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Abstract

We compare two existing schemes for indexing trees, one based on a non-
deterministic factor automaton, the other on deterministic compact suffix
automaton. A third scheme is presented using position heaps – a relatively
new data structures. As a side product, algorithm for converting suffix trees to
position heaps and a new data structure based on the position heap is briefly
sketched out. The three schemes are implemented and their running times
measured. For most inputs, the third, position heap based scheme is found to
be the fastest with minimal trade-off in the form of a small number of false
positives.

Keywords pushdown, nondeterministic, bit-parallelism, automaton, ma-
chine, tree, subtree, pattern

Abstrakt

Tato práce porovnává dvě existuj́ıćı schémata pro indexováńı stromů. Jedno
je založené na nedeterministickém faktorovém automatu, druhé na determini-
stickém kompaktńım suffixovém automatu. Je zde popsáno třet́ı, nové schéma
založené na pozičńıch haldách – relativně nové datové struktuře. Jako vedleǰśı
produkt je popsán algoritmus pro převod suffixových stromů na pozičńı haldy
a načrtnuta nová datová struktura založená na pozičńıch haldách. Všechna
schéma byla implementována a jejich rychlost změřena. Pro většinu vstup̊u
bylo třet́ı schéma založené na pozičńıch haldách shledáno nejrychleǰśım s
minimálńım cenou v podobě malého počtu falešných pozitiv.

Kĺıčová slova zásobńık, nedeterminismus, bitový paralelismus, automat,
strom, podstrom, vzorek
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Introduction

The subject of this thesis is indexing trees and searching for occurrences of
subtrees and subtree patterns. Subtree and tree pattern automata are one
possible way of indexing trees and as such have wide range of applications
such as XML databases, NOSQL databases, protein sequence databases and
other scientific datasets, et cetera.

XML in particular has become ubiquitous today. Although it has been
originally designed to markup documents and not necessarily structured data,
it is commonly used for this purpose. It has also become a common format
for the exchange of machine readable data over network the Internet and
a common export format format databases of all kinds as is demonstrated,
among other things, by the very datasets used in this work.

In fact, there is so much hierarchical data being produced every day in
the world, it becomes useless without convenient and efficient way of index-
ing it all and searching it. Many modern solutions to this problem rely on
relational databases or other indexing methods originally devised for flat data
structures. This makes sense to a degree, since modern SQL databases are
extremely optimized and well suited for handling very large data. However,
by their nature, they must break queries over any tree structure down to many
smaller relational queries, which makes them less efficient than is theoretically
possible.

The goal of this work is to explore and compare a few tree indexing schemes
that aim to provide better solution to the problem of indexing trees to allow
for fast subtree and subtree pattern search.

More specifically, this thesis explores automata-based approaches, which
take advantage of suitable ways of serializing trees into string to convert an
arbological problem into a stringological one.

This work is the continuation and extension of [14].

Structure of this thesis

First, we’ll discuss the basic notions, definitions and algorithms in Chapter 1.
In Chapter 2, we will describe three schemes for indexing trees, each with a
corresponding algorithm for searching for the occurrences of subtree patterns.
We will then discuss some of the technical details of the implementation of
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Introduction

these algorithms in Chapter 5. We have measured the performance of all three
algorithms and we will present the results along with some notes in Chapter
7. Finally, in the conclusion, we will mention some possible venues for future
work on the subject of this thesis.
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CHAPTER 1
Basic notions and definitions

1.1 Strings

Definition 1. Alphabet is a finite non-empty set of symbols.

Definition 2. Kleene closure of alphabet Σ is the set of all finite strings over
Σ and is denoted Σ∗. Kleene closure always contains empty string, ε.

Definition 3. A formal language L over an alphabet Σ is some subset of Σ∗.
In mathematical notation, L ⊆ Σ∗.

Consider an arbitrary alphabet Σ and a string w ∈ Σ∗.

Definition 4. A string f over Σ is said to be a factor of w if w can be written
as w = ufv, where u, v ∈ Σ∗.

Definition 5. A string f over Σ is said to be a prefix of w if w can be written
as w = fv, where v ∈ Σ∗. The set of all prefixes of any w is subset of the set
of all factors of w.

Definition 6. A string f over Σ is said to be a suffix of w if w can be written
as w = uf , where u ∈ Σ∗. The set of all suffixes of any w is subset of the set
of all factors of w and is denoted S(x).

1.2 Graphs and trees

The bulk of my work deals with labeled, ranked, ordered, trees written in
preorder/prefix notation. Ranked means each node is “decorated” by a rank,
also called arity and is represented by a ranked symbol. I define the arity
of a node to be simply the number of the node’s children. In graph theory

3



1. Basic notions and definitions

a2

a0 b0

a2

b0 a0

Figure 1.1: Two ordered trees differing only in ordering

language, the arity is the outdegree of the node. In this text, the arity of a
node a is denoted arity(a).

Ordered means the children of a node have defined order. For the sake of
clarity, throughout this work the order of the nodes is always only implied by
their spatial layout in the case of graphs, or by their symbols’ order in the case
of strings. The figure 1.1 shows two ordered trees that differ only in the order
of some of its nodes. Despite the fact that the nodes have the same label and
arity, the two trees are not considered equal.

Definition 7. Ordered tree G is a tuple (N,E) where N is a set of nodes and E
is a set {∀f ∈ N | ((f, g1 ∈ N), (f, g2 ∈ N), . . . , (f, gn ∈ N)); n = arity(e)}.
Each 2-tuple represents an edge leaving f and entering g1..n.

Preorder notation is a way of expressing arbitrary trees as strings; linear
data structures.

Definition 8. The prefix notation of an ordered tree, pref(f), is defined as:

pref(f) =

{
pref(f) = f if f is a leaf
pref(f) = f pref(g1) . . . pref(gn) where g1..n are the children of f

The ranked prefix notation is defined in the same way and differs only in that
it uses ranked symbols rather than plain node labels.

Having constructed some internal representation of a tree, the algorithm
(see alg. 1) to construct prefix notation consists of traversing the tree in a
depth-first preorder traversal and appending the current node’s label to the
result string.

Note that I describe the algorithm in terms of output stream rather than
output string. This is to underline the fact that there is no need to keep any
intermediary data in the memory apart from the input tree; the result can be
written to a stream (such as opened index file) and immediately forgotten. If
in-memory string is desired, however, a stream-like interface to a string can
be easily provided in most environments.

For the prefix notation to be unambiguous (i.e. to be unique for a given
tree), it is necessary to use ranked symbol. Using only plain labels, two
distinct trees with equal number of nodes with the same labels may have the

4



1.2. Graphs and trees

Algorithm 1 Construction of preorder notation for a tree

input: A root node of a tree
output: Prefix notation of the tree written to a stream

init(outputStream)
init(stack)
push(stack, root)
while not empty(stack) do

node ← pop(stack)
write(outputStream, label(node))
for each child in reversed(children(node)) do

push(stack, child)
end for

end while

a

b c

a

b

c

Figure 1.2: Two distinct unranked ordered trees with the same prefix notation

same prefix notation. See figure 1.2 for example. This also means that it is
impossible to unambiguously reconstruct an unranked tree from simple prefix
notation. To circumvent this problem, an alternate notation, the bar notation
as defined in [10], can be employed and an algorithm (see 2) can be devised
to convert the bar notation to ranked notation.

Definition 9. The bar notation of an ordered tree, bar(f), is defined as:

bar(f) =

{
label(f) ] if f is a leaf
label(f) bar(g1) . . . bar(gn) ] where g1..n are the children of f

Definition 10. An alphabet A is a bar alphabet if it can be written as A =
B ∪ {]}, where B is some nonempty alphabet.

It may be interesting to note that the Extensible Markup Language (XML)
documents are basically trees written in bar notation. The XML closing tag,
in the form </tagName>, is analogous to the bar symbol (]).

5



1. Basic notions and definitions

Algorithm 2 Conversion from bar prefix notation to ranked prefix notation

input: Input stream with the bar prefix notation
output: String with the ranked prefix notation
init(inputStream)
init(outputString)
init(parentStack)
index ← 0
while not at the end of inputStream do

s ← readSymbol(inputStream)
if s = ] then

pop(parentStack)
else

parentIndex ← top(parentStack)
arity(outputString[parentIndex]) ←

arity(outputString[parentIndex]) +1
push(parentStack, index)
outputString ← concat(outputString, ranked(s, 0))

end if
index ← index +1

end while

1.3 Automata

Definition 11. Power set of a set S is the set of all subsets of S including
the empty set and S itself. Power set of S is denoted P (S).

Definition 12. Nondeterministic finite automaton (NFA) is a 5-tuple M =
(Q,Σ,∆, q0, F ) where

• Q is a finite set of states,

• Σ is a finite set of input symbols, also called the alphabet,

• ∆ is a transition relation ∆ : Q× Σ→ P (Q),

• q0 is the initial state q0 ∈ Q,

• and F is a set of final states such that F ⊆ Q.

A string w = s1 s2 . . . sm, w ∈ Σ∗ is said to be accepted by the M if there
is a sequence q1 q2 . . . qm ∈ Q∗ such that qm ∈ F and for each qi, the tuple
(qi−1, si, qi) belongs to ∆.

Definition 13. Pushdown automaton is a 7-tuple M = (Q,Σ,Γ,∆, q0, Z, F )
where

6



1.3. Automata

• Q is finite set of states,

• Σ is a finite set of input symbols,

• Γ is a finite set of stack symbols,

• ∆ is a transition relation ∆ : Q× (Σ ∪ ε)× Γ→ Q× Γ∗,

• q0 is the initial state q0 ∈ Q,

• Z is the initial stack symbol Z ∈ Γ,

• and F is a set of final states F ⊆ Q.

Definition 14. Nondeterministic pushdown automaton is a pushdown auto-
maton M = (Q,Σ,Γ,∆, q0, Z, F ) such that ∆ is not a function.

Definition 15. Deterministic pushdown automaton is a pushdown automaton
M = (Q,Σ,Γ,∆, q0, Z, F ) such that ∆ is a function.

Definition 16. Let M = (Q,Σ,Γ,∆, q0, Z, F ) be a nondeterministic push-
down automaton. M is an input-driven pushdown automaton iff for each
tuple (s, α) ∈ (Σ ∪ ε) × Γ there is at most one β ∈ Γ∗ such that ∆(q, s, α) =
{(r1, β), (r2, β), . . . , (rm, β)} where q ∈ Q and r1, r2, . . . , rm ∈ Q.

This rather cryptic definition states simply that in each step of the simula-
tion of an input-driven pushdown automaton the pushdown operation α 7→ β
is selected only by the current input symbol. Other way to phrase that is that
the pushdown operations do not depend on the current state q ∈ Q.

The input-driven pushdown automata have the interesting property of
always being determinisable. The determinisation is done in much the same
way as for finite state automata. The algorithm is well-known and can be
found in many sources including [13].

Definition 17. Counter automaton is a pushdown automaton M = (Q,Σ,Γ,∆, q0, Z, F )
such that |Γ| = 1.

Counter automata are so called because to simulate the stack, a single
integer counter is sufficient. This also implies that unlike the general pushdown
automaton, counter automaton can be implemented with constant memory
complexity in |w|, where w is the accepted string.

Definition 18. Σ is an alphabet, M is any automaton accepting only the
strings and all of the strings from formal language L ⊆ Σ∗. Then L is said to
be the language of M and can be denoted L(M).

7



1. Basic notions and definitions

1.4 Accepting trees and subtrees

Ranked prefix notation allow any ordered tree T to be expressed as a string
w;w = pref(T ) in such a way that the ranked prefix notation of any subtree S
is a factor of w. Proof of this property can be found in [8] as proof to theorem
1. Bar notation has the same property. This allows wealth of string searching
algorithms to be used to search for trees for subtrees in prefix notation.

Not all strings over a ranked alphabet or a bar alphabet need to be pre-
fix notations of a tree, however. Consider, for instance, a ranked alphabet
Σ = {a0, a3} and a string over this alphabet p = a3 a0 a0. The string p is
constructed from a set of symbols that a tree may contain, but there is no
way to construct a tree from this string as the third children of the root (a3)
is missing.

The set of all ranked prefix notations over the ranked alphabet Σ is actually
a context-free language generated by the context-free grammar

S → a3SSS

S → a0

More generally, the set of all ranked prefix notations over any ranked
alphabet A is a context-free language generated by a context-free grammar
with rules of the form

S → snS
n

where n ∈ N0; sn ∈ A. Strings from these languages can be recognized using
a concept called arity checksum as described in [8].

Definition 19. Arity checksum of a string w = a1 a2 . . . am,m ≥ 1 over a
ranked alphabet A, denoted ac(w), is defined as ac(w) = arity(a1)+arity(a2)+
. . .+ arity(am)−m+ 1 = 1−m+ Σm

i=1arity(ai).

Article [8] also shows (and gives a proof) that for any factor of the prefix
notation of a tree T , the factor represents a subtree of T if and only if the
arity checksum of the factor is zero and the arity checksum of any prefix of the
factor not equal to the factor itself is greater or equal to one. The reasoning
behind the arity checksum formula is that the sum of the arities is the number
of all children. Therefore, the sum of arities plus one, to account for the root,
must be equal to the number of nodes in the tree, which in turn must be equal
to the length of the prefix notation.

ac(w) = 1 the root

−m length of the prefix notation

+ Σm
i=1arity(ai) number of all children nodes

8



1.5. String searching

Also, if the checksum is equal to zero for any prefix of the input string,
then the input string doesn’t represent a single subtree, or the symbols are not
ordered correctly. For example, consider the ranked alphabet A = {a0, a2}
and the string w ∈ A∗, w = a2 a0 a0 a1. The arity checksum is ac(w) = 1 −
m+Σi = 1marity(ai) = 1−4+3 = 0, but there is a prefix of w, w′ = a2 a0 a0
such that ac(w′) = 0.

For bar notation, analogous checksum can be defined, the bar checksum.
The problem of checking the prefix bar notation is the same as the balanced
parentheses problem.

Definition 20. Bar checksum of a string w = a1 a2 . . . am over a bar
alphabet A, ] ∈ A, denoted bc(w) is defined as bc(w) = bc(a1) + bc(a2) + . . .+
bc(am) = Σm

i=1bc(ai), where:

• bc(]) = −1 and

• bc(a) = 1 for any a ∈ A, a 6= ].

The bar checksum has the same properties with respect to subtrees and
prefix bar notation as the arity checksum. A factor w of prefix bar notation of
a tree represents its subtree if and only if bar checksum of w is equal to zero
and the bar checksum of any prefix of w not equal to w is greater or equal to
one.

Both checksums can be checked using a pushdown automaton. Since all
the pushdown automaton does is counting, it only needs a single symbol in
its stack alphabet and so it is a counter automaton. Unlike most automata,
it does not accept a string by a state (it only needs a single state, which also
happens to be final), but rather by an empty stack. For both notations, the
stack operations are defined only by the input symbol and so in both cases
the automaton is an input-driven pushdown automaton.

For arity checksum, the automaton starts with one symbol on the stack
and then pops one symbol from the stack and pushes arity(a) symbols on the
stack for any input symbol a.

For bar checksum, the automaton starts with an empty stack, pushes a
single symbol on stack for any input symbol different from the bar symbol and
pops a single symbol from the stack for the bar input symbol. The simulation
algorithm would have the same basic outline as algorithm 3 with appropriately
modified arithmetical operations.

1.5 String searching

Stringology calls the searched string the subject, and the substring that is being
search for the pattern. For the purposes of this discussion, let me denote the
length of the pattern m and the length of the subject n.

9



1. Basic notions and definitions

Algorithm 3 Simulation of an arity checksum pushdown automaton

input: String inputString over a ranked alphabet
output: Boolean value indicating acceptance or rejection of the input string
function VerifyArityChecksum(inputString)

counter← 1
for i← 1 to ||inputString|| do

if counter = 0 then
return false

end if
counter← counter− 1 + Arity(inputString[i])

end for
if counter = 0 then

return true
end if
return false

end function

q0start q1 q2 q3 q4 q5 q6
b

a, b, n

a n a n a

a, b, n

Figure 1.3: Nondeterministic pattern matching finite state automaton

In the next subsection, we are going to briefly describe pattern matching.
We are doing this mostly only so that we can contrast pattern matching to
indexing and it shouldn’t be considered to be in any way an exhaustive dis-
cussion of the topic. The subsection 1.5.2 on page 11 is more important to
the topic of this work.

1.5.1 Pattern matching

Pattern matching preprocesses the pattern to produce some kind of data struc-
ture that can be used to either accept or reject the subject. Typically, the
preprocessing has O(m) time complexity and the search O(n). This is because
the preprocessing usually involves one or more passes over the pattern, while
the search iterates over the subject.

As a very simple example, I present a nondeterministic forward pattern
matching finite automaton for exact string matching (see fig. 1.3) that accepts
any subject string over the alphabet A = {a, b, n} containing the pattern
p = banana. Table 1.1 then shows the trace of the automaton.

In practice, the language of all subjects containing a given pattern is
not specified by a finite state automaton, but rather a regular expression.

10



1.5. String searching

Table 1.1: Trace of a nondeterministic forward pattern matching automaton

Input string Symbol Active states

b a b a n an a $ q0
a b a n an a $ b q0 q1
b a n an a $ a q0 q2
an an a $ b q0 q1
nan a $ a q0 q2
an a $ n q0 q3
na $ a q0 q4
a $ n q0 q5

$ a q0 q6

ε $ subject accepted

q0start q1 q2 q3 q4 q5 q6
b a n a n a

a n a n a

Figure 1.4: Factor automaton for the string ”banana”

Provided, of course, that the language is regular. Many, if not most, pro-
gramming environments contain built-in facilities for pattern matching using
regular expressions, such as the re module in Python standard library, the
System.Text.RegularExpressions namespace in the .NET framework class
library, or the java.util.regex package in the Java Class Library.

These implementations, however, translate the regular expression to a DFA
or a NFA and then simulate that automaton to actually perform the pattern
matching. Algorithm 1.47 in [3] constructs a finite automaton equivalent to a
given regular expression. Section 1.5 in [3] also gives complete formal definition
of regular expressions.

1.5.2 Indexing

Whereas the pattern matching preprocesses the pattern, indexing preprocesses
the subject, the result of which is surprisingly called the index. The prepro-
cessing usually has linear time complexity in the length of the subject, O(n),
while the search has linear time complexity in the length of the pattern, O(m).
Presuming the subject is on average at least an order of magnitude longer than
the pattern, indexing makes the preprocessing relatively expensive and search-

11



1. Basic notions and definitions

Table 1.2: Trace of a factor automaton

Input Symbol States

an a $ q0
na $ a q2, q4, q6
a $ n q3, q5

$ a q4, q6
ε $ factor accepted,

2 occurrences found

Algorithm 4 Construction of nondeterministic factor automaton

input: A string over any alphabet
output: Nondeterministic factor automaton
q0 ← new state
Q← {q0}
Σ← ∅
∆← ∅
F ← ∅

for i← 1 .. length of the input string do
qi ← new state
Q← Q ∪ {qi}
F ← F ∪ {qi}
s← ith symbol in the input string
∆← ∆ ∪ {(qi−1, s, qi)}
if i > 1 then

∆← ∆ ∪ {(q0, s, qi)}
end if

end for

return (Q,Σ,∆, q0, F )

ing cheap compared to pattern matching. This makes indexing more suitable
for applications where multiple queries are performed over large database and
there are significantly more queries than changes to the database. Canonical
examples include relational databases or world wide web search engines.

Factor automaton is a finite automaton representing the index of all factors
of a string. Figure 1.4 gives example of a nondeterministic factor automaton
for the string “banana”. Table 1.2 then shows trace of the string “ana” being
accepted by this automaton.

12



1.5. String searching

suffix tree

compact suffix tree suffix automaton

compact suffix automaton

compaction compaction

minimization minimization

Figure 1.5: Conversions between suffix trees and automata

1.5.3 Suffix Automata

Definition 21. The suffix automaton of a word x is the minimal deterministic
automaton accepting Suff(x), the set of all suffixes of x. The suffix automaton
of a word x is denoted SA(x).

Suffix automaton is an index of all suffixes of a string x. In literature,
they are also known as Directed Acyclic Word Graphs, or DAWGs for short.
They are related to factor automata in that in some cases (deterministic factor
automaton vs. plain deterministic suffix automaton) they differ only in which
states are marked as final.

Algorithm 5 constructs a suffix automaton on-line in linear time. It is a
slightly rephrased version of the algorithm found in [4].

For the purposes of this thesis, deterministic compact suffix automata in
particular are considered. This kind of automata are also known as Compact
Directed Acylic Word Graphs, or CDAWGs.

Suffix automata are closely related to suffix trees in that if one views a
suffix tree as an automaton, its minimization yields suffix automaton.

1.5.4 Position Heaps

Position heaps are relatively new structures that have been described, along
with linear construction algorithm, in [7]. Like DAWGs, position heaps can
generally index a set of strings and are not limited to set of all suffixes of
a string, but this work uses the term “position heap of string x” to mean
position heap of all suffixes of x.

Position heaps are structures that are, like suffix automata, related to
suffix trees. Unlike suffix trees or suffix automata, however, they are not full

13



1. Basic notions and definitions

Algorithm 5 Construction of deterministic suffix automaton

input: A string x
output: Deterministic suffix automaton, DAWG
q0 ← new state
Q← {q0}
Σ← alphabet of x
δ ← ∅
F ← ∅

sink← q0
q0.suffixLink← nil

for i← 1 to |x| do
label← x[i]
newSink← new state
newSink.length← sink.length + 1

w ← sink
while w 6= nil and δ(w, label) 6= nil do

create edge from w to newSink labeled label
w ← w.suffixLink

end while

if w = nil then
newSink.suffixLink← q0

else
v ← δ(w, label)
if v.length = w.length + 1 then

newSink.suffixLink← v
else

newNode← new state with the same outgoing edges as v
newNode.length← w.length + 1
δ(w, label)← newNode
newSink.suffixLink← newNode
newNode.suffixLink← v.suffixLink
v.suffixLink← newNode
w ← w.suffixLink
while w 6= nil and v.length 6= w.length + 1 do

δ(w, label)← newNode
w ← w.suffixLink

end while
end if

end if

sink← newSink
end for

while sink 6= nil do
F ← F ∪ {sink}
sink← sink.suffixLink

end while

14



1.5. String searching

Algorithm 6 Automaton Compaction

procedure CompactAutomaton(Q,Σ, δ, q0, F )
stack ← empty stack
visited ← ∅
push q0 onto stack
while stack is not empty do

q ← pop state from stack
if q /∈ visited then

visited← visited ∪ {q}
for all (r, l1) such that δ(q, l1) = r do

while IsReducible(q, F ) do
l2 is a string and s a state such that δ(r, l2) = s
δ(q, l1)← nil
l1 ← Concat(l1, l2)
δ(q, l1)← s
Q← Q\{r}
r ← s

end while
push r onto stack

end for
end if

end while
end procedure

function IsReducible(q, F )
return InDegree(q) = 1 and OutDegree(q) = 1 and q /∈ F

end function

indexes of all suffixes. Position heap for string x, denoted PH(x), allows, based
on some input string s, to select Occ, a subset of Suff(x) containing at least
all suffixes that can be written as sw in O(||s||+ |Occ|) time. Their memory
complexity is O(||x||), but the number of nodes is exactly ||x||. Thus, they can
never have more nodes than corresponding suffix tree, but they also cannot
have less nodes that corresponding compact suffix automaton.

Definition 22. Let x be a string. h(x) is the length of the longest substring
y of x, which occurs at least ||y|| times in x.

As shown in [7], height of a position heap PH(x) is at most 2h(x). In most
texts, h(x) can be expected to be significantly smaller than ||x||.

Figure 1.6 shows the suffix tree for the string “banana” and the position
heap for the same string for comparison. At first glance, it is clear there are
similarities between the two structures. More on the relation between the
suffix trees and position heaps in chapter 6 on page 49.
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Algorithm 7 Searching for occurrences of patterns using a suffix automaton

input: A compact suffix automaton SA(T ) of text T and a pattern P
output: A set of tuples (offset, offset + ||P ||) representing occT (P ), the
occurrences of P in T
function FindOccurrences(SA(T ), P )

let pref be the longest prefix of P , which is represented by a state q in
SA(T )

let l be the label of the outgoing edge of q with the longest common
prefix with pref−1P

let lcp be the longest common prefix of l and pref−1P
if lcp < ||pref−1P || then

return ∅
else if lcp > 0 then

for each path of length length form state q through δ(q, l) to any
final state do

return (||T || − length− ||P ||, ||T || − length)
end for

else
for each path of length length form state q to any final state do

return (||T || − length− ||P ||, ||T || − length)
end for

end if
end function
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Figure 1.6: The suffix tree and the position heap for string “banana”
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Algorithm 8 Searching for occurrences of patterns using a position heap

input: A position heap PH(T ) of text T and a pattern P
output: A set of tuples (offset, offset + ||P ||) representing some subset of
occT (P ), the occurrences of P in T
function FindOccurrencesPH(PH(T ), P )

n← root node of PH(T )
result← {(n.position, n.position + ||P ||)}
for i← 1 to ||P || do

n← child of n with edge labeled P [i]
if n = nil then

return result
end if
if ||T || − n.position + 1 ≥ ||P || then

result← result ∪ {n.position, n.position + ||P ||}
end if

end for
for each descendant d of n do

if ||T || − d.position + 1 ≥ ||P || then
result← result ∪ {d.position, d.position + ||P ||}

end if
end for
return result

end function

1.6 Subtree patterns

In this text, a subtree pattern is defined as a ranked prefix notation of a
subtree, which may contain S-symbols. S-symbol is a special symbol not
in Σ, which matches any subtree. In order for the S-symbol to satisfy the
conditions for the arity checksum of prefix notation of a tree (see def. 19), its
arity is defined to be 0.

Subtree patterns can be accepted by an input-driven pushdown automaton
based on the factor automaton, but additional transitions have to be added
to it to allow S-symbols to be accepted. Figure 1.8 shows such automaton for
the tree shown in figure 1.7.

Algorithm 9 constructs a tree pattern automaton for any tree in ranked
prefix notation. The time complexity of the construction algorithm is O(n)
where n is the size of the tree for which the automaton is constructed. The
time complexity of accepting a subtree in prefix notation by this automaton
is O(m) where m is the size of the accepted subtree.

In this text, I’ll refer to the transitions of the form (qi,S, S, qj , ε) as “S-
transitions”.
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1. Basic notions and definitions

b2

a2

n0 a0

n1

a0

Figure 1.7: A ranked ordered tree

q0start q1 q2 q3 q4 q5 q6
b2|S → SS a2|S → SS n0|S → ε a0|S → ε n1|S → S a0|S → ε

a2|S → SS
n0|S → ε

a0|S → ε
n1|S → S

a0|S → ε

S|S → ε
S|S → ε

S|S → ε
S|S → ε

S|S → ε

S|S → ε

Figure 1.8: Nondeterministic tree pattern automaton for ranked prefix nota-
tion of the tree in fig. 1.7

18



1.6. Subtree patterns

Algorithm 9 Construction of nondeterministic tree pattern automaton

input: A tree in ranked prefix notation
output: Nondeterministic subtree and tree pattern automaton for the tree
q0 ← new state
Q← {q0}
Σ← ∅
∆← ∅
Z ← {S}
F ← ∅

for i← 1 .. length of prefix notation do
qi ← new state
Q← Q ∪ {qi}
F ← F ∪ {qi}
s← ith symbol in prefix notation
∆← ∆ ∪ {(qi−1, s, S, qi, Sarity(s)−1)}
if i > 1 then

∆← ∆ ∪ {(q0, s, S, qi, Sarity(s)−1)}
end if

end for

for i← 1 .. length of prefix notation do
d← size of the subtree with the ith symbol as its root
∆← ∆ ∪ {(qi−1,S, S, qi−1+d, ε)}

end for

return (Q,Σ,Γ,∆, q0, Z, F )
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CHAPTER 2
WBC bitmap index

2.1 Bit parallelism

Methods of simulating nondeterministic automata using bit parallelism encode
the current configuration of the automaton as a bit vector and implement the
transition operation as bitwise operations over two or more bit vectors.

Advantage of this approach is that the bitwise operation instructions in
CPUs perform the operation (AND, OR, SHIFT) on all of the bits in a com-
puter word in parallel. Bit parallelism is becoming increasingly more practical
as the size of a computer word grows. Today’s typical personal computer ar-
chitectures use 32-bit or 64-bit words, which can already be used to simulate
meaningful automatons in a single word.

There are several bit parallelism algorithms, namely Shift-Or, Shift-And
or Shift Add and as discussed in [3], they have been shown to be applicable
to several problems including approximate string matching as well as exact
string matching.

To implement the subtree and tree pattern automaton described in section
1.6, modified Shift-And or Shift-Or algorithms could be used.

2.2 Shift-And algorithm

In the Shift-And algorithm, a bit vector ~c is used to represent the current
configuration of the automaton. The active states are represented by the set
bits. The original algorithm uses a bit vector array M of |Σ| bit vectors of
length n. Bit vectors are constructed so that M [s][i] = 1 iff (qi, s, qi+1) ∈ ∆ for
s ∈ Σ, 0 ≤ i < n. In this text and in the source code of my implementation,
the bit vectors in M are referred to as “transition masks” or, simply, “masks”.
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2. WBC bitmap index

b2

a1

n0

a1

n1

a0

Figure 2.1: Another ranked ordered tree

The transition operation is then defined as

~c←
{
M [s] for the first input symbol
(~c� 1) & M [s] for the subsequent input symbols

for s 6= S.
The initial state, q0, is not represented by any bits since once the first

symbol is accepted, q0 cannot become active again. The operation for the
first symbol simulates transitions from the initial state to states q1, q2, . . . qn,
whereas the operation for subsequent symbols simulates transitions of the form
(qi, s, qi+1).

An extension to the original algorithm is needed to implement the S-
transitions. An integer array T is used such that |T | = n and T [i] = j for
1 ≤ i, j ≤ n; δ(qi,S) = qj . In this text, the array T is referred to as “S-
transition table” or “subtree transition table”.

The result of the transition operation for s = S is then defined as bit
vector ~d such that ~d[j] = 1 iff ∃i; ~c[i] = 1 ∧ T [i] = j for 1 ≤ i ≤ n.

As [3] and [6] note, this algorithm has best performance when the bit vec-
tors fit into a single computer word. With longer subjects, the algorithm has
linear time complexity in n. Therefore, the obvious approach when trying im-
prove upon it is to limit the number of bits (and possibly words) the algorithm
has to operate on. In the next section, I’ll describe one such approach and
explain why I decided against using it for tree pattern automaton.

2.3 Compact representation

The main idea behind a nondeterministic automata compression method de-
scribed in [6] is based on observation that the states in a nondeterministic
suffix automaton can be split into contiguous groups such that each of these
groups contains at most one active state at any time.
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2.4. Bit parallelism using run-length encoded bit vectors

f fill length tail length

32 16 0

field bit length description

f 1 the fill bit
fill length 15 15-bit unsigned integer representing

the length of the fill in words
tail length 16 16-bit unsigned integer representing

the length of the tail in words

Figure 2.2: Layout of a WBC header

The basic Shift-And algorithm uses one bit for each symbol in subject.
However, if the subject is factorized in such a way that each factor contains at
most one occurrence of any symbol in Σ (so-called minimal 1-factorization),
then one bit per such factor and the last accepted symbol are needed to encode
the automaton’s configuration. The bit says whether one of the symbols in
the factor has been accepted and the last accepted symbol says which one.

Therein lies the problem with using this technique to simulate tree pattern
automaton. The encoding cannot simply express the configuration of the auto-
maton after accepting a S-symbol. For example, consider the ranked ordered
tree shown in figure 2.1. Its ranked prefix notation is “b2 a1 n0 a1 n1 a0”. Min-
imal 1-factorization of this string would split it into two factors, f1 = b2 a1 n0
and f2 = a1 n1 a0. The configuration of an automaton for this tree would be
encoded as a tuple (~v, s), where ~v is a 2-bit bit vector and s is a symbol in
Σ = {a0, a1, b2, n0, n1}.

The tree pattern “a1 S” matches two factors in this string, a1 n0 and
a1 n1 a0. However, when accepting S, there is no way to encode the new
configuration, because S /∈ Σ.

2.4 Bit parallelism using run-length encoded bit
vectors

The basic idea of this technique is to use run-length encoded bit vectors to
save space and perform bitwise operations only over those words, that can
actually have any bits set. First, I describe the encoding used and then I’ll
explain how it can be combined with the Shift-And algorithm.

2.4.1 Word-aligned bitmap encoding

Word-aligned Bitmap Coding (WBC) is a kind of run-length encoding de-
scribed in [12] and [11]. WBC is a word-aligned version Byte-aligned Bitmap
coding. It is designed in such a way so that bitwise operations on two en-
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2. WBC bitmap index

fill length tail length

32 16 0

field bit length description

fill length 16 16-bit unsigned integer representing
the length of the fill in words, fill bit
is assumed to be 0

tail length 16 16-bit unsigned integer representing
the length of the tail in words

Figure 2.3: Layout of adapted WBC header

coded bit vectors can be easily and efficiently implemented without sub-word
operations. It is meant to be used to compress bitmap indices in relational
databases and to support efficient queries on them.

A WBC encoded bit vector is a vector of words representing a series of
so-called runs. Each run consists of a single word, the header, declaring the
repeating bit, the number of repeating bits, the fill, and the number of words
following the run, the tail. The length of the fill must be a multiple of the
number of bits in a word and therefore it is expressed as number of words
rather than number of bits. Layout of a WBC header word is shown in figure
2.2.

For the purposes of implementing the Shift-And algorithm using the WBC
encoding, I have modified the encoding to only compress runs of zero bits.
Because the fill bit can be assumed to be always 0, the fill bit doesn’t need to
be specified in the header word. The modified header word layout then looks
as shown in figure 2.3. The reason for this that one or more 1-filled words in
this application are just not very probable and assuming that the fill is always
0-filled greatly simplifies any operations over the encoded bit vectors. In the
rest of the text, I’ll use the term WBC to mean the modified version of WBC
I have just presented.

Formally, the WBC encodes bit vector as n-tuple of 2-tuples (f,~t), where
f is the length of the 0-fill in multiples of 32 such that f ∈ 〈0; 65535〉 and ~t
is a vector of 32-bit bit vectors (32-bit machine is assumed). Offset o of the
first bit in ~t of n-th run in the decoded bit vector is given as

o = 32× (fn + Σn−1
i=1 fi + |~ti|)

where fi is the fill length of the i-th run and ~ti is the tail of the i-th run.

To give an example, consider bit vector ~v = 064 132 032 132. This bit vector
could be encoded as ((2, (132)), (1, (132))). The coding doesn’t require any
repeating 0-bits that could be encoded as a fill to actually be encoded as
such. Actual implementations may fold repeating 0-bits into a fill only if
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~a

~b

~a ∧~b

fill tail fill

Figure 2.4: Bitwise AND of two WBC bit vectors

their number is higher than a certain limit. Therefore, ((2, (132, 032, 132))) or
((0, (032, 032, 132, 032, 132))) are valid WBC encoding of ~v too.

2.4.2 Shift-And algorithm using WBC encoded bit vectors

Algorithm 10 Bitwise AND over two word vectors

procedure And(a, b, length)
c← new word interval of length length
for i← 0, length− 1 do

c[i] = a[i] ∧ b[i]
end for
return c

end procedure

The WBC encoding has been designed to easily support bitwise AND, OR
and other related operations, but not the bit shift operation. However, since
the Shift-And algorithm only shifts by a single bit, any individual bit can only
cross the word boundary from the most significant bit of a word to the least
significant bit of the following word. This means the Shift-And operation can
be easily implemented by slightly extending the AND operation.

For AND operation over two bit vectors, ~a and ~b, any word in the resulting
bit vector ~a∧~b can have bits set only if words at offsets that happen be within
a tail in both of the input bit vectors. As a result, the tails on the resulting
bit vector are the intersection of the tails in the input vectors (see figure 2.4).

The resulting vector can be calculated in linear time by iterating over the
runs in ~a and~b and selecting the appropriate action to be performed depending
on whether the current offset is inside a tail in ~a and whether it is inside a tail
in ~b. See algorithm 11 for more detailed description. The algorithm basically
simulates the finite state automaton shown in figure 2.5.

The bit shift is then done by shifting the individual words and keeping
track of the carry bit (the bit that crosses the word boundaries). In some
cases, the carry bit would shift into a word that wouldn’t be included in any
tail in the simple And algorithm. That is why the tails must be extended
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0start 1

2 3

as, bs

ae, be

bs

be

asae

as, be

ae, bs

asae

bs

be

symbol meaning

as start of a tail in ~a
ae end of a tail in ~a

bs start of a tail in ~b

be end of a tail in ~b

Figure 2.5: Run intersection finite automaton

~a

~b

(~a� 1) ∧~b

fill tail fill

0 1 3 2 3 1 0 states

1 word

Figure 2.6: Shift-And for two WBC bit vectors
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Algorithm 11 Bitwise AND over two WBC bit vectors

input: WBC encoded bit vectors ~a and ~b
output: WBC encoded bit vector ~c; ~c = ~a ∧~b
require: ~a has the same bit length as ~b

result ← new empty bit vector

ia ← run iterator for ~a
ib ← run iterator for ~b
while ia is not at the end of ~a do

d← distance to closest beggining or end of a tail in either ~a or ~b
if ia is a tail ∧ ib is a tail then

add (ia � 1) ∧ ib to result
else if ia[−1] is in a tail ∧ ib is a tail then

add HSB(ia[−1]) ∧ ib[0] to previous tail
add 0-fill of length d− 1 to result

else
add 0-fill of length d to result

end if
move ia and ib by d
runa ← next run in ~a if at end of runa
runb ← next run in ~b if at end of runb

end while

by one word in some cases as shown in figure 2.6. This figure also shows the
states the run intersection algorithm passes through as it scans the two bit
vectors.
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CHAPTER 3
Full and linear index

This data structure and the accompanying search algorithm have been first
described in [9]. In this work, it will be abbreviated as FLLI .

For an indexed tree T , the data structure consists of three parts:

• compact suffix automaton SA(pref(T )) (can be constructed by al-
gorithms 5 and 6, although direct on-line construction algorithms for
compact suffix automatons exist),

• subtree jump table SJT(T ) as defined by algorithm 12

• and a temporary reverse array of length ||pref(T )|| denoted here Revlengthoccurrences.

Algorithm 12 Construction of subtree jump table

function ConstructSJT(T )
SJT← new array of length ||pref(T )||
ConstructPartialSJT(T, 1,SJT)
return SJT

end function

function ConstructPartialSJT(T, rootIndex,SJT)
index← rootIndex + 1
for i← 1 to pref(T )[rootIndex].arity do

index← ConstructPartialSJT(T, index,SJT)
end for
SJT[rootIndex]← index
return index

end function
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3. Full and linear index

It is interesting to note that the subtree jump table structure is almost
identical to what has been termed subtree transition table in the WBC index.
The only difference is that indices in SJT point to symbol immediately after
the prefix notation of the corresponding subtree, while STT points to the last
symbol of the same subtree.

Like the WBC bitmap index, this index exploits ranked prefix notation of
a tree and transforms the arbological problem of searching for all occurrences
of a subtree to stringological problem of searching for all occurrences of a
factor. Full and linear index of a tree uses a compact suffix as solution to
the problem of searching for exact tree patterns (strings over the alphabet of
pref(T )).

The only problem arises with accepting subtree patterns and handling S-
symbols in input. As with the bitmap index, S-symbols inherently introduce
nondeterminism, because in each occurrence of the pattern, an S-symbol may
match a factor of different length. In other words, adding additional edges to
SA(pref(T )) that would allow the automaton to accept S-symbols would also
make the the automaton nondeterministic.

3.1 Search Algorithm

The prefix notation pref(P ) of any subtree pattern P can be written as:

pref(P ) = P1 S P2 S . . . S Pk, k ≥ 1

Definition 23. Let pref(P ) = P1 S P2 S . . . S Pk be the prefix notation of a
subtree pattern P over alphabet A ∪ {S}, where no factor Pi, 1 ≥ i ≥ k
contains symbol S. The factor Pi is called i-th subpattern of P .

Then the outline of the algorithm is.

Algorithm 13 Outline of the search algorithm

function SearchFLLI(T, P )
for each Pi do

1. accept supattern Pi using compact suffix automaton
SA(pref(T ))

2. use SJT(T ), the subtree jump table, to accept the S
symbol following Pi if there is any

3. merge occurrences of P1 S P2 . . . S Pi−1 S from the pre-
vious iteration and occurrences of Pi S computed in the

previous step using the Rev
||pref(T )||
occ(P1...Pi−1 S) array

end for
end function
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a3

a3

a3

a0 b0 c0

b0 c0

b0 c0

Figure 3.1: Ranked ordered tree T1 from example 1

The algorithm works in O(m+
k∑

i=1

|occ(Pi)|) time, where occ(Pi) is the set

of all occurrences of subpattern Pi in T .

However, mostly for implementation reasons, it is beneficial to use slightly
different form of pref(P ), which groups subsequent S symbols.

pref(P ) = P1G1 P2G2 . . . Gk−1 Pk, k ≥ 1

Definition 24. Let pref(P ) = P1G1 P2G2 P3 . . . Gk−1 Pk be the prefix nota-
tion of a subtree pattern P over alphabet A∪{S}, where no factor Pi, 1 ≥ i ≥ k
contains symbol Sand each factor Gi is a string such that Gi ∈ {S}∗\{ε}. The
factor Gi is called i-th S-symbol group of P .

This allows the algorithm to be implemented slightly more efficiently and
makes handling empty subpatterns Pi easier, because only the first or last
subpatterns (P1 and Pk respectively) can be empty. If any other subpattern
Pi was empty, string Gi−1 PiGi would belong to language {S}∗\{ε} and thus,
by the definition 24, could actually be a single S-symbol group on its own.

The algorithm 14 describes the search function SearchFLLI in little more
detail. The VerifyArityChecksum function is described in algorithm 3.
The MergeOccurences function is the same as the one given in [9].

Example 1 shows a ranked ordered tree, which used in example 2 to demon-
strate how the FLLI search algorithm works.

Example 1. Consider ranked ordered tree T1 over A = {a3, b0, c0}, such that
pref(T1) = a3 a3 a3 a0 b0 c0 b0 c0 b0 c0.

Example 2. Consider the tree T1 from example 1 and a subtree pattern
P, pref(P ) = a3 S b0 c0.
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3. Full and linear index

Algorithm 14 Full and linear index search algorithm

function SearchFLLI(T, P )
if pref(P ) = S then

return set of all subtrees of T
end if
if notVerifyArityChecksum(pref(P )) then

error – invalid pattern
end if
prevOcc← FindOccurrences(SA(pref(T )), P1)
for i← 2 to k do

for each occurrence (first, last) ∈ prevOcc do
for j ← 1 to ||Gi−1|| do

(first, last)← (first,SJT(T )[last])
end for

end for
if Pi 6= ε then

nextOcc← FindOccurrences(SA(pref(T )), Pi)
prevOcc←MergeOccurences(prevOcc,nextOcc)

end if
end for
return prevOcc

end function

q0start q1 q2 q3

q4 q5

a3

a0b0c0b0c0b0c0

a3

a0b0c0b0c0b0c0

a3a0b0c0b0c0b0c0

a0b0c0b0c0b0c0

c0
b0c0

b0c0

b0c0

suffix offset 1 2 3 4 5 6 7 8 9 10

pref(T1) a3 a3 a3 a0 b0 c0 b0 c0 b0 c0

Figure 3.2: Ranked prefix notation pref(T1) and compact suffix automaton
SA(pref(T1)) for tree T1 from example 1
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3.1. Search Algorithm

pref(T1) a3 a3 a3 a0 b0 c0 b0 c0 b0 c0
suffix offset i 1 2 3 4 5 6 7 8 9 10

SJT[i] 11 9 7 5 6 7 8 9 10 11

Figure 3.3: Subtree jump table SJT for FLLI index of tree T1 from example 1

Pattern P1 can be written as P = P1G2P2, where

P1 = a3,

G2 = S
and P2 = b0 c0.

1. First step in the FLLI search phase (the SearchFLLI algorithm) is
to search for all occurrences of subpattern P1 = a3 in pref(T1) using
the compact suffix automaton SA(pref(T1)) shown in figure 3.2 and the
algorithm 7. The final configuration of the automaton would end in
state q1, from which there are 3 paths leading to final states labeled
a0 b0 c0 b0 c0 b0 c0, a3 a0 b0 c0 b0 c0 b0 c0 and a3 a3 a0 b0 c0 b0 c0 b0 c0. This
yields occurrences

occ(P1) = {(1, 2), (2, 3), (3, 4)}.

2. Second step is to use SJT table to compute occ(P1S) from occ(P1).

occ(P1S) = {(1,SJT[2]), (2,SJT[3]), (3,SJT[4])}
= {(1, 9), (2, 7), (3, 5)}

3. Third step is to compute occurrences of the second subpattern P2 = b0c0:

occ(P2) = {(5, 7), (7, 9), (9, 11)}.

4. As a final step in this example, the MergeOccurences algorithm is
used to merge occ(P1S) and occ(P2) calculated in the previous steps into
occ(P1SP2) = occ(P ). This step itself consists of two sub–steps:

a) The Rev{(1,9),(2,7),(3,5)} array is calculated:

i 1 2 3 4 5 6 7 8 9 10

Rev{(1,9),(2,7),(3,5)}[i] -1 -1 -1 -1 3 -1 2 -1 1 -1

b) Merge is performed using the Rev array:
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3. Full and linear index

occ(P1S) = ( 1, 9 ), ( 2, 7 ), ( 3, 5 )

Rev{...} =
i 1 2 3 4 5 6 7 8 9 10

Rev[i] -1 -1 -1 -1 3 -1 2 -1 1 -1

occ(P2) = ( 5, 7 ), ( 7, 9 ), ( 9, 11 )

occ(P1G2P2) = ( 3, 7 ), ( 2, 9 ), ( 1, 11 )
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CHAPTER 4
Position heap index

The position heap index is rather simple modification of the full and linear
index. The compact suffix automaton SA(pref(T )) is simply replaced by pos-
ition heap PH(pref(T )).

Like the FLLI search algorithm, the position heap index search has O(m+
k∑

i=1

|occ(Pi)|) time. This is because the position heap has the same asymptotic

bounds for searching for l occurrences of pattern P in text T as the suffix
automaton, that is O(||P ||+l). In practice, however, the height of the position
heap, which is at most 2h(T ), can be significantly smaller than ||P || and so
will be the search time for position heap as compared to suffix automaton.

Searching for occurrences of subpatterns using position heap, however, will
have false positives. We predicted this will not be a big problem, since in order
to have a false positive for the occurrence of the string Pi S Pi+1, there must
be an occurrence (firsti, lasti) of Pi and an occurrence (firsti+1, lasti+1) of Pi+1

such that SJT[lasti] = firsti+1. In order for a false positive to end up in the
final search result, this coincidence must happen for each pair of subpatterns
Pi and Pi+1 in the subtree pattern P .

The probability of such coincidence seems to be relatively low. However,
once the index had been implemented, the number of false positives in the
search results were measured and the results are given in chapter 7.

Example 3. Consider the tree T1 from example 1 and a subtree pattern
P, pref(P ) = a3 S b0 c0 from example 2.

Position heap for pref(T1), PH(pref(T1)) is shown in figure 4.1. This po-
sition heap is used in this example. Note this position heap has considerably
more states than the compact suffix automaton for pref(T1), but in general,
position heaps will need to consider fewer symbols of the input string than an
equivalent compact suffix automaton.
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4. Position heap index

10

4

a0

3

2

1

a3

a3

a3

9

7

5

b0

c0

b0

8

6

b0

c0

Figure 4.1: Position heap PH(T1) for tree T1 from example 1

The search algorithm of the position heap index then proceeds in a very
fashion very similar to FLLI (see example 2), with the exception that it uses
the FindOccurrencesPH function (algorithm 8) instead of FindOccur-
rences (algorithm 7).

1. Compute the approximate occurrences of subpattern P1. Note that there
is one false positive (10, 11). This part of normal function of the position
heap. In fact, occurrence (10, 11) will be returned by any query using the
position heap in figure 4.1, because it is represented by the heap’s root
node.

FindOccurrencesPH(PH(pref(T1)), pref(P1)) = {(10, 11), (3, 4), (2, 3), (1, 2)}

2. Second step is to use SJT table to compute occ(P1S) from occ(P1). Note
that occurrence (10, 11) is eliminated, because SJT[11] is undefined.

occ(P1S) = {(3,SJT[5]), (2,SJT[3]), (1,SJT[9])}
= {(3, 5), (2, 7), (1, 9)}

3. Third step is to compute occurrences of the second subpattern P2 = b0c0:

FindOccurrencesPH(PH(pref(T1)), pref(P2)) = {(10, 12), (9, 11), (7, 9), (5, 7)}.

4. The final step is the same as with the FLLI search algorithm:
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occ(P1S) = ( 3, 5 ), ( 2, 7 ), ( 1, 9 )

Rev{...} =
i 1 2 3 4 5 6 7 8 9 10

Rev[i] -1 -1 -1 -1 3 -1 2 -1 1 -1

occ(P2) = (10, 12 ), ( 9, 11 ), ( 7, 9 ) ( 5, 7 )

occ(P1G2P2) = ( 1, 11 ), ( 2, 9 ), ( 3, 7 )
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CHAPTER 5
Implementation

5.1 Basic architecture

My implementation consist of two main modules, each with its own executable.
Both indexer and lindexer read an XML file, index it and save the index in
a binary form to a file. The difference is indexer produces WBC and position
heap indexes as described in this work, while lindexer produces full linear
index as described in [?]. Subsequently, the subtree reads the binary index,
reads a pattern from another XML file, performs the search and prints out the
results. It is the subtree module that actually simulates the nondeterministic
pushdown automaton.

5.2 Tools used

For the sake of performance, I have decided to implement the automaton
simulator in C++. At first, I thought a practical indexer could be written in
Python. I did write a prototype version in Python. One of the advantages
was that it was easy to add a new frontend for different tree format, such as
XML or JSON. This prototype version also used a DOM XML parser. This
solution quickly proved to be unusable as it ran out of memory and failed for
XML files with just couple of tens of megabytes in size. It was obvious that
using a more memory efficient language and a stream-oriented XML parser
was needed.

Rewriting the indexer to C++ using the Expat XML parser1 limited it to
XML input only, but brought significant increases in performance and stabil-
ity. Expat parser, though not exactly conforming to the SAX API, uses the
same general idea and basically offers prefix bar notation view of the XML

1http://expat.sourceforge.net
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5. Implementation

document. For more details on Expat, see section 5.2.1. Since my solution
uses ranked prefix notation rather then prefix bar notation for subtree match-
ing, my indexer employs algorithm 2 to convert the prefix bar notation to
ranked prefix notation.

Both the indexer and subtree matcher use only statically linked libraries,
with Expat parser library the only third-party library used. Both use STL
containers wherever possible and appropriate. In particular, std::vector is
used heavily, mostly to implement the bit vectors.

Classes defined in the <iostream> header file are used for IO, both writing
and reading the binary index and text output.

To compile the C++ sources, I have used GCC in combination with Make.
To debug the binaries, I have used GDB and Valgrind. My editor of choice
was Vim and for version control I used Git.

5.2.1 Expat parser

The basic usage of the Expat parser is as follows:

1. initialize the parser,

2. set the event handlers and the user data pointer,

3. feed the parser with chunks of the XML file character data,

4. and finally, release the resources used by the parser.

XML Parser XML ParserCreate(const XML Char* encoding)

Creates and initializes a new parser.

void XML SetElementHandler(XML Parser p,

XML StartElementHandler start,

XML EndElementHandler end)

The Expat parser keeps pointers to functions which it calls when an event,
such as the beginning or the end of an element, occurs. This function sets
the pointers to functions handling these two events. There are other handlers
including handlers for various error states, but these two handlers are the two
necessary to read the tree structure of the document.

void XML SetUserData(XML Parser p, void* userData)

Expat is a C library, not C++. In order for the client to be able to keep
state between handler calls, the parser passes a pointer to all of the handlers.
This pointer is set by the user a may point to any kind of user data including
C++ class instance.
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5.3. WBC index format

int XML Parse(XML Parser parser,

const char* s,

int len,

int isFinal)
Parses a chunk of the input. This function is meant to be called repeatedly

on chunks of character data until the entire XML file has been fed to the parser.
This minimizes the number of IO operations and allows the program to be
written in such a way that it doesn’t need to dynamically allocate memory
during parsing.

void XML ParserFree(XML Parser parser)

Frees memory used by the parser.

5.3 WBC index format

Index consists of the following parts:

• Symbol table is a list of all unique ranked symbols present in the tree.
This table is used to translate ranked symbols to integer indices which
are used to look up transition masks in the transition table (see below).

• Subtree transition table (S-transition table) contains, for each symbol
in the prefix notation of the tree, the index of the last symbol of the
subtree that begins by symbol immediately adjacent to it. This table is
used to implement the state transitions taken when accepting S symbol
(see section 1.6 on page 17).

• Origins table, contains one string per each symbol in the prefix notation
of the tree. This table is used to translate to search results to inform-
ation about the location of a given tree node in the data source. My
implementation of the indexer stores the line numbers of the opening and
closing tag of the corresponding XML element here. The line numbers
are given as sed2 commands.

• Transition mask table, is a list of transition masks used in the implement-
ation of the shift-and operation. The transition mask table contains a
mask for each unique ranked symbol. A ranked symbol’s transition mask
has the same index in the mask table as the ranked symbol has in the
symbol table.

Table 5.1 shows the primitive data types used in the binary format of
the index, shown in table 5.5. To store strings, I have decided to use Pascal
strings (see table 5.2) rather than null terminated C-strings. This is to keep
the number of IO operations to minimum.

2sed (short for stream editor) is a Unix utility used to apply transformations to a text.
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5. Implementation

Table 5.1: Primitive data types

Name Size (B) Description

uint8 1 8-bit unsigned integer
uint32 4 32-bit unsigned integer in network byte order (big endian)
char 1 8-bit ASCII character

Table 5.2: PString data structure

Type Interpretation

uint8 Length of the string
char[length] ASCII string

Table 5.3: RankedSymbol data structure

Type Interpretation

PString Label
uint32 Arity, rank

5.4 Bit vector representation

There are two classes that represent bit vectors. BitVector (see fig. 5.1) is a
simple implementation using vector of 32-bit unsigned integers as its backing
store. WBCBitVector (see fig. 5.2) also uses a 32-bit unsigned integer vector
as its backing store, but the bit vector is encoded using WBC and the classes
provides a run iterator which can be used for iterating over the individual runs
and reading the literal words in run tails.

For performance reasons, I tried to avoid dynamic memory allocation as
much as possible. This meant I wanted to implement both Shift-And algorithm
and WBC algorithm in-place. While this is trivial for regular bit vector, it
would be very difficult, if not impossible, with two WBC vectors as offsets
and lengths of the resulting runs may be different from the source vectors.

For this reason, I decided that unlike the transition masks, the current
automaton configuration would be stored in a BitVector instance, which
would also maintain a list of word intervals that are “inside” a tail (the
BitVector::activeIntervals class member). This way any word read from
the bit vector would be written back at the same offset, while the run inter-
section algorithm can be still implemented in the same way.

5.5 Factor automaton simulation

The basic outline of the simulation algorithm is this:

1. read the index,
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5.6. Full and linear index format

Table 5.4: WBCBitVector data structure

Type Interpretation

uint32 WBC bitvector bit size
uint32 WBC bitvector run count
uint32 WBC bitvector word size
uint32[] words

Table 5.5: Index file layout

Type Interpretation

char[4] "INDX" Index sigil for error checking
and debugging purposes

char[4] "NAME" Symbol table sigil
uint32 Symbol table size
RankedSymbol[symTableSize] Symbol table items (see tbl.

5.3)

char[4] "SJMP" S-transition table sigil
uint32 S-transition table size
uint32[sTableSize] S-transition table items

char[4] "ORIG" Origins table sigil
uint32 Origins table size
PString[] Origins table items (see tbl.

5.2)

char[4] "MSKW" Transition mask table sigil
WBCBitVector[] Transition masks items (see

tbl. 5.4)

2. read the pattern and use the symbol table to translate its symbols,

3. set the current state to the transition mask of the first pattern symbol,

4. for each of the rest of the pattern symbols, perform the Shift-And opera-
tion on the current state and the transition mask for the current pattern
symbol

5.6 Full and linear index format

This type of index uses the same format for symbol table, subtree transition

table (or subtree jump table, as it is called [9]), and origins table as the
WBC index. These parts of the index are event serialized in the same way.

The main difference in the format is that rather than the transition masks,
this index must contain suffix automaton. Both adjacency list and transition
matrix implementations have been tried and for this application, adjacency
list was found to have better performance by an order of magnitude.
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5. Implementation

struct WordInterval {

int offset;

int length;

};

class BitVector {

private:

int size_; // size in bits

vector <uint32_t > words_;

vector <WordInterval > activeIntervals_; // imitates runs

public:

// used in regular Shift -And

void BitVector :: shiftLeftAnd(const BitVector& other );

// used in WBC Shift -And , uses activeIntervals_ member

void BitVector :: shiftLeftAnd(const WBCBitVector& other );

class WordIterator {

public:

WordIterator(const BitVector& vector );

vector <uint32_t >:: iterator word;

vector <uint32_t >:: iterator end;

int fill;

inline int tail() const;

inline bool next ();

};

};

Figure 5.1: Abbreviated declaration of the BitVector class

In either case, both in-memory representations of the suffix automaton
are serialized the same way and command line options -l and -t can be used
to switch between the adjacency list and transition matrix implementations
respectively.

For performance reasons, the edge labels are not represented as strings, but
rather as tuple (offset, length), which is implemented by the structure Factor

(see fig. 5.4) in the code. This structure also contains longestCommonPrefix
method, which can be used to determine longest common prefix of either two
factors of the same string (i.e. their start and length members are indexes
into the same string, used while building the suffix automaton, for example), or
two factors of two different strings (used when simulating the suffix automaton
to accept subtree pattern).

Suffix automaton itself is represented by the SuffixAutomaton class. This
class simply contains a list of all states. More than its data are its methods,
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5.7. Position heap index format

class WBCBitVector {

private:

int size_; // size in bits

vector <uint32_t > words_;

public:

class WordIterator {

public:

WordIterator(const WBCBitVector& vector );

vector <uint32_t >:: const_iterator word;

vector <uint32_t >:: const_iterator end;

int fill;

inline int tail() const;

inline bool next ();

};

};

Figure 5.2: Abbreviated declaration of the WBCBitVector class

typedef uint32_t PreorderIndex;

struct Factor {

PreorderIndex start;

PreorderIndex length;

};

Figure 5.3: Abbreviated declaration of the Factor structure

namely slowFind overloaded method, which can be used to find all occur-
rences of a factor in the indexed string.

To actually construct the automaton, the SAConstructor class is used.

5.7 Position heap index format

Format of the position heap index is almost identical to the format of the
FLLI index. The only difference is that the serialized index uses different sigil
(magic bytes): PNDX.

During runtime, the index is represented by the PHIndex class, whose
implementation differs from LIndex mainly in using different search method,
which interprets that graph structure associated with the index as position
heap rather than compact suffix automaton.

45



5. Implementation

struct SAState {

bool isFinal;

PreorderIndex length;

SAState *suffixLink;

vector <SAEdge*> edges;

};

struct SAEdge {

Factor label;

SAState *target;

};

class SuffixAutomaton {

private:

vector <SAState*> states;

};

Figure 5.4: Abbreviated declaration of the Factor structure

Except for that, even the position heap uses the same serialization format
as the compact suffix automaton in FLLI with the suffix automaton’s length
state attributes interpreted as position heap’s position attributes.

5.8 Compact suffix automaton simulation

We have created two implementations of finite automata: adjacency list imple-
mentation represented by the SuffixAutomaton class and transition matrix
implementation represented by the Automaton class.

Both implementations are serialized the same way, so that once the index
has been created, the search algorithm can be run with either implementation
without the necessity for recreating the index.

In theory, the transition matrix implementation should have better per-
formance than the adjacency list for automaton simulation, because it has
O(||a||) time for looking up δ(qi, a) for any state qi and label a. However,
there are two possible issues with this implementation:

1. The asymptotic bound for the size of the transition matrix is O(|Σ| ×
||pref(()T )||). For practical examples, both the input alphabet and the
length of the ranked prefix notation of the indexed tree T can be very
large. At best, this can cause large number of cache misses when looking
up the transitions, at worst it may prevent the index to be read into the
memory. Some may point out that this problem would be eliminated by
appropriate sparse implementation of the transition matrix. We argue,
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5.8. Compact suffix automaton simulation

Table 5.6: Linear index file layout

Type Interpretation

char[4] "LNDX" Index sigil for error checking
and debugging purposes

char[4] "NAME" Symbol table sigil
uint32 Symbol table size
RankedSymbol[symTableSize] Symbol table items (see tbl.

5.3)

char[4] "PSTR" Preorder string sigil
uint32 Preorder string length
uint32[preorderLength] Preorder string itself

char[4] "SJMP" Subtree transition table sigil
uint32 Subtree transition table size
uint32[sTableSize] Subtree transition table items

char[4] "AUTO" Suffix automaton sigil
SuffixAutomaton Serialized suffix automaton

(see tbl. ??)

char[4] "ORIG" Origins table sigil
uint32 Origins table size
PString[] Origins table items (see tbl.

5.2)

Table 5.7: SAState – Suffix automaton state layout

Type Interpretation

uint32 State’s length label
uint8 Final state flag

Table 5.8: SAEdge – Suffix automaton edge layout

Type Interpretation

uint32 Edge label offset
uint32 Edge label length
uint32 Index of the target state

however, that this would be essentially equivalent to a good adjacency
list implementation.

2. Naive implementation of the transition table has O(|Σ|) time complexity
for iteration over all outgoing edges of any state qi. This can be easily
remedied, however. The approach we’ve chosen exploits the unused
elements of the transition matrix as links to the next used, or non-empty
element of the matrix.
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5. Implementation

Table 5.9: Suffix automaton layout

Type Interpretation

uint32 Number of states
SAState[] State array
char[4] "SGIL" State array sigil

for each state:
uint32 Index of the source state
uint32 Number of edges
SAEdge[] Edge array

char[4] "SGIL" Edge array sigil

Indeed, experimental measurements have shown that in the final scheme,
the adjacency list implementation of the automaton has better running times
by approximately two orders of magnitude.

5.9 FLLI search function

The implementation of the search function is relatively straightforward, with
the exception of the implementation of the Rev array. Like the bit vector
masks in the WBC index, this array is likely to be very sparse and given
the size of the datasets used for measurement in this work, it would be very
inefficient to implement it as a plain array.

We have tested both hash tables and self-balancing search trees as im-
plementations of the Rev and found no noticeable difference in performance
between the two approaches, probably because the number of occurrences k
is low enough that there is little difference between O(1) and O(log k) lookup
times.

However, either implementation was found about two orders of magnitude
faster than the naive approach. Therefore, we have finally settled on hash
table implementation.
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CHAPTER 6
On position heaps

This chapter presents two algorithms and a new data structure that we found
as a side product of this work. They were not placed in the Basic notions and
definitions chapter, because, to our knowledge, they are not something that
can be found in previous work. Neither could they be placed in any other
chapter, because they haven’t actually been used in this work in any way.
Nevertheless, we considered them noteworthy enough to be included in this
work as they are subject of future work and they fit into the department’s
research.

Consider again the example shown in figure 1.6 on page 16 and the simil-
arities between the suffix tree and the position heap. Specifically, the set of all
nodes and edges of the position heap are subsets of all nodes and edges of the
corresponding suffix tree, with only labels of the nodes moved around. Labels
of the edges remain the same (this is not the case for compact suffix trees).
The algorithms 15 and 16 exploit this similarity and also the fact, that posi-
tion heaps are, as their name subtly suggests, heaps. The algorithms simply
“heapify” the suffix tree, moving the node labels upwards with the highest
value labels being pulled to a parent node in case the parent has multiple
labeled children. The remaining unlabeled nodes are then discarded.

Position heaps can be constructed by performing a lossy compaction on
a suffix tree, as shown in algorithm 15. To construct position heap from
a compact suffix tree, one could construct suffix tree from compact suffix
tree, then run algorithm 15, or use more general algorithm 16 directly on the
compact suffix tree. Both algorithms are given in a functional style in the
sense they create new structure based on their input without modifying the
original structure. However, it is possible to use them in-place with trivial
modification.

Theorem 1. Algorithm 15 is correct and will produce position heap of string
x for any correct suffix tree of x.
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6. On position heaps

Algorithm 15 Construction of Position Heap From Suffix Tree

function SuffTreeToPosHeap(node)
r ← copy of node
e← {(l,SuffTreeToPosHeap(n)) | (l, n) ∈ edges(node)}
if position(r) = nil then

(l,m)←MaxNode(e)
if m = nil then

return nil
end if
position(r)← position(m)
position(m)← nil
edges(r)← (e \ {(l,m)}) ∪ {(l,SuffTreeToPosHeap(m))}

else
edges(r)← e

end if
return r

end function

function MaxNode(edges)
if edges = ∅ ∨ (∀(label,node) ∈ edges)(position(node) = nil) then

return (nil,nil)
end if
return (l, n) ; (l, n) ∈ edges ∧ position(n) = max {position(m) | (k,m) ∈

edges}
end function

suffix tree

compact suffix tree suffix automaton

compact suffix automaton

position heap

???

compaction compaction

minimization minimization

lossy compaction

lossy compaction

minimization

Figure 6.1: Conversions between suffix index structures
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Algorithm 16 Construction of Position Heap From Compact Suffix Tree

function CSuffTreeToPosHeap(node)
e← ∅
for all (label, child) ∈ edges(node) do

child← CSuffTreeToPosHeap(child)
if length(label) > 1 then

n← new node with position position(child)
position(child)← nil
l← pref(label, 1)
edges(n)← {(l−1label, child)}
e← e ∪ (l,CSuffTreeToPosHeap(n))

else
e← e ∪ (label, child)

end if
end for

r ← new node with position position(node)
if position(r) = nil then

(l,m)←MaxNode(e)
if m = nil then

return nil
end if
position(r)← position(m)
position(m)← nil
edges(r)← (e \ {(l,m)}) ∪ {(l,SuffTreeToPosHeap(m))}

else
edges(r)← e

end if
return r

end function

Theorem 2. Algorithm 16 is correct and will produce position heap of string
x for any correct compact suffix tree of x.

Proof of correctness of these algorithms, i.e. proof of theorems 1 and 2 is
beyond the scope of this work, but is something we would like to address in
the future.

It should be relatively simple to use these algorithms to derive algorithm
for construction of position heaps from suffix automata, because the suffix
automata are acyclic graphs and thus can be traversed in much the same way
trees can (the only difference being that some nodes may be visited multiple
times). The only problem is that the position function is not defined for states
of suffix automaton as they are defined in most literature ([5]). Because some
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6. On position heaps

position 5 4 3 2 1

string a b b a c

1

2

5

b

a

3

4

b

b

(1)start (2, 3) (4, 5)

a

b

b

Figure 6.2: Example: position heap for the string “abbac” and an automaton
produced by the heap’s minimization

q0start q1 q2

a (2)

b (3)
b (4, 5)

Figure 6.3: Modified version of position heap-derived automaton with position
labels placed at the edges

states in suffix automaton for a string x correspond to multiple factors of x,
they also correspond to multiple nodes of suffix tree for x and so function
position would have to return a set rather than a scalar value.

Algorithms 15 and 16 are perhaps trivial, but to our knowledge, they
are presented here for the first time. These algorithms change the situation
shown in figure 1.5 to what is shown in 6.1. Given that by compaction and
minimization of a suffix tree yields a compact suffix automaton, a question
may be asked what is the result of heapifying suffix tree to get position heap
and then minimizing that position heap. It is possible this could produce an
automaton that could be used for approximate factor search in string x like
a position heap, but would be the minimal equivalent of said position heap,
having possibly less than ||x|| states.

Theorem 3. There exists a string x such that PH(x) can be minimized; that
is minimization of PH(x) yields automaton A such that number of states of
A is less than ||x||.

Figure 6.2 show example of a position heap for the string “abbac” and
an automaton, which was created by the heap’s minimization. Note that the
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number of states of the automaton is 4, which is less than ||abbac|| = 5. This
proves theorem 3. In other words, position heaps which are not minimal exist.

Just like the position heap, the resulting automaton has no false negatives
when searching for occurrences of a factor of the indexed string. On the
other hand, it has more false positives. For example, for input string “ab”,
the position heap in figure 6.2 yields set of occurrences (2, 5) (position 1 is
omitted, because there cannot be a factor of length 2 at position 1), while the
automaton in the same figure yields (2, 3, 4, 5). This can be partially remedied
by moving the position labels from states to edges (this would also require a
trivial modification of the search algorithm) as shown in figure 6.3.

This automaton would find occurrences (2, 4, 5) for the same input string,
still more than the the position heap, but fewer than the simple minimization
of the position heap in figure 6.2.

Analysis and proofs of the properties of this data structure are matter of
future work.
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CHAPTER 7
Experimental results

Table 7.1 shows the XML data sets we have used for performance measure-
ments. We have chosen them for their number of elements on the presumption
that the larger the trees are, the more representative the results would be.

We have run tests on existing subtree search (search where the subtrees
where actually known to be present in the tree), nonexistent subtree search
and tree pattern search. For each test and dataset, we attempted to find 10
subtrees for each of the following size categories: 20 to 30, 50 to 60, 100 to
110, 200 to 220, 300 to 330, 400 to 450 and 500 to 600 nodes. We ran each of
these queries 10 times for both the the WBC algorithm, FLLI algorithm and
the position heap index algorithm and took arithmetic average of the times.
The time measured includes simulation of the subtree pushdown automaton
and the interpretation of the final state only.

The measurements were made on a computer with Intel Core i7-3820
3.60GHz 64-bit CPU and 18GB RAM.

Table 7.1: Datasets used for measurements

File Description Elements Max. depth

psd7003.xml Protein Sequence
Database

21305818 7

SwissProt.xml SwissProt database 2977031 5
dblp.xml DBLP Computer Sci-

ence Bibliography
3332130 6

nasa.xml Astronomical data 476646 8
treebank e.xml Partially-encrypted

treebank
2437666 36

standard.xml Synthetic data gener-
ated by xmark

1666315 12

55



7. Experimental results

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0  100  200  300  400  500  600

N
u
m

b
e
r 

o
f 

o
cc

u
re

n
ce

s

Subtree size (nodes)

psd7003.xml

Figure 7.1: Subtree size frequency
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7. Experimental results

All algorithms exhibit non-linear relationship between the size of the searched
subtree pattern and the measured time for the selected patterns and data.
This is most likely because the time complexity of all of the measured al-
gorithms is dependent on the number of occurrences and as the intuition
suggests and figure 7.1 proves, there is an inverse relationship between the
size of a subtree and the number occurrences of that subtree in a larger tree
(at least in a real-world examples).

Figure 7.2 shows WBC results in more detail. There appears to be a local
maximum around the subtree size of 200 nodes. Presumably, up to this size,
the increasing size of the subtree had more influence on the running time than
the decreasing number of subtree occurrences. For sizes larger than that, the
running time decreased again until the number of occurrences reached a small
integer close to 1 and couldn’t decrease any further, at which point only the
increasing subtree size could have any effect on the running time.

Figure 7.3 shows measured times of searching for the subtree patterns in
the dataset nasa.xml for all algorithms. Interesting feature of the times to
note is that just like with the frequency of the subtree sizes, there seems to be
an inverse relationship between the size of the subtree pattern and the running
time for both the FLLI and position heap index algorithms.

Figure 7.3 also shows that out of the three measured schemes, the position
heap based index was found to be fastest for most inputs. Like the FLLI index
it is more sensitive to the number of occurrences than the size of the pattern,
so the WBC index is faster for some smaller patterns. The speed is at the
cost of some false positives, but their number seems to be relatively low as
shown in figure 7.4. The average false positive rate in the measured sample
was ≈ 0.14 false positives per occurrence.
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Conclusion

We have shown how an effective bit-parallel implementation of nondetermin-
istic automata can, under certain circumstances, give better performance than
comparable deterministic automata.

We have implemented three tree indexing schemes and used them index
large real-world datasets. The WBC scheme, as it was originally described
in [14], the FLLI scheme presented in [9] with only minor implementation
modifications and finally we’ve implemented a new scheme, modification of the
FLLI scheme which uses position heaps instead of compact suffix automatons.

We have experimentally compared the performance of their search phases
and found that for most inputs, the new scheme employing position heaps has
the best running times. However, the comparison is made more difficult by
the fact that the running times of the algorithms react differently to varying
subtree pattern size and number of occurrences of the pattern.

In the following paragraphs, we mention possible directions for future work.

Analysis of the presented position heap conversion
algorithms

Algorithms 15 and 16 need proof of correctness and asymptotic bounds for
their running time. If this time cannot be proven to be linear, it may be
interesting to find a linear time algorithm that does the same.

New position heap-based data structure

The data structure created by the minimization of the position heap shown
in figure 6.3 needs more analysis. We haven’t given any asymptotic bounds
for the number of states of this automaton, or the time of computing all
occurrences of a pattern. The time is most likely going to be the same as for
position heap, but a proof needs to be given.
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