
CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF ELECTRICAL ENGINEERING

BACHELOR THESIS

Motion planning for modular robots under
failures

Author:
DANIEL LAMPER

Supervisor:
Ing. Vojtěch VONÁSEK

Department of Cybernetics

Prague

May, 2016

http://www.cvut.cz
http://fel.cvut.cz
http://department.university.com

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Daniel L a m p e r

Study programme: Cybernetics and Robotics

Specialisation: Robotics

Title of Bachelor Project: Motion Planning for Modular Robots under Failures

Guidelines:
1. Get familiar with modular robotics [3], with focus to locomotion generation [4,5]. Study physical
 simulation of 3D objects [9]. Study bio-inspired optimization methods like Genetic Algorithms or
 Swarm-based systems [6,7].
2. Implement a simple simulation model of modular platform CoSMO [8]. Implement an optimization
 method suitable for optimization of locomotion patterns.
3. Optimize locomotion patterns for several modular robots (e.g. 'cross' robot, snake-like, caterpillar)
 using the optimization method implemented in task 2.
4. Implement a motion planning method (e.g. RRT [1,2]) that uses the optimized locomotion patterns.
5. Analyze influence of joint failures. Consider two types of failures (free-joint and stuck-joint). Design
 rules to recover from failures (e.g. using detaching of modules, re-learning of patterns, etc.)
6. Verify designed strategies for failure recovery in simulation.

Bibliography/Sources:
[1] LaValle, Steven M - Planning algorithms - Cambridge university press, 2006.
[2] LaValle, Steven M., and James J. Kuffner Jr. - Rapidly-exploring random trees: Progress and
 prospects - (2000).
[3] P. Levi, E. Meister AC. van Rossum, T. Krajnik, V. Vonasek, P. Stepan, W. Liu, F. Caparrelli - "A
 cognitive architecture for modular and self-reconfigurable robots" - Systems Conference (SysCon),
 2014 8th Annual IEEE, vol., no., pp.465,472, March 31 2014-April 3 2014
[4] Q. Wu et al. - "Survey of locomotion control of legged robots inspired by biological concept." - Science
 in China Series F: Information Sciences 52.10 (2009): 1715-1729
[5] A. J. Ijspeert - "Central pattern generators for locomotion control in animals and robots: a review." –
 Neural Networks 21.4 (2008): 642-653.
[6] R. Eberhart, J. Kennedy. - "A new optimizer using particle swarm theory" - Proceedings of the sixth
 international symposium on micro machine and human science. Vol. 1. 19
[7] R. Eberhart, Y. Shi, J. Kennedy – "Swarm Intelligence" - Morgan Kaufmann, 2001
[8] Liedke, J. – "The Collective Self-reconfigurable Modular Organism (CoSMO) " - IEEE/ASME
 International Conference on Advanced Intelligent Mechatronics - 2013
[9] David H. Eberly - Game physics - CRC Press, 2010.

Bachelor Project Supervisor: Ing. Vojtěch Vonásek

Valid until: the end of the summer semester of academic year 2016/2017

 L.S.

prof. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, December 20, 2015

iii

Author statement for undergraduate thesis:

I declare that the presented work was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instructions for ob-
serving the ethical principles in the preparation of university theses.

Prague, date.. .
signature

iv

Abstract
In this thesis, methods of motion planning for modular robots under failure is investigated.
Methods based on Central Pattern Generator (CPG) are used to generate signals for loco-
motion control of modules. The Particle Swarm Optimization (PSO) is bio-inspired method
which is used for optimization of CPG-based locomotion. For purpose of the motion plan-
ning, the Rapidly-exploring Random Tree (RRT) algorithm is implemented. In this thesis,
two types of module failure are investigated, fix-joint and free-joint. The influence of dif-
ferent combinations of modules under failures was statistically compared on different types
of robots. The experiments were conducted using a simulation environment. The result of
the experiments is that in most of the cases robots operate better with broken modules as
without them.

Keywords: failure, modular, locomotion, planning, robot

Abstrakt
V tejto práci sú skúmané metódy plánovania pohybu pre modulárne roboty s uvažovanou
poruchou modulov. Metódy založené na Central Pattern Chenerator (CPG) boly použitý
pre generovanie signálov pre pohyb . Particle Swarm Optimization (PSO) algoritmus je
metóda inšpirovaná prírodou a bola použitá pre optimalizáciu pohybu založenom na CPG.
Pre účely plánovania pohybu bol implementovaný Rapidly-exploring Random Tree (RRT)
algoritmus. V tejto práci sú skúmané dva typy poruchy modulu, zaseknutie kĺbu a neovlá-
datel’nost’ kĺbu. Vplyv rôznych kombinácií pokazených modulov bol štatisticky porovnaný
na rôznych typoch robotov. Experimenty boli vykonané za použitia simulačného prostre-
dia. Výsledkom pokusov je, že vo väčšine prípadov roboty pracujú lepšie s pokazenými
modulmi ako bez nich.

Klúčové slová: porucha, modulárny, pohyb, plánovanie, robot

v

Acknowledgements
I would like to thank my supervisor, Ing. Vojtěch Vonásek Ph.D., for the patient guidance, a
lot of useful advices and his time. Finally, I would like to thank my family for their support.

vii

Contents

Contents vii

1 Introduction 1

2 State of the art 3
2.1 Modular robotics . 3

2.1.1 Base Model . 3
2.1.2 CoSMO . 6
2.1.3 Failures in modular robotics . 8

2.2 Central Pattern Generator . 8
2.2.1 CPG in Modular Robotics . 10

2.3 Gait optimization . 10
2.3.1 Genetic Programming . 10
2.3.2 Particle swarm optimization . 11

2.4 Motion planning . 12
2.4.1 Rapidly-exploring Random Tree . 14

3 Implementation 17
3.1 Simulation environment . 17
3.2 PSO optimization of CPG patterns for CoSMO robots 17

3.2.1 Fitness evaluation . 18
3.3 RRT for motion planning of CoSMO robots . 20

4 CoSMO robot under failures 23
4.1 Implementation . 23
4.2 Experiments . 25

4.2.1 Cross structure . 25
4.2.2 Dog structure . 28
4.2.3 S-shape structure . 29

5 Conclusion 33

A CD content 39

1

Chapter 1

Introduction

The modular robotics is a field of study of the robotic systems which are constructed from
small bodies called "modules". These modules are independent mainly with their own sen-
sors, actuators, computed means and docking interface. This architecture allows a different
types of structures of modular robots. These structures are referred to as constructions in
this thesis, in the Fig (1.2) is an example of construction of CoSMO robot. This variability
makes modular robots very flexible, adaptable and makes economical advantage in contrast
with the fixed robotics structures. Their flexibility and adaptability is based on the ability
of reconfiguration or to self-reconfiguration of modular robotics systems. In the Fig (1.1) an
example of modular robot’s ability to reconfigure construction is shown. The modules in
the robot are docked to each other by a docking interface which is being used for transfer
forces, torques, electrical power and communication between modules.

On the other hand, there are several issues connected to modular robotics. Such as in-
creasing degrees of freedom (DOF) with the growing number of modules, what make gaits
of a modular robot more complicated to control. In task of modular robotics it is not suitable
to use Inverse Dynamic or Kinematic Problem for solving the motion of robot. There exist
several methods how to undergo this issue.

In this thesis, for generating locomotion control the Central Pattern Generator (CPG) is
used. The CPG is optimized by an Particle swarm optimization (PSO) algorithm. For motion
planning Rapidly exploring Random Tree (RRT) algorithm is used. These algorithms are
described in detail in Chapter (2) & Chapter (3).

The locomotion in modular robotics means the ability of robot to move by generating
gaits such as walking, side-winding, rolling, crawling, undulating and others. The loco-
motion applied in specific direction is called primitive. The modular system can produce
as many primitives as possible. However, in this thesis robots considering of most four
primitives.

The thesis introduces modular robotics under failure and studies several options how
to approach this issue. There exist two kinds of failure in modular robotics: electrical and

FIGURE 1.1: Adaptability of M-tran modular robot. [1]

2 Chapter 1. Introduction

FIGURE 1.2: Example of Snake-Like construction of CoSMO modular robot.

mechanical. For purpose of this thesis, there are considered only mechanical types of failure.
The Chapter (4) examines an influence of failure on robot’s behavior in environment, its
locomotion ability and capability to search space. The study does not investigate the cause
of failure but handles an option how to overcome this issue and fix the problem. The thesis
considers two types of mechanical failures: fix-joint and free-joint. Fix-joint failure means
that the module gets stuck in a last position, while the free-joint failure makes a rotation of
the hinge uncontrollable and free to revolve.

3

Chapter 2

State of the art

This thesis deals with motion planning for modular robots as well as modular robots un-
der failures. This is achieved by using the concept of motion primitives. The low-level loco-
motion is generated using CPG (2.2). The motion planning is realized using RRT (2.4.1). The
state-of-the-art methods relevant to the studied topics are briefly described in this chapter.

2.1 Modular robotics

Modular robot is a robotic system made by a set of connected units (modules) which
are joined together by a docking interface. [2] Modules can be described as simple, self-
contained building blocks with their own sensors, actuators and computed means. Due
to the ability of the modules to join, they can build up specific robotic structures. Modular
robots can adapt to the specific environment which means, they are able to reconfigure or to
self-reconfigure [3;4]. The reconfiguration can be achieved e.g. using external tools (of other
robots). Contrary, self-reconfiguration is such a reconfiguration that can be performed by
the robot itself. The robots with self-reconfigurable abilities are therefor more complex. For
example, a robot can change the structure from legged robot to a snake-like robot which is
suitable when the terrain change. In case of failure of one or more modules, modular robots
have ability to repair / self-repair. This fact makes modular robots more economically prof-
itable over fixed structure robots.

2.1.1 Base Model

Modular robots are classified into two major categories: the Mobile Configuration Change
(MCC) and the Whole Body Locomotion (WBL). [2]

Mobile Configuration Change: One of the main characteristics of MCC category is that in-
dividual robots’ modules interact with the environment independently. Modules are phys-
ically connected to one another and make head-to-tail form. The locomotion patterns are
traditional and use typical mechanism that enables mobility of individual modules such as
wheels or triads. MCC contains means of coupling what enable a swarm of modules and
brings possibility to build large configurations. Examples of modular robots from the MCC
category:

• S-BOT [8] — each module is autonomous and operate with the mobile tracked-and-
wheeled platform, the arm and the gripper.

• Uni-Rover [9] — has been developed as a planetary rover. Rover’s wheels were trans-
fered to self-contained mobile modules referred to as a child. This child can connect
to/ disconnect from mother platform. The child is made by gripper mechanism and
caster wheel.

4 Chapter 2. State of the art

(A) Module of S-BOT [5]

(B) Three units of JL-I robot [6]

(C) AMOEBA robot in "I" con-
figuration [7]

FIGURE 2.1: Examples of modular robots of the MCC category

• JL-I [10] — contains cone-shaped connector with matching coupler in center of module
and two sides tracked units.

• Millibots [11] — two male steel pins in front of module coupled with female receptacle
in back of module.

• AMOEBA [12] — Modules of this robot can be joined from all sides.

Whole Body Locomotion: Unlike MCC category, WBL category’s modular robots are more
flexible for movement and can provide various gaits such as walking, side-winding, rolling,
crawling, undulating and others. However, modular robots from the WBL category can pro-
vide useful movement only under the condition that they are connected to the structure. [13]

The WBL category is divided by architecture to three subcategories [2]: a) chain architecture
b) lattice architecture and c) hybrid chain-lattice architecture.

a) Chain architecture This architecture provides whole body locomotion which in-
volves many degrees of freedom (DOF). Legged and snake-like structures are typical for
the chain modular robots. Examples of chain modular robots are depicted in Fig (2.3).

• PolyBot [17] — It is self-reconfigurable modular robot providing multiple whole body
locomotion.

• GZ-I [18;15] — This type is similar to PolyBot, but without any self-reconfigurable abili-
ties.

• CKBot [19] — It can be docked manually or can provide self-reconfiguration by using
permanent magnets. Three out of many locomotions he provides are walking, undu-
lating and rolling.

b) Lattice architecture Characteristic for this architecture is the grid position of mod-
ules which are connected via docking interface. The lattice architecture contains three dif-
ferent possible mechanisms: Macro robots, Mini robots and Transferable mechanism [2].

• Macro robots — Mostly have cubic or parallelepipedic modules.

2.1. Modular robotics 5

(A) CKBot [14]

(B) Snake-like robot and
three-leg robot configurations

of GZ-I modular robot [15]

(C) PolyBot [16]

FIGURE 2.2: Examples of modular robots of WBL in a chain architecture

• Mini robots — Interesting on mini modular robots are potential military and civilian
applications. These applications include exploring in environment unsuitable for hu-
mans or large robots. It is technical challenge to mini-size reconfigurable robotics,
especially battery size.

• Transferable mechanisms — Mechanisms comprises of multiple magnetic gears where
each one contains motor providing rotation around the central axis. On each gear unit
there is used a multi-pole magnet with a total of six poles (3N, 3S).

c) Hybrid chain-lattice architecture This architecture has been investigated for mobile
reconfigurable furniture application as well as for other highly adaptive mobile systems.

• M-TRAN [1] — This hybrid-morphology robot consists from semi-cylindrical modules
which are composed of one passive and one active semi-cylinder.

• ATRON [20] — Robot with near-spherical and pyramidal modules. Each module is
constituted of two four-sided pyramids with edge carvings that enable the module
exhibit a near spherical geometry.

• SuperBot [21] — Modules of SuperBot own structure with two half-cubes rotating around
a central axis and enable the module to achieve pivot around three different links.

6 Chapter 2. State of the art

(A) Crystalline robot [22]

(B) Catons [23]

(C) iCubes modular robot [24]

(D) Odin robot [25]

FIGURE 2.3: Examples of modular robots of WBL in a chain architecture

2.1.2 CoSMO

Another example of the hybrid architecture is CoSMO which is described in detail below.

The Collective Self-Reconfigurable Modular Organism [26] (CoSMO) is example of swarm
robots. CoSMO is type of the modular robot of hybrid architecture that consists from several
building blocks (modules). Modules are cubes of size 105x105x105 mm and weight of 1,25
kg and they encompass docking devices that are being used for transfer of forces, torques,
electrical power and communication between modules. The CoSMO modules can dock
between each other from every of four sides.

2D locomotion of CoSMO robots is provided by 2D-drive units based on two Archimedes
Screws. The screw-drives are used for different kind of movements. Depending on rotation
of the screw-drives the CoSMO can move in different ways. If screw-drives rotate in same
direction, the CoSMO will move forward or backward, on the other hand if screw-drives
rotate in different direction the CoSMO will move sideways. For CoSMO rotation, one of
the screw-drives has to be controlled and the other one needs to be motionless.

FIGURE 2.4: Lizard (left) and Cross (right) modular robots made of CoSMO
modules.

2.1. Modular robotics 7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

-3*pi/8

-pi/4

-pi/8

0

pi/8

pi/4

3*pi/8

A
ng

le
 [r

ad
]

u
1

u
2

u
3

u
4

FIGURE 2.5: A snake-like robot driven by Eq. (2.1). The modules are num-
bered from right to left.

For 3D locomotion of CoSMO robots is used the main hinge, which can move in range
[−π

2 ,
π
2] rad. The hinge is controlled by setting a desired angle which is generally controlled

by CPG (Sec 2.2). However, in this thesis the angle is given by the angle speed Eg. (2.1),
where Ai ∧ Bi ∈ 〈−π

4 ,
π
4 〉 rad, ωi ∈ 〈0.3, 0.7〉 Hz and ϕi ∈ 〈−π, π〉 rad. The joint can rotate

very fast (the maximal hinge speed is 2
3π rad/s), but the fast movements are not used in this

thesis and the modules move very slowly.

ui(t) = Ai sin(ωit+ ϕi) +Bi (2.1)

Inspiration

The design of CoSMO platform was inspired by the following scenario. In general, sym-
biosis is cooperation between numbers of different species. In robotic sphere the symbiosis
means aggregate cooperation of particles (swarm robots). The article [27] discusses the ex-
ample of aggregate cooperation of modular robots in the task of energy foraging. Modular
robots (particles) are placed in unknown space. They mission is to stay alive and that is
possible only if they find the charging station. In first out of three cases is the environ-
ment without any barriers, there are only particles (exactly in the article is mentioned 70
robots). For finding the charging station, these particles cooperate only by sharing the in-
formation about they position and status of finding the charging station. Only few robots
can be charged at a same time. So after finding the charging station, there is created a queue

8 Chapter 2. State of the art

of robots which wait for their time of charging. In second case, in front of the charging sta-
tion is added the barrier and the mission of particles is same, to stay alive. In this situation
all robots die because no one found the energy source. In last case there is still barrier in
environment. However, particles are taught higher cooperation as the aggregation of many
single particles and they can be formed into the one multi-robot organism. That is the only
way how they can pass the barrier and stay alive.

2.1.3 Failures in modular robotics

As was mentioned before, modular robots have abilities to repair /self-repair when they
are under failure. That makes an important advantage of the modular robots architecture.
The easiest solution how to fix the issue of broken module is to repair it with a spare module.
However, this is possible only if the organism is near to a repair station, thus this solution is
not possible if the robot operates in the field. When the robot is on mission, the solution can
be to disconnect the broken module. It might seem as easy way to tackle the problem, but
it may not be true. The issue of this method may be inability to undock the module due to
mechanical or electrical problems or the robot cannot self-reconfigure due to environmen-
tal conditions. When the robot disconnect the broken modules, his ability of locomotion
can change. Because of the new construction robot’s primitive can be unperformed. The
article [28] investigates the adaptation of the robots’ locomotion instead of exchanging of the
broken modules. This thesis examines the robots’ behavior in case of failure and study pos-
sible solutions to tackle the problem. It also investigates the difference between behavior of
robots under failure and robots without the broken modules.

The number of possible failures Nm for a robot consisting of m modules is equal to:

Nm =

m∑
i=1

(
m

i

)
· ki = (1 + k)m , (2.2)

where k is a constant number of CPG-relevant failures, for example a discrete set of joint
angles where the module might get stuck. In an example of robot in Fig (2.4) with m = 16
modules considering of most three non-working modules with failure level k = 1, this leads
to:

N16 =

3∑
i=0

(
16

i

)
· 1i = 697, (2.3)

possible configuration of the robot. The number of possible failures grows exponentially
with number of modules m or with number of defect types k. In this thesis the robot’s con-
struction contains m = 9 modules in maximum, considering of most four broken modules
and the level of failure k = 2. So that makes 2851 possible functional states of the robot
which need to be considered for optimization. This is lot of computation so just a little
sample of them was investigated.

2.2 Central Pattern Generator

One of the main hallmark of robots with many DOF (e.g. legged or modular robots) is that
they can easily step over barrier or go through uneven ground, what is great advantage in
comparison with wheeled robots. Robots with many DOF have more flexible body, therefore
they can deal better with more complex areas as wheeled robots. Unfortunately, some other
issues, such as degree of freedom or balance keeping, make motion control of robots with
many DOF more demanding and much complicated task. These issues are mainly solved

2.2. Central Pattern Generator 9

by programming mechanism. Algorithms, that are used to cover these issues, are based
on studying and simulating animals’ walking mechanism. From engineering aspect, this is
efficient way to overcome obstacles of motion control for robots with many DOF.

Engineers have developed and improved motion control method based on Central Pattern
Generator [29] (CPG). CPG network is dynamic biological system which combines neural sys-
tem, body and environment. The neural system produces periodic as well as non periodic
control signals. Depending on the type of CPG, the signals can be generated with or with-
out sensory feedback [30]. As the environment change through moving of body, the neural
system adapt control signals as well. From engineering perspective, CPG can be treated as
feedforward in addition with feedback control system. The CPG inspired control method
has become a hot topic of study for engineering applications. There are several mathemati-
cal models commonly used in CPG related studies.

Example of Neuron CPG model is Hodgkin-Huxley (H-H) type model [29]. The original H-
H model has many parameters so for better understanding of the basic behavior of neurons
a simplified FitzHugh-Nagumo model can be defined:

ẋi = c

(
yi + xi +

x3i
3

+ fci

)
,

ẏi = −
xi − a+ byi

c
,

(2.4)

where xi is the membrane potential of the i-th neuron; fci is the driving signal from neuron
i and a, b and c are parameters.

Other example of Neuron CPG model is Stain’s model [29], which is able to produce oscil-
lations. It is defined by differential equations:

ẋi = a

(
−xi +

1

1 + exp(−fci − byi + bzi)

)
,

ẏi = xi − pyi,
żi = xi − qzi,

(2.5)

where xi is the membrane potential of the ith neuronal oscillator; fci is the driving signal for
oscillator i; a is a constant affecting the frequency of the oscillation; b allows the model to
adapt a change in stimulus; p and q control the rate of this adaptation.

The last mentioned Neuron CPG model is Leaky-integrator model [29], which describes
basic behavior of neurons. It is true thatthis model is not able to simulate degree of adap-
tation of neurons however Matsouka proposed this model to better fit for the properties of
neurons.

Other types of models are Nonlinear oscillator models. It is worth to mention Kuramoto’s
model, Hopf model, Van der Pol’s model and Rezleigh’s model. [29] Hopf model is repre-
sented by:

10 Chapter 2. State of the art

ẋ =
(
µ− r2

)
x+ ωy,

ẏ =
(
µ− r2

)
y + ωx,

(2.6)

where µ > 0 is amplitude of output signal, r =
√
x2 + y2 and ω is angular velocity which

control the frequency of the oscillator.

2.2.1 CPG in Modular Robotics

CPGs have been originally studied for legged robots, however they can also be used to
control locomotion of modular robots. Modular robots are made up from identical building
blocks (modules), which can work independently and alone or can cooperate with a number
of other modules in many different configurations. One of the examples of modular robots
using the CPG model for gait control is Roombot [31]. The CPG are used due to their ability
to generate periodic oscillations which is suitable Roombot locomotion. The specific model
used for Roombots is the Hopf model, defined by Eq. (2.6). The Roombot module is created
by four oscillators where three of them are used for locomotion and last one represents a
clock. The goal is to investigate the control method which comes true by following these
implementations criteria:

• Morphology Independent — Strategy planning is independent to morphology of robots.

• Life-long Learning — Algorithm for strategy planning should not be designed for par-
ticular morphology because through the time robots can change his form because of
environment changes or some module can fail.

• Noise Tolerance — Strategy must be tolerant to noisy fitness measurements.

• Simple Implementation — If strategy is to be morphologically independent then it must
be able to work at each module. Modules are embedded devices, that means they have
limited communication and computation abilities so implementation must require a
minimal amount of resources.

For optimization of CPG patterns was selected Simultaneous Perturbation Stochastic Ap-
proximation [31] (SPSA) method. This method is independent on the number of modules as
well as morphology of whole robots because SPSA optimize each module independently to
other modules. Consequently SPSA is simple to implement in a distributed fashion.

2.3 Gait optimization

Behavior of CPGs can be influenced by their parameters. For example, the Hopf oscillate
(E.g. 2.6) is controlled by parameters µ (amplitude of motion) and ω (speed). To realize a
desired gait, the parameters need to be optimized according to defined cost function. Op-
timization of CPG parameters leads to the high-dimensional optimization, which can be
solved e.g. using genetic algorithms.

2.3.1 Genetic Programming

Genetic programming [32] (GP) is offered as a efficient method for optimization. GP is
a domain-independent and population of computer programs evolving approach to solve
problems. GP’s simulated evolution is based on the Darwinian principle of reproduction
and survival of the fitness. The major attributes of GP are:

2.3. Gait optimization 11

• Function Set — Since locomotion of Snakebots are based on periodical signals, there are
included trigonometric functions sin and cos as well as algebraic functions (+,−, ∗, /).

• Terminal Set — Terminal set includes terminal symbols necessary for finding-solution.
Symbols of GP are represented as: segment_ID (unique index of segment of Snake-
bot), specialize (e.g. by phase, amplitude or frequency), time, Pi and random
constant (range [0,2]).

• Fitness evaluation — Fitness function based on the velocity of Snakebot. The velocity
values are typically within the range [0,2] and are multiplied by normalizing coeffi-
cient within the range [0,200].

• Genetic representation — Evolved genotypes of simulated Snakebots are represented as
trees.

• Genetic operations — Binary tournament selection is used because of its robust, com-
monly used selection mechanism and because is simple to code. Crossover operations
are defined by sub-trees as the way of the same data type which can be loose only from
parents.

GP evaluation and CPG-based (2.2) approaches for locomotion gaits share same features,
such as the open-loop control scheme and the incorporation of coupled oscillators. How-
ever for CPG-based approaches is necessary to have at least little domain-specific knowl-
edge about the task, what on the other hand GP does not need to know all domain-specific
limitations and in spite of this it can give optional solutions.

Example of application of GP in modular robotics

The article [33] discusses snake-like robots (Snakebots) and how GP is used for investigat-
ing the fastest possible locomotion. Snakebots are limbless, wheelless robots using side-
winding locomotion. The advantages of Snakebots are their robust characteristics and abil-
ity to traverse terrain that can cause troubles for wheeled or legged robots. The Snakebots
may be cheaper and easier to build, in case we have separate modules already constructed.
Because of their simple construction it is easy to replace module in case of failure. Other
useful features are for instance good traction, high redundancy and stability. On the other
side in comparison with legged or wheeled robots, Snakebots are more difficult on ther-
mal control and have smaller payload. In principle, Snakebots may be formulated by a
mathematical model, however this model would be defined with lot of variable and equa-
tions what makes this task really hard to describe and understand. Considerable amount
of degrees of freedom, which depends on each other, makes this task complex and hard to
describe via easy understandable mathematical model. Ability of GP to find a near-optional
solution in a reasonable runtime is offered as effective method how to go through this task.

2.3.2 Particle swarm optimization

Particle swarm optimization [34;35] (PSO) algorithm is an optimization algorithm based on
the inspiration from birds’ flock. The swarm contains particles where each has its own po-
sition ~xi in n-dimensional space. These particles are moved around to examine the search-
space and to find relative best solution with the possible best fitness value. Except actual
position and fitness value the particles also remember local best known position ~pi. The
swarm at all has global best known position ~pq where index q is pointer to global best po-
sition. An important part of the PSO algorithm is the velocity ~vi of each particle, which is
defined by [36]:

12 Chapter 2. State of the art

~vi = ω~vi + ϕprp(~pi − ~xi) + ϕqrq(~pq − ~xi), (2.7)

where ϕp, ϕq and ω are parameters which control the behavior and efficacy of the particles’
movement in search-space and rp and rq are random real numbers in range [0, 1]. The
velocity is changing each time step for each particle i toward pi and pg position.

-5
20

0

5

10 20

10

fit
ne

ss
 v

al
ue 15

10

y

0

20

x

25

0
-10 -10

-20 -20

(A) Particle movement at the Ackley function.
Red points represent position of the particle in
search-space in individual iteration. Dashed
line can be imagine as way which traversed the

particle

0 2 4 6 8 10 12 14 16 18 20

iterations

0

5

10

15

20

25

fit
ne

ss
 v

al
ue

(B) Particle convergence at the Ackley function.

FIGURE 2.6: Example of using PSO for investigating the minimum of the Ack-
ley function Eq. (2.8)

F (x) = 20 + exp(1)− 20 exp

(
−0.2

√
1
32

32∑
i=1

x2i

)
− exp

(
1
32

32∑
i=1

cos(2πxi)

)
(2.8)

2.4 Motion planning

The task of motion planning is to find a feasible trajectory from a given initial configura-
tion to the goal configuration. The trajectory is feasible if the robot does not collide with any
obstacles. Motion planning [37;38] can be defined as a computation of geometrical primitives.
The motion planning algorithms are used for finding a path in n-dimensional search-space.
Also these algorithms might have included a collision detection module. If a solution exists,
the algorithm must return one in finite time. However, if the solution does not exist the al-
gorithm may run forever. To avoid this possibility the motion planning algorithms include
a bound, e.g. number of iteration while the algorithm should find the solution is set. Unfor-
tunately, this may cause that a solution would not be found in spite of that it might exist. So
it is necessary to consider number of iterations that are optimal to be used.

There exist two different types of planning: the Path planning and the Trajectory/Motion
planning. The path planning produces a geometric graph. The output of this method is a
simple vector containing only geometric coordinates, x, y and in 3D space also z coordinates
of vertexes in space, while the motion planning method considers kinematics as well as

2.4. Motion planning 13

Algorithm 1: Basic PSO algorithm

Input : Space bounds ~B; Velocity bounds ~V ; Fitness function F
Output: Best position pq

1 q = 0 ; // q is index of best global position
// initialize coordinates of particles

2 for i = 1 to number of particles do
3 ~xi = rand(~B);
4 ~pi = ~xi;
5 if F (~pq)<F (~pi) then
6 q = i;
7 end
8 ~vi = rand(~V)

9 end
10 for k = 1 to Number of iterations do
11 for i = 1 to number of particles do
12 for d = 1 to dimension do
13 vi,d = vi,d +ϕprand(0, 1)(pi,d-xi,d)+ϕqrand(0, 1)(pq,d-xi,d);
14 if vi,d > Vd then
15 vi,d = Vd;
16 end
17 if vi,d < −Vd then
18 vi,d = −Vd;
19 end
20 xi,d += vi,d;
21 end
22 if F (~pi)<F (~xi) then
23 ~pi = ~xi;
24 if F (~pq)<F (~pi) then
25 q = i;
26 end
27 end
28 end
29 end

dynamics of the robot. The results of motion planning is a trajectory describing how to
robot move, i.e. it contains control inputs to the actuators. For purpose of this thesis the
motion planning was used instead of path planning.

The motion planning algorithms are usually based on random sampling of approaches,
which means that the found solution is not an optimal solution. Thus, motion planing can
generally be described as a search for the goal configuration ~qgoal in n-dimensional space
S. Each point ~q ∈ S is specified by its configuration attributes as the position, the orienta-
tion and so on. Most common motion planning algorithms are Probabilistic Roadmap algo-
rithm (PRM) [39], Expansive Space Trees algorithm (EST) [40], Fast Marching Tree (FMT) [41],
Bi-Directional FMT (BFMT) [42]. In this thesis, Rapidly-exploring Random Tree algorithm
(RRT) [43;44]is used for motion planing. The RRT algorithm is described in Sec (2.4.1).

14 Chapter 2. State of the art

2.4.1 Rapidly-exploring Random Tree

Rapidly-exploring Random Tree (RRT) is the motion planning algorithm designed for find-
ing a path in n-dimensional configuration spaces. In modular robotics it is used only for
finding path in 2D or 3D space, so the thesis focused on these two types of planing task. As
an input of the RRT algorithm is an initial configuration ~qinit ∈ S, where S is a search space.
In each iteration a random configuration ~qrand ∈ S is chosen which will connect with its own
nearest neighbor ~qnear ∈ G. G is the graph of path planning. The new random configuration
is added to graph and this step repeats until the goal configuration ~qrand is found.

Algorithm 2: Basic RRT algorithm
Input : Search-space S, Initial configuration ~qinit ∈ S, Goal configuration ~qgoal ∈ S
Output: RRT graph G

1 G.addVertex(~qinit);
2 for i = 1 to max iterations do
3 ~qrand = S.getRandomConfiguration();
4 ~qnear = G.nearestNeighbor(~qrand);
5 G.addVertex(~qrand);
6 G.addEdge(~qrand, ~qnear);
7 if ~qrand = ~qgoal then
8 return G;
9 end

10 end

0 10 20 30 40 50 60 70 80 90 100

x

0

10

20

30

40

50

60

70

80

90

100

y

(A) RRT with 20 itera-
tions

0 10 20 30 40 50 60 70 80 90 100

x

0

10

20

30

40

50

60

70

80

90

100

y

(B) RRT with 200 itera-
tions

0 10 20 30 40 50 60 70 80 90 100

x

0

10

20

30

40

50

60

70

80

90

100

y

(C) RRT with 2000 itera-
tions

FIGURE 2.7: Examples of basic RRT algorithm with tree different numbers of
iterations is same square space.

0

20

1000

40

60

80

z

100

8020 6040

yx
4060 2080 0100

(A) RRT use in 3D cube
bound space

(B) RRT use in 3D bowl
bound space

FIGURE 2.8: Examples of RRT motion planning in 3D space

2.4. Motion planning 15

Unfortunately, the basic algorithm predicts free space. That means space without any
collision possibility. So collision detection had to be added into the algorithm. Collision
detection can be realized e.g. by computing intersection between polygons. [45] Other im-
portant function of the RRT algorithm is the method for finding the nearest neighbor in an
existing graph. For small graph could be used method which compares Euclidean distance
between points in space. But for a large graph this method is unusable because of the time
complexity O(n). Due to this it is better use other more intelligent method. In this thesis,
KD-tree [46] based algorithm is used for finding the nearest neighbor. The time complexity of
searching in kd-tree is O(log n). The Fig (2.7) shows using basic RRT algorithm in 2D space
with different number of iterations. The Fig (2.8) demonstrates the example of application
in 3D space.

To get familiar with RRT motion planning, a simple RRT motion planing algorithm for dif-
ferential wheeled robot was implemented. Because of its easy construction which is showed
in Fig (2.9a) it was a good choice for learning basic ideas of motion planning in 2D environ-
ments. Also the differential robot can expand just into several directions. The differential
robot moves in 2D space with velocity according to Eq (2.9), so the RRT algorithm saves po-
sition ~q and rotation ϕ of robot to graph G. The final condition is 300 iterations with size of
space 100 x 100 or distance of robot to the goal position which was represented as a square
with size which was equal to robot size. The size of the differential robot used in study is
5 x 5. Into the environment there were also added one or more obstacles represented by
different polygons. Thus, the RRT algorithm contains a collision detection method which
is based on the investigation of intersection between a point and a polygon. The impor-
tant part of RRT algorithm for differential robot is the function for expanding of possible
way which was added to the basic algorithm. The function which return the found path
was added into the basic algorithm as well. For finding the nearest neighbor it is used the
KD-tree based algorithm. The motion model of the differential wheeled robot is:

ẋ =
R

2
cosϕ (u1 + u2) ,

ẏ =
R

2
sinϕ (u1 + u2) ,

ϕ̇ =
R

L
(u1 − u2) ,

(2.9)

where u1 and u2 represent the velocities of rotation of wheels, R is an radius of wheel, L is
size of robot, ϕ is azimuth and x, y represent position in Cartesian coordinate system.

u
1

u
2

L

R

ϕ

(A) Differential robot (B) Rectangle barriers (C) Triangle barrier

FIGURE 2.9: Examples of RRT motion planning for differential robot in 2D
space

17

Chapter 3

Implementation

3.1 Simulation environment

For the purposes of this thesis, a simple simulator of CoSMO modular robots was created.
Open Dynamic Engine (ODE) [47] was used for simulation of physical environment. The
ODE also includes a library drawstuff that enables a simple visualization of the environ-
ment. The ODE contains a collision detection of geometric structures and allows connection
between objects with joints of different types, e.g. hinge-joint, fix-joint, ball-joint etc. More-
over, it yields functions for applying torques and forces on geometrical objects.

The CoSMO module was modeled as a pair of L-shaped parts. These parts were connected
by the hinge-joint and the resulting module is depicted in Fig (3.1). The constructions of
robots, which are used in this thesis, are depicted in Fig (3.2) and Fig (3.6) . It is true that
simplified model does not describe the hardware of real module, however it is sufficient for
benchmark simulations and testing. The huge advantage of using the simplified model is
faster simulation. Fix-joint is used in the simulated environment to imitate the real dock
between modules. The simulator was designed for simulation of arbitrary shape of robots.
The configuration of modules is written and loaded to ODE from a simple text file and by
employing this data it is possible to create 3D shaped organism.

3.2 PSO optimization of CPG patterns for CoSMO robots

As was mentioned in (2.3.2), PSO algorithm is an optimization algorithm based on the
swarm intelligence. In this thesis, PSO algorithm is applied for learning and optimizing of
locomotion of the CoSMO robot. Each module of CoSMO robot is moved according to its
velocity, which is defined by function (2.1). Variables of speed function are input for the

(A) The real module. (B) The detailed model. (C) The simple model used in
simulator.

FIGURE 3.1: Modules of CoSMO robots used in the simulation.

18 Chapter 3. Implementation

0 1 2 3

(A) Snake 4

0 1 2 3 4

(B) Snake 5

0 1 2 3 4 5

(C) Snake 6

0

1

2

3

4

5 678

(D) Cross

0 1 2 3

5

4

(E) S-shape

4

5

7

8

0 1 2 3 4

(F) Dog

FIGURE 3.2: The CoSMO organisms used for experiments with the orientation
of rotation axes. The arrows denote orientation of the rotation axis of each

module joint.

optimization algorithm. Furthermore, in this thesis there are considered only four possible
primitives: forward, backward, left and right, depending on which kind of CoSMO robot is
used. For example snake like robot has only two possible primitives, forward and backward.
The other employed constructions of CoSMO robot can performed all primitives.

The basic PSO algorithm has been upgraded in order to meet the criteria of optimization
locomotion of the CoSMO robots. Initially, it is necessary to define the structure of ~x and ~p
as well as structure of ~v. The ~x, ~p and ~s were not used as vectors but as two dimensional
matrices X, P and V represented as:

X =

~x1
~x2
...
~xm

 , P =

~p1
~p2
...
~pm

 , V =

~v1
~v2
...
~vm

 , (3.1)

{~xi, ~pi, ~vi} = (A1, ω1, ϕ1, B1, . . . , An, ωn, ϕn, Bn), (3.2)

whereAj , ωj , ϕj andBj are CPG parameters of each module of CoSMO construction. There-
fore, 4n parameters need to be found to achieve a gait for modular robot with n modules.

3.2.1 Fitness evaluation

The fitness function measures quality of locomotion of a CoSMO robot. Higher result is
better, because PSO searches for maximum of fitness function result. The fitness function
depends on CPG parameters, construction of robot and the primitives of locomotion. The
locomotion represents the test of ability to move the body in a primitive. The fitness function
for the PSO algorithm is evaluated by the simulator. The PSO algorithm generates param-
eters of a CPG which determines the gait of the robot in simulator. The simulator runs for
time Tsim with period tphys which indicate accuracy of computation. For propose of this the-
sis Tsim = 15 s and tphys = 50 ms. The evaluation of the fitness function is given by Eq (3.3)
where xstart is the initial position of robot and xend is the position of robot after locomotion.
Index k in the equation represent a axis in which is locomotion related. And the variable a

3.2. PSO optimization of CPG patterns for CoSMO robots 19

can be ±1, its value is depended on the direction of robot, if is direction in positive direction
with axis the value of a is equal to +1, is is direction negative its value is equal to −1.

F (xstart, xend, a) = a(xendk − xstartk), (3.3)

Algorithm 3: Fitness function for PSO algorithm
input : CPG parameters ~x, CoSMO robot, Type of primitive ToP
output: Passed distance dis

1 robot.setParam(~x);
2 ~poss = getPosition(robot);
3 SimulateMove(robot, 15); // 15 as 15 seconds of simulation
4 ~pose = getPosition(robot);
5 if ToP = forward then
6 dis = posex − possx;
7 else
8 if ToP = backward then
9 dis = −(posex − possx);

10 else
11 if ToP = left then
12 dis = posey − possy;
13 else
14 dis = −(posey − possy);
15 end
16 end
17 end
18 robot.SetInitialConfig();
19 return dis

x

y

x
e,x

 - x
s,x

x
e,y

 - x
s,y

FIGURE 3.3: Example of the fitness evaluation.

20 Chapter 3. Implementation

0 20 40 60 80 100 120 140 160 180 200

Iterations

0

0.5

1

1.5

2

2.5
D

is
ta

nc
e

Snake4 front
Snake4 back
Snake5 front
Snake5 back
Snake6 front
Snake6 back

(A) Snake

0 20 40 60 80 100 120 140 160 180 200

Iterations

0

0.5

1

1.5

D
is

ta
nc

e

front movement
back movement
right movement
left movement

(B) Cross

0 20 40 60 80 100 120 140 160 180 200

Iterations

0

0.5

1

1.5

2

2.5

3

D
is

ta
nc

e

front movement
back movement
right movement
left movement

(C) S-sphere

0 20 40 60 80 100 120 140 160 180 200

Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
is

ta
nc

e

front movement
back movement
right movement
left movement

(D) Dog

FIGURE 3.4: Convergence of fitness value of CPG pattern in PSO algorithm.
The distance is measured in the units of module size.

3.3 RRT for motion planning of CoSMO robots

Employing the RRT algorithm for motion planning of CoSMO organism is more time
consuming in contrast to the differential robot. The differential robot moves according to
simple equation that can be solved analytically. Unfortunately, the locomotion of CoSMO
organism is not so simple. It is not easy to derive an analytical function describing motion
of general modular robots, as their motions depend both on the construction of modules
as well as on the terrain. However, it is possible to use a simulation of locomotion to go
through this task.

For purpose of this study the ODE [47] physical engine is used for simulation of physics
and force computation in the simulation tool. The logic of algorithm is same as was in the
case of the differential robot. The RRT algorithm generates a random coordinates of posi-
tions in 2D space. It is true that the CoSMO organism is able to move in an uneven 3D envi-
ronment but in this thesis only empty flat space scene is used. However, the RRT algorithm
has to remember for each vertex position ~x = {x, y, z}, linear velocity ~̇x = {ẋ, ẏ, ż}, angular
velocity ~̇ϕ = {ϕ̇, θ̇, ψ̇} and quaternion ~h = {h1, h2, h3, h4}. The vector of configuration looks
as:

~c = { ~M1, ~M2, . . . , ~Mn}, (3.4)

3.3. RRT for motion planning of CoSMO robots 21

Algorithm 4: Expand procedure

1 do
2 dis =MAX_DOUBLE;
3 for move := {moveAhead,moveBack,moveLeft,moveRight} do
4 ~q = ~qnear +move;
5 if IsNotInCollision(~q) then
6 if |~qrand − ~q| < dis then
7 dis = |~qrand − ~q|;
8 ~qmove = ~q;
9 end

10 end
11 end
12 G.addVertex(~qmove);
13 G.addEdge(~qmove, ~qnear);
14 G.addRoation(~qmove);
15 ~qnear = ~qmove;
16 while (~qmove≈ ~qrand);
17

where n represents number of modules M and ith module consists of:

~Mi = {~x, ~̇x, ~̇ϕ,~h}. (3.5)

All of this configuration parameters have to be stored in RRT graph because of continuity
of a locomotion, a trajectory and preserve numerical stability of simulation [48]. The output
from RRT algorithm is a sequence of the motion primitives, i.e. array which contains list of
numbers. Each of these numbers represent specific primitive which store information about
the CPG’s signals for each module of organism. These signals are read from text file and
translated to the robot. For example, if the path from the initial position to the goal position
includes n primitives, then the robot performs each primitive for Tsim = 15 s. After this time
robot stops and stays with all its kinematic and dynamic properties. Then it is read the next
primitive so there are ready CPG’s signals of new primitive and the loop repeats until the
robot comes to the goal position.

Nevertheless, this type of motion planning may cause several troubles. In the first step,
the robot goes from the initial position where are all forces, torques, angular velocities and
angles of hinges set to zero, or close to zero value. However, after first motion primitive
the robot stops and maintains its dynamics. Thus, in next step the robot does not start from
initial position and that means it does not pass the same distance as it could do so in the first
step. From the experiments it was observed that robots can modify the direction within a
primitive. Fortunately, this does not have big impact on searching space in many iterations,
in spite of the fact that robot modifies direction of movement within a primitive, its ability
to search space does not change. Because the robot modifies direction of locomotion in all
primitives it still can go around whole space. It is true that it is backward gait but the robot
does not care while it has constructions as were used in this thesis. The Fig (3.5) the robot is
able to search whole space.

Behavior of the Cross, the Dog and the S-shape robot were similar. All of them found a
way from initial position to goal position and also they were expand evenly in space. The

22 Chapter 3. Implementation

(A) Cross (B) S-shape (C) Dog

FIGURE 3.5: Example the motion planning of health CoSMO organisms.

(A) Snake 4
(B) Snake 5 (C) Snake 6

(D) Cross (E) S-shape (F) Dog

FIGURE 3.6: 3D models of CoSMO robot in different constructions.

RRT tree of the Dog robot is bigger than others’ but that is caused by a randomly set points
in the search-space.

23

Chapter 4

CoSMO robot under failures

Every mechanical system has a tendency to fail. The CoSMO robot not being exception.
There can be identified two types of failures: electrical and mechanical. In this study, there
is described and investigated the mechanical type of failure. This section examines an effect
of failures on behavior of robots, their locomotion ability and capability to explore an en-
vironment. The study does not investigate the cause of failure but handles an option how
to overcome this issue and fix the problem. The thesis considers two types of mechanical
failure: a) fix-joint and b) free-joint. Both failures make a module uncontrollable and affect
the main hinge controlled by motor. The difference between fix-joint and free-joint failure
is that the fix-joint failure sticks the hinge in a last position, so the module is stuck in state
as is in the Fig (3.1). On the other hand the free-joint failure makes a rotation of the hinge
absolutely free.

4.1 Implementation

The motion planning algorithm and PSO algorithm were used as in case of health robot.
From the algorithm points of view, the difference between the health robot and robot un-
der failure is in simulation part of algorithm. In this part the joint included in main hinge
was changed. In case of fix-joint failure the joint of the main hinge was changed from the
hinge joint to the fix joint what caused that the module cannot rotate and gets stuck in initial
position. In case of the free-joint failure the forces and torques delivered from motor was
deleted.

In the simulation, the robot is placed into the center of the area and RRT algorithm is run
for a predefined amount of iterations, the number of iteration is equal to 300, with maximal
10 possible primitives per each iteration. Thus, the generated graph can include 3000 primi-
tives in maximum. To measure influence of failures, there are proposed to measure area that
is visited by the robot. To count this area, the space is discretized to a grid of cell size equal
to 5 units, where one unit represents size of one module. The percentage of the visited area
is then related to the locomotion performance.

The output of RRT motion planning algorithm is graph G of searched space. After path
planning, the percentage of visited area from the RRT’s graph is calculated and if the per-
centage is equal or higher than threshold value for the specific construction of robot the
algorithm is terminated with successful re-optimization. If the percentage is lower than
threshold value the CPG patterns are optimized by the PSO and the RRT motion planning
algorithm is run. This is repeated, while the percentage of the visited area is increased or
until the threshold value is overcome. If the percentage of the visited area is decreased the
broken modules are removed from the robot. Then the CPG patterns are optimized by PSO
and the RRT algorithm is run. This again repeated, while the percentage of the visited area
is increased or until the threshold value is overcome. If the percentage of visited area is
decreased the message about unsuccessful re-optimization is returned. The pseudo-code is
written in Alg (5).

24 Chapter 4. CoSMO robot under failures

Algorithm 5: Motion planning algorithm with optimization for CoSMO robots un-
der failure

input : Broken modules ~bm, Robot R, Threshold value ThresholdV alue
output: Percentage of visited area for each measurement, Result of re-optimization

1 R.CreateRobot(~bm);
2 G = calRRT(R);
3 p = getPercentil(G);
4 if p >= ThresholdV alue then
5 return Successful re-optimization
6 else
7 callPSO(R);
8 return doOptimization(R, ThresholdV alue, p, No);
9 end

1 Procedure doOptimization
input : Robot R, Threshold value ThresholdV alue, Last percentage

LastPercentage, Are modules removed areRemoved
output: Result of re-optimization

2 G = calRRT(R);
3 p = getPercentil(G);
4 if p >= ThresholdV alue then
5 if areRemoved = No then
6 return Successful re-optimization
7 else
8 return Modules were removed and re-optimization was successful
9 end

10 else
11 if p > LastPercentage then
12 callPSO(R);
13 doOptimization(R, ThresholdV alue, p, areRemoved);
14 else
15 if areRemoved = No then
16 RemoveModul(R);
17 callPSO(R);
18 doOptimization(R, ThresholdV alue, p, Y es);
19 else
20 return Non-successful re-optimization
21 end
22 end
23 end

4.2. Experiments 25

4.2 Experiments

In figures below there are depicted the abilities to search space by different types of
CoSMO robot under different failures. The magenta colored line represents the border and
everything above this line is considered to be enough as a search of the scene. This border
was created in pursuance of capability of health CoSMO robots to review the area. It is
set little under the minimal measured value. For each robot under failure was simulated a
RRT motion planning algorithm for ten times. Ten seems to be enough to create a credible
view of behavior of the specific type of CoSMO construction. The CoSMO robot is self-
reconfigurable so it should have capacity to disconnect a module which is out of order. The
removing of these modules which are in center of the body, or which connect parts of the
body, is represented as a substitute of these modules by working modules of body. That is
possible only because of CoSMO robot’s skill to self-repair and self-reconfigure.

(A) Cross_1 (fix-joint type of fail-
ure) & Cross_8 (free-joint type of

failure)

(B) Cross_2 (fix-joint type of fail-
ure) & Cross_9 (free-joint type of

failure)

(C) Cross_3 (fix-joint type of fail-
ure) & Cross_1 (free-joint type of

failure)0

(D) Cross_5 (fix-joint type of fail-
ure) & Cross_1 (free-joint type of

failure)2

FIGURE 4.1: The red colored modules are under failure.

4.2.1 Cross structure

The Cross type robot (3.6d) without failures visit 56.375% in average. With the excep-
tion of Cross_8 (4.1a), the Fig (4.2) displays measures of that kinds of CoSMO construction
which were able to search more that 50% of the environment during every simulation. These
robots have not removed any of modules, they just re-optimized their CPG patterns by PSO
algorithm. The Cross_8 has average value under the threshold value, but it is in this figure
because it has free-joined module in the center of body and this module cannot be removed.
Therefore, generally it seems that failure of one or two modules which are not docked to

26 Chapter 4. CoSMO robot under failures

40

45

50

55

60

65

V
is

ite
d

en
vi

ro
nm

en
t [

%
]

C
ro

ss

C
ro

ss
_1

C
ro

ss
_2

C
ro

ss
_3

C
ro

ss
_5

C
ro

ss
_8

C
ro

ss
_9

C
ro

ss
_1

0

C
ro

ss
_1

2

FIGURE 4.2: Figure shows the area that was searched by Cross robot. The area
is represented in percentage. First box-plot depicts explored area by Cross

robot which is not under failure.

each other, have just a little effect on the ability of locomotion of Cross construction CoSMO
robot.

Though, not all of Cross type robots under failure are so adaptable. In the Fig (4.3) are
drawn a box-plot graphs of these robots which were able to search less than 50% of the
space. The cyan vertical line separates the simulation of locomotion before (BD) and after
(AD) the removing of broken modules. The Cross type robot which has fix-jointed mod-
ules 1, 2 and 3 (Cross_6 (4.4b)) is on the threshold value before removing broken modules.
However, the median value is under line so that is the reason why it is in this graph. Other
robots under failure are little below the threshold. After removing a non-working modules
of Cross_4 (4.5a), Cross_6 (4.5b) and Cross_7 (4.5c) robots, their ability to search space de-
creased. All this three robots have fix-joint malfunction of modules. So it seems that the
Cross robot with fix-joint failure can better operate with broken modules as without them,
even when they are docked to each other or the count of broken modules is higher than
2. On the other hand, in case of the free-joint failure the robots’ ability to search space is
not so accurate as in case of the fix-joint. These robots better operate without non-working
modules as with them, especially Cross_11 (4.5a) and Cross_13 (4.5b).

The locomotion of the robot does not depend only on the robot’s construction. It also
depends on the CPG patterns. Really important part of the computation is PSO algorithm.
For the optimization by PSO is used 200 iterations with 20 particles for each primitive. The
design of Cross_4 and Cross_11 is same after removing of failed modules. Nevertheless, the
difference between their percentage of visited space is obvious, what is caused by optimiza-
tion of CPG patterns.

4.2. Experiments 27

0

10

20

30

40

50

60

V
is

ite
d

en
vi

ro
nm

en
t [

%
]

C
ro

ss

B
D

_c
ro

ss
_4

B
D

_c
ro

ss
_6

B
D

_c
ro

ss
_7

B
D

_c
ro

ss
_1

1

B
D

_c
ro

ss
_1

3

B
D

_c
ro

ss
_1

4

A
D

_c
ro

ss
_4

A
D

_c
ro

ss
_6

A
D

_c
ro

ss
_7

A
D

_c
ro

ss
_1

1

A
D

_c
ro

ss
_1

3

A
D

_c
ro

ss
_1

4

FIGURE 4.3: Figure shows a difference between the ability to search space of
Cross type robots which operate with broken modules and robots which have
removed the broken modules. Prefix BD means before removing modules so
the robot is under failure and the prefix AD means that the robot has removed

the modules.

(A) Cross_4 (fix-joint type
of failure) & Cross_12
(free-joint type of failure)

(B) Cross_6 (fix-joint type
of failure) & Cross_13
(free-joint type of failure)

(C) Cross_7 (fix-joint type
of failure) & Cross_14
(free-joint type of failure)

FIGURE 4.4: This pictures represent robots’ construction with broken mod-
ules.

(A) Cross_4 & Cross_12
after removal of modules

(B) Cross_6 & Cross_13
after removal of modules

(C) Cross_7 & Cross_14
after removal of modules

FIGURE 4.5: This pictures show robots’ construction after removal of broken
modules

28 Chapter 4. CoSMO robot under failures

4.2.2 Dog structure

The next Fig (4.6) shows the percentage of visited area by the Dog designed CoSMO robot.
It seems that ability of search the scene by Dog type robot under failure is not as good as
it is in case of Cross robot. With the exception of the Dog_5 (4.7i), every other robot under
failure was not pass the limit of searched space which is set to 30%. The median value of
visited area by health Dog type robot (3.6f) is 36.875%. Probably the reason why is the Dog_5
so better than other robots is because it has broken head and tail modules, i.e. modules at
the top and bottom of body. This robot’s construction allows its to move without bigger
problems and the stuck modules are used as a some kind of locomotion support. The three
modules which are between head and tail are able to cope with the gait. The results for the
Dog type robots cannot be generalize as it was done in case of Cross type robots.

It is true that Dog_1 (4.7a) has average value of searched space higher after removal of the
modules than before but the variance is higher for this robot without broken modules. Also
the maximal measured percentage is lower before than after removal. Thus, it cannot be
said which variant is better for this robot. The next robot Dog_2 (4.7c) passed the threshold
in tow measures for both construction, with and without broken modules. Nevertheless,
the variance is lower and the median value is higher for the the robot under failures so from
the statistic point of view is better for the robot operate under failures. The similar situation
is in the case of robots Dog_7 (4.7d) and Dog_10 (4.7j). Dog_3 (4.7e) and Dog_6 (4.7b) they
ability to search space with broken modules as well as without modules is not enough to
pass the threshold value. The median value of both robots in both cases is almost equal to
each other. Dog_4 (4.7g), Dog_8 (4.7f) as well as Dog_9 (4.7h) better operate without the
broken modules as with them, thus for this robots is better to undock the broken modules.

As was mentioned before, the optimization by PSO algorithm plays main role in the
computation and in overcoming the threshold value of percentage of visited area. In the
Fig (4.6) as well as in the Fig (4.3) can be seen that robots which have same construction
after removing the modules, do not visit the same percentage of area in average. This is

0

5

10

15

20

25

30

35

40

45

V
is

ite
d

en
vi

ro
nm

en
t [

%
]

Before and after modules removel

N
oF

ai
lu

re

B
D

_D
og

_1

B
D

_D
og

_2

B
D

_D
og

_3

B
D

_D
og

_4

B
D

_D
og

_5

B
D

_D
og

_6

B
D

_D
og

_7

B
D

_D
og

_8

B
D

_D
og

_9

B
D

_D
og

_1
0

A
D

_D
og

_1

A
D

_D
og

_2

A
D

_D
og

_3

A
D

_D
og

_4

A
D

_D
og

_5

A
D

_D
og

_6

A
D

_D
og

_7

A
D

_D
og

_8

A
D

_D
og

_9

A
D

_D
og

_1
0

FIGURE 4.6: Figure shows a difference between the ability to search space
of the dog type robots which operate with non-working modules and
robots which have removed these broken modules. First box-plot represents

searched space by healthy dog robot.

4.2. Experiments 29

(A) Dog_1 & Dog_6.
(B) Dog_1 & Dog_6
after removal of

modules.
(C) Dog_2 & Dog_7.

(D) Dog_2 & Dog_7
after removal of

modules.

(E) Dog_3 & Dog_8.
(F) Dog_3 & Dog_8
after removal of

modules.
(G) Dog_4 & Dog_9.

(H) Dog_4 & Dog_9
after removal of

modules.

(I) Dog_5 &
Dog_10.

(J) Dog_5 & Dog_10
after removal of

modules.

FIGURE 4.7: Dog construction of CoSMO
robot. First name of Dog robot in captions
of figures represents robot with fix-joint
type failures, second name is for robots

with free-joint failures.

caused by the PSO algorithm which optimizes a CPG patterns. The optimization does not
start from zero fitness evaluation of the global best known configuration, but the global best
known configuration is same as was in last optimization. Thus, for different types of failure
the robot behavior is also different. Therefore, the convergence of CPG patterns is influenced
by the previous computations and that is why there are different percentages of the visited
area for same constructions.

4.2.3 S-shape structure

The last box-plot graph (4.8) demonstrates an computation of RRT planning algorithm
for S-shaped type (3.6e) of CoSMO robot with couple of modules under failure. The first
box-plot again represents a case of motion planing for S-shape construction with working
modules. Other box-plots reflect search space by robots under failure. The locomotion
of S-shape robot under failure is defective. However, this behavior could be expected for
used cases of failures of modules. Modules on the bottom, in case of S-shape_1 (4.9a) as
well as S-shape_3 (4.9b), and modules on the head, in case of S-shape_2 (4.9c) as well as
S-shape_4 (4.9d), are uncontrollable so the robot ability to move in space is impaired. As
can be seen in the Fig (4.10) the ability of locomotion to left and right side, decreased, es-
pecially movement into the right side. This is caused by the modules which are broken.
It is interesting that in both cases, S-shape_1 has the path planning in Fig (4.10a) and S-
shape_2 (4.10b), the robots do not move into the right side even though they do not have
broken same modules. S-shape_1 has broken modules on the top of body and S-shape_2
has broken modules on the bottom of body, but both of them have fix-joint type of failure
and that is probably reason why they cannot move into the right side. On the other hand
S-shape_3 and S-shape_4 robots are able to move into the sides. In the Fig (4.10c) is shown
the ability to search space by S-shape_3 robot and it seems that it is able to go into every side.
But in more detailed observation, we should see that it does not move directly to the sides

30 Chapter 4. CoSMO robot under failures

0

10

20

30

40

50
V

is
ite

d
en

vi
ro

nm
en

t [
%

]

S
-s

ha
pe

B
D

_S
-s

ha
pe

_1

B
D

_S
-s

ha
pe

_2

B
D

_S
-s

ha
pe

_3

B
D

_S
-s

ha
pe

_4

A
D

_S
-s

ha
pe

_1

A
D

_S
-s

ha
pe

_2

A
D

_S
-s

ha
pe

_3

A
D

_S
-s

ha
pe

_4

FIGURE 4.8: Figure shows a percentage of visited area for the S-shaped con-
struction of CoSMO robot.

but it seems that it turned and then went ahead. Nevertheless, other robots were not able to
visit as much space as the S-shape_3, but it does not matter how exactly robot does the gait
or how it moves around the space, the important is to search space as much as possible.

(A) S-shape_1 (fix-joint
type of failure) &
S-shape_3 (free-joint

type of failure)

(B) S-shape_1 & S-
shape_3 after removal

of modules

(C) S-shape_1 (fix-joint
type of failure) &
S-shape_3 (free-joint

type of failure)

(D) S-shape_2 & S-
shape_4 after removal

of modules

FIGURE 4.9: S-shape construction of CoSMO robot.

4.2. Experiments 31

(A) Percentage of visited are is 13.50%. (B) Percentage of visited are is 10.50%.

(C) Percentage of visited are is 19.00%. (D) Percentage of visited are is 9.75%.

FIGURE 4.10: The RRT motion planning used at S-shape_1 (on the top-left),
S-shape_2 (on the top-right), S-shape_3 (on the bottom-left) and S-shape_4 (on

the bottom-right) robots.

33

Chapter 5

Conclusion

Modular robotics is field of study of modular based robots. The modules are building
components from which a robot is constructed. The modular robots are robots with many
DOFs which allow them to easy step over barrier and undergo uneven ground. Thus, this
technology is very useful and it could be used in missions which require adaptability and
flexibility, e.g. space missions and the missions which are too dangerous for humans. The
modular robots seem to be a good choice, because they can cope with and adapt on uneven
and unknown environments. This characteristic is based on their ability to reconfigure /
self-reconfigure.

In modular robotics there can be detected two kinds of failures: electrical and mechan-
ical. The example of electrical failure can be that module cannot communicate with other
modules or the CPU is unable to compute. The mechanical problem could be that the hinge
of module is stuck or the motor does not work. Another example of mechanical failure may
be that the module cannot dock with other modules.

For the purpose of this thesis the CPG-based locomotion was optimized using PSO. PSO
algorithm is an optimization algorithm based on the inspiration from organisms lived in
swarms. Firstly, the basic PSO algorithm was implemented on the benchmark function.
Then the PSO algorithm was upgraded in order to meet the criteria of optimization of
CoSMO robots. The fitness function was formulated and implemented. For purpose of
the motion planning, the RRT method was implemented. First for mobile robots and later
for modular robots. The RRT was modified so it utilizes the CPG locomotion to create the
motion plans.

Moreover, the simulator of modular robots was created. The ODE library was used for
simulation. The final step of implementation was the adaptation of the algorithm that works
with robots under failures.

The goal of this thesis was to investigate influence of failures to locomotion of modular
robots. The behavior of three CoSMO constructions was investigated by many experiments.
It was the Cross, Dog and S-shape construction of CoSMO robot. Access to computing and
storage facilities owned by parties and projects contributing to the National Grid Infras-
tructure MetaCentrum, provided under the programme "Projects of Large Research, De-
velopment, and Innovations Infrastructures" (CESNET LM2015042), is greatly appreciated.
MetaCentrum was used for calculating of experiments because the computations take a lot
of time and the MetaCentrum allows to use many CPUs in same time.

Most of the results of experiments show that it is better to let the robots operate with
broken modules as without them. This conclusion is little surprising but on the other hand
it makes sense because if the robot had smaller body his ability to move in primitive would
decrease or could absolutely disappear.

35

Bibliography

[1] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, and S. Kokaji, “M-tran:
self-reconfigurable modular robotic system,” IEEE/ASME Transactions on Mechatronics
IEEE/ASME Trans. Mechatron., vol. 7, no. 4, p. 431–441, 2002.

[2] P. Moubarak and P. Ben-Tzvi, “Modular and reconfigurable mobile robotics,” Robotics
and Autonomous Systems, vol. 60, no. 12, p. 1648–1663, 2012.

[3] H. Kawano, “Complete reconfiguration algorithm for sliding cube-shaped modular
robots with only sliding motion primitive,” 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2015.

[4] C. Unsal, H. Kiliccote, and P. K. Khosla, “A modular self-reconfigurable bipartite
robotic system: implementation and motion planing,” Sensor Fusion and Decentralized
Control in Robotic Systems II, 1999.

[5] “Laboratory of autonomous robotics and artificial life.”

[6] “Arbeitsbereich technische aspekte multimodaler systeme.”

[7] “Shape-shifting mobile robot.”

[8] R. Gro, M. Bonani, F. Mondada, and M. Dorigo, “Autonomous self-assembly in swarm-
bots,” IEEE Trans. Robot. IEEE Transactions on Robotics, vol. 22, no. 6, p. 1115–1130, 2006.

[9] A. Kawakami, A. Torii, K. Motomura, and S. Hirose, “Smc rover: planetary rover
with transformable wheels,” Proceedings of the 41st SICE Annual Conference. SICE 2002.,
p. 157–162.

[10] Z. Guanghua, D. Zhicheng, and W. Wei, “Realization of a modular reconfigurable
robot for rough terrain,” 2006 International Conference on Mechatronics and Automation,
p. 2999–3004, 2006.

[11] H. Brown, J. V. Weghe, C. Bererton, and P. Khosla, “Millibot trains for enhanced mo-
bility,” IEEE/ASME Transactions on Mechatronics IEEE/ASME Trans. Mechatron., vol. 7,
no. 4, p. 452–461, 2002.

[12] J. Liu, Y. Wang, B. Li, S. Ma, and D. Tan, “Center-configuration selection technique for
the reconfigurable modular robot,” Science in China Series F: Information Sciences SCI
CHINA SER F, vol. 50, no. 5, p. 697–710, 2007.

[13] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and
G. Chirikjian, “Modular self-reconfigurable robot systems [grand challenges of
robotics],” IEEE Robot. Automat. Mag. IEEE Robotics Automation Magazine, vol. 14,
p. 43–52, Mar 2007.

[14] “Robotron: Market analysis of ckbots,” Oct 2008.

[15] H. Zhang, J. Gonzalez-Gomez, Z. Me, S. Cheng, and J. Zhang, “Development of a low-
cost flexible modular robot gz-i,” 2008 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, 2008.

36 BIBLIOGRAPHY

[16] “Ieee xplore digital library.”

[17] M. Yim, Y. Zhang, K. Roufas, D. Duff, and C. Eldershaw, “Connecting and disconnect-
ing for chain self-reconfiguration with polybot,” IEEE/ASME Transactions on Mechatron-
ics IEEE/ASME Trans. Mechatron., vol. 7, no. 4, p. 442–451, 2002.

[18] Y. Li, H. Zhang, and S. Chen, “A four-legged obot based on gz-i modules,” 2008 IEEE
International Conference on Robotics and Biomimetics, 2009.

[19] M. Park, S. Chitta, A. Teichman, and M. Yim, “Automatic configuration recognition
methods in modular robots,” The International Journal of Robotics Research, vol. 27,
p. 403–421, Jan 2008.

[20] M. Jorgensen, E. Ostergaard, and H. Lund, “Modular atron: modules for a self-
reconfigurable robot,” 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566).

[21] B. Salemi, M. Moll, and W.-M. Shen, “Superbot: A deployable, multi-functional, and
modular self-reconfigurable robotic system,” 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2006.

[22] “Crystal robot.”

[23] “An interview with professor seth glodstein.”

[24] “Semantic scholar.”

[25] “Usd modular robotics research lab.”

[26] J. Liedke, R. Matthias, L. Winkler, and H. Worn, “The collective self-reconfigurable
modular organism (cosmo),” 2013 IEEE/ASME International Conference on Advanced In-
telligent Mechatronics, 2013.

[27] S. Kernbach, R. Thenius, P. Corradi, L. Ricotti, E. Meister, F. Schlachter, K. Jebens,
M. Szymanski, J. Liedke, D. Laneri, and et al., “Symbiotic robot organisms,” Proceed-
ings of the 8th Workshop on Performance Metrics for Intelligent Systems - PerMIS ’08, 2008.

[28] V. Vonasek, S. Neumann, D. Oertel, and H. Worn, “Online motion planning for failure
recovery of modular robotic systems,” 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015.

[29] Q. Wu, C. Liu, J. Zhang, and Q. Chen, “Survey of locomotion control of legged robots
inspired by biological concept,” Sci. China Ser. F-Inf. Sci. Science in China Series F: Infor-
mation Sciences, vol. 52, no. 10, p. 1715–1729, 2009.

[30] Q. Liu, J. Zhao, S. Schutz, and K. Berns, “Adaptive motor patterns and reflexes for
bipedal locomotion on rough terrain,” 2015 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), p. 3856–3861, SepOct 2015.

[31] D. J. Christensen, A. Spröwitz, and A. J. Ijspeert, “Distributed online learning of cen-
tral pattern generators in modular robots,” From Animals to Animats 11 Lecture Notes in
Computer Science, p. 402–412, 2010.

[32] K. E. Kinnear, Genetic programming and emergent intelligence, p. 75–98. MIT Press, 1994.

[33] I. Tanev, T. Ray, and A. Buller, “Automated evolutionary design, robustness, and adap-
tation of sidewinding locomotion of a simulated snake-like robot,” IEEE Trans. Robot.
IEEE Transactions on Robotics, vol. 21, no. 4, p. 632–645, 2005.

BIBLIOGRAPHY 37

[34] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of ICNN’95 -
International Conference on Neural Networks, p. 1942–1948.

[35] J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelligence. San Francisco: Morgan
Kaufmann Publishers, 2001.

[36] Eberhart and Y. Shi, “Particle swarm optimization: developments, applications and
resources,” Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.
No.01TH8546), p. 81–86.

[37] S. M. LaValle, Sampling-Based Motion Planning, p. 185–248.

[38] S. M. Lavalle, “Motion planning,” Planning Algorithms, p. 63–65.

[39] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic roadmaps for
path planning in high-dimensional configuration spaces,” IEEE Trans. Robot. Automat.
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, p. 566–580, 1996.

[40] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive configuration
spaces,” Proceedings of International Conference on Robotics and Automation.

[41] L. Janson and M. Pavone, “Fast marching trees: A fast marching sampling-based
method for optimal motion planning in many dimensions,” Springer Tracts in Advanced
Robotics Robotics Research, p. 667–684, 2016.

[42] J. A. Starek, J. V. Gomez, E. Schmerling, L. Janson, L. Moreno, and M. Pavone,
“An asymptotically-optimal sampling-based algorithm for bi-directional motion plan-
ning,” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
p. 2072–2078, 2015.

[43] S. M. LaValle, J. J. Kuffner, and Jr., “Rapidly-exploring random trees: Progress and
prospects,” 2000.

[44] T. Ju, S. Liu, J. Yang, and D. Sun, “Rapidly exploring random tree algorithm-based
path planning for robot-aided optical manipulation of biological cells,” IEEE Transac-
tions on Automation Science and Engineering IEEE Trans. Automat. Sci. Eng., vol. 11, no. 3,
p. 649–657, 2014.

[45] W. R. Franklin, “Pnpoly - point inclusion in polygon test w. randolph franklin (wrf).”

[46] A. Yershova and S. M. LaValle, “Improving motion-planning algorithms by efficient
nearest-neighbor searching,” IEEE Transactions on Robotics, vol. 23, pp. 151–157, Feb
2007.

[47] R. Smith, “Open dynamics engine - home.”

[48] V. Vonásek, K. Košnar, and L. Přeučil, “Motion planning of self-reconfigurable modular
robots using rapidly exploring random trees,” Advances in Autonomous Robotics Lecture
Notes in Computer Science, p. 279–290, 2012.

39

Appendix A

CD content

./BT.pdf This bachelor thesis.

./code Contains C/C++ source files of implemented programs.

	Contents
	Introduction
	State of the art
	Modular robotics
	Base Model
	CoSMO
	Failures in modular robotics

	Central Pattern Generator
	CPG in Modular Robotics

	Gait optimization
	Genetic Programming
	Particle swarm optimization

	Motion planning
	Rapidly-exploring Random Tree

	Implementation
	Simulation environment
	PSO optimization of CPG patterns for CoSMO robots
	Fitness evaluation

	RRT for motion planning of CoSMO robots

	CoSMO robot under failures
	Implementation
	Experiments
	Cross structure
	Dog structure
	S-shape structure

	Conclusion
	CD content

