
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Terrain Modeling and Motion Planning for
Hexapod Walking Robot Control

Diar Masri

Supervisor: doc. Ing. Jan Faigl, Ph.D.
May 2016

ii

Acknowledgements
I would like to thank my thesis super-

visor, doc. Ing. Jan Faigl, Ph.D., for his
patience and advice while working on this
thesis.

Declaration
I declare that the presented work was

developed independently and that I have
listed all sources of information used
within it in accordance with the method-
ical instructions of observing the ethical
principles in the preparation of university
theses.

. .
Signature

Prague, date. .

iii

Abstract
A planning technique for six-legged walk-
ing robot is presented in this thesis
along with a terrain modelling approach
that allows to exploit possible supporting
footholds of the surface. The proposed
approach for merging measurements pro-
vided by a depth camera sensor allows to
reconstruct the robot surrounding. Based
on the measurements of the environment,
a grid based elevation map is constructed
to create a suitable world model support-
ing motion planning for the six-legged
walking robot. Such a model is adjusted
to precisely represent a problematic pas-
sage in front of the robot by that pro-
vides only a limited number of possible
locations for the robot footholds. Further-
more, an approach for an efficient utiliza-
tion of the suitable positions of the terrain
is proposed based on an evaluation func-
tion. Practical simplifications of the robot
motion representation are proposed to effi-
ciently speed up the planning of the robot
forward motion over the terrain. More-
over, the proposed approach was success-
fully verified in real experiments.

Keywords: six-legged walking robot,
point cloud, terrain modelling, motion
planning

Supervisor: doc. Ing. Jan Faigl, Ph.D.

Abstrakt
Obsahem této práce je plánovací technika
pro šestinohý kráčející robot spolu s po-
stupem pro modelování terénu, který vy-
užívá možná místa v terénu pro podporu
robotu. Navržený postup pro sloučení mě-
ření získaných z hloubkové kamery po-
skytuje přesnou rekonstrukci okolí robotu.
Na základě kompaktních měření prostředí
je sestaven vhodný model reprezentace
prostředí pro plánování. Model je tvořen
mřížkovou elevační mapou, která podpo-
ruje plánování pohybu pro šestinohý krá-
čející robot. Vytvořený model prostředí je
dále upraven pro věrohodnější reprezen-
taci problematických částí ležících před
robotem, které poskytují pouze omezené
množství míst pro došlap nohy robotu.
Dále je navržen postup pro efektivní vyu-
žívání vhodných pozic terénu na základě
hodnotící funkce. Navrženy jsou také prak-
tická zjednodušení pro reprezentaci po-
hybu robotu, která efektivně zrychlují plá-
nování pohybu vpřed. Navržený postup
byl úspěšně ověřen reálnými experimenty.

Klíčová slova: šestinohý kráčející robot,
point cloud, modelování prostředí,
plánování pohybu

Překlad názvu: Modelování terénu a
řízení šestinohého kráčejícího robotu
v prostředí s úzkými místy došlapu

iv

Contents
Introduction 1
1 Problem Specification 3
1.1 Thesis outline 4
2 Hardware 5
2.1 Dynamixel AX-12A actuator 6
2.1.1 Servo drive specification 6
2.1.2 Communication 7

2.2 Robotic platform PhantomX Mark
II . 11
2.2.1 Practical issues 11

2.3 ASUS Xtion PRO 12
2.4 Hardkernel Odroid U3 14
3 Robot Control 17
4 Terrain Modelling 23
4.1 Point cloud model 25
4.1.1 Point cloud reduction 26

4.2 Iterative Closest Point 26
4.2.1 Practical implementation . . . 28

4.3 Voxel grid 28
4.4 Grid based elevation map 28
4.5 Foothold map 29
4.6 Evaluation function 30
4.7 Troubleshooting 34
5 Motion Planning 37
5.1 Robot body motion 38
5.1.1 Feasibility tests 39

5.2 Foothold selection 40
5.2.1 Feasibility tests 41

5.3 Expansion criterion 41
5.4 Trajectory generation for the leg
forward motion 42
5.4.1 Feasibility tests 42

6 Experimental Results 45
6.1 First scenario 46
6.2 Second scenario 47
6.3 Third scenario 49
6.4 Performance of the Proposed
Motion Planner and Summary of the
Experimental Evalution 50
6.4.1 Discussion and Possible Future
Work . 51

7 Conclusion 53
Bibliography 55
A CD content 59

v

Figures
1 Six-legged walking robot 1
2 Nature scenarios 2

1.1 Position of on-board computer and
RGB-D camera mounted on the robot 3

1.2 Laboratory testbed 4

2.1 Robotic platform PhantomX Mark
II . 5

2.2 Dynamixel AX-12A actuator 6
2.3 Operation range of actuator 7
2.4 Positions of the platform’s
actuators . 8

2.5 Instruction packet 8
2.6 Status packet 9
2.7 Communication routes between
control unit and the robot 10

2.8 USB2DYNAMIXEL adapter . . . 11
2.9 Robotic platform PhantomX Mark
II . 11

2.10 Names of each part of leg 12
2.11 ASUS Xtion PRO 13
2.12 IR pattern projection into the
depth scene . 13

2.13 Hardkernel Odroid U3 14

3.1 Coordinate system of the robot R 17
3.2 Geometrical model of the robot . 18
3.3 Geometry of the leg for the IKT 19
3.4 Direction of particular angles . . . 20
3.5 Construction limits of the femur
and tibia actuator 21

4.1 Alignment comparison 23
4.2 Data flow diagram 25
4.3 Terrain in front of the robot 25
4.4 The point cloud reduction 26
4.5 Alignment comparison of
registration . 27

4.6 Particular steps of the creation of
the elevation map 29

4.7 Evaluation function 31
4.8 Operations over binary image . . 32
4.9 Local masks for distance
transform . 33

4.10 Evaluation function of a foothold
accessibility . 34

4.11 Thresholded evaluation function 35
4.12 Perception of the surface
regarding the body height 36

4.13 Body height adaptation 36
4.14 Initialization of the world model 36

5.1 Proposed robot motion 37
5.2 Expected motion of the robot
body . 39

5.3 Motion of the leg 40
5.4 Adjusting the trajectory of the
stepping leg regarding its operational
space . 42

5.5 Proximity hold in xz plane 43
5.6 Five consecutive configurations . 44

6.1 Proposed scenarios 45
6.2 Initial robot configuration in the
first scenario 46

6.3 Traverse of the first scenario . . . 46
6.4 Terrain modelling of the first
scenario . 47

6.5 Initial robot configuration of the
second scenario 47

6.6 Terrain modelling of the second
scenario . 48

6.7 Traverse of the second scenario . 48
6.8 Initial robot location in the third
scenario . 49

6.9 Traverse of the third scenario . . . 49
6.10 Terrain modelling of the third
scenario . 50

vi

Tables
2.1 Parameters of the Dynamixel
AX-12A actuator 7

2.2 Common addresses of the actuators 8
2.3 Error details 9
2.4 Specification of the Hardkernel
Odroid U3 . 15

3.1 Angle adjustment 20
3.2 Used safe limits 21

6.1 Performance of the motion
planning in three scenarios 51

A.1 Directory structure 59

vii

Introduction

The utilization of unmanned ground vehicles for the purpose of environment
search in unstructured environment is an increasingly studied topic [1]. Such
an approach allows people to explore dangerous or restricted areas [2] where
wheeled or tracked vehicles are generally applied for the purpose of entering
such locations [3]. In addition to the wheeled and tracked ground robots,
walking robots provide a great flexibility to traverse rough and unstructured
terrain (see Figure 1), such as regular stairs, debris, or even rocks. Such
obstacles often provide only limited number of possible foothold positions
therefore a specific motion control is required to encounter such obstacles. In
comparison with biped or four-legged robots, the six-legged walking robots
offer larger variety of walking styles with enhanced static stability, which
is at the cost of a more complex control arising from the higher number
of controlled actuators. Therefore, various motion planning techniques are
studied [4].

Figure 1: Six-legged walking robot

Two approaches can be applied regarding the robot motion planning and
related terrain modelling: reactive and deliberative. The former approach uses
proprioceptive sensors to enable the robot to quickly adapt to its surroundings
and perform fast and stable short distance movements [5]. Due to the applied
principle, the map of the robot surrounding is not considered. Therefore,
it is unable to perceive feasible paths, even if they exist, due to the lack of
information about larger surroundings.

1

Introduction
The deliberative approach allows the robot to perceive larger areas by

exteroceptive sensors, such as 3-D light detection and ranging (LIDAR) units,
stereo camera or recently also RGB-D camera, which provides not only color
image but also depth measurements. This approach requires a complex
data processing of the provided sensor measurements to perform a particular
sequence of motion actions for traversing the terrain [6], [7].

A reconstruction of the robot surrounding is necessary to allow selection of
the most suitable path to safely traverse a rough terrain. Methods based on
Simultaneous Localization and Mapping (SLAM) [8] [9] and Parallel Tracking
and Mapping (PTAM) [10] techniques are one of the most applied approaches
for the purpose of the position estimation and environment reconstruction
in mobile robotics [11]. However, only relatively small amount of work has
been done considering the mapping and localization with six-legged walking
robots [12], [13], [14], [15].

Regarding the terrain modelling and motion planning for a six-legged
walking robot addressed in this thesis, we are motivated by a problem of
passing challenging terrains that can be found in nature, see Figure 2. The
problem is to traverse a passage provided only with limited foothold locations.
In such a situation, it is necessary to detect the feasible foothold locations
and plan its motion to traverse the passage safely without falling down.

In this thesis, we propose to utilize RGB-D camera to reconstruct an
environment in front of the robot and plan a safe path to crawl such a type
of terrains. Moreover, we consider limited computational resources and we
aim to develop on-line planning technique that can be deployed on-board of
the utilized six-legged walking robot.

(a): (b):

Figure 2: Nature scenarios

2

Chapter 1
Problem Specification

The problem addressed in this thesis is to exploit the motion capabilities of
the six-legged walking robot depicted in Figure 1.1. The greatest advantage
of the six-legged walking robot is its flexibility considering the configuration
of each part of the robot. Therefore, the robot is able to traverse an area
which wheeled or track robot is not capable of.

The main objective of this thesis is to develop a motion control strategy
that allows the robot to traverse a terrain with very narrow footholds, where
it is necessary to precisely navigate the robot to such footholds, otherwise the
robot can fall down. The following particular sub-problems can be identified
to address the main objective of the thesis. The first sub-problem is to create
a map of the robot surroundings. Then the second sub-problem is to develop
a suitable traversability assessment together with an appropriate motion
planning technique to provide a feasible motion plan that can be executed in
real-time.

The problematic passage is located in front of the robot. An exteroceptive
sensor is needed to enable information gathering about the surface properties
that forms the passage. The RGB-D camera ASUS Xtion PRO [16] is
considered as a suitable sensor for the purpose of this task regarding its
measurement precision, dimensions, weight, and cost.

Figure 1.1: Position of on-board computer and RGB-D camera mounted on the
robot

The on-board computer and the RGB-D camera represent the only load
the robot has to carry. Hence, it is suitable to concentrate the weight of the
load near the center of the robot body and thus, preserving the robot center

3

1. Problem Specification
of mass close to the center of the robot body, as it can be seen in Figure 1.1.
Therefore, this set-up is considered as the initial conditions of the proposed
approach.

Finally, a practical deployment of the developed solution provided path
to a real robot is also part of the thesis goals. An experimental set-up, as
shown in Figure 1.2, is considered for practical verification of the proposed
approach. The robot has to build the map on-line, since only close vicinity of
the robot can be captured and thus, the map of the robot surroundings has
to be updated as the robot moves forward through the given passage. These
are the initial conditions and assumptions for the addressed problem, which
can be stated as: Develop a solution that will allow the six-legged walking
robot to traverse a passage with only few and narrow footholds.

(a) : Passage detail (b) : Deployment demonstration

Figure 1.2: Laboratory testbed

1.1 Thesis outline

The overall approach is divided into consecutive sub-problems with specific
goals that allows independent testing and evaluation of the particular parts.
Regarding this, the text of the thesis is organized as follows. First, a short
overview of the given hardware components to be employed for the verification
of the proposed approach is presented in Chapter 2. A description of the
used robot control is presented in Chapter 3. The proposed terrain mapping
and traversability assessment are described in Chapter 4, which also includes
practical issues arising from the physical limitation of the used sensor (Section
4.7). The proposed planning technique is in Chapter 5. Results of the
experimental validation of the proposed solution are reported in Chapter 6.
Furthermore, suggestions for possible improvements and future work are
provided in Section 6.4.1. Finally, concluding remarks are dedicated to
conclusion in Chapter 7.

4

Chapter 2
Hardware

The robot used for verification of the proposed approach functionality is built
on the same platform used in [17]. Therefore, only a brief overview of the
platform is given in this section along with additional changes applied to the
motion control and available on-board computational resources. In addition,
particular details about the robot sensor system are provided, because the
utilized sensor has a direct impact to the proposed map building technique.

Figure 2.1: Robotic platform PhantomX Mark II

The used robot is based on the robotic platform PhantomX Mark II [18],
which is a six-legged walking robot, see Figure 2.1, which is further described
in Section 2.2. The robot consists of 18 servo drives that also directly represent
the robot joints. Each joint is composed of a Dynamixel servo motor actuator,
which is an intelligent actuator connected to a serial bus and capable of
performing various control commands. A detailed description of the actuator
is presented in Section 2.1. The ASUS Xtion PRO is considered as a suitable
RGB-D camera for our needs and its properties are discussed in Section 2.3.
As the computations are supposed to be done on-line, the computational
board Odroid U3 is mounted on the robot and its features are outlined in
Section 2.4.

5

2. Hardware
2.1 Dynamixel AX-12A actuator

The Dynamixel AX-12A are the used intelligent servo motors [19] that control
the motion of the robot. A picture of the servo is shown in Figure 2.2.
The servos do not act only as simple actuators, but they are also able to
work as sensors providing feedback information about the actual motion
and performance, e.g., providing estimation of the current torque, position
error, etc. The actuator is controlled by a microcontroller unit (MCU) and
communicates through 3-wire connection, which is also used as the power
supply.

Figure 2.2: Dynamixel AX-12A actuator

2.1.1 Servo drive specification

A body of the actuator is made of the engineering plastic, which is a very resis-
tant material. The plastic is also used for the system of gears propelled by the
servomotor located inside the actuator along with the MCU ATMega8. The
physical features of the Dynamixel AX-12A actuator are listed in Table 2.1.

Despite small dimensions of the actuator, it is capable of a high torque and
high speed, at the cost of a high power consumption. The current consumption
of a single actuator in a standby mode should not be higher than 50 mA
(according to the manufacturer specifications); however, during the motion,
the value can vary between 50 and 900 mA. This value mainly depends on
the difference between the current position and the desired position of the
servo motor, but also on the present load on the actuator. Notice, since the
robot has 18 actuators, the peak load can be up to 16.2 A plus the power
requirements of the on-board computational resources and power of the sensor
system. Regarding the power supply and communication, each actuator is
connected via three wires. One wire is used for power supply, one for ground
and one for communication based on the transistor–transistor logic (TTL).

The actuators are able to set their goal position in a range between −150◦
and 150◦ around the zero position as can be seen in Figure 2.3. The precision
of the servo positioning depends on the resolution which corresponds to the
third of a degree.

6

.............................. 2.1. Dynamixel AX-12A actuator

Table 2.1: Parameters of the Dynamixel AX-12A actuator

Model AX-12A
Stall Torque 1.5 N.m−1

Speed (RPM) 59
Nominal Operating Value 12 V
Stall Current Draw 1.5 A
Dimensions 32× 50× 40 mm
Weight 54.6 g
Resolution 0.29◦
Operating Angle 300◦
Gear Reduction 254:1
Position Sensor Potentiometer
Com. Protocol TTL
Com. Speed 1 Mbps

Figure 2.3: Operation range of actuator

2.1.2 Communication

The Dynamixel AX-12A is an intelligent actuator controlled by the TTL
using the half duplex universal asynchronous receiver and transmitter (UART)
serial communication. The actuators are connected to a serial bus and each
actuator can be addressed by its unique ID. The ID of each actuator can be
modified; however, the utilized motion control commands refer to actuators
according to the schema shown in Figure 2.4.

The communication supports two types of packets: 1) the instruction packet
and 2) the status packet. Each packet is divided into two parts: the header
part and the data part. The structure of the instruction packet is visualized
in Figure 2.5, where each box represents one byte. The header is formed
by the first two bytes, which are used to mark the beginning of the packet.
The data part consists of the ID of the addressed actuator, the length of the
whole packet, the instruction, parameters related to the particular instruction
and the checksum. The instruction defines whether the parameters are for

7

2. Hardware

Figure 2.4: Positions of the platform’s actuators

Figure 2.5: Instruction packet

read, write or synchronous write to more actuators at one time. Parameters
represent optional data of the instruction packet, for example an address
of the data to be read. The list of the most used addresses is presented in
Table 2.2. Finally, the checksum is computed as an inverted sum of the bytes
of the whole data part.

Table 2.2: Common addresses of the actuators

Address Item Length(bytes) Min Max
3 ID 1 0 253
4 Baud Rate 1 0 254
5 Return Delay Time 1 0 254
6 CW Angle Limit 2 0 1023
8 CCW Angle Limit 2 0 1023
14 Max Torque 2 0 1023
17 Alarm LED 1 0 127
18 Alarm Shutdown 1 0 127
30 Goal Position 2 0 1023
32 Moving Speed 2 0 1023

The status packet is shown in Figure 2.6, where each box represents one
byte. The structure serves as the response for the readings of the instruction
packet and it has similar structure as the instruction packet. The header is
formed by the first two bytes, which are used to mark the beginning of the
packet. The data part consists of the ID of the previously addressed actuator,

8

.............................. 2.1. Dynamixel AX-12A actuator

Figure 2.6: Status packet

the length of the whole packet, a possible error in the actuator, parameters
requested for a particular instruction and the checksum. If an error appears,
there is an information about it and its origin in the error byte. The MCU in
the actuator can differ between errors that happened, e.g., overheat of the
actuator, not enough input voltage, etc. All possible return error values are
listed in Table 2.3.

Table 2.3: Error details

Bit Name Detail
7 0 No error
6 Instruction Error Set to 1 if an undefined instruction is re-

ceived.
5 Overload Error Set to 1 if the specified maximum torque

can’t control the applied load.
4 Checksum Error Set to 1 if the checksum of the instruction

packet is incorrect.
3 Range Error Set to 1 if the received instruction is out

of the defined range.
2 Overheat Error Set to 1 if the internal temperature of the

unit is above the allowed operating tem-
perature.

1 Angle Limit Error Set to 1 if the Goal Position is set outside
of the range between CW Angle Limit and
CCW Angle Limit.

0 Input Voltage Error Set to 1 if the voltage is out of the operat-
ing voltage range as defined in the control
table.

The maximum number of actuators connected to a single serial bus is 254,
as the possible ID is in the range 0–253, the ID number 254 is reserved for
the broadcast communication when a packet is addressed to all connected
actuators at once. The limitation on the number of actuators arises from
the fact that the ID is represented as a single byte, and the number 255 is
reserved for beginning of the packet.

The communication can be performed on different baud rates. The compu-
tation speed can be controlled by setting a dedicated address (Address4) of the
MCU to a specific value from which the communication speed is determined
according to

9

2. Hardware

Speed = 2000000/(Address4 + 1), (2.1)

which sets the baud rate value, where the maximum baud rate error of 3% is
within the tolerance of the UART communication standard. The initial value
of the address is set to 1, which defines the default communication speed as 1
Mb.s−1.

The Dynamixel actuator does not work only as a simple actuator, but also
acts as an intelligent sensor. When any of the parameters exceeds its limit,
the actuator can move again, if the reason is temporary, such as exceeding the
angle limit. The actuator moves again, when the next requested goal position,
inside the limits, is received. There are however problems that can be solved
only by a hardware restart of the actuator, e.g., exceeding the maximum load.
Simultaneously to the reported error in the status packet, LED of the servo
lights to inform a collision occurred on the actuator.

The communication between control unit and the robot can be done in
several ways based on the particular option for the used control computer..Microcontroller unit - used in the original robot kit [18], where control

of the servo drives was done by a controller [20] that gave instructions
for Arbotix board [21] (MCU), presented in Figure 2.7a.

(a) : Arbotix Board (b) : Xbee radio module

Figure 2.7: Communication routes between control unit and the robot

. Xbee communication - a wireless communication, where a control unit
sends data to Xbee transmitter and Xbee receiver is mounted on the
robot, the Xbee radio module is shown in Figure 2.7b. This type of
communication does not directly support a half-duplex communication
used for connecting servo drives to the serial bus.. USB - a control unit sends a command through a USB cable, which is
transferred to the TTL by the USB2DYNAMIXEL adapter shown in
Figure 2.8.

In this thesis, the last option of the communication is utilized for a reliable
communication between the servo drives and control computer.

10

.......................... 2.2. Robotic platform PhantomX Mark II

Figure 2.8: USB2DYNAMIXEL adapter

2.2 Robotic platform PhantomX Mark II

Figure 2.9: Robotic platform PhantomX Mark II

The robotic platform PhantomX Mark II [18] is a six-legged walking robot
with the dimensions of the body 240 × 120 × 39 mm and it is shown in
Figure 2.9. Particular parts of the robot are made of rugged plexiglass, which
makes it more resistant to hits and falls. Each leg has three degrees of freedom
(DOF), which allows it to place the foot in various positions. However, there
are limits for the motion, which arise from the leg construction.

Each leg consists of three Dynamixel AX-12A actuators. Legs on one side
are constructed in a same way and legs on the opposite side are constructed
mirrored. Each actuator of a single leg has associated name to easily manipu-
late with each leg and address the actuators, see Figure 2.10. The name for
each actuator is from Latin name of the particular part of an insect body,
which performs similar motion as the corresponding part of the robot leg.

2.2.1 Practical issues

We made following modification of the original PhantomX platform to make it
usable for the experimenting with the proposed approach. The original version
was controlled by the Arbotix board [21] and remote controller [20] that gave
instructions to the Arbotix board (MCU). The actuators were connected
directly to MCU, which has no usage in this task, as the main feature of the

11

2. Hardware

Figure 2.10: Names of each part of leg

proposed solution should be autonomy. Therefore, these components have
been replaced by a small on-board computer Odroid U3 further described in
Section 2.4.

The power supply used for powering the robot has to serve both for powering
the actuators of the robot and to power the on-board computer mounted on
top of the robot. When testing individual parts of the approach, powering from
electricity network is used, which is more comfortable considering exchanging
of parts. However, a LiPol battery pack with 4 Ah has been used to test the
entire proposed autonomous navigation and to eliminate any external forces
applied on the robot, such as tensioned cable of the power supply. It has
been observed in early experimental evaluation that such additional forces
can change the heading or position of the robot significantly.

Another limitation comes from the Dynamixel actuators, as they are
powered even if the robot does not move and thus they have tendency to
overheat in time.

2.3 ASUS Xtion PRO

The ASUS Xtion PRO [16] is a RGB-D camera considered for the perception
of the surface in front of the robot. It is based on the Primesense sensor
which is also utilized in the probably more popular (but significantly larger
and heavier) Microsoft Kinect. It is a system that provides multiple sensing
functions. It was originally designed for motion-sensing application and
games; thus, the operation environment is indoor. It is able to provide RGB
images, depth images, and also includes microphone to detect sound. The
camera is connected via USB 2.0 interface, which also serves as power supply.
The depth images provided by the camera are very useful considering the
addressed task, because it is able of transforming the depth image into a
point cloud.

The depth sensing is based on infra-red (IR) projector and IR sensor. The
camera consists of one color image sensor and one IR sensor accompanied by

12

.................................. 2.3. ASUS Xtion PRO

Figure 2.11: ASUS Xtion PRO

IR projector, see Figure 2.11. The middle one is a simple RGB sensor, the one
on the left is the IR projector and the one on the right is the IR sensor. The
IR projector projects a pattern of IR dots, see Figure 2.12a, which falls on all
objects in the range of the camera, the dots are detected using a conventional
CMOS image sensor. The pattern changes its size and position based on the
distance of the objects from the source (the IR projector). The depth sensor
generates depth value for every pixel, as it is shown in Figure 2.12b. The
resolution of the depth image and RGB image has to be the same as the pixel
information from both images are aligned together by the integrated image
processor. The native resolution 640× 480 is used in this thesis.

(a) : IR image of the pattern (b) : Depth image

Figure 2.12: IR pattern projection into the depth scene where far objects are in
red while close objects are in blue.

The application programming interface (API) for ASUS Xtion PRO is
provided by Open Natural Interaction (OpenNI) [22] development kit. The
OpenNI was found by PrimeSense and ASUS to provide open source API for
3D sensing and applications. It enables user to work with audio stream, images,

13

2. Hardware
tools for hand gestures and body motion tracking. The information about
image is accessed through this interface, e.g., to read the image resolution,
pixel format and pixel map of the image, etc.

Unfortunately the principle used in this camera does not allow close range
performance, the minimum range is approximately 0.5 metres. The reason is
that the projected pattern is so bright that the camera is not able to recognize
it. The depth sensor is not able to evaluate the data; so, they are assigned to
zero distance.

In the addressed problem, such a disadvantage of the measuring device is
compensated by building a map of the terrain in front of the robot and based
on several consecutive images of the scene for different positions of the robot.
Therefore, such an algorithm is capable of coping with the disadvantage of
the measuring approach used by the camera.

2.4 Hardkernel Odroid U3

Figure 2.13: Hardkernel Odroid U3

The Hardkernel Odroid U3 platform [23], shown in Figure 2.13, is mounted
on the robot to enable on-board computations. The platform joins the input
from the camera with planning of the motion resulting in appropriate output
sent to the Dynamixel actuators.

Despite its small dimensions, the computer consists of 1.7GHz quad-core
processor accompanied by 2GB RAM that provides enough computational
resources for the solution proposed in this thesis. Detailed specification of the
Odroid U3 is listed in Table 2.4. As the storage capability of the computer is
only optional, the computer is equipped with additional 8GB MicroSD card
that provides enough capacity for operating system and additional space for
storing data created through the proposed approach, i.e., point clouds, maps
and data about the proposed motion.

Regarding the operating system installed on the platform, the Linux based
Ubuntu 14.04. LTS operating system designed for Advanced RISC Machine
(ARM) architecture has been considered due to the availability and support

14

.................................2.4. Hardkernel Odroid U3

Table 2.4: Specification of the Hardkernel Odroid U3

Hardkernel Odroid U3
Processor Samsung Exynos4412 Prime Cortex-A9

Quad Core 1.7Ghz with 1MB L2 cache
Memory 2048MB(2GB) LP-DDR2 880Mega data rate
LAN 10/100Mbps Ethernet with RJ-45 Jack
Storage MicroSD Card Slot

eMMC module socket
Power 5V 2A Power
PCB Size 83 x 48 mm
Weight 48g including the heat sink

of Robot Operating System (ROS) [24] and simple connectivity with external
devices.

The Indigo version of ROS was considered as it was originally designed
to work under the Ubuntu 14.04. without any additional adjustment. The
ROS Indigo is a framework used for inter process communication and also as
the communication layer providing data streams from the ASUS Xtion PRO,
using the OpenNI development kit.

The powering of the computational board is shared with powering of the
actuator system through a Li-Pol battery pack with the capacity of 4 Ah. The
powering solution is a simple construction with easy maintenance; however,
in the case of exchanging the battery, or changing the communication route
to the actuators, the platform has to be rebooted. The distance covered by
the robot during a single test of the approach is not large enough to cause an
immediate exchange of batteries in the particular experiment, therefore, the
disadvantage caused by such a powering solution is not considerable.

Additional advantage of having all necessary resources and computational
power on board of the robot is elimination of any external force that causes
undesirable change of the robot orientation or position, resulting in an error
in the proposed precise foothold placement. Furthermore, it enhances the
effort in creation of the fully autonomous robot able to crawl over complex
obstacles.

15

16

Chapter 3
Robot Control

The main requirement for the robot motion is the stability of the robot;
therefore, the motion is based on pentapod walking gait [25]. In the pentapod
gait, at least five legs remain in contact with the ground and one leg at a time
performs a step. However, the robot legs do not perform a constant motion
as in a regular gait, but the position of the next foothold is planned, to utilize
the terrain more efficiently and to allow the robot traverse a passage with
narrow footholds. The body moves simultaneously with the leg that performs
a step; moreover, a synchronised motion of each actuator is applied; thus, a
speed of the particular actuator is changing during the motion. Such approach
reduces the possibility of collision of the robot with itself and enhances the a
smooth motion.

xR

yR

zR

f1

f2

f3

f4

f5

f6

Figure 3.1: Coordinate system of the robot R with the particular endpoints
denoted as fi, i ∈ (1, . . . , 6)

The construction of the robot consists of 18 actuators representing 6 legs,
each with 3 actuators. The considered gait (with one moving leg and five
supporting) divides the 18 parameters representing the actuators into two

17

3. Robot Control
groups: 3 parameters represent the leg performing a step and 15 actuators are
performing the forward body motion. The configuration of each leg is defined
by three parameters either in joint coordinate frame s(C,F, T), suitable for
control, or in Cartesian coordinate frame f(xR, yR, zR), suitable for planning.
The conversion from the Cartesian coordinate frame to the joint coordinate
frame is done by the inverse kinematic task (IKT). The Cartesian coordinate
system of the robot R is shown in Figure 3.1. A position (in the R coordinate
frame) representing the endpoint of each particular leg is defined as a triplet

fi = xR
i , y

R
i , z

R
i , (3.1)

where i denotes the particular leg, i.e.,i ∈ {1, . . . , 6} with the origin at the
center of the robot body.

we

wc

l

l

wewe

we

wc

(a) : Geometrical
model of the body

lC
lF

IT

(b) : Geometrical model of the leg

Figure 3.2: Geometrical model of the robot, where corresponding parts are in
blue.

Even though, each leg is attached to the robot in a different way and cannot
be treated identically regarding the IKT, the main idea of computing joint
values is the some for all legs. Therefore, the IKT is described on one leg,
other legs are treated analogically using a coordinate transformation of the
particular leg.

The angle α, presented in Figure 3.3a, defines the orientation of a coxa
servo drive and is calculated as,

α = tan−1
(
fxn

fyn

)
. (3.2)

Finding α, the transformation becomes a 2D task that can be approached
using a cosine formula, see Figure 3.3b. The angles β and γ, which define
the orientation of femur and tibia servo drives, are calculated using auxiliary
parameters

18

.....................................3. Robot Control

fyn

fxn

dp

lC
α

(a) : Top view of the leg

δ
ε

dl

dp

fzn

lC
lF

IT

β γ

(b) : Side view of the leg

Figure 3.3: Geometry of the leg for the IKT

dp =
√
f2

x + f2
y − lC (3.3)

dl =
√
d2

p + f2
z (3.4)

δ = −tan−1
(
fz

dl

)
, (3.5)

in the cosine formula

l2T = d2
l + l2F − 2dllF cos(ε). (3.6)

Expressing ε as

ε = cos−1
(
d2

l + l2F − l2T
2dllF

)
(3.7)

the angle β is

β = δ + ε (3.8)

and analogically, the angle γ is calculated using the cosine formula

d2
l = l2F + l2T − 2lF lT cos(γ) (3.9)

γ = cos−1(l
2
F + l2T − d2

l

2lF lT
). (3.10)

The geometrical model of the leg, presented in Figure 3.2b, is a simplification
of the real leg as the connections between the adjacent actuators are not
straight segments. Therefore, a bias has to be applied to set the actuators to
the particular requested value. The offset angles are depicted in Figure 3.4a
and 3.4b where they are denoted as the angles φ, ψ, ω, π.

19

3. Robot Control

fy

fx
αφ

lC

(a) : Top view

π
ψ

ω

lC

lF
IT

β γ

γ

(b) : Side view

Figure 3.4: Direction of particular angles, where the default orientation of
particular actuator is represented by black arrow.

Table 3.1: Angle adjustment

fi oC aC oF aF oT aT

f1 φ −α −ψ −β −ω + π −γ
f2 −φ α ψ β ω − π γ
f3 0 α ψ β ω − π γ
f4 φ −α ψ β ω − π γ
f5 −φ α −ψ −β −ω + π −γ
f6 0 −α −ψ −β −ω + π −γ

The angle of a particular actuator must be in the range 〈−150◦, 150◦〉 with
the center of the range shown as the black arrow in Figure 3.4. The particular
angles are therefore adjusted using the offset values φ, ψ, ω, π to correspond
with the control of the actuator. However, the legs differ in their construction
with respect to the robot body, therefore, the parameters of the adjustment
have to be uniquely applied. Particular offset angles are reported in Table 3.1.
The angle of the particular actuator is then calculated as

siC = 150 + oiC + aiC (3.11)
siF = 150 + oiF + aiF (3.12)
siT = 150 + oiT + aiT . (3.13)

Neither of the actuators of the robot is able to utilize the full interval of its
reachable positions, due to the leg construction. Therefore, it is necessary to
eliminate any attempt to set the actuator to a position resulting in a collision
with adjacent parts of the robot body, as it is indicated in Figure 3.5.

Each operation with the angle of the particular actuator is preceded by a
check, whether the required angle lies within the reachable interval, specifically
set for the each particular actuator. The intervals for particular actuators are

20

.....................................3. Robot Control

Figure 3.5: Construction limits of the femur and tibia actuator. The red,blue
and green parts represent particular parts of the leg. All reachable positions of
the particular actuator are represented in magenta.

listed in Table 3.2 and considered in the motion planning. Therefore, every
leg configuration defined by the particular joint angles si = (siC , siF , siT) has
to satisfy the conditions.

siCmin ≤ siC ≤ siCmax (3.14)
siF min ≤ siF ≤ siF max (3.15)
siT min ≤ siT ≤ siT max (3.16)

Once the IKT is formulated, the leg performing a step has to be provided
by coordinates f = (x, y, z) of a new foothold. The candidates for the next
foothold are determined according to the terrain in front of the robot.

Table 3.2: Used safe limits of the particular leg actuators

fi sCmin sCmax sF min sF max sT min sT max

f1 −80 42 −105 101 −55 101
f2 −42 80 −102 103 −104 55
f3 −80 80 −104 102 −104 55
f4 −80 42 −104 101 −105 55
f5 −42 80 −104 102 −55 99
f6 −80 80 −104 102 −55 99

21

22

Chapter 4
Terrain Modelling

Terrain modelling together with localization of the robot in such a model
plays a key role in the robot navigation task, mainly in the unstructured
environments, where surroundings of the robot cannot be modelled by a
simple plain surface. The RGB-D camera ASUS Xtion PRO has been selected
as a suitable source of range measurements, because it represents an off-the-
shelf low-cost sensor able to deliver sufficiently precise measurements for the
addressed problem..

Once we have a precise position of the robot, it is relatively straightforward
to build a terrain map from consequent measurements (3D scans provided by
the RGB-D camera). We only need to translate particular scans according
to the changed robot position P (x, y) performed between the measurements
and merge the scans into a single terrain map. However, we do not rely on
external motion capture system, and therefore, we only have the collected
scans and expected motion P̃ (x, y) provided by the motion planner, which
does not truly correspond to the real robot motion due to friction of footholds,
errors in position settings of the actuators, etc. Considering only the expected
motion change P̃ provides a map with insufficiently precise alignment of the
individual scans, which is demonstrated in Figure 4.1a.

(a) : Simple translation of point clouds
where aligned cloud is in red

(b) : ICP alignment where aligned point
cloud is in green

Figure 4.1: Alignment comparison between simple translation and ICP where
target point cloud is in blue.

On the other hand, we can consider SLAM techniques to simultaneously

23

4. Terrain Modelling...................................
built a map of the environment and use the map to provide estimation of the
robot motion. Thus, a point cloud Ct of the new measurements provided by
the sensor is aligned to the point cloud Cs that represents the world model
(map), e.g., using the iterative closest point (ICP) [26] algorithm, which
results in much better map as it is shown in Figure 4.1b. Therefore, map
building technique based on the ICP algorithm is utilized in this thesis to
create a model of the robot surroundings.

The algorithm works as follows, a point cloud Ct of the new measurements
provided by the sensor is aligned to the point cloud Cs that represents the
world model. The algorithm iteratively converges to a transformation Q that
transforms the point cloud Cs to align with point cloud Ct by minimizing
the mean squared error between them. Based on early experiments, the
transformation Q is more precise, when normals are considered instead of
points; therefore, a normal is estimated for each point of both point clouds.
Once the transformation Q is estimated and the point cloud Cs is aligned to
Ct; the map point cloud Cs is updated by merging the point cloud Ct into Cs.
It can be assumed that points in a close vicinity to each other are identical,
and therefore, a voxel1 grid approach is applied to create a 3D voxel grid [27]
and remove the duplicity of particular points. Such an update of Cs integrates
sensor measurements that can contain noisy data; therefore, the moving least
square (MLS) [28] method is applied on the 3D voxel grid to reduce noise
in the created world model. Beside the terrain model, the transformation Q
enables the robot to simultaneously localize itself with respect to the terrain
and provides better position estimate than the expected motion P̃ .

Even though, the world model represented by the point cloud is good
for localization, it is difficult to plan a robot motion in a point cloud. In
particular, we assume that the robot uses only the top surface of the terrain
and obstacles for crawling, and therefore, it is possible to transform the point
cloud into a grid based elevation map which represents the 2.5D space which
is more suitable for the proposed on-line motion planning.

As it is considered that the terrain provides limited number of foothold
locations, a method that indicates the most suitable candidates for foothold
placement is proposed. The perceived rough terrain map is divided into
two groups of accessible and non-accessible foothold locations to create the
so-called foothold map. Then, an evaluation function is proposed to consider
expected robustness of a particular foothold. Such as map is further considered
in the motion planning.

The motion planner accesses the evaluation function, regarding the position
(x, y) for the foothold placement, and the elevation map, also regarding the
height of the particular positionMelev(x, y). Therefore, the motion planner
is provided with a full triplet (x, y, z). The data flow of the terrain modelling
and a relation of the particular terrain maps with the motion planner motion
planner are depicted in Figure 4.2.

1Voxel is a point in a regular 3D space representing a predefined area in the space, it is
analogous to a pixel in the 2D space.

24

.................................. 4.1. Point cloud model

Raw data
Point cloud

reduction

ICP

Normal

estimate

Voxelized

grid
MLS

Elevation

map

Foothold

map

Evaluation

function

Motion planner

Figure 4.2: Data flow diagram of the terrain modelling and motion planner

4.1 Point cloud model

(a) : Real terrain in
front of the robot

(b) : Raw point cloud
generated by ASUS Xtion
PRO

Figure 4.3: Terrain in front of the robot

The ASUS Xtion PRO camera is able to provide a depth image in the
resolution of 640× 480 pixels; furthermore, it is also able to convert it into a
raw point cloud scan, which is subset of R3 that consists of 307200 points.
An example of the raw point could directly provided from this RGB-D sensor
is shown in Figure 4.3b. The credibility of the measurement can be compared
with the real terrain in front of the robot presented in Figure 4.3a, which
is capture by the RGB sensor of the utilized Asus Xtion Pro. The origin
of coordinate system is aligned with the sensor device, as it is simple to
compare the measured distances with the real scene. The coordinate system,
is oriented as it is shown in Figure 4.4.

The pitch of the camera can be arbitrarily set, using the joint of the camera
holder construction. The RGB-D camera is set in a manner that the z-axis

25

4. Terrain Modelling...................................
is perpendicular to the ground. This form of the coordinate system setting
makes the transformation between the coordinate system of the camera and
the coordinate system of the robot a simple translation.

4.1.1 Point cloud reduction

The amount of data provided by the camera is enormous for the purpose of
addressed modelling of the terrain in front of the robot. Thus, a raw point
cloud is reduced to a lower number of points considering only points inside
the box with the dimensions of (2.7, 0.75, 0.75) metres in front of the robot.
The raw points in this box are highlighted in Figure 4.4.

Y

Z

X

Figure 4.4: An example of the point cloud reduction where X-axis is in red,
Y-axis is in green and Z-axis is in blue. The raw point cloud provided by the
camera is represented in black and the reduced point cloud within a selected
area is in magenta.

4.2 Iterative Closest Point

The ICP algorithm, particularly its implementation using the Point Cloud
Library (PCL) [29], is used to iteratively refine a source scan Cs to match
a target scan Ct in the l iterations. In each iteration k ∈ {1, . . . , l}, the
algorithm estimates corresponding features between the point clouds Cs and
Ct, estimates the rotation matrix Rk(φ, ψ, ω) and the translation matrix
Tk(x, y, z) while minimizing the mean squared error ek and transforms the
point cloud Cs using the estimated transformation matrices Rk and Tk.

The algorithm matches point p = (x1, y1, z1), p ∈ Cs to point q = (x2, y2, z2), q ∈
Ct using the Euclidean distance as

q = arg min
ri∈Ct

‖p− ri‖. (4.1)

26

.................................4.2. Iterative Closest Point

The point q with the minimal Euclidean distance to the point p is registered
as tuple (p, q). In each iteration k, the algorithm minimizes the mean squared
error ek

ek = 1
N

N∑
i=1
‖qik −Rkpi − Tk‖, (4.2)

where N is the number of points in Cs.
The ICP algorithm always converges monotonically to the nearest local

minimum of the mean-square distance metric [26]. Once converged to a local
minimum a transformation Q between the initial point cloud Cs and point
cloud Ct is estimated based on the rotation matrices R1,...,l and translation
matrices T1,...,l.

The robot motion in unstructured terrain is considered, therefore, it is
assumed that the terrain consists of various objects with unique surface, which
provides more distinguishable features. Therefore, normals are estimated in
each point of both point clouds. The normal np at the point p is estimated as

~np = ~v1p × ~v2p, (4.3)

where ~v1p and ~v2p represent vectors between the point p and its first and
second nearest neighbour.

Using normals for estimation of the transformation Q results in a better
performance of the ICP algorithm. The precision of the alignment using
normals is shown in Figure 4.5b in comparison with the simple ICP presented
in Figure 4.5a. Once the ICP algorithm converges, the point cloud Cs and Ct

are merged and the current robot position is updated according to the found
transformation Q.

(a) : Simple ICP with source point cloud
in red and target point cloud in blue

(b) : Registration using normals where
source point cloud is in green and target
point cloud in blue

Figure 4.5: Alignment comparison between point and normal-based registrations
method; the difference between the alignment is only in centimetres; however,
such a distance is significant considering the size of the robot body.

27

4. Terrain Modelling...................................
4.2.1 Practical implementation

The initial estimate of the transformation Q, i.e. T0, during the robot motion
is provided by the expected motion P̃ if available. Therefore, the algorithm
provides better results in the fixed number of 50 iterations, due to the lower
mean squared error, and should not get stuck in a local minimum. The control
of the robot motion shows a high precision with a proper traction; thus, the
motion estimate P̃ should be close to the real robot motion performed since
the last measurement.

Due to the considered performace, an implementation of the ICP algorithm
considering normals at particular points of the point cloud is employed [30],
along with the algorithm for the normal estimation [31] which is based on
neighbourhood technique.

Even though the raw point cloud, received from the camera is reduced (see
Section 4.1.1), the size of the both point clouds Cs and Ct is still too large to
be processed by the ICP in a reasonable time. Therefore, the point clouds
are further down-sampled, to improve performance of the proposed solution,
which is made using the PCL.

4.3 Voxel grid

The voxel grid approach is applied to create an elevation map as 3D voxel grid.
All points belonging to a particular voxel are approximated with their centroid.
This approach is a bit more computationally demanding than approximation
of the points in the voxel as the center of the voxel, but it represents the
terrain measured by the points of the point cloud more accurately.

The voxel grid is then utilized for two purposes regarding the addressed
problem of this thesis. The first purpose is to enable a better performance of
the ICP algorithm, as the reduced number of points is used for the transfor-
mation estimate, in which a voxel grid with the dimensions of (0.05, 0.05, 0.05)
metres is considered. The second purpose is to remove the duplicated points
after merging the point clouds Cs and Ct together. The voxel grid with
dimensions of each grid bin (0.01, 0.01, 0.01) metres is utilized to filter the
updated the point cloud Cs.

Finally, the moving least square algorithm is employed to filter a possible
noise in the voxel grid. The position description (x, y, z), together with the
normal (nx, ny, nz) is stored in each bin of the grid. The information about
normals makes the planner able to perceive the supporting possibilities of the
terrain more precisely.

4.4 Grid based elevation map

The elevation map describes altitude of each particular grid cell and thus, it
provides a discrete representation of the spatial distribution of the terrain.
Each grid cell represents a particular foothold location whose suitability to

28

.................................... 4.5. Foothold map

stably support robot position can be determined using nearby cells. The
elevation map is created with the considered dimensions 2.7 × 1.0 meters,
which is sufficient for covering the considered area in front of the robot. Each
grid cell represents a squared area with the side 0.01 meter that corresponds
to the dimensions of the voxel grid (Section 4.3) that is converted to the
elevation map.

In a case of multiple hits in a particular bin of the elevation map, the
maximum rule is applied considering the z coordinate, as the movement on
top of the obstacles is considered. Regarding the normals of multiple hits a
mean filter is further applied to smooth the map. An example of the created
elevation mapMelev is shown in Figure 4.6b, together with the point cloud
Cs, presented in Figure 4.6a.

(a): (b): (c):

Figure 4.6: Particular steps of the creation of the elevation map Melev from
the point cloud, where (a) is the point cloud with the RGB color schema with
purple as the highest altitude; (b) is the elevation mapMelev with grey color
schema (white is the highest); and finally (c) the elevation map after removing
the inaccessible areas.

The origin of the point cloud Cs is located in the center of the sensor device.
However, the motion planning is done with respect to the center of the robot,
therefore, the origin of the elevation mapMelev is aligned with the center of
the robot body. A simple translation of the point cloud Cs is applied, due to
the considered way the sensor is mounted on the robot.

4.5 Foothold map

Not all the locations represented in the elevation mapMelev are accessible,
due to the dimensions of the real robot body. Therefore, a foothold map B is

29

4. Terrain Modelling...................................
constructed to define suitable foothold locations of the elevation mapMelev.
The foothold map is in a form of binary image that divides the locations to
accessible and non-accessible.

The robot is unable to place the endpoint of its leg right next to an obstacle,
because of physical limitations considering the size of the endpoint of the
robot leg. It can place the endpoint on the obstacle if there is enough free
space, but never right next to it, as it would result in a collision of the
foothold with the obstacle. In a case of such a situation, the points lying on
an edge between two areas of different height, have to be removed. The robot
cannot access the space near the edge both from the lower area, resulting in
a collision with the object, nor from the higher area, resulting in a limited
support. Result of such an approach is presented in Figure 4.6c.

Having removed areas lying near the edge of an object, it is necessary
to filter areas the robot cannot reach, e.g., a bottom of a deep gap. These
areas are defined by the dimensions of the robot body, together with the
forward robot motion in which the robot keeps the body horizontally to the
supporting ground. The robot is able to enter an area with the maximum
depth of 0.25 metres from the robot body; thus, a deeper area is considered as
inaccessible, and therefore, it is removed from the possibly feasible locations.

A similar approach is performed when filtering out points with undesirable
normals, as we are looking for locations with the maximal support. When
considering a planar motion, the maximal support to the robot stable position
is provided by the points with normals perpendicular to the plane and thus,
points with normals with the deviation greater than π/4 from the normal of
the horizontal plane are considered as unstable and marked as non-accessible
in the foothold map. The deviation ψ is calculated using the formula

ψ = tan−1
(‖~v × ~n‖

~v · ~n

)
, (4.4)

where ~v is a normal of the particular point and ~n(0, 0, 1) is a vector corre-
sponding to the normal of the horizontal plane.

The unconstrained areas of the terrain provide enough locations for the
foothold placement. However, the limited passage in front of the robot,
provide only a limited number of locations. Therefore, a search for a suitable
location is speeded up by an evaluation function that enables the robot to
select the most suitable location for the foothold placement based on the
foothold map. The proposed evaluation function is described in the next
section.

4.6 Evaluation function

The proposed evaluation function F is considered to represent a robustness of
each bin in the foothold map B. The point cloud provided by the camera is
not dense enough to fill every bin of the elevation map. Therefore, a number
of vacant bins are in the elevation map and consequently in the foothold map,
which decreases the number of places available for a foothold selection. The

30

..................................4.6. Evaluation function

main idea of the proposed evaluation function F on a single pillar is shown
in Figure 4.7.

x

z
R

R

Figure 4.7: Evaluation function of the accessible locations in xy plane where the
terrain is in black, evaluation function is in red, accessible position is in green
and dashed line represents locations where evaluation function crosses zero.

The real terrain in front of the robot is considered to be a continuous space;
therefore, vacant bins in a close vicinity of an occupied bin are assumed to
be accessible in the real terrain. As the foothold map is a binary image, the
gaps can be corrected using methods of the mathematical morphology [32].
Using structure element smaller than the real robot endpoint, smaller holes
in the real terrain can be omitted, while the larger ones remain. Therefore, a
square with dimension 5× 5 cm (5× 5 pixels) is considered as the structure
element. The first applied operation of mathematical morphology is dilation,
which is a union of translated point sets

X ⊕ S =
⋃
s∈S

Xs, (4.5)

where X is a binary image and S is the structure element [32].
Whenever a particular binary pixel in the image X is marked as occupied

(accessible), its neighbourhood equal to the structure element with the partic-
ular pixel in its center is also marked as occupied in the resulting image; so,
areas of the occupied pixels are expanding. The result of such an operation
applied on the elevation map is shown in Figure 4.8b.

The second applied operator is erosion, which is an intersection of all image
X translations by the vector −s ∈ S.

X 	 S =
⋂
−s∈S

X−s, (4.6)

where X is a binary image and S is a structure element [32]. If the neighbour-
hood of a particular pixel marked by the structure element S consists only
of occupied pixels then, the particular binary pixel is marked as occupied;

31

4. Terrain Modelling...................................
otherwise it is marked as vacant. Dilation followed by erosion is called binary
closing and can be formally defined as

X • S = (X ⊕ S)	 S. (4.7)

Binary closing removes smaller gaps possibly created by faulty measurements
and preserves greater ones placed in front of the robot. An example of
the binary image Bc, created by the binary closing operation is shown in
Figure 4.8c.

(a) :
Foothold
map B

(b) : Dilation (c) : Binary
image Bc

Figure 4.8: Operations over binary image where accessible areas are in white
and non-accessible areas are in black.

A value that represents the distance from the nearest non-accessible pixel
is calculated for every pixel of the binary image Bc; therefore, a distance
transform algorithm is applied. Input of the distance transform algorithm
is a binary image, where pixels are either occupied (accessible) or empty
(non-accessible). Using a local mask of the neighbouring pixels [33], a minimal
distance between each occupied pixel and the nearest empty pixel is calculated.
The Manhattan distance is applied, which calculates the distance between
the pixels p and q, using formula

D(p, q) = |px − qx|+ |py − qy|, (4.8)

where (x, y) denotes the position of the particular pixel within the binary
image Bc.

A two-pass algorithm [34] is applied to determine evaluation function that
assess suitability of particular foothold location. In the first pass, the top-left
(TL) mask, presented in Figure 4.9a, is iteratively applied to all pixels, going

32

..................................4.6. Evaluation function

TL

pTL

(a) : Top-left
mask

BRp

BR

(b) : Bottom-
right mask

Figure 4.9: Local masks for distance transform

from the top-left corner of the binary image down in a row-wise manner from
left to right. An updated value is calculated for every pixel p using formula

I(p) = min
q∈AL

(I(p), D(p, q) + I(q)), (4.9)

where I is the resulting image describing the evaluation function being
determined.

For the second pass, the bottom-right (BR) mask, see Figure 4.9b, is
iteratively applied on all pixels of the binary image I, starting from the
bottom-right corner, going up through the binary image in a row-wise manner
from right to left. An update value is again calculated for every pixel p using
the formula

I(p) = min
q∈BR

(I(p), D(p, q) + I(q)). (4.10)

This approach is analogically applied for the inversion of the binary image
Bc, calculating the distance between particular pixel and the nearest accessible
pixel, which results in the distance transform of the inversion of the binary
image Bc stored in the image II . Therefore it is possible to track the nearest
accessible pixel for a particular non-accessible pixel.

Concatenating the results of both approaches (I and II), an evaluation
function F is created, depicting the pixels with the maximal estimated support
as the local minimum of the function. Therefore, the distance values in the
image I are treated as negative. It is then possible to search for a local
minimum, every time a non-accessible pixel is selected, which speeds up the
planner. An example of the evaluation function F is shown in Figure 4.10a.
However, locations deeper than 5 cm inside an accessible area are considered
equally suitable for foothold placement, therefore, the function is thresholded
by a bound equal to −5, see the idea in in Figure 4.11. An example of the
thresholded evaluation function Ft is in Figure 4.10b. Areas with the zero
value in the evaluation function represent the edges between accessible and
non-accessible areas.

33

4. Terrain Modelling...................................

Y

X

20 40 60 80 100

50

100

150

200

250

−30

−20

−10

0

10

20

30

40

50

60

(a) : Evaluation function F

Y
X

20 40 60 80 100

50

100

150

200

250

−30

−20

−10

0

10

20

30

40

50

60

(b) : Thresholded evaluation function Ft

Figure 4.10: Evaluation function of a foothold accessibility

4.7 Troubleshooting

Based on our early experiments, the measured point cloud is not sufficient
to provide a consistent terrain reconstruction, as it is shown in Figure 4.12a.
There is a physical limitation, considering the functionality of the ASUS
Xtion PRO, such as the minimal required sensing distance to obtain reliable
distance measurements. The device is unable to perceive terrain closer than
0.5 metres, therefore, it does not only influence the perception of physical
obstacles located in front of the robot, but mainly causing the robot unable
to sense the terrain that it should traverse.

Fortunately, one of the advantages of the six-legged robots is its modality
considering its body configuration. While the robot is unable to perceive
the terrain when it is in the walking state close to the surface (e.g., see
Figure 4.13a), the situation changes when the robot moves the body into
an upper configuration (see Figure 4.13b) where the depth camera is placed
higher above the terrain (approximately about 7 cm higher). The perception
of the terrain is then significantly better as it is shown in Figure 4.12b.

Therefore, the measurements taken from the upper configurations are used
for the terrain modelling. Even in the walking state, the robot is able to
perceive parts of the terrain, but mostly objects rather than terrain; so, these
measurements are more suitable for the motion estimate than for the terrain

34

................................... 4.7. Troubleshooting

x

z
R

R

Figure 4.11: Thresholded evaluation function of the accessible locations in xy
plane where the terrain is in black, the evaluation function is in red, accessible
position is in green and dashed line represent locations where evaluation function
crosses zero.

reconstruction.
The extra vertical motion for taking measurements of the terrain has to

be explicitly considered in the planning, because the body position with the
maximum height cannot be achieved from all regular walking configurations
due to the kinematic margin.

The second problem concerning the limitation of the camera is the initial-
ization of the world model. The closest area the robot is able to perceive is
located at least 0.5 metres in front of the robot; therefore, it is assumed the
robot initial location is on a flat surface and the world model is initialized
with the filled area between the robot initial position and the closest perceived
obstacles. The initial area beneath the robot is modelled as a plane as shown
in Figure 4.14. Once the robot moves forward, the initial area is amended by
real measurements, gained from the camera.

35

4. Terrain Modelling...................................

(a) : Perception from lower walking position (b) : Perception from upper position

Figure 4.12: Perception of the surface regarding the body height

(a) : Robot in lower walking position (b) : Robot in upper position

Figure 4.13: Body height adaptation

Figure 4.14: Initialization of the world model where measurements provided
from the camera are in blue, the initial terrain model is in black and the center
of the camera is represented by the 3-axes origin of the coordinate system.

36

Chapter 5
Motion Planning

xR

fT0

T2f

T4f

T3f

fT1

yR

zR

Figure 5.1: The proposed idea of the decomposed motion planning is based on
split motion planning of the robot body followed by sampling possible foothold
location and local planning of the leg motion. The expected motion steps are in
magenta and the robot coordinate frame is in blue.

The proposed motion planning approach is based on incremental construc-
tion of a motion planning roadmap that can be represented as graph G(V,E),
where each node qa ∈ V represents a configuration and an edge e ∈ E connect-
ing two nodes e = (qa, qb), qa, qb ∈ V represents a feasible motion. Since the
motion planning is started from the given robot configuration, the roadmap
graph G is a tree and the initial robot configuration is the root of the tree q0.
Each node contains information about the robot configuration (absolute posi-
tion of the robot body and angles of all joint actuators), previous node and a
score represented as the weight wa, which denotes suitability of the locations
as a supporting foothold. Since a general motion planning for six-legged
walking robot is computationally challenging and we aim to provide real-time
solution, the proposed roadmap expansion is based on randomized sampling
of the possible body movement followed by sampling of new foothold location

37

5. Motion Planning
for moving leg in the used pentapod gait. Then, feasibility of such a new
configuration is evaluated and leg motion is refined according to the swing
motion of the leg motion step. Besides, local search techniques are employed
to find the most suitable body motion and foothold placement considering
the elevation mapMelev, evaluation function F and the weight w to provide
robust and safe path to traverse the passage with only few foothold locations.
An example of the proposed motion is in Figure 5.1.

The motion planning follows the idea of the incremental roadmap con-
struction as in the randomized sampling-based motion planners [35] that
is combined with a deterministic expansion utilized in the lattice based ap-
proach [36]. The main idea of the proposed planning approach is based on
expanding the initial robot configuration considering an independent sampling
of the possible body movement with consecutive sampling of the next foothold
locations. Thus, for a single sampling of up to m body movements, up to n
foothold locations defined by neighbourhood of a regular motion gait for the
particular leg are sampled and feasibility of such motion is evaluated using
IKT and collision check. Then, the most suitable locations according to the
weight is selected and the process is repeated for the next leg motion in the
gait. Finally, the whole planning is repeated up to the given l number of gait
cycles, where the used gait prescribes which leg is considered for the new
foothold placement.

The search is terminated after l gait cycles the robot travels a distance
longer than ∆x while still keeping the straight direction and its change in
the y-axis is below ∆y, because we assume the passage to be traversed is
straight ahead of the initial robot location and it is shorter than ∆x. The
expected goal position of the robot is defined in the distance ∆x ahead of
the current robot position. Particular sampling of the next robot location
and new foothold together with the motion planning for each individual leg
and body are described in the following sections.

Notice, once a motion plan is determined and executed, the robot takes a
new sensor measurements to update the terrain model and the planning is
repeated for the current robot position. Besides, sensor measurements are
collected during the robot motion to update the point cloud map and support
the global localization of the robot.

5.1 Robot body motion

The robot is standing on five legs and the remaining one performs the forward
step; the five standing legs are deterministically driven by the motion of the
robot body. Therefore, the control of footholds of the five standing legs, i.e,
15 actuators, can be performed by two coordinates representing the robot
body motion (x, y), which reduces the 15 DOF down to 2 DOF.

The proposed motion planning of the robot body considers up to m random
movements, regarding the distance and angle, to generate a variety of robot
body positions from which the foothold locations for the moving leg are
searched. The expected robot body motion forms a cone with the origin at

38

..................................5.1. Robot body motion

the center of the robot coordinate system and pointed towards the passage to
be traverse. The expected area from which the body locations are sampled is
visualized in Figure 5.2.

dbmax

dbmin

v

Figure 5.2: Expected motion of the robot body is in cyan where the probability
of selecting a particular motion is represented by its transparency.

The next robot body location is sampled within the cone defined in the the
angle α. Besides, it is expected the next body center should move by at least
dbmin distance and not far than dbmax. Therefore, the intended traversed
distance of the body is defined using bounds dbmin and dbmax as

drand = dbmin + (dbmax − dbmin)rand(), (5.1)

where rand() is a function that provides a random uniform distribution in
the range 〈0, 1〉. The angle of the robot movement is defined as

φrand = sample(α), (5.2)

where sample(α) is a function that provides a random value in the range
〈−α, α〉 with the Gaussian distribution. Thus, the expected new body position
is defined by drand and φrand .

Notice, only two coordinates are sampled as the considered forward motion
is performed at the constant height and the standing legs are supposed to
remain on the ground.

5.1.1 Feasibility tests

Once the body motion is defined, configurations of the five standing legs are
subject to IKT described in Chapter 3. The endpoints are forbidden to be
set in the area under the robot body, due to the lack of support; furthermore,
the endpoints of the front legs are forbidden to be set behind the front level
of the robot body due to the consequent change of the robot center of mass
towards the frond part of the robot body. Based on experimental evaluation,
such a change of the center of mass results in an imbalance of the robot
body. If a new configuration does not pass the considered tests, the proposed

39

5. Motion Planning
robot body motion is rejected and a new sample of the robot body location
is selected.

A collision between the legs is not considered in this section as all five
legs move towards same direction defined by the new body location and a
collision of the leg with the body is eliminated by the actuator limits defined
in Chapter 3.

The robot body motion influences the leg that performs the forward step;
therefore, the body motion is calculated first and consequently, the foothold
of the leg that performs a forward step is selected.

5.2 Foothold selection

The foothold position selection for the stepping leg, is defined analogically
to the robot body motion by assuming up to n random samples of the new
foothold location, see Figure 5.3. However, different parameters defining the
bounds of the traversed distance, dlmin and dlmax, of the stepping leg are
considered; and thus, a random sample is drawn from a cone defined by the
distance drand and angle φrand

drand = dlmin + (dlmax − dlmin)rand() (5.3)
φrand = sample(β), (5.4)

where rand() and sample(β) are analogical to the functions used for the body
motion.

dlmax
β-β

dlmin

v

Figure 5.3: Motion of the leg that performs a forward step is in cyan where the
probability of selecting a particular motion is represented by its transparency.

Having a new location of the leg endpoint in the global coordinate frame,
the expected height of the foothold is determined from the elevation map
Melev.

40

.................................. 5.3. Expansion criterion

5.2.1 Feasibility tests

Once the foothold position is defined, it is checked whether the foothold is
accessible regarding its location in the evaluation function F . If the value
of the location in the evaluation function is strongly negative, the location
corresponds to the accessible area and the foothold is accepted. In a case,
the value in the evaluation function is negative, but close to zero, or positive,
the foothold is not immediately rejected. A local greedy search is performed
to find the closest local minimum of the evaluation function F .

The intended foothold is analysed by the IKT to test if the corresponding
configuration of the leg is in a reachable position. Analogically to the body
motion, it is forbidden to set the endpoints in the area under the robot body
due to the lack of support. Besides, it is forbidden to set the endpoints of the
rear legs in front of the rear level of the robot body due to the consequent
change of the robot center of mass towards the rear part of the robot body.

Moreover, the intended leg endpoint cannot be located in a close vicinity
of the other current endpoints due to a possible collision. The construction
above the rubber tip of the leg is the cause of possible collisions and has to be
considered to eliminate the colliding configurations. Therefore, configurations
in which the endpoints of two legs are closer than 6 cm are rejected.

Once the foothold is indicated as feasible, a candidate configuration qa for
the next robot step is created and considered for further evaluation according
to its weight and the proposed roadmap expansion criterion described in the
next section.

5.3 Expansion criterion

An expected stability of the configuration is the main factor considered in
this thesis; therefore, it is the strongest element of the proposed criterion to
select a configuration for the roadmap expansion. However, the forward body
motion should also be considered regarding the selection of the next node for
the expansion. Therefore, the weight of a particular node is defined as

w = F (xli , yli)−
(
dg

d

)
, (5.5)

where (xli , yli) denotes the location of the currently moving leg li in the
global coordinate system, F is the evaluation function (see Section 4.6), dg is
the current distance of the robot to the expected goal location, and d is the
expected total travelled distance from the robot initial location to the goal
location.

Having a set of candidate foothold locations S for the current leg li, the
further expansion is performed from the most safe location qa that is found as

qa = arg min
qi∈S

w(qi), (5.6)

where w(qi) is the weight assigned to node qi.

41

5. Motion Planning
Once the current tree is expanded in such a way that the robot can be moved

about distance ∆x towards traversing the passage, a sequence of the motion
is constructed from the roadmap using backtracking. However, the sequence
cannot be directly applied due to the simplification utilized in the planning of
the foothold selection for the forward motion of the moving leg. Therefore, the
sequence is further processed to create a detailed trajectory with intermediate
configurations for lifting the leg up and a precise determination of the joint
angles.

5.4 Trajectory generation for the leg forward
motion

The main idea of the trajectory generation is to provide a detail sequence of
the intermediate steps T of the moving leg to avoid possible collision with
obstacles during the swing phase. Therefore, the motion of the leg from one
foothold location to a new one is split into 3 intermediate configurations
defined by fT 1, fT 2, fT 3 that are shown in Figure 5.1.

5.4.1 Feasibility tests

(a) : Top view of the operational space (b) : Side view of the operational
space

Figure 5.4: Adjusting the trajectory of the stepping leg regarding its operational
space where non-reachable space is in semi-transparent red, the operational space
of the leg is in semi-transparent blue, the origin of the leg is represented by blue
cross and the terrain is represented by black line. The approved motion is in
magenta, the rejected default trajectory is in red and the approved trajectory is
in green.

Every configuration represented in the trajectory is tested by the IKT to
define its reachability. In a case the endpoint is not indicated as reachable,
the nearest reachable position in the leg operational space is provided with

42

..................... 5.4. Trajectory generation for the leg forward motion

respect to the Euclidean distance. An example of the refined trajectory is
shown in Figure 5.4.

In addition to the test performed by the IKT, the second test is performed
for the point fT 2 considering the surface beneath the stepping leg. The leg
endpoint should not be drawn near the terrain except the positions fT 0 and
fT 4 that are supposed to provide the only contact with the terrain. Therefore,
the second and third motion of the trajectory T are projected to the elevation
map and the minimal distance between the particular trajectory section and
its projection is estimated. If the distance is beneath the allowed level of
2 cm, the nearest higher reachable endpoint position in the leg operational
space is selected. The selection process is repeated until a position satisfying
all conditions is found. An example of the collision evasion is presented in
Figure 5.5.

f
T0

T2f

T4f

T3f

x

z
R

R

fT1

T2

Figure 5.5: Proximity hold in xz plane where the terrain is represented by black,
the accepted motion is in magenta, the colliding default trajectory is in red and
the refined trajectory is in green.

Three robot configurations are created based on the refined trajectory T ,
which defines a motion primitive that is intended to improve robustness by
avoiding slippage during the motion of body and legs. The resulting sequence
of smooth motion with left front leg performing a forward step is shown in
Figure 5.6.

Once the final trajectory as a sequence of feasible configurations is deter-
mined, it is directly applied to the robot control and performed. Then, the
robot collects new sensor measurements by moving the body into the upper
configurations, data are merged into the world model and the whole process
is repeated until the robot passes the passage.

43

5. Motion Planning

(a) : Configura-
tion with fT 1

(b) : Configura-
tion with fT 2

(c) : Configura-
tion with fT 3

Figure 5.6: Five consecutive configurations of the robot motion in xy plane,
where the configuration qb is in green, the configuration qa is in black, and
configurations with with the front left leg performing a step are in magenta.

44

Chapter 6
Experimental Results

The proposed approach has been verified in a laboratory testbed that provides
realistic scenario for experimental evaluation. The testbed consists of passage
between two flat surfaces. The gap in the passage is bridged by pillars that
support with relatively narrow area for foothold locations. We consider
various scenarios regarding the number and position of the pillars to evaluate
performance of the proposed approach in different scenarios, see Figure 6.1.

Figure 6.1: Proposed scenarios

In each scenario, the robot is placed in front of the passage in a distance
that allows the perception of the passage, regarding the limitation of the
applied sensor. Three trials are assumed for each scenario and a trial is
considered as successful, if the robot passes the passage without falling down
and the whole body of the robot is located on the flat surface behind the gap,
i.e., the robot passes the passage.

The robot needs to plan the motion three times to successfully traverse
the passage regarding the considered distances of the testbed. In this section,
we report on experimental evaluation of the method and for each scenario
the reconstructed terrain representation with foothold map is presented.
Performance of the proposed solution is reported for each scenario and
indicators of the motion planning are presented for all locations, trials, and

45

6. Experimental Results
scenarios.

6.1 First scenario

Figure 6.2: Initial robot configuration in the first scenario

The first scenario represents the easiest form of the passage; it consists of 6
pillars divided into 2 groups of 3 pillars. The groups are placed in a straight
line with a gap between them to allow the robot motion; thus, forming two
bridges between the unconstrained areas. The first scenario is presented in
Figure 6.2.

(a) : Second location (b) : Third location (c) : Terminal location

Figure 6.3: Traverse of the first scenario

The process of traversing is divided into three sections in which the robot
consecutively plans its motion. The robot at the particular planning locations
is shown in Figure 6.3. The terrain reconstruction in the first scenario is
presented in Figure 6.4a and the foothold map is shown in Figure 6.4b. It
was visible that the robot preferred footholds in the centre of the particular
bridge, due to the applied evaluation function, which indicates the centres as
the locations with maximal robustness.

46

................................... 6.2. Second scenario

(a) : Terrain reconstruction of the first scenario (b) : Foothold
map of the first
scenario

Figure 6.4: Terrain modelling of the first scenario

6.2 Second scenario

Figure 6.5: Initial robot configuration of the second scenario

The second scenario is similar to the first scenario; again 6 pillars in 2 groups
are used, but the middle blocks are shifted more to the center of the passage
to test the adaptation of the approach. The second scenario is presented in
Figure 6.5 with the robot placed in the initial position.

47

6. Experimental Results
The terrain reconstruction in the second scenario is presented in Figure 6.6a

and the foothold map is presented in Figure 6.6b.

(a) : Terrain reconstruction of the second scenario (b) : Foothold
map of the second
scenario

Figure 6.6: Terrain modelling of the second scenario

The three locations in which the robot plans its consequent movement are
presented in Figure 6.7 and the terminal location of the traverse is presented
in Figure 6.7c.

(a) : Second location (b) : Third location (c) : Terminal location

Figure 6.7: Traverse of the second scenario

48

.................................... 6.3. Third scenario

6.3 Third scenario

Figure 6.8: Initial robot location in the third scenario

The third scenario consists of 5 pillars in 2 groups, where one group forms a
sequence of 3 pillars with the middle pillar shifted as in the second scenario.
The second group is formed by 2 pillars with a gap in between them, forming
a more difficult passage. The third scenario is shown in Figure 6.8 with the
robot placed at the initial position.

(a) : Second location (b) : Third location (c) : Terminal location

Figure 6.9: Traverse of the third scenario

The planning locations for the consequent movement are presented in
Figure 6.9 and the terminal position is presented in Figure 6.9c. The terrain
reconstruction in the third scenario is presented in Figure 6.10a and the
foothold map is presented in Figure 6.10b.

The gap in the third scenario is difficult for the motion of the robot;
therefore, a specific sequence is applied. The leg that is about to traverse the
gap has to maintain on the pillar in front of the gap as long as possible while
the robot body moves forward. As the origin of the leg moves above the gap,
the foothold located behind the gap is selected.

49

6. Experimental Results

(a) : Terrain reconstruction of the third scenario (b) : Foothold
map of the third
scenario

Figure 6.10: Terrain modelling of the third scenario

6.4 Performance of the Proposed Motion Planner
and Summary of the Experimental Evalution

The robot is able to traverse the considered scenarios in each of the particular
trial, according to the plan provided by the motion planner. The performance
results are presented in Table 6.1. The planner is always able to generate a
feasible plan in less then one second except two sections in the third scenario
in which the search takes longer due to the difficult terrain in front of the
robot. Nevertheless, the planner is still able to generate a feasible plan. The
difficulty of the third scenario is in the 10 cm gap located in the right part of
the passage that requires a very specific motion sequence to be provided by
the planner.

The foothold locations provided in the plan for the robot motion are
corresponding to the locations accessed by the real robot, based on the
gathered data about the plan and performed motion. The performed robot
motion is statically stable, as expected from the provided motion plan,
furthermore, foothold locations in the centres of the pillars were preferred in
the robot motion over the passage.

50

...6.4. Performance of the Proposed Motion Planner and Summary of the Experimental Evalution

Table 6.1: Performance of the motion planning in three scenarios where ng

represents the total number of nodes in graph, ne represents the number of
expanded nodes and t represents the total computational time to find a feasible
path in a particular section of a trial in each scenario

First scenario Second scenario Third scenario
Trial Section ng ne t [s] ng ne t [s] ng ne t [s]
1 1 1111 71 0.117 666 71 0.089 933 77 0.104

2 776 92 0.082 790 122 0.112 1267 1069 0.270
3 644 222 0.099 936 294 0.147 3715 2380 1.416

2 1 1184 81 0.113 611 74 0.088 1092 83 0.117
2 1260 224 0.171 703 73 0.076 2943 2407 0.743
3 781 56 0.082 503 137 0.068 3300 2146 1.151

3 1 533 68 0.076 841 90 0.097 1133 118 0.140
2 445 102 0.057 429 148 0.070 3301 2669 0.964
3 464 95 0.049 827 140 0.104 1083 457 0.214

6.4.1 Discussion and Possible Future Work

Although the proposed approach provides a feasible solution of the considered
problem and the robot successfully passes all the considered scenarios, there
are numerous ways how it can be improved. Few of the ideas are described
in the section to provide a ground for future work towards autonomous
navigation in challenging environments.

Due to the nature of the six-legged walking robots, the statical stability can
be considered for the purpose of the robot motion. The robot is able of using
three legs for supporting the robot body, while keeping the body in a stable
position. Planning the robot motion considering only the statical stability
limits the robot from entering configurations that results in an imbalance
of its body. This approach allows the robot to stop in every moment of
its motion, because the center of gravity of the robot is still located near
the center of the robot body. Therefore, the robot can choose any foothold
placement as long as the condition for the stability maintenance is satisfied.

The obvious disadvantage of this approach is the limitation considering
the number of possible configurations. The considered requirement to keep
the robot in a statically stable position, rejects configurations in which the
robot is on the border of stability and can be overcome by dynamic motion
or a suitable more complex motion trajectory. A dynamic model of the robot
is substantial for solving such a task, incorporating forces applied to the
actuators, friction of the robot foothold with the ground and gravitational
force applied to each part of the robot. More complex motion can be achieved
with such a robot model, e.g., climbing over obstacles exceeding the robot
dimensions or performing considerable leaps impossible in lower speed; hence,
extending the overall robot motion capability.

Another extension of the proposed approach is an integration of propriocep-
tive sensors. The robot actuators can act as sensors that provide additional
information about the terrain. Such a sensor can compensate the disadvan-
tage of the camera regarding the minimal perception distance; thus, any

51

6. Experimental Results
error caused by slippage or wrong foothold placement is immediately sensed
and the robot can take action to deal with such a situation. The reactive
behaviour of such an extension also enhances the information about the
terrain, as the measurement of the surface, taken by the camera, does not
provide information about the adhesive property of the surface, e.g., waxed
floor, sand, etc.

Similar scenario appears when the robot uses a top surfaces of the obstacles
for traversing that can be perceived as stable in measurements, but becomes
unstable in reality because of the applied robot action force. The particular
object is stable when its center is selected for foothold placement, but becomes
unstable when a position near its edge is used for the same purpose, e.g., thin
high block, pillar,etc. In such a case, the actuator senses the lack of support
from the terrain and an alternative plan for the robot is generated.

52

Chapter 7
Conclusion

The motion capabilities of the six-legged walking robots are considered in
this thesis. The flexibility regarding its body configuration allows the robot
to traverse a kind of surface that no other ground robot is capable of. Such a
forward motion requires precise information about the immediate surrounding
and the robot kinematic model. Based on these two factors, a sequence of
motion can be established, resulting in a forward motion of the robot.

The ASUS Xtion PRO camera is considered as a suitable off-the-shelf low-
cost sensor that provides a point cloud representing the real terrain in front
of the robot. As the robot moves forward, new measurements are integrated
into the world model of the robot surroundings and a consistent precise world
model of the robot surroundings is constructed. Furthermore, the robot
localizes itself with respect to the terrain in front of it simultaneously with
the model construction.

A grid based elevation map is selected as a suitable structure for motion
planning and the world model is converted into the elevation map. Based on
the elevation map, a foothold map is created, in which accessibility of the
particular bins of the elevation map is indicated, and finally an evaluation
function is defined to assess suitability of the locations for the foothold
placement.

The motion planner accesses the evaluation function and elevation map, to
find a feasible sequence of robot configurations that allow the robot to traverse
the passage with limited number of footholds. The sequence of configurations
is subject to the defined kinematic model that allows only stable, reachable
and non-colliding configurations of the robot body.

The performed experimental verification of the proposed approach con-
firmed its usability in various scenarios. Furthermore, it verified its ability to
adapt to various situations in which the proposed motion planner provides
a sequence of configurations for a stable forward motion. The performance
results of the motion planner correspond to the difficulty of the particular
terrain, regarding the number of expanded nodes to find a feasible path. The
first section of each scenario is very similar, and therefore, similar results are
provided. Moreover, the first section of each scenario is supposed to be the
easiest to traverse, which is reflected in the measured performance indicators
of the proposed motion planner.

53

7. Conclusion......................................
Regarding a possible extension of the proposed algorithm, the robot actua-

tors can be utilized as the proprioceptive sensors. Their employment enhances
the information about the terrain, concerning its friction and stability of
objects, i.e., features that cannot be directly perceived by the camera. Fur-
thermore, the dynamical model of the robot would be a great support towards
extension of the robot motion possibilities, e.g., obstacles exceeding the robot
dimensions can be traversed only using a dynamic motion. Moreover, it would
enhance exploitation of the operational space of the robot legs, which can
provide a better overall robot motion.

54

Bibliography

[1] Y. Tanaka, Y. Ji, A. Yamashita, and H. Asama, “Fuzzy based traversabil-
ity analysis for a mobile robot on rough terrain,” in IEEE International
Conference on Robotics and Automation (ICRA), 2015, pp. 3965–3970.

[2] H. Lu, J. Gao, J. Zhu, Z. Xu, H. Cao, J. Zhao, F. Zhao, X. Li, Y. Liu,
and X. Shi, “Unknown environment 2-d map building system for coal
mine detect robot,” in IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 450–455.

[3] K. Ohno, S. Kawatsuma, T. Okada, E. Takeuchi, K. Higashi, and S. Ta-
dokoro, “Robotic control vehicle for measuring radiation in fukushima
daiichi nuclear power plant,” in IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), 2011, pp. 38–43.

[4] L. Xu, W. Liu, Z. Wang, and W. Xu, “Gait planning method of a
hexapod robot based on the central pattern generators: Simulation and
experiment,” in International Conference on Robotics and Biomimetics
(ROBIO), 2013, pp. 698–703.

[5] J. Mrva and J. Faigl, “Tactile sensing with servo drives feedback only
for blind hexapod walking robot,” RoMoCo, pp. 240–245, 2015.

[6] D. Belter, P. Labecki, and P. Skrzypczyński, “An exploration-based
approach to terrain traversability assessment for a walking robot,” in
IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR), 2013, pp. 1–6.

[7] D. Belter, P. Łabęcki, and P. Skrzypczyński, “Adaptive motion planning
for autonomous rough terrain traversal with a walking robot,” Journal
of Field Robotics, vol. 33, no. 3, pp. 337–370, 2016. [Online]. Available:
http://dx.doi.org/10.1002/rob.21610

[8] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
and M. Csorba, “A solution to the simultaneous localization and map
building (slam) problem,” IEEE Transactions on Robotics and Automa-
tion, vol. 17, no. 3, pp. 229–241, 2001.

55

http://dx.doi.org/10.1002/rob.21610

Bibliography
[9] P. S. D Belter, M Nowicki, “On the performance of pose-based rgb-d

visual navigation systems,” in ACCV, 2014, pp. 407–423.

[10] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in 6th IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR), 2007, pp. 225–234.

[11] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[12] D. Belter, M. Nowicki, P. Skrzypczynski, K. Walas, and J. Wietrzykowski,
“Lightweight rgb-d slam system for search and rescue robots,” Progress
in Automation, Robotics and Measuring Techniques, pp. 11–21, 2015.

[13] D. Belter and P. Skrzypczynski, “Precise self-localization of a walking
robot on rough terrain using parallel tracking and mapping,” Industrial
Robot 40, pp. 229–237, 2013.

[14] D. Belter and P. Skrzypczyński, “The importance of measurement uncer-
tainty modelling in the feature-based rgb-d slam,” in 10th International
Workshop on Robot Motion and Control (RoMoCo), 2015, pp. 308–313.

[15] L. Mingxiang and J. Yunde, “Stereo vision system on programmable
chip (svsoc) for small robot navigation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2006, pp. 1359–1365.

[16] ASUS Xtion PRO, ASUS, (Cited on 10.05.2016). [Online]. Available:
http://www.asus.com/Multimedia/Xtion_PRO_LIVE/

[17] D. Masri, “Motion model of stair climbing in hexapod walking robot,”
Bachelor Thesis, Czech Techical University in Prague, 2014.

[18] PhantomX Mark II platform, Trossen Robotics, (Cited on 09.04.2016).
[Online]. Available: http://www.trossenrobotics.com/hex-mk2

[19] ROBOTIS, Dynamixel AX-12A Features, (Cited on 09.05.2016). [Online].
Available: http://www.robotis.com/xe/dynamixel_en

[20] Arbotix Commander, Vanadium Labs, (Cited on 14.03.2016). [Online].
Available: http://www.vanadiumlabs.com/commander.html

[21] Arbotix Board, Vanadium Labs, (Cited on 14.3.2016). [Online]. Available:
http://www.vanadiumlabs.com/arbotix.html

[22] OpenNI, (Cited on 30.4.2016). [Online]. Available: http://www.openni.
org/

[23] Odroid U3, Hardkernel, (Cited on 10.5.2016). [Online]. Avail-
able: http://www.hardkernel.com/main/products/prdt_info.php?g_
code=g13874569627

56

http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
http://www.trossenrobotics.com/hex-mk2
http://www.robotis.com/xe/dynamixel_en
http://www.vanadiumlabs.com/commander.html
http://www.vanadiumlabs.com/arbotix.html
http://www.openni.org/
http://www.openni.org/
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g13874569627
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g13874569627

.......................................Bibliography
[24] Robot Operating System, ROS, (Cited on 21.5.2016). [Online]. Available:

www.ros.org

[25] G. C. Haynes and A. A. Rizzi, “Gaits and gait transitions for legged
robots,” in IEEE International Conference on Robotics and Automation
(ICRA), 2006, pp. 1117–1122.

[26] P. J. Besl and H. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, pp. 239–256, 1992.

[27] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: An efficient probabilistic 3d mapping framework based on
octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013. [Online].
Available: http://dx.doi.org/10.1007/s10514-012-9321-0

[28] Moving Least Square, PCL, (Cited on 10.5.2016). [Online]. Available:
http://pointclouds.org/documentation/tutorials/resampling.php

[29] Point Cloud Library (PCL), (Cited on 10.5.2016). [Online]. Available:
http://pointclouds.org/

[30] Y. Chen and G. Medioni, “Object modeling by registration of multi-
ple range images,” in IEEE International Conference on Robotics and
Automation (ICRA), 1991, pp. 2724–2729 vol.3.

[31] Normal Estimation Algorithm, PCL, (Cited on 10.5.2016). [Online].
Available: http://pointclouds.org/documentation/tutorials/normal_
estimation.php

[32] V. Hlavac, “Mathematical morphology,” Lecture, Czech Techni-
cal University in Prague, (Cited on 9.5.2016). [Online]. Avail-
able: http://cmp.felk.cvut.cz/~hlavac/TeachPresEn/11ImageProc/
71-3MatMorpholBinEn.pdf

[33] ——, “Distance transform,” Lecture, Czech Technical University in
Prague, (Cited on 9.5.2016). [Online]. Available: http://cmp.felk.cvut.
cz/~hlavac/TeachPresEn/11ImageProc/014DigitalImageEn.pdf

[34] A. Rosenfeld and J. Pfaltz, “Sequential operations in digital picture pro-
cessing,” Journal of the Association for Computing Machinery, October
1966, 13(4):471–494.

[35] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[36] J. Butzke, K. Sapkota, K. Prasad, B. MacAllister, and M. Likhachev,
“State lattice with controllers: Augmenting lattice-based path planning
with controller-based motion primitives,” pp. 258–265.

57

www.ros.org
http://dx.doi.org/10.1007/s10514-012-9321-0
http://pointclouds.org/documentation/tutorials/resampling.php
http://pointclouds.org/
http://pointclouds.org/documentation/tutorials/normal_estimation.php
http://pointclouds.org/documentation/tutorials/normal_estimation.php
http://cmp.felk.cvut.cz/~hlavac/TeachPresEn/11ImageProc/71-3MatMorpholBinEn.pdf
http://cmp.felk.cvut.cz/~hlavac/TeachPresEn/11ImageProc/71-3MatMorpholBinEn.pdf
http://cmp.felk.cvut.cz/~hlavac/TeachPresEn/11ImageProc/014DigitalImageEn.pdf
http://cmp.felk.cvut.cz/~hlavac/TeachPresEn/11ImageProc/014DigitalImageEn.pdf

58

Appendix A
CD content

The enclosed CD contains ROS nodes source code of terrain reconstruction,
motion planning and motion control designed for PhantomX platform, the
text of this thesis in a PDF format and source code of the thesis.

Table A.1: Directory structure

Directory Note
/map_build The ROS node for the terrain reconstruction
/cpg The ROS node for the robot motion planning
/wrlib The ROS node for the robot motion control
/thesis The thesis in PDF format
/source The source files of the thesis

59

	Introduction
	Problem Specification
	Thesis outline

	Hardware
	Dynamixel AX-12A actuator
	Servo drive specification
	Communication

	Robotic platform PhantomX Mark II
	Practical issues

	ASUS Xtion PRO
	Hardkernel Odroid U3

	Robot Control
	Terrain Modelling
	Point cloud model
	Point cloud reduction

	Iterative Closest Point
	Practical implementation

	Voxel grid
	Grid based elevation map
	Foothold map
	Evaluation function
	Troubleshooting

	Motion Planning
	Robot body motion
	Feasibility tests

	Foothold selection
	Feasibility tests

	Expansion criterion
	Trajectory generation for the leg forward motion
	Feasibility tests

	Experimental Results
	First scenario
	Second scenario
	Third scenario
	Performance of the Proposed Motion Planner and Summary of the Experimental Evalution
	Discussion and Possible Future Work

	Conclusion
	Bibliography
	CD content

