4S

Testing on Android was easy, since Flash Builder supports Android USB
debugging which means that it is possible to test and debug the app (with
breakpoints and variable watches) on a real device via an USB cable[54]. On
iOS, the application had to be first registered online with a Apple Developer
account and then exported and signed with appropriate certificates and update
through the iTunes software. For this reason, the iPhone was usually the last
device to test on.

4.1 TestFairy

I periodically released new versions for both Android and iOS, so that testers
in the company could try them and report any issues. For this, I used Test-
Fairy, a free service for Android and iOS beta testing. Firstly, it handles the
distribution of new versions to testers. It can email testers about new versions
or automatically install a new version when the user opens the app.

Secondly, it gathers not only statistics and logs about testing sessions, but
it also records the sessions on video and adds CPU and GPU performance
graphs. From each testing session the developer can see information about

51

4. Testing

the tester and the device, the video of the screen, screenshots, logs and per-
formance graphs. When something goes wrong, it is very easy to find out
what caused the issue.

Thirdly, the service allows testers to submit bug reports straight from
the app by shaking the device (this feature can be turned off). This can be
connected with popular bug tracking software including Asana[55].

It is also possible to upload new versions automatically, which might be
useful for continuous integration.

4.2 Usability Testing

After all main features were implemented, the application was tested on real
users. The usability testing requires real world scenarios that are given to
the user while the tester observes and takes notes. These scenarios should be
realistic and not contain any hints as to how to accomplish given tasks.[56]
The users were all Android users, so the application was installed on their own
devices using TestFairy.

The registration process was not tested, as it was clear it is not yet well
suited for mobile, because it currently requires the user to leave the application
to confirm their email address and then come back. For the future, this
will be replaced by Facebook registration and with email that does not have
to be confirmed straight away. Users were therefore presented with login
information as if they were already registered on the website, but had just
installed the mobile application.

A short survey with these questions preceded the testing:

1. What is your age?

2. How would you describe your proficiency with Android? (novice, inter-
mediate, advanced)

3. What Android phone do you currently use?

Then the application was installed on their device and they were success-
ively presented with the following scenarios:

• Task 1: Login to the application.

• Task 2: You are preparing for your maturita and want to practice for
your Czech exam. Pick a topic that interests you and practice it.

• Task 3: You want to study on the go, download some content for offline
use.

• Task 4: (Disconnect device from the internet) Now you are travelling
without internet, practice for your exams.

52

4.2. Usability Testing

• Task 5: (Internet reconnected) Your friend Jane Doe is also preparing
for her exams with Hrave, try to connect with her in the app.

• Task 6: (Friend request is generated from another device.) Your other
friend John told you he has tried connecting with you, accept his friend
request.

• Task 7: See who has been studying the least among your friends in the
Czech module.

After the test there was another survey:

1. Did you understand the scenarios and did they feel realistic?

2. Did you get enough feedback about your progress in a lesson?

3. How easy was it to navigate inside the app? Did you ever feel lost?

4. Did something surprise you? Did something feel unexpected or confus-
ing?

4.2.1 Results

Together six people participated in this testing. They were between 23 to 26
years old and some of them use apps very rarely, others use them on a daily
basis. Devices that were used were: Samsung Galaxy A3 twice, Samsung
Galaxy Core2, Gigabyte GSmart Roma R2 twice, and Samsung Galaxy Note
10.1.

• Task 1

Expected solution The user taps the login button, enters credentials,
and confirms.

User solution Users had no problem logging in.

Remarks There is a slight problem when the input area is active, any
click outside it only deactivates the input field. Therefore, when
users clicked on the login button while still having the software
keyboard out, the button was not pressed. Users noticed it and
pressed it again. This should be fixed.

• Task 2

Expected solution The user taps the button for the Czech module,
goes through the sections and starts a lesson, goes through the
lesson content, answers questions and finishes with an evaluation
dialog.

53

4. Testing

User solution Users had no trouble finding a lesson. All of them picked
and finished a lesson.

Remarks Some users seemed unsure about the continue button, it
wasn’t clear to them where it would lead them. After trying it
once, they had no more trouble. Four users had trouble pressing
the radio buttons on their devices, therefore they should have a
bigger touchable area.

• Task 3

Expected solution The user navigates through the sections, picks a
chapter, taps the download button.

User solution All users had trouble with this task. One did not man-
age to find the download button at all. Two others had searched
almost everywhere before finding the button. The other three had
found it immediately, however seemed confused and unsure what
happened, because the lesson downloaded very quickly and did not
show any progress bar or info message.

Remarks The download button should be more visible or there should
be a tutorial when it is first shown. Also after a successful download
there should be an info popup. One user kept tapping the logo in
the main menu, expecting some hidden options to appear.

• Task 4

Expected solution The user navigates through the sections that are
cached and opens a lesson that was previously downloaded.

User solution All users successfully finished this task. However two
of them remarked that they would expect a list of downloaded
chapters to be available somewhere in the app.

Remarks Offline content management should be implemented where
users could find a list of all downloaded chapters, how much space
they occupy on the disk, and the option to remove them.

• Task 5

Expected solution The user enters a module, taps the friends button,
taps ‘find friends’ button, enters ‘Jane’ or ‘Jane Doe’ or something
similar, taps search, taps ‘add’ button next to the found user.

User solution All users completed this task, however five out of six
went first to the profile screen and expected to see friends manage-
ment options there.

54

4.2. Usability Testing

Remarks All of the users wrote the whole name, which signals that it
was not clear that they can search only part of the name. Perhaps,
after five or more letters the app could show the results immediately
and update them with each new letter.

• Task 6

Expected solution The user enters a module, taps the friends button,
taps ‘requests’ button, taps ‘add’ next to the only item in the list.

User solution All of the users completed this task, however, because
the app only updates friend requests when the main screen or mod-
ule screen is opened, sometimes the users could not see the request
and had to go to the main screen and back.

Remarks All users understood the buttons accept and refuse (see fig-
ure C.3c). The majority of users looked for some friend options in
the profile screen, therefore they should be added there.

• Task 7

Expected solution The user sees the leaderboards or opens them with
the friends button and announces the name with the least XPs.

User solution There were no issues here, although one participant did
not initially know what XP stands for.

4.2.2 Summary

All participants said they understood the scenarios and found them realistic.
They were able to practice in a lesson and understood the feedback, although
one reported that they expected to see a wrong answer in red, not grey. The
core functionality of the application therefore works well. The main problem
was downloading chapters for offline use. Participants said that they did not
understand that the lessons would not work offline and had trouble locating
the download button. The majority of them looked for friends in the profile
screen.

The participants had no trouble navigating inside the app, they naturally
used both the hardware back button and the back button in the header. They
understood the navigation in the lesson tree and generally felt positive about
the application.

In conclusion, the testing provided valuable feedback and revealed some
flaws that must be addressed in the future, most critically the offline function-
ality should be reworked and friend management should be accessible from the
profile screen.

55

Chapter 5

Deployment

The state final high school examination (maturita) was scheduled for the beg-
gining of May 2016, therefore it was important to deploy the application as
soon as possible to still be relevant to the majority of the users. It was decided
to publish it on Google Play Store because the AppStore review process can
take more than a week and because sounds were not yet implemented on iOS.
The ‘BETA’ suffix was added to the name of the app to indicate that not all
features of the web are implemented, there might be rendering issues or other
problems not found during testing. It was published on April 25th and a link
was included in a newsletter email to the users.

Around 80 people downloaded the app and two rated it with four and five
stars respectively. This probably means we deployed the application too late
for this year’s maturita exam, so we should get the application ready for next
year, finish all features and polish the UX.

57

Conclusion

The goal of this thesis was to create an app for the Hrave e-learning platform.
I analyzed the existing web application and worked with the Educasoft

company to specify the requirements for the application. I researched similar
mobile solutions and designed the application. I assessed the implementation
platforms and chose a multiplatform solution. I implemented the application
in a maintainable, extendable fashion, and I performed a usability test to
evaluate the implemented system. Lastly, the app was deployed on Google
Play Store.

Based on Toggl reports, I spent 247 hours on design and implementation
of the Hrave app. This does not include the time spent on analysis, research,
and writing this text. Petr Miloš, the graphic designer, reported spending 70
hours preparing and discussing the graphic design.

This thesis shows that developing a mobile application with a multiplat-
form framework is possible, although it must be done carefully to meet user
expectations on all platforms. Adobe AIR and Feathers SDK delivered solid
performance on tested devices and the related development tools made it
possible to develop the app for both platforms in a short time by a single
developer. This saves a lot of resources compared to native development.

During this work, I gained valuable insight into the workings of a small
software company, their decision making and processes. I also learned more
about mobile app design and usability and tried new approaches of developing
mobile applications.

I believe this work will be a valuable asset to the Educasoft company and
will be improved and built-upon in the future.

Future Work

Apart from releasing the app on iOS AppStore, there are several features
that need to be implemented. Firstly, the issues found with usability testing
should be addressed and also the effort should lie in fixing all lessons that are

59

Conclusion

not rendered properly (like unsupported SVG files). Secondly, the Facebook
integration that allows users to quickly sign-in or register a new account should
be implemented.

The application is ready for multiple domains, however it is branded with
the Hrave logo and hrave colors. In the future there could be a configuration
associated with each domain, specifying the brand logo and colors.

When a new user opens the app for the first time they are greeted by the
login and register buttons. For the future, the user should be greeted, shown
a short tutorial, and maybe asked to set a goal. This process is often called
‘onboarding’ and prevents a percentage of users from leaving the app before
they have even seen what it does[57]. If the user sets a goal, for example to
study at least 30 minutes every day, there could be notifications to remind the
user to stick to this goal.

60

Bibliography

[1] David, F.; Abreu, R. Information technology in education: Recent devel-
opments in higher education. In 2014 9th Iberian Conference on Informa-
tion Systems and Technologies (CISTI), June 2014, ISSN 2166-0727, pp.
1–6, doi:10.1109/CISTI.2014.6876950.

[2] Ministerstvo školstv́ı, m. a. t. Nejčastěji kladené dotazy [online]. 2013,
[cit. 2016-24-04]. Available from: http://www.msmt.cz/vzdelavani/
skolstvi-v-cr/statni-maturita/nejcasteji-pokladane-otazky

[3] Scio. Informace o přij́ımaćıch zkouškách [online]. 2016, [cit. 2016-24-
04]. Available from: https://www.scio.cz/prijimaci-zkousky-na-ss/
informace-o-prijimacich-zkouskach

[4] Mediaguru. Př́ıstupy na web z mobil̊u a tablet̊u v Česku stále
rostou [online]. Apr. 2016, [cit. 2016-24-04]. Available from:
http://www.mediaguru.cz/2016/04/pristupy-na-web-z-mobilu-
a-tabletu-v-cesku-stale-rostou/

[5] TechCrunch. Consumers Spend 85% Of Time On Smartphones In Apps,
But Only 5 Apps See Heavy Use [online]. June 2015, [cit. 2016-24-04].
Available from: http://techcrunch.com/2015/06/22/consumers-
spend-85-of-time-on-smartphones-in-apps-but-only-5-apps-

see-heavy-use/

[6] Ephox. TinyMCE [online]. 2016, [cit. 2016-26-04]. Available from: https:
//www.tinymce.com

[7] Information Strategy. Technology of the week: MOOCs, Duolingo and
Khan Academy [online]. Oct. 2015, [cit. 2016-26-04]. Available from:
https://informationstrategyrsm.wordpress.com/2015/10/05/team-
31-technology-of-the-week-moocs-duolingo-and-khan-academy/

61

http://www.msmt.cz/vzdelavani/skolstvi-v-cr/statni-maturita/nejcasteji-pokladane-otazky
http://www.msmt.cz/vzdelavani/skolstvi-v-cr/statni-maturita/nejcasteji-pokladane-otazky
https://www.scio.cz/prijimaci-zkousky-na-ss/informace-o-prijimacich-zkouskach
https://www.scio.cz/prijimaci-zkousky-na-ss/informace-o-prijimacich-zkouskach
http://www.mediaguru.cz/2016/04/pristupy-na-web-z-mobilu-a-tabletu-v-cesku-stale-rostou/
http://www.mediaguru.cz/2016/04/pristupy-na-web-z-mobilu-a-tabletu-v-cesku-stale-rostou/
http://techcrunch.com/2015/06/22/consumers-spend-85-of-time-on-smartphones-in-apps-but-only-5-apps-see-heavy-use/
http://techcrunch.com/2015/06/22/consumers-spend-85-of-time-on-smartphones-in-apps-but-only-5-apps-see-heavy-use/
http://techcrunch.com/2015/06/22/consumers-spend-85-of-time-on-smartphones-in-apps-but-only-5-apps-see-heavy-use/
https://www.tinymce.com
https://www.tinymce.com
https://informationstrategyrsm.wordpress.com/2015/10/05/team-31-technology-of-the-week-moocs-duolingo-and-khan-academy/
https://informationstrategyrsm.wordpress.com/2015/10/05/team-31-technology-of-the-week-moocs-duolingo-and-khan-academy/

Bibliography

[8] Hamari, J.; Koivisto, J.; Sarsa, H. Does Gamification Work? – A Liter-
ature Review of Empirical Studies on Gamification. In System Sciences
(HICSS), 2014 47th Hawaii International Conference on, Jan 2014, pp.
3025–3034, doi:10.1109/HICSS.2014.377.

[9] Amriani, A.; Aji, A. F.; Utomo, A. Y.; et al. An empirical study of
gamification impact on e-Learning environment. In Computer Science
and Network Technology (ICCSNT), 2013 3rd International Conference
on, Oct 2013, pp. 265–269, doi:10.1109/ICCSNT.2013.6967110.

[10] IDC. Smartphone OS Market Share, 2015 Q2 [online]. Aug. 2015,
[cit. 2016-24-04]. Available from: http://www.idc.com/prodserv/
smartphone-os-market-share.jsp

[11] StatCounter. Top 8 Mobile Operating Systems in Czech Republic from
Jan 2015 to Apr 2016 [online]. Mar. 2016, [cit. 2016-24-04]. Available
from: http://goo.gl/dX8R3P

[12] Info World. Native apps crushed mobile Web apps – and that’s a
good thing [online]. Dec. 2015, [cit. 2016-24-04]. Available from:
http://www.infoworld.com/article/3012146/web-applications/
native-apps-have-crushed-web-apps.html

[13] Developer Library, i. About the iOS Technologies [online]. Sept. 2014,
[cit. 2016-24-04]. Available from: https://developer.apple.com/
library/ios/documentation/Miscellaneous/Conceptual/

iPhoneOSTechOverview/Introduction/Introduction.html

[14] PhoneGap. A high-level summary of what PhoneGap is all about. [online].
2015, [cit. 2016-24-04]. Available from: http://phonegap.com/about/

[15] Renaux, J. A year using Ionic to build hybrid applications [online].
2016, [cit. 2016-01-05]. Available from: https://www.airpair.com/
javascript/posts/a-year-using-ionic-to-build-hybrid-

applications

[16] Warren, C. Zuckerberg’s Biggest Mistake? Betting on HTML5 [online].
Sept. 2012, [cit. 2016-24-04]. Available from: http://mashable.com/
2012/09/11/html5-biggest-mistake/

[17] Arora, S. 10 Best Hybrid Mobile App UI Frameworks: HTML5,
CSS and JS [online]. Mar. 2016, [cit. 2016-01-05]. Available from:
http://noeticforce.com/best-hybrid-mobile-app-ui-frameworks-
html5-js-css

[18] Native, R. React Native [online]. 2016, [cit. 2016-24-04]. Available from:
https://facebook.github.io/react-native/

62

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://goo.gl/dX8R3P
http://www.infoworld.com/article/3012146/web-applications/native-apps-have-crushed-web-apps.html
http://www.infoworld.com/article/3012146/web-applications/native-apps-have-crushed-web-apps.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
http://phonegap.com/about/
https://www.airpair.com/javascript/posts/a-year-using-ionic-to-build-hybrid-applications
https://www.airpair.com/javascript/posts/a-year-using-ionic-to-build-hybrid-applications
https://www.airpair.com/javascript/posts/a-year-using-ionic-to-build-hybrid-applications
http://mashable.com/2012/09/11/html5-biggest-mistake/
http://mashable.com/2012/09/11/html5-biggest-mistake/
http://noeticforce.com/best-hybrid-mobile-app-ui-frameworks-html5-js-css
http://noeticforce.com/best-hybrid-mobile-app-ui-frameworks-html5-js-css
https://facebook.github.io/react-native/

Bibliography

[19] Chambers, M.; Dura, D.; Hoyt, K. AIR for javascript developers pocket
guide. O’Reilly, first edition, 2007, ISBN 9780596515195.

[20] Adobe Systems Inc. Building Adobe AIR Applications [online]. Apr. 2013,
[cit. 2016-12-04]. Available from: http://help.adobe.com/en_US/air/
build/air_buildingapps.pdf

[21] Adobe Systems Inc. Adobe AIR 3, Frequently asked questions [online].
Mar. 2013, [cit. 2016-12-04]. Available from: http://www.adobe.com/
products/air/faq.html

[22] Grossman, G.; Huang, E. ActionScript 3.0 overview [online]. June
2006, [cit. 2016-12-04]. Available from: http://www.adobe.com/devnet/
actionscript/articles/actionscript3_overview.html

[23] Scabia, M. How Stage3D works [online]. Oct. 2011, [cit. 2016-
12-04]. Available from: http://www.adobe.com/devnet/flashplayer/
articles/how-stage3d-works.html

[24] Imbert, T. Introducing Starling: Building GPU Accelerated Applications.
O’Reilly, first edition, 2012, ISBN 9781449320911.

[25] Gamua. Starling - The Cross Platform Game Engine [online]. Sept. 2014,
[cit. 2016-24-04]. Available from: http://gamua.com/starling/

[26] Bowler Hat LLC. Feathers UI [online]. 2016, [cit. 2016-24-04]. Available
from: http://feathersui.com/

[27] Ondřej Paška. Multiplatform Game Development Using Adobe AIR Tech-
nology. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2013.

[28] A., L. Why and How to Avoid Hamburger Menus [online]. May 2014,
[cit. 2016-01-05]. Available from: https://lmjabreu.com/post/why-
and-how-to-avoid-hamburger-menus/

[29] Asana. Asana [online]. 2016, [cit. 2016-28-04]. Available from: https:

//asana.com/

[30] Toggl. Toggl [online]. 2016, [cit. 2016-26-04]. Available from: https://

toggl.com

[31] de Alwis, B.; Sillito, J. Why are software projects moving from centralized
to decentralized version control systems? In Cooperative and Human
Aspects on Software Engineering, 2009. CHASE ’09. ICSE Workshop
on, May 2009, pp. 36–39, doi:10.1109/CHASE.2009.5071408.

63

http://help.adobe.com/en_US/air/build/air_buildingapps.pdf
http://help.adobe.com/en_US/air/build/air_buildingapps.pdf
http://www.adobe.com/products/air/faq.html
http://www.adobe.com/products/air/faq.html
http://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html
http://www.adobe.com/devnet/actionscript/articles/actionscript3_overview.html
http://www.adobe.com/devnet/flashplayer/articles/how-stage3d-works.html
http://www.adobe.com/devnet/flashplayer/articles/how-stage3d-works.html
http://gamua.com/starling/
http://feathersui.com/
https://lmjabreu.com/post/why-and-how-to-avoid-hamburger-menus/
https://lmjabreu.com/post/why-and-how-to-avoid-hamburger-menus/
https://asana.com/
https://asana.com/
https://toggl.com
https://toggl.com

Bibliography

[32] Android Open Source Project. Layouts - Android Developers [online].
2015, [cit. 2016-24-04]. Available from: http://developer.android.com/
guide/topics/ui/declaring-layout.html

[33] Android Open Source Project. Button [online]. 2016, [cit. 2016-02-05].
Available from: http://developer.android.com/reference/android/
widget/Button.html

[34] Wharton, J. Butter Knife [online]. 2016, [cit. 2016-02-05]. Available from:
http://jakewharton.github.io/butterknife/

[35] Robotlegs. RobotLegs for ActionScript 3 [online]. 2016, [cit. 2016-28-04].
Available from: http://www.robotlegs.org/

[36] Fowler, M. Inversion of Control Containers and the Dependency Injection
pattern [online]. Jan. 2004, [cit. 2016-27-04]. Available from: http://

martinfowler.com/articles/injection.html

[37] Joel Hooks, S. L. F. ActionScript Developer’s Guide to Robotlegs.
O’Reilly, first edition, 2011, ISBN 978-1-4493-0890-2.

[38] Robotlegs. Documentation for Robotlegs v1.1.2 - Best Practices [on-
line]. Sept. 2012, [cit. 2016-27-04]. Available from: https://github.com/
robotlegs/robotlegs-framework/wiki/Best-Practices

[39] Android Open Source Project. Supporting Multiple Screens [online].
2016, [cit. 2016-27-04]. Available from: http://developer.android.com/
guide/practices/screens_support.html

[40] nVidia. Improve Batching Using Texture Atlases [online]. July 2004, [cit.
2016-24-04]. Available from: http://http.download.nvidia.com/
developer/NVTextureSuite/Atlas_Tools/Texture_Atlas_

Whitepaper.pdf

[41] Groe, R. AS3 HTML Parser Library [online]. Apr. 2013, [cit. 2016-24-04].
Available from: https://sourceforge.net/projects/as3htmlparser

[42] WWW Consorcium. Scalable Vector Graphics (SVG) 1.1 Specification
[online]. [cit. 2011-07-07]. Available from: http://www.w3.org/TR/2003/
REC-SVG11-20030114/

[43] Labs.zavoo. Svgweb [online]. 2016, [cit. 2016-26-04]. Available from:
https://code.google.com/archive/p/svgweb/

[44] Adobe. ActionScript 3.0 Reference - Graphics [online]. 2016, [cit. 2016-
29-04]. Available from: http://help.adobe.com/en_US/FlashPlatform/
reference/actionscript/3/flash/display/Graphics.html

64

http://developer.android.com/guide/topics/ui/declaring-layout.html
http://developer.android.com/guide/topics/ui/declaring-layout.html
http://developer.android.com/reference/android/widget/Button.html
http://developer.android.com/reference/android/widget/Button.html
http://jakewharton.github.io/butterknife/
http://www.robotlegs.org/
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
https://github.com/robotlegs/robotlegs-framework/wiki/Best-Practices
https://github.com/robotlegs/robotlegs-framework/wiki/Best-Practices
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://http.download.nvidia.com/developer/NVTextureSuite/Atlas_Tools/Texture_Atlas_Whitepaper.pdf
http://http.download.nvidia.com/developer/NVTextureSuite/Atlas_Tools/Texture_Atlas_Whitepaper.pdf
http://http.download.nvidia.com/developer/NVTextureSuite/Atlas_Tools/Texture_Atlas_Whitepaper.pdf
https://sourceforge.net/projects/as3htmlparser
http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.w3.org/TR/2003/REC-SVG11-20030114/
https://code.google.com/archive/p/svgweb/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Graphics.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Graphics.html

Bibliography

[45] Starling. Dynamic Textures [online]. Apr. 2016, [cit. 2016-29-04]. Avail-
able from: http://wiki.starling-framework.org/manual/dynamic_
textures

[46] Android Open Source Project. Supported Media Formats [online].
2016, [cit. 2016-29-04]. Available from: http://developer.android.com/
guide/appendix/media-formats.html

[47] FreshPlanet Inc. Air Native Extension for AAC playback [online].
Sept. 2015, [cit. 2016-29-04]. Available from: https://github.com/
freshplanet/ANE-AACPlayer

[48] Weber, N. Building a native extension for iOS and Android [online]. Aug.
2012, [cit. 2016-29-04]. Available from: http://www.adobe.com/devnet/
air/articles/building-ane-ios-android-pt1.html

[49] Apple Inc. Audio Queue Services Programming Guide [on-
line]. Dec. 2013, [cit. 2016-29-04]. Available from: https:

//developer.apple.com/library/ios/documentation/MusicAudio/
Conceptual/AudioQueueProgrammingGuide/Introduction/

Introduction.html

[50] Android Open Source Project. Localizing with Resources [online]. 2016,
[cit. 2016-28-04]. Available from: http://developer.android.com/
guide/topics/resources/localization.html

[51] Tretola, R. Beginning Adobe AIR: building applications for the Adobe
integrated runtime. Wrox, 2008, ISBN 978-0-470-22904-0.

[52] Imbert, T. Getting started with Adobe Scout [online]. Dec. 2012, [cit.
2016-04-12]. Available from: http://www.adobe.com/devnet/scout/
articles/adobe-scout-getting-started.html

[53] Bowler Hat LLC. How to use the Feathers TextFieldTextRenderer
component [online]. 2015, [cit. 2016-29-04]. Available from: http://

feathersui.com/help/text-field-text-renderer.html

[54] Adobe. Test and debug a mobile application on a device [online]. 2013,
[cit. 2016-29-04]. Available from: http://help.adobe.com/en_US/flex/
mobileapps/WSa8161994b114d624-33657d5912b7ab2d73b-7fe5.html

[55] TestFairy. TestFairy Makes Mobile App Testing Painless! [on-
line]. 2016, [cit. 2016-29-04]. Available from: http://testfairy.com/
TestFairyOnePager.pdf

[56] Nielson Norman Group. Turn User Goals into Task Scenarios for Usabil-
ity Testing [online]. Jan. 2014, [cit. 2016-04-05]. Available from: https:

//www.nngroup.com/articles/task-scenarios-usability-testing/

65

http://wiki.starling-framework.org/manual/dynamic_textures
http://wiki.starling-framework.org/manual/dynamic_textures
http://developer.android.com/guide/appendix/media-formats.html
http://developer.android.com/guide/appendix/media-formats.html
https://github.com/freshplanet/ANE-AACPlayer
https://github.com/freshplanet/ANE-AACPlayer
http://www.adobe.com/devnet/air/articles/building-ane-ios-android-pt1.html
http://www.adobe.com/devnet/air/articles/building-ane-ios-android-pt1.html
https://developer.apple.com/library/ios/documentation/MusicAudio/Conceptual/AudioQueueProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/MusicAudio/Conceptual/AudioQueueProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/MusicAudio/Conceptual/AudioQueueProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/MusicAudio/Conceptual/AudioQueueProgrammingGuide/Introduction/Introduction.html
http://developer.android.com/guide/topics/resources/localization.html
http://developer.android.com/guide/topics/resources/localization.html
http://www.adobe.com/devnet/scout/articles/adobe-scout-getting-started.html
http://www.adobe.com/devnet/scout/articles/adobe-scout-getting-started.html
http://feathersui.com/help/text-field-text-renderer.html
http://feathersui.com/help/text-field-text-renderer.html
http://help.adobe.com/en_US/flex/mobileapps/WSa8161994b114d624-33657d5912b7ab2d73b-7fe5.html
http://help.adobe.com/en_US/flex/mobileapps/WSa8161994b114d624-33657d5912b7ab2d73b-7fe5.html
http://testfairy.com/TestFairyOnePager.pdf
http://testfairy.com/TestFairyOnePager.pdf
https://www.nngroup.com/articles/task-scenarios-usability-testing/
https://www.nngroup.com/articles/task-scenarios-usability-testing/

Bibliography

[57] Moatti, S. Mastering Mobile Design: Focusing vs. Expanding
[online]. Apr. 2016, [cit. 2016-02-05]. Available from: http://

blog.invisionapp.com/mastering-mobile-design/

66

http://blog.invisionapp.com/mastering-mobile-design/
http://blog.invisionapp.com/mastering-mobile-design/

Appendix A

Acronyms

ANE AIR Native Extension

API Application Interface

AS3 ActionScript 3

B2B Business to Business

CPU Central Processing Unit

CSS Cascading Style Sheets

DPI Dots per Inch

GPU Graphic processing unit

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

LMS Learning Management System

MVC Model-View-Controller

MVCS Model-View-Controller-Service

OS Operating System

PPI Pixels per Inch

SDK Software Development Kit

67

A. Acronyms

SQL Structured Query Language

SVG Scalable Vector Graphics

SVN Apache Subversion

UI User Interface

UX User Experience

VCS Version Control System

VO Value Object

WYSIWYG What You See Is What You Get

XML Extensible Markup Language

XP Experience Point

68

Appendix B

Contents of CD

readme.txt the file with CD contents description
bin the directory with executables
screenshots................. the directory with application screenshots
src.......................................the directory of source codes

impl.................. the directory of source code of the application
thesis..............the directory of LATEX source codes of the thesis

img...................................the thesis figures directory
text..the thesis text directory

thesis.pdf the Diploma thesis in PDF format

69

Appendix C

Application Screenshots

71

C. Application Screenshots

(a) Landing Screen (b) Login Panel

(c) Registration Screen (d) Main Screen

Figure C.1: Application Screenshots I.

72

(a) Module Screen (b) Chapter Screen

(c) Lesson Content (d) Lesson Evaluation

Figure C.2: Application Screenshots II.

73

C. Application Screenshots

blank

74

(a) Leaderboards (b) Chapter Screen

(c) Friend Requests (d) Profile Screen

Figure C.3: Application Screenshots III.

75

Appendix D

User Guide

D.1 Installation

The installation of this application depends on the platform and is standard.
On Android it is possible to install the application from the enclosed CD.
Transfer the HraveMobile.apk file from the CD to your device, ensure that
installation from unknown sources is enabled in device settings and open the
file on the device. Alternatively, it is available from Google Play Store at the
following address:

play.google.com/store/apps/details?id=air.cz.educasoft.hravemobile

The minimum requirements are Android 4.0 and above and ARMv7/x86
processor. The application does not require any special permissions.

On iOS the distribution of software is limited to the AppStore, where the
application should be released in the coming months.

D.2 Registration

If you already have an account from the web Hrave.cz, you can use it directly.
Otherwise, click on the register button in the landing screen and fill in your
password in the registration screen (figure C.1c). You can read the terms
and conditions by clicking the button and you must check the corresponding
checkbox before pressing the registration button.

Your progress and achievements will be automatically synchronized between
the mobile and web versions of the app.

D.3 Accessing Lessons Offline

You can save lessons for offline use by navigating to a chapter and pressing the
download button in the header. If the chapter is already downloaded there

77

https://play.google.com/store/apps/details?id=air.cz.educasoft.hravemobile

D. User Guide

will be a green checkmark icon instead of the download button. When you
open the application without an active internet connection, you will only be
able to navigate to the chapters you have already downloaded.

78

	Introduction
	Motivation and objectives

	Analysis
	Educasoft s.r.o.
	Hrave.cz
	Similar Existing Solutions
	Choosing a Platform
	Requirements

	Design
	Domain model
	Use Case Analysis
	Activity Diagrams
	Hrave API
	Wireframes
	UI

	Implementation
	Tools
	Feathers SDK
	RobotLegs
	Package Description
	Offline Mode
	Graphics
	Content Parsing
	Sound
	Localization
	Persistance
	Performance Profiling
	Login Security

	Testing
	TestFairy
	Usability Testing

	Deployment
	Conclusion
	Future Work

	Bibliography
	Acronyms
	Contents of CD
	Application Screenshots
	User Guide
	Installation
	Registration
	Accessing Lessons Offline

