
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Inference of State Invariants for
Domain-Independent Planning

Bc. Daniel Fišer

Supervisor: Ing. Antonín Komenda, Ph.D.
Study Programme: Open informatics
Field of Study: Artificial intelligence
May 2016

ii

Acknowledgements
I would like to thank my supervisor An-
tonín Komenda for the valuable comments
and remarks he has given me during the
creation of this work.

Declaration
Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 20. May 2016

.............................

iii

Abstract
The mutual exclusion (mutex) state invari-
ants are defined in a context of STRIPS
planning as sets of facts from which max-
imally one can be true in any state reach-
able from the initial state. In this work,
we introduce two new types of mutex in-
variants along with a detailed description
of their structure and their relation to a
general mutex invariant. Moreover, we
provide a complexity analysis of decision
problems that correspond to inference of
different types of mutex invariants. Fi-
nally, three novel algorithms for inference
of mutex invariants are described and ex-
perimentally compared with two different
state-of-the-art algorithms.

Keywords: planning, STRIPS,
invariant, mutex

Supervisor: Ing. Antonín Komenda,
Ph.D.

Abstrakt
Stavové invarianty vzájemného vyloučení
(mutexy) jsou v kontextu STRIPS plá-
nování definovány jako množiny faktů, z
nichž maximálně jeden může být platný
v jakémkoli dosažitelném stavu. V této
práci představíme dva nové typy mutexů
společně s detailním popisem jejich struk-
tury a vztahu k obecným mutexům. Dále
poskytneme analýzu složitosti rozhodova-
cích problémů, které odpovídají problému
odvozování různých typů mutexů. Nako-
nec popíšeme tři nové algoritmy pro od-
vozování mutexů a porovnáme je s dvěma
různými state-of-the-art algoritmy.

Klíčová slova: plánování, STRIPS,
invariant, mutex

Překlad názvu: Inference stavových
invariantů pro doménově nezávislé
plánování

iv

Contents
1 Introduction 1
2 Related Work 3
3 Mutual Exclusion Invariants 7
3.1 Mutex Hierarchy 9
3.2 Complexity Analysis 14
3.2.1 MAXIMUM-FA-MUTEX and
MAXIMUM-RFA-MUTEX are
NP-Complete 14

3.2.2 MAXIMUM-MUTEX is
PSPACE-Complete 18

3.3 Inference of Mutex Invariants . . 21
3.4 Inference of Fact-Alternating
Mutex Invariants 23

3.5 Inference of Restricted
Fact-Alternating Mutex Invariants 25

4 Experimental Results 31
4.1 Comparison in Terms of Pair
Mutexes . 32

4.2 Comparison of Inferred Mutexes 39
4.3 Translation to Finite Domain
Representation 41

4.4 Future Work 44
5 Conclusion 47
A Experimental Results: Additional
Figures 49
Bibliography 55

v

Figures
3.1 The gorilla-feeding planning
task. 8

3.2 Reachable states and transitions
between reachable states in the
gorilla-feeding planning task. . . 9

4.1 Schematic depiction of coverage of
inferred pair mutexes by each
inference algorithm. 37

4.2 Number of inferred mutex
invariants as scatter plots with
logarithmic scales and added zero. 40

4.3 Number of variables in FDR as
scatter plots with logarithmic scales. 42

4.4 Running times in seconds of a
whole translation process as scatter
plots with logarithmic scales. 44

A.1 Number of inferred pair mutexes
as scatter plots with logarithmic
scales with added zero. Comparison
with h2. 49

A.2 Number of inferred pair mutexes
as scatter plots with logarithmic
scales with added zero. Comparison
with fd. 50

A.3 Number of inferred pair mutexes
as scatter plots with logarithmic
scales with added zero. Comparison
between fa and rfa. 51

A.4 Running times of inference
algorithms as scatter plots with
logarithmic scales. Comparison with
h2. 51

A.5 Running times of inference
algorithms as scatter plots with
logarithmic scales. Comparison with
fd. 52

A.6 Running times of inference
algorithms as scatter plots with
logarithmic scales. Comparison
between fa and rfa. 53

Tables
3.1 A complete list of all mutexes,
fa-mutexes and rfa-mutexes in the
gorilla-feeding planning task.
The maximal mutexes, maximal
fa-mutexes and maximal rfa-mutexes
are marked with a plus sign. 12

4.1 Sum of number of inferred pair
mutexes. 33

4.2 Number of inferred pair mutexes in
selected problems and number of all
pair mutexes those problems
contain. 33

4.3 Ratio of number of inferred pair
mutexes. 34

4.4 Sum of running times in seconds of
inference algorithms. 35

4.5 Minimal and maximal running
times in seconds of inference
algorithms. 35

4.6 Number of inferred mutex
invariants. 39

4.7 Number of variables in FDR. . . . 41
4.8 Running times in seconds of a
whole translation process. 43

vi

Chapter 1
Introduction

State invariants in domain-independent planning are certain intrinsic proper-
ties of a particular planning problem that hold in all states reachable from the
initial state. State invariants (as well as other types of invariants) tell some-
thing about the internal structure of the problem. This revealed structure
can be further utilized in a process of solving the problem. State invariants
could, for example, be used for a design of heuristic functions that can better
guide search algorithms. They could be used for pruning the search space
within which a plan is searched for or maybe even for reformulation of the
original problem to some more simple form as a preprocessing step.

In this work, we are interested in inferring one particular type of state
invariants called mutual exclusion (mutex) invariants. A mutex invariant
states which facts cannot be true at the same time in any reachable state, i.e.,
a state can contain only one fact from the invariant or none of the facts. This
definition corresponds to the mutexes as they were used in [Helmert, 2009].
The term mutex was also used in other works in a different meaning [Bonet
and Geffner, 2001; Alcázar and Torralba, 2015]. Nevertheless, we decided to
use this term because we think it well describes the essence of this type of
invariant and it is well known to readers already familiar with this field of
research.

The most straightforward application of mutex invariants is in translation
to finite domain representation (FDR, or SAS+) [Helmert, 2009]. Given a
set of mutex invariants, FDR can be constructed by creating variables from
those invariants that cover all facts. A special value “none of those” can be
added to some variables if needed to cover a situation where none of the
facts from the invariant is present in the state. Heuristic functions based
on domain transition graphs (DTG) [Helmert, 2006; Torreño et al., 2014]
could also benefit from mutex invariants. These heuristics can be constructed
either from FDR representation or directly from the set of all inferred mutex
invariants. State invariants (including mutex invariants) are also critical
in improving the performance of SAT planners [Kautz and Selman, 1992;
Sideris and Dimopoulos, 2010]. SAT planners are based on a formulation
of planning tasks as a problem of satisfiability of logical formulas. State
invariants expressed as a logical formula often significantly prune the search
space and therefore improve efficiency of the solvers.

1

1. Introduction
This work is not aimed at a design of any particular application using

invariants but solely at analysis and inference of mutex invariants in a context
of STRIPS planning [Fikes and Nilsson, 1971]. We introduce two new types
of mutex invariants (fact-alternating mutex and restricted fact-alternating
mutex) and we discuss in detail their properties and the relations between
them and the general mutex invariant. Moreover, we provide a complexity
analysis showing that inference of a maximum size mutexes is PSPACE-
Complete whereas inferring a maximum size mutexes of the newly introduced
types is NP-Complete.

Three new inference algorithms are introduced and compared from several
different perspectives with two state-of-the-art algorithms. The first algorithm
is able to extend a set of mutex invariants provided as its input. The
second algorithm is designed to infer the newly introduced fact-alternating
mutex invariants. It is based on a direct translation of the definition of fact-
alternating mutexes into constraints of integer linear program (ILP). Solution
of the ILP problem provides only one invariant at a time, so the ILP is refined
in a cycle in such a way that all invariants are eventually discovered. The
algorithm is proven to be complete with respect to maximal fact-alternating
mutexes. The third algorithm infers restricted fact-alternating mutexes and
it has a polynomial asymptotic complexity.

The work is organized as follows. A list of a related work is lied out in
Chapter 2 where different types of invariants as well as different approaches to
inferring the invariants are discussed. In Chapter 3, we formally define three
types of mutex invariants, we discuss their properties and relations between
them (Section 3.1) and we provide a formal analysis of their complexity
(Section 3.2). In Section 3.3, 3.4, and 3.5 we describe three new inference
algorithms that are experimentally evaluated in Chapter 4. We conclude with
Chapter 5.

2

Chapter 2
Related Work

State invariants are formulas that are true in every state of a planning task
reachable from the initial state by application of a sequence of operators.
In this chapter we provide a brief discussion of different approaches to the
inference of state invariants related to the approach presented in this work.

One of the first approaches to inference of state invariants was the DIS-
COPLAN system proposed by Gerevini and Schubert [1998, 2000]. The
algorithm uses a guess, check and repair approach for generating invariants.
Invariants are first hypothesized from definitions of operators. The consecu-
tive steps involve verification that the invariants still hold in all reachable
states and the unverified invariants are refined to form new invariants that are
then in turn verified again. The refinements are based on sets of candidate
supplementary conditions called “excuses” that are extracted during the
verification phase. These “excuses” are extracted by an analysis considering
all operators which allows the algorithm to make more informed choices in
consequent refinement than the “excuses” that would be derived only from the
first operator violating the invariant. However, this comes with an increased
computational burden as noticed by Helmert [2009]. The algorithm is able to
generate a wide range of different types of state invariants (or state constraints
as they are called by Gerevini and Schubert) such as implicative constraints
of a form φ ⇒ ψ stating that every state satisfying formulae φ also has to
satisfy ψ, static constraints providing type information about predicates,
or xor constraints providing an information about mutual exclusion of two
literals given some additional conditions.

A Type Inference Module (TIM) proposed by Fox and Long [1998] and
further extended by Cresswell et al. [2002] takes a domain description possibly
without any type information and infers (or enrich) a type structure from
the functional relationships in the domain. State invariants can be extracted
from the way in which the inferred types are partitioned.

Rintanen [2000] proposed an iterative algorithm for generating state in-
variants. The algorithm uses a guess, check and repair approach and it is
polynomial in time due to restrictions on a form and a length of invariants.
The procedure starts with identification of an initial set of candidate invariants
corresponding to the grounded facts in the initial state. In the following steps,
the initial set of candidates is expanded with new invariants that are created

3

2. Related Work.....................................
by expanding invariant candidates from the previous step using grounded
operators. The invariant candidates that do not preserve their invariant
property are rejected and new candidates that are weaker in the sense that
they hold in more states than the original one are created. An interesting
property of this algorithm is that it considers all invariant candidates during
creation of new ones instead of expanding one invariant at a time.

Mukherji and Schubert [2005, 2006] took a completely different approach.
Instead of analyzing operators of the planning task, state invariants are
inferred from one or more reachable states. The set of reachable states can be
obtained by random walks through a state space or by an exhaustive search
with a bounded depth. State invariants are then inferred by an any-time
algorithm employing a data analysis of the provided reachable states. The
resulting invariants are not guaranteed to be correct in the sense that they
do not have to hold in all reachable states besides those provided, but the
authors suggest that some other algorithm, such that of Rintanen [2000], can
be used for quick verification of the correctness of the invariants produced.

A generalization of hmax heuristic to a family of hm heuristics [Haslum
and Geffner, 2000; Haslum, 2009; Alcázar and Torralba, 2015] offers another
method for generation of invariants. hmax is a widely known and well un-
derstood admissible heuristic for STRIPS planning. The heuristic value is
computed on a relaxed reachability graph as a cost of most costly fact from a
conjunction of reachable facts. The heuristic works with single facts, but it
can be generalized to consider a conjunction of at most m facts instead. h1

would then be equal to hmax, h2 would build reachability graph with single
facts and pairs of facts, h3 would add also triplets of facts, and hm would
consider conjunctions of at most m facts. This heuristic is not bound by h+

and even equals to the optimal heuristic for sufficiently large m, unfortunately
the cost of computation increases exponentially in m.

The important property of hm related to a generation of invariants is its
ability to provide a set of fact conjunctions that are not reachable from the
initial state. So, as well as we can say that the facts that does not appear in a
reachability graph of h1 (hmax) cannot affect a planning procedure, the same
can be said about the unreachable conjunctions of m facts in the case of hm.
For example, an unreachable pair of facts in case of h2 can be interpreted as
an invariant stating that both facts from the pair cannot hold at the same
time and similarly an unreachable triplet of facts in case of h3 corresponds to
an invariant stating that there is not any reachable state that contains all
three facts at the same time.

The state invariants inferred by the algorithm introduced by Rintanen [2008]
have a form of disjunction of facts possibly with a negation. The algorithm
employs regression operators and satisfiability tests to check whether the
clauses form invariants. Each clause initially consists of a single fact or a
negation of a fact holding in the initial state. The clause that is not approved
as an invariant is replaced by a set of weaker clauses each containing one
additional fact (or its negation). The Rintanen’s algorithm is able to produce
invariants in a more general form than hm invariants, because a hm invariant

4

..................................... 2. Related Work

consisting of m facts corresponds to a disjunction ¬f1∨ ...∨¬fm. Moreover, it
was proven that the algorithm produces a superset of hm invariants therefore
it is a generalization of hm heuristic.

An algorithm for translating PDDL planning tasks into a concise finite
domain representation (FDR) was proposed by Helmert [2009]. The con-
struction of FDR is based on identifying mutual exclusion (mutex) invariants.
A mutual exclusion invariant states that at most one of the invariant facts
can be present in any reachable state. The invariants are generated using
guess, check and repair procedure running on the lifted PDDL domain. The
procedure is initialized with small invariants counting only a single atom.
The following step is proving the invariants through identification of so called
threats. A threat emerges whenever there is an operator that has either two
or more instances of invariant atoms in its add effects or instances in add
effects are not compensated by the same number of instances in delete effects.
The threatened invariants are then either discarded or refined by adding more
atoms that could compensate the invariant in delete effects. The invariants
that are not threatened are clearly invariants. The resulting invariants in a
lifted form are grounded to a set of facts and in this final form they are used
for a construction of variables in FDR.

5

6

Chapter 3
Mutual Exclusion Invariants

Definition 3.1. A STRIPS planning task Π is specified by a quadruple Π =
〈F ,O, sinit , sgoal〉, where F = {f1, ..., fn} is a set of facts, O = {o1, ..., om} is
a set of grounded operators, sinit ⊆ F is an initial state and sgoal ⊆ F is a
goal specification. A state s ⊆ F is a set of facts. An operator o is a triple
o = 〈pre(o), add(o),del(o)〉, where pre(o) ⊆ F is a set of preconditions of an
operator o, and add(o) ⊆ F and del(o) ⊆ F are sets of add and delete effects,
respectively. All operators are well-formed, i.e., add(o) ∩ del(o) = ∅ and
pre(o) ∩ add(o) = ∅. An operator o is applicable in a state s if pre(o) ⊆ s.
The resulting state of applying an applicable operator o in a state s is the
state o[s] = (s \ del(o)) ∪ add(o).

A sequence of operators π = 〈o1, ..., on〉 is applicable in a state s0 if there
are states s1, ..., sn such that oi is applicable in si−1 and si = oi[si−1] for
1 ≤ i ≤ n. The resulting state of this application is π[s0] = sn. A state s
is called a reachable state if there exists an applicable operator sequence
π such that π[sinit] = s. A set of all reachable states is denoted by SR.
An operator o is called a reachable operator iff it is applicable in some
reachable state.

Consider the following simple example of the gorilla-feeding planning
task depicted in Fig. 3.1. The planning task describes a zookeeper whose job
is to feed a gorilla. The zookeeper can move between adjacent squares, he
can take some food from a stock, carry it to the gorilla and feed it with the
food if the gorilla is hungry. Moreover, if the gorilla was fed and it is hungry
it escapes the zoo.

The planning task is described using six facts: (at a), (at b), and (at c)
specify a position of the zookeeper, (hungry) and (fed) denote whether
the gorilla is hungry or it was fed and (carry-food) specifies whether the
zookeeper carries the food for the gorilla.

The operators in Fig. 3.1 are described using a simplified notation where
preconditions are placed on the left hand side of the arrow symbol and
the effects on the right hand side. The delete effects are listed with ¬
symbol in front of them and the add effects are listed without it. So for
example operator feed-gorilla has three preconditions pre(o) = {(at c),
(hungry), (carry-food)}, one add effect add(o) = {(fed)}, and two delete
effects del(o) = {(hungry), (carry-food)}. The planning task contains

7

3. Mutual Exclusion Invariants

A B C
x

move a b move b c

move c bmove b a

feed-gorillatake-food

Facts (F):
(at a), (at b), (at c),
(hungry), (fed)
(carry-food)

Operators (O):
move a b: (at a) 7→ (at b), ¬(at a)
move b a: (at b) 7→ (at a), ¬(at b)
move b c: (at b) 7→ (at c), ¬(at b)
move c b: (at c) 7→ (at b), ¬(at c)
take-food: (at a), (hungry) 7→ (carry-food)
feed-gorilla: (at c), (hungry), (carry-food)

7→ (fed), ¬(hungry), ¬(carry-food)
escape: (fed), (hungry) 7→ ¬(fed), ¬(hungry)

Initial state (sinit):
(at b), (hungry)

Goal (sgoal):
(fed)

Figure 3.1: The gorilla-feeding planning task.

four operators for moving between adjacent squares (move from-square
to-square), one operator for taking food from the square that contains the
food stock (take-food), one operator for feeding the gorilla (feed-gorilla)
that can be applied only on a square where the gorilla is and only when the
zookeeper carries the food with him, and finally the operator describing escape
of the gorilla from the zoo (escape). The initial state is set to sinit = {(at
b), (hungry)} meaning that the zookeeper starts at the square B and the
gorilla is hungry. The goal sgoal = {(fed)} is to feed the gorilla.

All nine reachable states of the planning task are depicted in Fig. 3.2 along
with all possible transitions between the states. The initial state is marked
with the dashed box and all goal states with double border boxes. Fig. 3.2
shows that the zookeeper can freely move between adjacent squares which is
reflected in the current state as exchange between (at ...) facts. Once the
zookeeper takes food from the stock, the current state is extended by the fact
(carry-food). And once the gorilla is fed, the gorilla is not hungry anymore
and the zookeeper does not carry the food. The operators take-food and
feed-gorilla have no reverse operators which means that once they are
used it is not possible to come back to the previous state.

Note also that the operator take-food can be used more than once but

8

................................... 3.1. Mutex Hierarchy

(at a),
(hungry)

(at b),
(hungry)

(at c),
(hungry)

(at a),
(hungry),

(carry-food)

(at b),
(hungry),

(carry-food)

(at c),
(hungry),

(carry-food)

(at a),
(fed)

(at b),
(fed)

(at c),
(fed)

move a bmove b a

move b cmove c b

move a bmove b a

move b cmove c b

move a bmove b a

move b cmove c b

take-food

feed-gorilla

take-food

Figure 3.2: Reachable states and transitions between reachable states in the
gorilla-feeding planning task.

without effect and the operator escape does not appear in Fig. 3.2 because
it is not applicable in any reachable state (i.e., it is not a reachable operator).
These two drawbacks could be fixed, but the gorilla-feeding planning task
will be used throughout this chapter as a running example on which we will
demonstrate different types of mutex invariants and this enables us to keep
the example planning task very brief but with the ability to demonstrate the
differences.

In Section 3.1 a mutual exclusion (mutex) invariant is formally defined
and also two new (weaker) types of mutex invariants are introduced: a fact-
alternating mutex invariant and a restricted fact-alternating mutex invariant.
A complexity analysis of the defined invariant types is provided in Section 3.2.
In Section 3.3 we introduce a novel algorithm that can be used for extending a
list of already inferred mutex invariants. A complete algorithm for inference of
fact-alternating mutex invariants is described in Section 3.4 and in Section 3.5
we introduce a polynomial algorithm for inference of restricted fact-alternating
mutex invariants.

3.1 Mutex Hierarchy

Definition 3.2. AmutexM ⊆ F is a set of facts such that for every reachable
state s ∈ SR it holds that |M ∩ s| ≤ 1. A mutex that is not subset of any
other mutex is called a maximal mutex (max-mutex).

A mutex (or mutex invariant) is defined as a set of facts from which
maximally one can be true in any state reachable from the initial state by a
sequence of operators. This is a very broad definition (adopted from [Helmert,
2009]) that covers all forms of mutex invariants which makes it hard to
design a computationally feasible algorithm that would be able to produce
all instances of mutex invariants. Therefore we introduce definitions of two
new, more restricted, mutex invariants, namely the fact-alternating mutex
and the restricted fact-alternating mutex. Both definitions are based on the

9

3. Mutual Exclusion Invariants
applicability of operators which makes them less complex then the general
mutex as will be demonstrated in Section 3.2.
Definition 3.3. A fact-alternating mutex (fa-mutex) M ⊆ F is a set
of facts such that |M ∩ sinit | ≤ 1 and for every operator o ∈ O it holds
that |M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)|. A fa-mutex that is not subset of
any other fa-mutex is called a maximal fact-alternating mutex (max-fa-
mutex).
Proposition 3.4. Every fact-alternating mutex is a mutex.
Proof. (By induction) The first part |M ∩ sinit | ≤ 1 ensures a mutex prop-
erty of M with respect to the initial state. Let s denote a state such that
|M ∩ s| ≤ 1, i.e., the mutex property holds with respect to s. Now we
need to make sure that the mutex property holds also for every state that
is a resulting state from the application of an applicable operator o on s,
i.e., for all o ∈ O such that pre(o) ⊆ s an inequality |M ∩ o[s]| ≤ 1 holds.
Since |M ∩ s| ≤ 1 and pre(o) ⊆ s it follows that |M ∩ pre(o)| ≤ 1 and fur-
thermore |M ∩ pre(o) ∩ del(o)| ≤ 1. This means that three cases must be
investigated. First, if |M ∩ pre(o) ∩ del(o)| = 0 then |M ∩ add(o)| = 0 which
means that no additional fact from M can be added to the resulting state
and thus |M ∩ o[s]| ≤ |M ∩ s| ≤ 1. Second, if |M ∩ pre(o) ∩ del(o)| = 1 and
|M ∩ add(o)| = 0 then the same holds. Third, if |M ∩ pre(o) ∩ del(o)| =
1 and |M ∩ add(o)| = 1 then |M ∩ pre(o)| = 1 thus |M ∩ s| = 1 (be-
cause pre(o) ⊆ s) so it follows that M ∩ pre(o) ∩ del(o) = M ∩ s ⊆
M ∩ del(o). This means that |M ∩ (s \ del(o))| = 0 so it follows that
|M ∩ o[s]| = |M ∩ ((s \ del(o)) ∪ add(o))| = 1, i.e., the mutex property is
preserved also in the third case. Finally, since the mutex is defined for
reachable states SR, every fact-alternating mutex must be also a mutex.

The name fact-alternating mutex was chosen to stress its interesting prop-
erty that lies in a mechanism by which facts from a fact-alternating mutex
appear and disappear in particular states after application of operators. Con-
sider some fact-alternating mutex M and some state s that does not contain
any fact from M (M ∩ s = ∅). Now we can ask whether any following state
π[s] can contain any fact from M . The answer is that it cannot because
any operator o applicable in s that could add a new fact from M to the
following state o[s] would need to have a fact from M in its precondition
(M ∩pre(o) 6= ∅) which is in contradiction with the assumption that s contain
no fact from M . So it follows that facts from each particular fact-alternating
mutex alternate between each other as new states are created and once
the facts disappear from the state they cannot ever reappear again in any
following state. This is formally proven in the following Proposition 3.5.
Proposition 3.5. Let M denote a fact-alternating mutex and let si denote a
state. If |M ∩ si| = 0 then for every state sj = π[si] reachable from si by a
sequence of applicable operators holds that |M ∩ sj | = 0.
Proof. (By induction) Let us assume that |M ∩ sk| = 0 for some state sk =
π[si] reachable from si. Now we will show that |M ∩ o[sk]| = 0 for any operator
o applicable in sk. Since o is applicable in sk then pre(o) ⊆ sk, and since

10

................................... 3.1. Mutex Hierarchy

|M ∩ sk| = 0 then |M ∩ pre(o)| = 0 therefore also |M ∩ pre(o) ∩ del(o)| = 0.
So it follows that also |M ∩ pre(o) ∩ del(o)| ≥ |M ∩ add(o)| = 0 because M
is a fa-mutex. Finally, this means that |M ∩ o[sk]| = 0 because o could not
add any fact from M into o[sk].

Proposition 3.5 describes a fact-alternating nature of fa-mutexes and also
provides a method for proving that some facts are not reachable and there-
fore they can be safely removed from the planning task. It follows from
Proposition 3.5 that given a fa-mutex that has empty intersection with the
initial state, none of the facts the fa-mutex consists of can ever appear in
any reachable state. Therefore they can be removed from the planning task
entirely.

Similarly, fa-mutexes can be used for a detection of dead-end states and
operators that can be safely removed from the planning task. A dead-end
state is a state from which it is impossible to reach a goal by a sequence of
applied operators. Consider a fa-mutex M having a non-empty intersection
with the goal (|M ∩ sgoal | ≥ 1) and a reachable state s that does not contain
any fact from M (|M ∩ s| = 0). Such a state clearly must be a dead-end
state, because it follows from Proposition 3.5 that all states reachable from s
cannot contain any fact from M including the fact that appear in the goal.

The operators that have more than one fact from some mutex (and therefore
also from some fa-mutex) in its preconditions cannot be applicable in any
reachable state. Similarly, the operators with add effects containing more
than one fact from some mutex (fa-mutex) are also unreachable, because the
resulting state would be in contradiction with the mutex (fa-mutex). Such
operators can be safely removed from the planning task. These two simple
rules are not limited to the fact-alternating mutexes, but they can be used
with any type of mutex invariant.

Fact-alternating mutexes provide one additional method for pruning super-
fluous operators. Consider a fa-mutex M such that |M ∩ sgoal | ≥ 1 and an
operator o such that |M ∩ add(o)| = 0 and |M ∩ pre(o) ∩ del(o)| = 1. The
resulting state of application of the operator o would not contain any fact
from fa-mutex M . Therefore such a state would be a dead-end state for the
reasons already explained. This means that the operator o can be safely
removed from the planning task because it can only produce dead-end states.
In other words, the states resulting from application of the operator are not
useful in finding a plan and therefore the operator itself is also not useful.
Definition 3.6. A restricted fact-alternating mutex (rfa-mutex) M ⊆ F
is a set of facts such that |M ∩ sinit | ≤ 1 and for every operator o ∈ O it holds
that |M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)| ≤ 1. A rfa-mutex that is not subset
of any other rfa-mutex is called a maximal restricted fact-alternating
mutex (max-rfa-mutex).
Proposition 3.7. Every restricted fact-alternating mutex is a fact-alternating
mutex by Definition 3.3 and thus also a mutex by Definition 3.2.
Proof. Definition 3.6 only adds two more restrictions on top of those put by
Definition 3.3, namely |M ∩ pre(o) ∩ del(o)| ≤ 1 and |M ∩ add(o)| ≤ 1. If

11

3. Mutual Exclusion Invariants
Table 3.1: A complete list of all mutexes, fa-mutexes and rfa-mutexes in the
gorilla-feeding planning task. The maximal mutexes, maximal fa-mutexes
and maximal rfa-mutexes are marked with a plus sign.

mutex fa-mutex rfa-mutex
{} 3 3 3

{(at a)} 3 7 7

{(at b)} 3 7 7

{(at c)} 3 7 7

{(hungry)} 3 3 3

{(fed)} 3 7 7

{(carry-food)} 3 7 7

{(at a), (at b)} 3 7 7

{(at a), (at c)} 3 7 7

{(at b), (at c)} 3 7 7

{(carry-food), (fed)} 3+ 7 7

{(hungry), (fed)} 3+ 3+ 7

{(at a), (at b), (at c)} 3+ 3+ 3+

these restrictions hold then also those in Definition 3.3 must hold, therefore
every rfa-mutex must be also a fa-mutex and therefore also a mutex.

The triplet of mutexes, fa-mutexes, and rfa-mutexes forms a hierarchy of a
different mutex types where rfa-mutexes are subset of fa-mutexes that are
in turn subset of mutexes (rfa-mutex ⊆ fa-mutex ⊆ mutex). The mutex
invariant is the most general definition of mutual exclusion between facts
because it takes into account only reachable states. As we will demonstrate in
the following section this has its consequences in the context of a complexity
of this structure. A fact-alternating mutex covers a smaller number of sets
of facts than mutex, but at least it provides a simple procedure for checking
whether a given set of facts is a mutex. The restricted fact-alternating mutex
adds more restrictions on fa-mutex that enables us to design a polynomial
algorithm for its inference (Section 3.5).

A complete list of all types of mutexes in the example planning task is
shown in Table 3.1. The maximal mutexes, fa-mutexes, and rfa-mutexes
are marked with a plus sign. The simple corollary of the definition of the
mutex is that every subset of any mutex is also a mutex. But the interesting
property of fa-mutexes is that not every subset of this type of mutexes is also
a fa-mutex and the same holds for rfa-mutexes. The reason being their strict
definitions. This also means that even though it is always safe to consider a
single fact to be a mutex this does not hold for fa-mutexes or rfa-mutexes.
For example, (at a) is not a fa-mutex (and therefore neither a rfa-mutex)
because the operator move b a has (at a) as its add effect, but it is not
balanced by a delete effect and it cannot be because operators are not allowed
to have the same facts in its add and delete effects. On the other hand,
(hungry) is a fa-mutex (and also a rfa-mutex) because it is not listed as an
add effect of any operator. This observation can be even generalized and we

12

................................... 3.1. Mutex Hierarchy

can say that any single fact is a fa-mutex (and also a rfa-mutex) if and only
if it does not appear in any add effect.

The facts (carry-food) and (fed) do not form a fa-mutex because of
the operator take-food which adds (carry-food) fact, but does not delete
the (fed) fact. This is exactly the type of mutex that is not covered by the
fact-alternating mutex because the facts from this mutex appear in a state
seemingly from nothing, i.e., the facts does not alternate between each other,
but their appearance is conditioned on some other fact that is not part of the
mutex.

The pair of facts (hungry) and (fed) is not a rfa-mutex because of the
unreachable operator escape that increases the size of the intersection of the
set of facts, preconditions and delete effects above the upper bound posed
by Definition 3.6. This suggests that only unreachable operators can cause
that some set of facts would be a fa-mutex but not a rfa-mutex. And indeed,
if the planning task contains only reachable operators then fa-mutexes and
rfa-mutexes both describe the exactly same set of mutexes which we formally
prove in the following Proposition 3.8. Nevertheless, it does not make rfa-
mutexes superfluous because a recognition of all reachable operators is as
hard as the planning itself.
Proposition 3.8. Let Π = 〈F ,O, sinit , sgoal〉 denote a planning task and let
M ⊆ F denote a set of facts. If the planning task contains only reachable
operators then M is a fa-mutex iff M is a rfa-mutex.
Proof. First, to prove by contradiction that if M is a fa-mutex then M is
also a rfa-mutex, let us assume that M is a fa-mutex, but M is not a rfa-
mutex. From the assumption it follows that there exist a reachable operator
o and a reachable state s such that o is applicable in s, |M ∩ add(o)| ≤
|M ∩ pre(o) ∩ del(o)| (becauseM is a fa-mutex) and |M ∩ pre(o) ∩ del(o)| > 1
(because M is not a rfa-mutex). If |M ∩ pre(o) ∩ del(o)| > 1 then also
|M ∩ pre(o)| > 1. Moreover, pre(o) ⊆ s because o is applicable in s, therefore
also |M ∩ s| > 1 which is in contradiction with the assumption that M is a
fa-mutex. The other direction follows from Proposition 3.7 which concludes
the proof.

Proposition 3.8 is important in understanding the relationship between
fa-mutexes and rfa-mutexes because what it says is that what makes the
difference between these two types of mutexes are only unreachable operators.

The maximal mutexes, fa-mutex and rfa-mutexes are those that cannot
be extended by any fact and still remain mutexes, fa-mutex or rfa-mutexes,
respectively. Therefore all other mutexes, fa-mutexes or rfa-mutexes are
already contained within the maximal ones, but we need to be careful while
considering classification of the subsets of the maximal mutexes, fa-mutexes
or rfa-mutexes. It is obviously true that every subset of a maximal mutex
is also a mutex. Nevertheless, not every subset of a maximal fa-mutex (rfa-
mutex) is also a fa-mutex (rfa-mutex) which we have already discussed. What
remains to explain is a relationship between maximal mutexes and maximal
fa-mutexes.

The question is whether every maximal fa-mutex is also a maximal mutex.

13

3. Mutual Exclusion Invariants
An intuitive answer would be that it is not because mutexes are more general
then fa-mutexes. But to clearly demonstrate that, consider the following
change in our running example. We can add a new fact (at home) and a
new operator go-home: (fed) 7→ (at home), ¬(at a), ¬(at b), ¬(at c).
This operator is clearly reachable and it adds one additional reachable state
{(fed), (at home)}. This means that in the altered planning task {(at a),
(at b), (at c)} is no longer a maximal mutex because it is contained in the
new maximal mutex {(at a), (at b), (at c), (at home)}. Nevertheless,
all maximal fa-mutexes still remain the same because the new operator is
constructed in such a way that prevents to extend any fa-mutex listed in
Table 3.1 by the fact (at home).

3.2 Complexity Analysis

The complexity analysis of mutex structures we propose is based on an
analysis of complexity classes of decision problems corresponding to the
problems of finding the largest possible mutexes. We will show that such a
decision problem for mutexes is asymptotically harder than for fa-mutexes
and rfa-mutexes even though in general there can be exponentially many
mutexes of all three types.
Definition 3.9. A maximum mutex (fa-mutex, rfa-mutex) is a mutex (fa-
mutex, rfa-mutex) such that there is no other mutex (fa-mutex, rfa-mutex)
consisting of more facts.
Definition 3.10. MAXIMUM-MUTEX (MAXIMUM-FA-MUTEX,MAXIMUM-
RFA-MUTEX): Given a planning task Π, find a maximum mutex (fa-mutex,
rfa-mutex). Decision problem: “Given Π and integer k, does Π contain a
mutex (fa-mutex, rfa-mutex) of size at least k?”

A maximum mutex is a mutex that has the maximum possible number
of facts in the corresponding planning task, i.e., maximum mutexes are the
largest mutexes in a number of facts they consist of. It should be clear that
every maximum mutex is also a maximal mutex by Definition 3.2 (but not
the other way around) and the same holds for fa-mutexes and rfa-mutexes.
MAXIMUM-MUTEX is a corresponding decision problem to the task of finding
a maximum mutex. Similarly, MAXIMUM-FA-MUTEX is a decision problem
corresponding to the finding a maximum fa-mutex and MAXIMUM-RFA-MUTEX
deals with rfa-mutexes. In Section 3.2.1 we prove that MAXIMUM-FA-MUTEX
and MAXIMUM-RFA-MUTEX are NP-Complete and in Section 3.2.2 we will
show that MAXIMUM-MUTEX is PSPACE-Complete.

3.2.1 MAXIMUM-FA-MUTEX and MAXIMUM-RFA-MUTEX are
NP-Complete

Definition 3.11. An undirected simple graph G is a tuple G = 〈N,E〉, where
N denotes a set of nodes and E denotes a set of edges such that each edge
{ni, nj} ∈ E connects two different nodes (ni 6= nj) and there are no two

14

................................. 3.2. Complexity Analysis

edges connecting the same nodes. A non-empty set C of nodes of G forms a
clique if each node of C is connected by an edge to every other node of C. A
clique that is not subset of any other clique is called a maximal clique. A
maximum clique is a clique such that there is no other clique consisting of
more nodes.
Definition 3.12. MAXIMUM-CLIQUE: Given a graph G, find a maximum
clique. Decision problem: “Given G and integer k, does G contain a clique of
size at least k?”

The MAXIMUM-CLIQUE problem is a well known NP-Complete decision
problem which we use to show that MAXIMUM-FA-MUTEX and MAXIMUM-
RFA-MUTEX are NP-Hard (Proposition 3.17). The reduction from MAXIMUM-
CLIQUE is done using Algorithm 1 that translates any graph G into a plan-
ning task ΠG in a polynomial time. After the translation, it is shown that
MAXIMUM-CLIQUE for G can be solved by solving MAXIMUM-FA-MUTEX or
MAXIMUM-RFA-MUTEX for ΠG. In other words, we show that fa-mutex
and rfa-mutex decision problems are at least as hard as some NP-Complete
problem, in this case MAXIMUM-CLIQUE.

Proving that MAXIMUM-FA-MUTEX and MAXIMUM-RFA-MUTEX belong to
NP is much easier because their definitions provide a verification algorithm
running in a polynomial time which concludes the proof that MAXIMUM-
FA-MUTEX and MAXIMUM-RFA-MUTEX are NP-Complete (Theorem 3.18).
Moreover, it follows from the polynomial reduction, as we propose it, that the
maximum possible number of maximal fa-mutexes or rfa-mutexes is exponen-
tial in a number of facts in the corresponding planning task (Proposition 3.19).

Algorithm 1: Translation of a graph into a planning task.
Input: A graph G = 〈N,E〉
Output: Planning task ΠG = 〈F ,O, sinit , sgoal〉

1 F ← N ∪ {>}, O ← {}, sinit ← {>}, sgoal ← {};
2 for each n1, n2 ∈ N such that {n1, n2} 6∈ E do
3 Create a new operator o and add it to O;
4 pre(o)← {>};
5 del(o)← {>};
6 add(o)← {n1, n2};
7 end

The proof that MAXIMUM-FA-MUTEX and MAXIMUM-RFA-MUTEX are NP-
Hard starts with some auxiliary lemmas. Lemma 3.13 shows that we can
use Algorithm 1 to translate graph G into a corresponding planning task
ΠG and all cliques (including the maximum ones) are preserved during the
translation in a form of fa-mutexes. More precisely, if C is a clique in G then
C ∪ {>} is a fa-mutex in ΠG. In Lemma 3.14 the other direction is proven,
i.e., it is shown that every fa-mutex containing > corresponds to a clique
in the original graph G. This leads to Lemma 3.15 that joins the previous
two lemmas into equivalence between every clique C and the corresponding

15

3. Mutual Exclusion Invariants
fa-mutex C ∪ {>}. Moreover, it is also shown that the equivalence holds
also for rfa-mutexes because all operators in ΠG are reachable and therefore
every fa-mutex is also a rfa-mutex (Proposition 3.8). The last remaining
piece of the proof of correctness of the polynomial reduction from MAXIMUM-
CLIQUE problem is to show that there are not any maximum fa-mutexes (or
rfa-mutexes) that does not contain >, i.e., we must show that if we find a
maximum fa-mutex (rfa-mutex) then we can reconstruct a maximum clique
in the original graph G from it and therefore MAXIMUM-CLIQUE problem
can be solved by solving MAXIMUM-FA-MUTEX or MAXIMUM-RFA-MUTEX.
In Lemma 3.16, we prove even stronger statement saying that not only all
maximum fa-mutexes (rfa-mutexes) but all fa-mutexes (rfa-mutexes) contain
>. Therefore Lemma 3.15 can be safely used to prove that the polynomial
reduction from MAXIMUM-CLIQUE problem is correct, thus MAXIMUM-FA-
MUTEX and MAXIMUM-RFA-MUTEX are both NP-Hard (Proposition 3.17).

The main contribution of this section is formulated in Theorem 3.18 stat-
ing that both MAXIMUM-FA-MUTEX and MAXIMUM-RFA-MUTEX are NP-
Complete. Once we have proven that both decision problems are NP-Hard
then it easily follows that they must be NP-Complete because any fa-mutex
or rfa-mutex can be verified in a polynomial number of steps by checking the
initial state and all operators.

For the rest of this section, letG denote a graph and let ΠG = 〈F ,O, sinit , sgoal〉
denote a planning task generated by Algorithm 1 from G.
Lemma 3.13. If C is a clique in G then M = C ∪ {>} is a fa-mutex in ΠG.1

Proof. To prove the lemma by contradiction let us assume that C is a
clique and M = C ∪ {>} is not a fa-mutex. Since sinit = {>} ⊆ M and
|M ∩ pre(o) ∩ del(o)| = 1 for every operator o (because pre(o) = del(o) =
{>}) there must exist an operator o? ∈ O such that |M ∩ add(o?)| ≥ 2. Since
> is not part of any add effect and all add effects contain exactly two facts, it
must hold that add(o?) ⊆ C. This is in contradiction with assumption that
C is a clique because all add effects are created only from the pairs of nodes
that are not joined by an edge and there is no such pair of nodes in C by
definition. Therefore if C is a clique then M is a fa-mutex.
Lemma 3.14. If M = C ∪ {>} is a fa-mutex in ΠG then C is a clique in G.
Proof. To prove the lemma by contradiction let us assume that M = C ∪{>}
is a fa-mutex and C is not a clique. If C is not a clique then there exist
n1, n2 ∈ C such that n1 and n2 are not connected by an edge in G. So it
follows that there exists an operator o ∈ O such that add(o) = {n1, n2} and
pre(o) = del(o) = {>} therefore |M ∩ add(o)| = 2 > |M ∩ pre(o) ∩ del(o)| =
1. This is in contradiction with the assumption thatM is a fa-mutex therefore
if M is a fa-mutex then C is a clique.
Lemma 3.15. C is a clique in G iff M = C ∪ {>} is a fa-mutex (rfa-mutex)
in ΠG.
Proof. All operators in ΠG are reachable because all have only > in their
preconditions therefore they are applicable in the initial state. So it follows

1We slightly abuse notation here and in the following lemmas to simplify the notation.

16

................................. 3.2. Complexity Analysis

from Proposition 3.8 that if M is a fa-mutex then M is also a rfa-mutex.
Therefore Lemma 3.13 proves the direction from left to right and Lemma 3.14
the other direction for both equivalences.

Lemma 3.16. For every maximal fa-mutex M in ΠG it holds that > ∈M .

Proof. Let N denote a fa-mutex such that > 6∈ N . Now we prove that
M = {>} ∪N is also a fa-mutex. Since sinit = {>} then surely |M ∩ sinit | ≤
1. For every operator o ∈ O holds that pre(o) = del(o) = {>} and
> 6∈ add(o) and |N ∩ add(o)| ≤ |N ∩ pre(o) ∩ del(o)|. So it follows that
|N ∩ add(o)| = |N ∩ pre(o) ∩ del(o)| = 0 therefore |M ∩ add(o)| = 0 ≤
|M ∩ pre(o) ∩ del(o)| = 1 therefore M is a fa-mutex. Finally, since every
fa-mutex can be extended by > then surely every maximal fa-mutex must
contain >.

Proposition 3.17. MAXIMUM-FA-MUTEX and MAXIMUM-RFA-MUTEX are NP-
Hard.

Proof. We will reduce MAXIMUM-CLIQUE to MAXIMUM-FA-MUTEX (MAXIMUM-
RFA-MUTEX). Any graph G can be translated into a planning task ΠG using
Algorithm 1 running in a polynomial time, namely O(n2), where n is a num-
ber of nodes in G. From Lemma 3.16 it follows that a maximum fa-mutex
(rfa-mutex) must contain > and then from Lemma 3.15 it follows that C is a
maximum clique in G iff M = C ∪{>} is a maximum fa-mutex (rfa-mutex) in
ΠG. Therefore MAXIMUM-FA-MUTEX (MAXIMUM-RFA-MUTEX) is NP-Hard.

Theorem 3.18. MAXIMUM-FA-MUTEX and MAXIMUM-RFA-MUTEX are NP-
Complete.

Proof. MAXIMUM-FA-MUTEX (MAXIMUM-RFA-MUTEX) is NP-Hard according
to Proposition 3.17. It is easy to see that given a set of facts it can be verified
as a fa-mutex (rfa-mutex) by checking the initial state and all operators
according to Definition 3.3 (Definition 3.6). The verification procedure runs
in a polynomial number of steps in a number of facts and operators. Therefore
MAXIMUM-FA-MUTEX (MAXIMUM-RFA-MUTEX) is NP-Complete.

Proposition 3.19. The maximum possible number of maximal fa-mutexes
(rfa-mutexes) in a planning task Π is exponential in a number of facts.

Proof. It follows from Lemma 3.15 and Lemma 3.16 that for every possible
graph it is possible to construct a planning task in which every maximal
fa-mutex (rfa-mutex) corresponds to some maximal clique and vice versa.
The maximum possible number of maximal cliques in a graph is exponential
in a number of nodes (namely c · 3n/3 where n is number of nodes and
c ∈ {1, 4/3, 2} depending on n mod 3) [Moon and Moser, 1965]. This makes
the lower bound an exponential. The upper bound is the maximum number
of subsets of F , which is also an exponential (2|F|). This makes the maximum
possible number of maximal fa-mutexes (rfa-mutexes) exponential in a number
of facts.

17

3. Mutual Exclusion Invariants
3.2.2 MAXIMUM-MUTEX is PSPACE-Complete

Definition 3.20. PLAN-SAT: Given a planning task Π, determine the exis-
tence of a solution.

Proposition 3.17 states that MAXIMUM-FA-MUTEX is NP-Hard, i.e., it is
at least as hard as the hardest problems in NP. Since every fa-mutex is
also mutex, inferring mutexes cannot be easier than inferring fa-mutexes
therefore also MAXIMUM-MUTEX must be NP-Hard. In this section, we will
precise this statement and we will show that MAXIMUM-MUTEX is PSPACE-
Complete (Theorem 3.25). First, it will be proven that it is PSPACE-Hard
(Proposition 3.22) using a polynomial reduction from PLAN-SAT which is
known to be PSPACE-Complete [Bylander, 1994]. Then we will present a
PSPACE algorithm (Algorithm 3) solving the MAXIMUM-MUTEX problem
which leads to a conclusion that MAXIMUM-MUTEX is PSPACE-Complete.
Moreover, we will show that the maximum possible number of maximal
mutexes is exactly the same as maximal fa-mutexes or maximal rfa-mutex
and we will express this number exactly.

Algorithm 2: Translation of a planning task into another planning task
where MAXIMUM-MUTEX can be used to solve PLAN-SAT.
Input: Planning task Π = 〈F ,O, sinit , sgoal〉
Output: Planning task ΠM = 〈FM ,OM , sinit , sgoal〉

1 Create a new operator osat;
2 pre(osat)← sgoal ;
3 del(osat)← {};
4 add(osat)← FM ;
5 FM ← F ∪ {⊥};
6 OM ← O ∪ {osat};

Lemma 3.21. Let Π denote a planning task, let ΠM denote a planning task
generated by Algorithm 2 from Π and let M denote a maximum mutex in
ΠM . A solution of Π exists iff |M | ≤ 1.
Proof. A solution of Π exists iff there exists a reachable state s such that
sgoal ⊆ s. If such s exists then osat is a reachable operator and thus its
resulting state ssat = FM is also reachable. So it follows that every mutex of
ΠM consist of at most one fact because any mutex N having more than one
fact would violate a mutex property on ssat (

∣∣N ∩ ssat∣∣ ≥ 2). Therefore if a
solution of Π exists then |M | ≤ 1.

To prove the other direction by contradiction, let us assume that we have
a maximum mutex M in ΠM such that |M | ≤ 1 and Π has no solution. If
Π has no solution then there does not exist a reachable state s such that
sgoal ⊆ s, which means that osat is not applicable in any reachable state
therefore also the state ssat = FM is not reachable. But the fact ⊥ appears in
ΠM only in ssat therefore any mutex in ΠM can be extended by ⊥ and it still
remains a mutex. Finally, since in any planning task exists a mutex of size at
least one (a single fact is always a mutex) and since such a mutex can be in

18

................................. 3.2. Complexity Analysis

ΠM extended by ⊥, then it follows that a maximum mutex M must have at
least two facts (|M | ≥ 2) which is in contradiction with the assumption that
|M | ≤ 1. Therefore if |M | ≤ 1 then Π has a solution.

Proposition 3.22. MAXIMUM-MUTEX is PSPACE-Hard.
Proof. We will reduce PLAN-SAT to MAXIMUM-MUTEX. Any planning task Π
can be translated to a different planning task ΠM by Algorithm 2 running
in a polynomial time. It follows from Lemma 3.21 that we can determine
whether Π has a solution by solving MAXIMUM-MUTEX problem on ΠM in
the following way. If the maximum mutex in ΠM has at most one fact then
the planning task Π has a solution. If the maximum mutex in ΠM has more
then one fact then the planning task Π does not have a solution. Therefore
MAXIMUM-MUTEX is PSPACE-Hard.

Once we have proven that MAXIMUM-MUTEX is PSPACE-Hard, proving
that it is also PSPACE-Complete requires to show that it is possible to infer
a maximum mutex using a polynomial amount of space. Such an inferring
algorithm is listed in Algorithm 3. The main idea of the algorithm is that
every set of facts M of size at least two is a mutex if and only if every pair of
facts from M is also a mutex (Proposition 3.23). In other words, if we are
able to infer all mutexes containing exactly two facts, we can always use these
pair mutexes for a construction of all other mutexes of size at least three.
The main cycle of Algorithm 3 uses PLAN-SAT to prove whether each pair of
facts is mutex or it is not, i.e., whether the facts are part of some reachable
state or not. The inferred pair mutexes are used for a construction of a
graph where each edge corresponds to one pair mutex. And finally, MAXIMUM-
CLIQUE is used to infer a maximum mutex. Such an algorithm clearly uses
only a polynomial amount of space which is formally proven in Lemma 3.24.
Theorem 3.25 just joins Proposition 3.22 (MAXIMUM-MUTEX is PSPACE-
Hard) and Lemma 3.24 (MAXIMUM-MUTEX belongs to PSPACE) to formulate
the main contribution of this section, i.e., the proof that MAXIMUM-MUTEX
is PSPACE-Complete.
Proposition 3.23. LetM ⊆ F denote a set of facts such that |M | ≥ 2 and let
DM denote a set of all pairs of all facts from M , i.e., DM = {{fi, fj} | fi, fj ∈
M,fi 6= fj}. M is a mutex iff every P ∈ DM is a mutex.
Proof. It is easy to see that if M is a mutex (i.e., |s ∩M | ≤ 1 for every
reachable state s) then also every subset of M must be a mutex (i.e., for
every N ⊆M holds that also |s ∩N | ≤ 1 for every reachable state s).

To prove the other direction by a contradiction let us assume that every
P ∈ DM is a mutex, but M is not mutex. If M is not a mutex then there
exists a reachable state s such that |s ∩M | ≥ 2. This means that there must
exist a pair of facts {f1, f2} such that f1, f2 ∈M and f1, f2 ∈ s which is in
contradiction with the assumption that every P ∈ DM is a mutex because
{f1, f2} must belong to DM by definition.

Lemma 3.24. Given a planning task Π, Algorithm 3 returns a maximum
mutex using a polynomial amount of space in the size of the input.

19

3. Mutual Exclusion Invariants
Algorithm 3: MAXIMUM-MUTEX

Input: Planning task Π = 〈F ,O, sinit , sgoal〉
Output: The largest mutex M

1 Construct a complete graph
G = 〈N = F , E = {{fi, fj} | fi, fj ∈ F , fi 6= fj};

2 for each f1, f2 ∈ F such that f1 6= f2 do
3 if PLAN-SAT (Πsat = 〈F ,O, sinit , {f1, f2}〉) then
4 E ← E \ {f1, f2};
5 end
6 end
7 M ← MAXIMUM-CLIQUE (G);

Proof. Algorithm 3 starts with a complete graph constructed from the facts
as its nodes. Then, in |F|2 steps, each pair of facts is checked by PSPACE-
Complete PLAN-SAT whether they appear together in any reachable state.
If they do, an edge connecting those two facts is removed from the graph.
The edges remaining in the graph connect only those facts that never appear
together in the same reachable state. Therefore every pair of facts connected
by an edge is a mutex.

MAXIMUM-CLIQUE retrieves a maximum mutex in the last step because it
follows from Proposition 3.23 that having all mutexes of size two is enough to
construct any other mutex which covers also maximum mutexes and if there
are no edges left in the graph then MAXIMUM-CLIQUE returns a single fact
which is always a mutex.

Finally, since MAXIMUM-CLIQUE is NP-Complete and Algorithm 3 uses a
polynomial number of calls of the PSPACE-Complete algorithm PLAN-SAT,
Algorithm 3 must be in PSPACE.

Theorem 3.25. MAXIMUM-MUTEX is PSPACE-Complete.
Proof. MAXIMUM-MUTEX is PSPACE-Hard (Proposition 3.22) and it also
belongs to PSPACE (Lemma 3.24) therefore MAXIMUM-MUTEX is PSPACE-
Complete.

Proposition 3.19 states that the maximum number of maximal fa-mutexes
(rfa-mutexes) is exponential in a number of facts. The proof of Proposi-
tion 3.19 is based on the proposed procedure that can translate any graph
into a planning task in such a way that every maximal fa-mutex (rfa-mutex)
corresponds to a maximal clique in the original graph. This enables us
to enumerate the lower bound on the maximum possible number of maxi-
mal fa-mutexes (rfa-mutexes) as the maximum possible number of maximal
cliques.

It follows from Proposition 3.23 that given a complete list of all mutexes
consisting of exactly two facts, all maximal mutexes can be constructed using
an algorithm for listing all maximal cliques. This means that the maximum
possible number of maximal mutexes is exactly the same as the maximum
possible number of maximal cliques. Furthermore, since the same number is

20

............................. 3.3. Inference of Mutex Invariants

the lower bound on the maximum possible number of maximal fa-mutexes
(rfa-mutexes) and since every fa-mutex (rfa-mutex) is also a mutex, the
maximum possible number of maximal mutexes, maximal fa-mutexes and
maximal rfa-mutexes are exactly the same, which we formally prove in the
following Proposition 3.26.
Proposition 3.26. Let Π = 〈F ,O, sinit , sgoal〉 denote a planning task and let
n = |F| denote a number of facts in Π. The maximum possible number µ(n),
µfa(n), and µrfa(n) of maximal mutexes, maximal fa-mutexes, and maximal
rfa-mutexes, respectively, for n ≥ 2, is the following:

µ(n) = µfa(n) = µrfa(n) =

3n/3, if n mod 3 = 0;

4
3 · 3

n/3, if n mod 3 = 1;
2 · 3n/3, if n mod 3 = 2.

Proof. It follows from Proposition 3.23 that all maximal mutexes can be
constructed from a complete set of pair mutexes using an algorithm for
enumeration of all maximal cliques. Moreover, it is easy to see that given a
set of facts it is always possible to construct a planning task that would contain
any combination of pair mutexes. It follows from the proof of Proposition 3.19
that the same holds for maximal fa-mutexes and maximal rfa-mutexes. This
means that the maximum possible number of maximal mutexes, fa-mutexes
and rfa-mutexes in a planning task is exactly the same as the maximum
possible number of maximal cliques in a graph [Moon and Moser, 1965].

3.3 Inference of Mutex Invariants

Several algorithms for inference of mutex invariants was already described
in Chapter 2. In this section, we present a novel polynomial algorithm that
takes a set of mutex invariants generated using a different method as its input
and it uses a relatively simple inference rule to generate some additional
mutexes. The inference rule is encapsulated in Proposition 3.29 preceded by
two auxiliary definitions.
Definition 3.27. An f1-mutex-set Mf1 is a set of mutexes such that for
every mutex M ∈Mf1 it holds that f1 ∈M .
Definition 3.28. An f1-f2-relevant operator o is an operator such that
f1 ∈ add(o) and f2 6∈ del(o). Given a planning task Π = 〈F ,O, sinit , sgoal〉,
the set of all f1-f2-relevant operators from O is denoted by Of1,6¬f2 .
Proposition 3.29. Let Π = 〈F ,O, sinit , sgoal〉 denote a planning task. Let
M = {f1, f2} ⊆ F denote a set of facts such that f1 6= f2. LetMf1 andMf2

denote an f1-mutex-set and an f2-mutex-set, respectively. And let Of1,6¬f2 and
Of2, 6¬f1 denote all f1-f2-relevant and f2-f1-relevant operators, respectively.

If..1. |M ∩ sinit | ≤ 1, and..2. for every o ∈ O holds that |M ∩ add(o)| ≤ 1, and

21

3. Mutual Exclusion Invariants3. for every o ∈ Of1, 6¬f2 holds that there exists a mutex N ∈Mf2 such that
|(N \ {f2}) ∩ pre(o)| ≥ 1, and..4. for every o ∈ Of2, 6¬f1 holds that there exists a mutex N ∈Mf1 such that
|(N \ {f1}) ∩ pre(o)| ≥ 1

then M is a mutex.
Proof. (By induction) The first condition ensures the mutex property of M
with respect to the initial state. Let s denote a reachable state such that
|M ∩ s| ≤ 1, i.e., the mutex property holds with respect to s. Now we need
to prove that for all o ∈ O such that pre(o) ⊆ s an inequality |M ∩ o[s]| ≤ 1
holds. Since M consist of two facts, only three cases must be investigated.. There is no fact from M in s, i.e., M ∩ s = ∅. In this case the mutex

property of any o[s] can be violated only if o has M ⊆ add(o) which is
in contradiction with condition 2.. f1 6∈ s and f2 ∈ s. In this case the mutex property of some o[s] can
be violated only if there exists an operator o such that pre(o) ⊆ s and
f1 ∈ add(o) and f2 6∈ del(o) which means that o ∈ Of1, 6¬f2 . So it follows
from the condition 3 that pre(o) must contain a fact mutually exclusive
with f2 and therefore also s must contain a fact mutually exclusive with
f2. Therefore s contains two mutually exclusive facts (one of which is
f2) which is in contradiction with the assumption that s is a reachable
state because the mutex property must hold for all reachable states.. f1 ∈ s and f2 6∈ s is a similar case to the previous one except the
condition 4 instead of 3 must be used.

The first condition of Proposition 3.29 is self-evident: a pair of facts can
be a mutex only if they are a mutex with respect to the initial state. The last
three conditions are based on the assumption that all operators are reachable.
Under this assumption, the second condition is also self-evident. If there
is an operator that adds both facts to the resulting state then those facts
cannot form a mutex. The last two conditions are the heart of the inference
rule. What they say is that if there exists an operator that adds one of the
facts to the resulting state, but does not deletes the other one, we can use
the the operator’s preconditions and the known mutexes to deduce whether
the operator preserves the mutex property of the two facts. That is, if an
operator o adds a fact f1 and its precondition contains some fact fm that is
a mutex with f2, we know that the state on which is o applicable must also
contain fm therefore it cannot contain f2. This means that such an operator
cannot violate a mutex property between f1 and f2.

The algorithm using Proposition 3.29 is encapsulated in Algorithm 4. The
algorithm starts with removing unreachable operators that can be detected as
such using the provided set of pair mutexes (mutexes consisting of two facts).
This can be achieved by checking preconditions and add effects whether they
violate any known pair mutex. If they do then the corresponding operator
can be safely removed.

22

...................... 3.4. Inference of Fact-Alternating Mutex Invariants

Algorithm 4: Inference of mutex invariants.
Input: Planning task Π = 〈F ,O, sinit , sgoal〉, a set of pair mutexesM2

Output: A set of pair mutexesM2

1 Remove unreachable operators from O usingM2 ;
2 C ← {{f1, f2} | f1, f2 ∈ F , f1 6= f2} \M2;
3 for each {f1, f2} ∈ C do
4 Mf1 ← {N | N ∈M2, f1 ∈ N};
5 Mf2 ← {N | N ∈M2, f2 ∈ N};
6 Of1, 6¬f2 ← {o | o ∈ O, f1 ∈ add(o), f2 6∈ del(o)};
7 Of2, 6¬f1 ← {o | o ∈ O, f2 ∈ add(o), f1 6∈ del(o)};
8 if {f1, f2} passes a check on all four conditions of Proposition 3.29

then
9 M2 ←M2 ∪ {{f1, f2}};

10 go to 1;
11 end
12 end

A set of candidates for mutexes is created on the second line of the algorithm
as all possible pairs of facts except those about which we already know they
are mutexes. Then each pair of mutexes is tested according to Proposition 3.29
and the pair that passes the test is added to the list of inferred mutexes and
the cycle starts again with removing unreachable operators. The algorithm
terminates when there are not any candidates that pass the test.

It should be obvious that the algorithm runs in a polynomial time because
every step of the algorithm is polynomial and it contains only polynomial
number cycles because there is only O(|F|2) candidate pairs possible.

The proposed algorithm can be used with a conjunction with any mutex
inferring algorithm because any mutex can be decomposed into a set of pair
mutexes (Proposition 3.23). This also includes the algorithms described in
the following two sections. The performance of a combination of Algorithm 4
and several other inference algorithms is evaluated in Chapter 4.

3.4 Inference of Fact-Alternating Mutex
Invariants

Definition 3.3 provides a concise description of fact-alternating mutexes that
can be used for a design of an algorithm that generates them if it is used as a
construction block of an integer linear program (ILP). Such an ILP can be
constructed in the following way.

Each variable xi of the ILP corresponds to a fact fi ∈ F from the planning
problem. Variables can acquire only binary values 0 or 1, 0 meaning that
the corresponding fact is not present in the fa-mutex and 1 meaning the
corresponding fact is part of the fa-mutex. For example having 3 facts
f1, f2, f3, the corresponding ILP would consist of 3 binary variables x1, x2, x3

23

3. Mutual Exclusion Invariants
and an assignment to the variables x1 = 1, x2 = 0, x3 = 1 would mean that
the fa-mutex M consists of facts f1 and f3 (M = {f1, f3}).

The definition of a fact-alternating mutex can be rewritten into ILP con-
straints as follows: ∑

fi∈sinit

xi ≤ 1, (3.1)

∀o ∈ O :
∑

fi∈add(o)
xi ≤

∑
fi∈del(o)∩pre(o)

xi. (3.2)

Eq. 3.1 is a constraint saying that the initial state must have at most one
common fact with the fa-mutex and corresponds to the first condition in
Definition 3.3 (|M ∩ sinit | ≤ 1). Eq. 3.2 corresponds to the second part of
the definition and it ensures that the mutex property is preserved by all
applicable operators (|M ∩ add(o)| ≤ |M ∩ pre(o) ∩ del(o)|).

The objective function of the ILP is to maximize
∑

fi∈F xi. The maximiza-
tion enforces inference of a fa-mutex counting the maximal number of facts
possible.

Unfortunately, the solution to this ILP is only one fa-mutex, so some
mechanism enabling inference of all fact-alternating mutexes is required. This
drawback can be resolved by solving the ILP repeatedly, each time with added
constraints that exclude already inferred fa-mutexes. Let M denote a known
fa-mutex. Such a fa-mutex and all its subsets can be excluded from the ILP
solution by adding the constraint∑

fi 6∈M

xi ≥ 1. (3.3)

The constraint forces the ILP solver to add to the solution a fact that is not
present in the known fa-mutex M and thus excluding M and all its subsets.
In other words, since we are not interested in the fa-mutex M and its subsets,
we know that any other fa-mutex must contain a fact that is not part of M .

Algorithm 5: Inference of fact-alternating mutex invariants using ILP.
Input: Planning task Π = 〈F ,O, sinit , sgoal〉
Output: A set of fa-mutexesM

1 Initialize ILP with constraints according to Eq. 3.1–3.2;
2 Set objective function of ILP to maximize

∑
fi∈F xi;

3 Solve ILP and save the resulting fa-mutex into M ;
4 while |M | ≥ 1 do
5 Add M to the output setM;
6 Add constraint according to Eq. 3.3 using M ;
7 Solve ILP and save the resulting fa-mutex into M ;
8 end

The whole fa-mutex inferring algorithm is encapsulated in Algorithm 5.
First, ILP constraints are constructed according to Eq. 3.1–3.2 which ensures

24

................. 3.5. Inference of Restricted Fact-Alternating Mutex Invariants

that the solutions of the ILP will be fact-alternating mutexes. Then in turn a
maximal fa-mutex is inferred through ILP solution and consequently removed
from future solutions using added constraint corresponding to Eq. 3.3. The
cycle continues until inferred fa-mutexes consist of at least one fact and since
a maximal fa-mutex is produced at each step, arriving at smaller and smaller
fa-mutexes means that the algorithm eventually terminates. The combination
of maximization and removing the found fa-mutexes and all theirs subsets
from the solutions in the following steps also ensures that every produced
fa-mutex is unique and it is never a subset of any already found fa-mutex.
Theorem 3.30. Algorithm 5 is complete with respect to maximal fact-
alternating mutex invariants.
Proof. To prove Theorem 3.30 by contradiction let us assume that Algorithm 5
was terminated and it produced a set of fact-alternating mutexes, and let us
assume that there exists a fact-alternating mutex M that is not a subset of
any mutex produced by Algorithm 5. Such a fa-mutex must satisfy constraints
expressed by Eq. 3.1–3.2 and it must contain at least one fact that is not part
of any fa-mutex produced by Algorithm 5. This is not violated by the ILP
constraints in the last cycle of Algorithm 5 because they consist of Eq. 3.1–3.2
and a set of Eq. 3.3 constraints that force the next fa-mutex to include a fact
that is not part of any fa-mutex found so far. This means that Algorithm 5
could not terminate thus such M does not exist and Algorithm 5 is complete
with respect to maximal fact-alternating mutex invariants.

Another interesting application of fa-mutexes is an inference of unreachable
facts, i.e., the facts that are not part of any reachable state. It follows from
Proposition 3.5 that we can slightly modify Algorithm 5 to produce fa-mutexes
consisting exclusively from the unreachable facts. If Eq. 3.1 is replaced with
a more strict constraint

∑
fi∈sinit xi = 0 the resulting fa-mutexes will be those

that have empty intersection with the initial state. Therefore the facts they
consist of can be safely removed from the planning task because they do not
appear in any reachable state.

Moreover, if we run the modified algorithm for detection of the unreachable
facts, we remove the inferred unreachable facts from the planning task and
afterwards we execute Algorithm 5 for inference of fa-mutexes, we can change
Eq. 3.1 in Algorithm 5 to more strict

∑
fi∈sinit xi = 1 because the resulting

fa-mutexes can be only those that have a common fact with the initial state.
Therefore, it still remains complete with respect to the modified planning
task without unreachable facts removed in the previous step.

3.5 Inference of Restricted Fact-Alternating
Mutex Invariants

The algorithm lied out in Section 3.4 was shown to be able to produce a
complete set of all fact-alternating mutex invariants. In this section we will
present a polynomial algorithm for inference of restricted fact-alternating
mutexes. Such an algorithm, obviously, cannot be complete with respect to

25

3. Mutual Exclusion Invariants
maximal rfa-mutexes. The algorithm is based on inference of two sets for
each fact we call a conflict set and a bind set whose definitions follow.
Definition 3.31. A fact f ∈ F is in conflict with a fact g ∈ F iff for every
rfa-mutexM such that f ∈M it holds that g 6∈M . The relation is symmetric,
i.e., f is in conflict with g iff g is in conflict with f . A conflict set Cf ⊆ F
is a set of facts such that for every g ∈ Cf it holds that f is in conflict with g.
Definition 3.32. A fact f ∈ F binds a fact g ∈ F (or conversely g is bound
by f) iff for every rfa-mutex M such that f ∈ M it holds that g ∈ M . A
bind set Bf ⊆ F is a set of facts such that for every g ∈ Bf it holds that f
binds g.

A conflict set Cf consists of the facts that cannot be part of any rfa-mutex
containing f and a bind set Bf contains the facts that must be included in all
rfa-mutexes also containing f if there are any. The algorithm for inference of
rfa-mutexes is based on a gradual building of these two sets. We present a set
of inference rules in a form of lemmas that can be used for proving whether
some fact can be part of some conflict or bind set. And at the end of this
section, we join the lemmas into a full inference algorithm. First, we start
with simple properties of conflict and bind sets.
Lemma 3.33. (Reflexivity of a bind relation) For every fact f ∈ F it holds
that f binds itself.
Proof. It directly follows from Definition 3.32 if we consider g = f .
Lemma 3.34. (Transitivity of a bind relation) If f binds g and g binds h
then f binds h.
Proof. If every rfa-mutex containing g also contains h and every rfa-mutex
containing f contain also g then every rfa-mutex containing f must also
contain h.
Lemma 3.35. (Transitivity between bind and conflict sets) If f binds g and
g is in conflict with h then f is in conflict with h.
Proof. If g is part of every rfa-mutex containing also f and h cannot be part
of any rfa-mutex containing also g then h cannot be part of any rfa-mutex
containing f .
Lemma 3.36. If there does not exist a rfa-mutex M such that f ∈M then
f binds all facts from F .
Proof. It follows from the use of universal quantifier in Definition 3.32.
Lemma 3.37. f ∈ F is in conflict with all facts from F iff there does not
exist a rfa-mutex M such that f ∈M .
Proof. If f is in conflict with all facts then f is in conflict with itself which
is contradiction with f ∈ M . The other direction follows from the use of
universal quantifier in Definition 3.31.

Lemma 3.33 says that every bind set can be initialized with one fact, i.e., for
every f ∈ F we can set Bf = {f}. Lemma 3.34 describes a simple inference
rule based on a transitive property of bind sets. Similarly Lemma 3.35 can
be used for extension of conflict sets through a bind relation. Lemma 3.36

26

................. 3.5. Inference of Restricted Fact-Alternating Mutex Invariants

and Lemma 3.37 help us to show that the inference algorithm terminates in
a polynomial number of steps because even when we detect that some fact is
not part of any rfa-mutex the corresponding conflict and bind sets grow. Thus
we will be able to show that as conflict and bind sets grow by at least one fact
per cycle, the maximal number of cycles is polynomial in a number of facts
in the planning task. Therefore if we show that every cycle consist of only
polynomial number of steps the whole algorithm terminates in a polynomial
number of steps. The following lemma describes an initialization of conflict
sets.
Lemma 3.38. Let f, g ∈ F denote a pair of facts such that f 6= g. If..1. f ∈ sinit and g ∈ sinit , or..2. there exists an operator o ∈ O such that f ∈ add(o) and g ∈ add(o), or..3. there exists an operator o ∈ O such that f ∈ pre(o) ∩ del(o) and

g ∈ pre(o) ∩ del(o)

then f is in conflict with g.
Proof. Definition 3.6 states that every fact-alternating mutex can contain
only one fact from the initial state, therefore all facts from the initial state are
in conflict with each other. Moreover, any rfa-mutex can contain at most one
fact from any add effect, therefore facts that appear in the same add effect
must be in conflict with each other. Finally, any rfa-mutex can contain at
most one fact from any intersection of precondition and delete effect, therefore
facts that appear together in those intersections must be in conflict with each
other.

Lemma 3.38 stems directly from the definition of a rfa-mutex and it
describes how conflict sets can be initialized just by checking the initial state
and all operators.
Lemma 3.39. If there exist a conflict set Cf and a bind set Bf such that
Cf ∩Bf 6= ∅ then there is no rfa-mutex M such that f ∈M thus f binds all
facts and it is also in conflict with all facts.
Proof. If there exists a fact g such that g ∈ Cf and g ∈ Bf then every
rfa-mutex containing f must contain g and also cannot contain g at the
same time. So it follows that there is no such rfa-mutex. Therefore also
Bf = Cf = F (Lemma 3.36, Lemma 3.37).
Lemma 3.40. If there exists an operator o ∈ O, a bind set Bf , and a conflict
set Cf such that Bf ∩ add(o) 6= ∅ and (pre(o) ∩ del(o)) \ Cf = ∅ then there
does not exist any rfa-mutex M such that f ∈M thus f binds all facts and
it is also in conflict with all facts.
Proof. To prove the lemma by contradiction let us assume that there exists
a rfa-mutex M such that f ∈ M . Since Bf ⊆ M and Bf ∩ add(o) 6= ∅
then |M ∩ add(o)| = 1 therefore |M ∩ pre(o) ∩ del(o)| = 1. Furthermore,
since Cf ∩M = ∅ then also |M ∩ ((pre(o) ∩ del(o)) \ Cf)| = 1. This is in
contradiction with the assumption that (pre(o) ∩ del(o)) \ Cf = ∅ therefore

27

3. Mutual Exclusion Invariants
M cannot be a rfa-mutex containing f . Therefore also Bf = Cf = F
(Lemma 3.36, Lemma 3.37).

Lemma 3.39 formally states a simple rule saying that if a fact is in conflict
with the same fact as it binds, such a fact cannot be part of any rfa-mutex.
Lemma 3.40 formulates a more complicated rule. If there is an operator o
that adds some fact about which we know it must be part of all rfa-mutexes
containing f , then we also know that pre(o)∩ del(o) must contain some other
fact from the same rfa-mutex to meet the definition of a rfa-mutex. But if
pre(o) ∩ del(o) contains only the facts about which we know they cannot be
part of any rfa-mutex containing f , then it follows that there are not any
rfa-mutexes containing f at all. These two rules are used for identification of
the facts that cannot be part of any rfa-mutex.
Lemma 3.41. If there exists an operator o ∈ O and a bind set Bf such that
Bf ∩add(o) 6= ∅ and a conflict set Cf and a fact g such that (pre(o)∩del(o))\
Cf = {g} then f binds g.
Proof. Two cases must be investigated, either:..1. there is no rfa-mutex containing f in which case f binds g according to

Lemma 3.36,..2. or there exist some rfa-mutexes containing f . Therefore for every rfa-
mutex M such that f ∈M must hold that Bf ⊆M . So it follows from
Definition 3.6 that if Bf ∩ add(o) 6= ∅ then |M ∩ add(o)| = 1 therefore
also |M ∩ pre(o) ∩ del(o)| = 1. Finally, since g is the only fact from
pre(o) ∩ del(o) that is not in conflict with f it must follow that g is
bound by f .

Lemma 3.41 corresponds to the rule extending bind sets. The main idea is
that if there exists a rfa-mutex containing f then we can check all operators
adding some fact about which we know it must be part of that rfa-mutex.
If there is only one possible fact from an intersection of preconditions and
delete effects that could satisfy a rfa-mutex condition on operators, then such
a fact must be part of every rfa-mutex containing f .
Lemma 3.42. If there exist a conflict set Cf and a bind set Bf and operators
o1 ∈ O and o2 ∈ O such that add(o1) ∩ Bf 6= ∅ and add(o2) ∩ Bf 6= ∅
and (pre(o1) ∩ del(o1)) \ Cf ⊆ (pre(o2) ∩ del(o2)) \ Cf then all facts from
((pre(o2) ∩ del(o2)) \ Cf) \ ((pre(o1) ∩ del(o1)) \ Cf) are in conflict with f .
Proof. If there does not exist any rfa-mutex containing f then f is in conflict
with all facts (Lemma 3.37). So we further assume that there exists at least
one rfa-mutex containing f . Therefore for every rfa-mutex M containing f
holds that Bf ⊆M and Cf ∩M = ∅. So it follows from Definition 3.6 that if
Bf∩add(o1) 6= ∅ and Bf∩add(o2) 6= ∅ then |M ∩ add(o1)| = |M ∩ add(o2)| =
1 therefore |M ∩ pre(o1) ∩ del(o1)| = |M ∩ pre(o2) ∩ del(o2)| = 1 therefore
|M ∩ ((pre(o1) ∩ del(o1)) \ Cf)| = |M ∩ ((pre(o2) ∩ del(o2)) \ Cf)| = 1. Fi-
nally, since (pre(o1) ∩ del(o1)) \ Cf ⊆ (pre(o2) ∩ del(o2)) \ Cf it must follow
that |M ∩ (((pre(o2) ∩ del(o2)) \ Cf) \ ((pre(o1) ∩ del(o1)) \ Cf))| = 0 which
concludes the proof.

28

................. 3.5. Inference of Restricted Fact-Alternating Mutex Invariants

Lemma 3.42 follows a similar reasoning as Lemma 3.40 and Lemma 3.41. If
an operator o has one of the facts from Bf as its add effect (Bf ∩ add(o) 6= ∅)
then one of the facts from (pre(o) ∩ del(o)) \ Cf must be also part of every
rfa-mutex containing f . If we have two operators o1, o2 both having a
fact from Bf as their add effect and (pre(o1) ∩ del(o1)) \ Cf is subset of
(pre(o2)∩del(o2)) \Cf then we may easily infer that all facts that are present
in (pre(o2) ∩ del(o2)) \ Cf but not in (pre(o1) ∩ del(o1)) \ Cf cannot be part
of any rfa-mutex containing f .

Algorithm 6: Inference of conflict and bind sets
Input: Planning task Π = 〈F ,O, sinit , sgoal〉
Output: A set of conflict sets C = {Cf}f∈F , a set of bind sets

B = {Bf}f∈F
1 for each f ∈ F do
2 Initialize Cf according to Lemma 3.38;
3 Initialize Bf = {f} (Lemma 3.33);
4 end
5 do
6 for each f ∈ F do
7 Set Cf = Bf = F if f cannot be part of any rfa-mutex (Lemma

3.39, 3.40);
8 Update Bf and Cf using transitivity rules (Lemma 3.34 and 3.35);
9 Update Bf according to Lemma 3.41;

10 Update Cf according to Lemma 3.42;
11 end
12 while any Cf or Bf changed;

The algorithm for inference of conflict and bind sets is encapsulated in
Algorithm 6. The algorithm starts with an initialization of conflict and
bind sets using simple rules that check the initial state and all operators
which requires only polynomial number of steps. In the main cycle of the
algorithm all facts are processed sequentially. First it is checked whether the
corresponding fact can be part of any rfa-mutex. This is achieved by checking
whether the corresponding bind and conflict sets have empty intersection
(Lemma 3.39) and by checking operators according to Lemma 3.40. Both
operations require at most polynomial number of steps. Then conflict and
bind sets are extended by more facts through a transitive property of bind
sets (Lemma 3.34 and 3.35). This can be done also in a polynomial number
of steps. Finally, the two most complicated rules are used (Lemma 3.41 and
3.42). Both these operations require checking all operators which can be done
also in a polynomial number of steps. The whole algorithm terminates when
there is no applicable rule that can be used for extension of some conflict
or bind set. In every step of the algorithm, conflict and bind sets can only
grow in a number of facts they consist of. Therefore the number of cycles
can be at most polynomial in a number of facts. So it follows that the whole
algorithm terminates in a polynomial number of steps in a number of facts

29

3. Mutual Exclusion Invariants
Algorithm 7: Inference of restricted fact-alternating mutex invariants
using conflict and bind sets.
Input: Planning task Π = 〈F ,O, sinit , sgoal〉
Output: A set of mutex invariantsM

1 for each Bf generated by Algorithm 6 do
2 if Bf is a rfa-mutex according to Definition 3.6 then
3 Add Bf toM;
4 end
5 end

and operators.
The algorithm for inference of rfa-mutex invariants is encapsulated in

Algorithm 7. The algorithm is based on Algorithm 6 that is used for generating
bind sets that are in turn verified whether they form rfa-mutexes. The
verification must be performed because a correct bind set by itself does not
guarantee that the facts from the bind set form a rfa-mutex. A bind set
provides just a set of facts that must be part of every rfa-mutex containing
the corresponding fact if there are any such rfa-mutexes. But they can be
used as a guess for the subsequent verification which runs in a polynomial
number steps because only the initial state and each operator must be checked.
Therefore Algorithm 7 also terminates in a polynomial number of steps in a
number of facts and operators.

30

Chapter 4
Experimental Results

All algorithms experimentally evaluated in this chapter were implemented1

into Fast Downward’s preprocessor [Helmert, 2006] written in Python pro-
gramming language. The experiments were run on a computer with an Intel
Core i7 3.60GHz processor and 16GB RAM. The algorithms were evaluated on
all domains from the optimal deterministic track of the last International Plan-
ning Competition 2014 (IPC 2014) [Vallati et al., 2015] that do not contain
any conditional effects after grounding (i.e., all except Citycar domain).

The algorithms proposed in this work were compared with two differ-
ent methods for inferring mutex invariants that were already discussed in
Chapter 2. One is the inference algorithm implemented in Fast Downward’s
preprocessor [Helmert, 2009] that will be from now on abbreviated by fd. The
main purpose of fd is to infer mutex invariants that are consequently used for
translation of a planning task from PDDL into Finite Domain Representation
(FDR), therefore we compare our algorithms with fd also in a context of
construction of FDR. The Helmert’s algorithm was used by most planners
that participated in the last IPC 2014 in the deterministic track. Therefore
the comparison with fd is certainly relevant to the planning community.

The other state of the art algorithm that we use for comparison is a
generalization of hmax heuristic into hm heuristic [Haslum and Geffner, 2000].
More specifically, h2 heuristic provides a method for inferring pairs of facts
that cannot hold together in any reachable state. Such pairs of facts can be
interpreted as mutex invariants because if two facts cannot be both part of the
same reachable state, then at most one of them can be part of any reachable
state which is exactly the definition of mutex invariant. This reasoning does
not apply generally to hm heuristic because for m ≥ 3 stating that a set of
three of more facts is unreachable does not necessarily mean that at most
one of these facts can be part of the same reachable state. For example, if
h3 heuristic provides a set of three facts {f1, f2, f3} that is not part of any
reachable state then it could be a case that there are reachable states that
contain both f1 and f2 but not f3, i.e., the set {f1, f2, f3} would not be a
mutex invariant. Therefore from the whole family of hm heuristics only h2

can be used for inference of mutex invariants. We will refer to this mutex
inference algorithm as h2.

1https://github.com/danfis/fast-downward-masters-thesis

31

4. Experimental Results
The algorithm for inference of fa-mutex invariants (Algorithm 5) is imple-

mented using CPLEX ILP solver (v12.6.1.0) running with default configura-
tion in one thread. We will refer to this algorithm as fa and the algorithm
for inference of rfa-mutexes (Algorithm 7) will be denoted by rfa.

The algorithm for extending a set of mutexes (Algorithm 4) needs a set
of already inferred mutexes as its input. The algorithm will be denoted by
E[x] where x is a name of the algorithm that provides the input mutexes. So
for example E[fa] will refer to Algorithm 4 running on mutexes inferred by
Algorithm 5 and E[h2] to the same algorithm running on mutexes inferred
by h2 as its input.

The presented algorithms (fd, h2, fa, rfa, E[fd], E[h2], E[fa], and
E[rfa]) are experimentally evaluated in three different ways. First, the
algorithms are compared in terms of pair mutexes (Section 4.1). From
Proposition 3.23 it follows that any mutex can be decomposed into a set of
mutexes each having two facts. The decomposition allows us to compare the
algorithms without considering differences in shapes and sizes of mutexes
inferred by particular methods. In Section 4.2 the shapes and sizes of inferred
mutex invariants will be taken into account and we will provide a discussion
of reasons why the shapes and sizes of mutex invariants matter. The third
way of comparing algorithms (Section 4.3) will consider translation into FDR
as an example of application of mutex invariants. Finally, we will conclude
this chapter by discussing the challenges coming from this work that should
be addressed in a future work (Section 4.4).

4.1 Comparison in Terms of Pair Mutexes

As stated in Proposition 3.23, any mutex invariant can be decomposed into a
set of pair mutexes by enumerating all pairs of facts from which the original
mutex consists of. Such a decomposition provides a common ground for
comparing algorithms in terms of sizes of the inferred mutexes. For example
h2 is able to produce only pair mutexes, but fa is designed to produce
maximal fa-mutexes. The pair decomposition provides a transparent method
for comparing these two and all other algorithms for inference of mutex
invariants.

On the other hand, this method of comparison clouds the fact that fd,
fa, and rfa all provide a richer structure than just a set of pair mutexes.
Although it is always possible to reconstruct back any mutex from its pair
decomposition by using some algorithm for enumerating all maximal cliques in
a graph [Bron and Kerbosch, 1973] (this was already discussed in Section 3.2),
it must be taken into account that the reconstruction alone is NP-Hard
and it can generate an exponential number of mutexes (i.e., possibly many
more besides the original ones that were used for the decomposition). The
significance of having richer mutex sets than just pairs of facts is discussed in
more depth in Section 4.2 and 4.3.

The algorithms were evaluated on domains from the optimal deterministic
track of IPC 2014 and all inferred mutexes were decomposed into pair mutexes.

32

..........................4.1. Comparison in Terms of Pair Mutexes

Ta
bl
e
4.
1:

Su
m

of
nu

m
be

r
of

in
fe
rr
ed

pa
ir

m
ut
ex
es
.

do
m

ai
n

#
ps

fd
h2

fa
rf

a
E

[fd
]

E
[h

2
]

E
[fa

]
E

[r
fa

]
ba

rm
an

20
17

92
13

34
5

11
64
5

79
01

17
92

(+
0)

13
34
5
(+

0)
13

27
3
(+

16
28
)

90
34

(+
11

33
)

ca
ve
di
vi
ng

20
63

04
67

84
7

61
61
4

58
35
4

13
44
2
(+

71
38
)

67
84
7
(+

0)
64

39
1
(+

27
77
)

64
39
1
(+

60
37
)

ch
ild

sn
ac
k

20
3

19
4

3
19

4
3

19
4

32
4

31
94

(+
0)

31
94

(+
0)

31
94

(+
0)

3
19

4
(+

28
70
)

flo
or
til
e

20
17

57
2

17
57

2
17

57
2

40
17

57
2
(+

0)
17

57
2
(+

0)
17

57
2
(+

0)
40

(+
0)

ge
d

20
48

45
2

69
56

4
68

32
6

12
5

50
06
1
(+

16
09
)

69
56
4
(+

0)
69

56
4
(+

12
38
)

49
6
(+

37
1)

hi
ki
ng

20
2

50
5

2
50

5
2

50
5

2
50

5
25

05
(+

0)
25

05
(+

0)
25

05
(+

0)
25

05
(+

0)
m
ai
nt
en

an
ce

20
0

1
03

9
1

03
9

0
0
(+

0)
10

39
(+

0)
10

39
(+

0)
0
(+

0)
op

en
st
ac
ks

20
16

08
5

21
34

0
16

08
5

16
08
5

21
34

0
(+

52
55
)

21
34
0
(+

0)
21

34
0
(+

52
55
)

21
34

0
(+

52
55
)

pa
rk
in
g

20
17
87

20
26

0
88

0
17
87

20
26

52
0

18
12

00
(+

24
80
)

26
08

80
(+

0)
18
12

00
(+

24
80
)

26
52
0
(+

0)
te
tr
is

20
22

55
2

10
99

7
27

4
39

68
29
0

26
73

01
0

22
55
2
(+

0)
10

99
72

74
(+

0)
52

25
26
6
(+

12
56

97
6)

26
73

01
0
(+

0)
tid

yb
ot

20
24
0

13
3

74
4

13
3

74
4

13
3

74
4

24
0
(+

0)
13
37

44
(+

0)
13
37

44
(+

0)
13
37

44
(+

0)
tr
an

sp
or
t

20
11

4
16

8
11

4
16

8
11

4
16

8
11

4
16

8
11
41

68
(+

0)
11
41

68
(+

0)
11
41

68
(+

0)
11
41

68
(+

0)
vi
si
ta
ll

20
22

7
26

8
22

7
26

8
22

7
26

8
22

7
26

8
22
72

68
(+

0)
22
72

68
(+

0)
22
72

68
(+

0)
22
72

68
(+

0)
Σ

26
0

63
88

52
11

92
97

40
48

04
17
0

32
60

04
4

65
53

34
(+

16
48
2)

11
92
97

40
(+

0)
60

74
52
4
(+

12
70

35
4)

32
75

71
0
(+

15
66
6)

Ta
bl
e
4.
2:

N
um

be
r
of

in
fe
rr
ed

pa
ir

m
ut
ex
es

in
se
le
ct
ed

pr
ob

le
m
s
an

d
nu

m
be

r
of

al
lp

ai
r
m
ut
ex
es

th
os
e
pr
ob

le
m
s
co
nt
ai
n.

do
m

ai
n

pr
ob

le
m

al
l

fd
h2

fa
rf

a
E

[fd
]

E
[h

2
]

E
[fa

]
E

[r
fa

]
ba

rm
an

p4
33
.1

33
6

48
32

0
26
5

17
7

48
(+

0)
32
0
(+

0)
31
7
(+

52
)

20
9
(+

32
)

ge
d

d-
1-
2

92
8

46
3

60
7

59
5

3
47
8
(+

15
)

60
7
(+

0)
60

7
(+

12
)

6
(+

3)
hi
ki
ng

pt
es
tin

g-
1-
2-
3

19
19

19
19

19
19

(+
0)

19
(+

0)
19

(+
0)

19
(+

0)
m
ai
nt
en

an
ce

1.
3.
01
0.
01
0.
1-
00
1

15
0

15
15

0
0
(+

0)
15

(+
0)

15
(+

0)
0
(+

0)
te
tr
is

p0
1-
4

75
69
4

24
0

75
62

6
40

19
2

24
32
0

24
0
(+

0)
75

62
6
(+

0)
45

12
0
(+

49
28
)

24
32
0
(+

0)
tr
an

sp
or
t

p0
1

26
0

12
4

12
4

12
4

12
4

12
4
(+

0)
12
4
(+

0)
12
4
(+

0)
12
4
(+

0)
vi
si
ta
ll

p-
1-
5

30
0

30
0

30
0

30
0

30
0

30
0
(+

0)
30
0
(+

0)
30
0
(+

0)
30
0
(+

0)

33

4. Experimental Results
Table 4.3: Ratio of number of inferred pair mutexes.

domain fd h2 fa rfa E[fd] E[fa] E[rfa]
barman 0.13 1.00 0.87 0.59 0.13 0.99 0.68
cavediving 0.09 1.00 0.91 0.86 0.20 0.95 0.95
childsnack 1.00 1.00 1.00 0.10 1.00 1.00 1.00
floortile 1.00 1.00 1.00 0.00 1.00 1.00 0.00
ged 0.70 1.00 0.98 0.00 0.72 1.00 0.01
hiking 1.00 1.00 1.00 1.00 1.00 1.00 1.00
maintenance 0.00 1.00 1.00 0.00 0.00 1.00 0.00
openstacks 0.75 1.00 0.75 0.75 1.00 1.00 1.00
parking 0.69 1.00 0.69 0.10 0.69 0.69 0.10
tetris 0.00 1.00 0.36 0.24 0.00 0.48 0.24
tidybot 0.00 1.00 1.00 1.00 0.00 1.00 1.00
transport 1.00 1.00 1.00 1.00 1.00 1.00 1.00
visitall 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Mean 0.57 1.00 0.89 0.51 0.60 0.93 0.61

Table 4.1 shows sums of number of inferred pair mutexes per domain and
overall by all tested algorithms, the maximum numbers are highlighted. The
results for E[·] (Algorithm 4) contain an additional information in parenthesis
that show how many additional pair mutexes were inferred on top of those
that were taken as its input. So, for example in openstacks domain fd
inferred 16 085 pair mutexes and E[fd] 21 340 pair mutexes which means
that E[fd] inferred 5255 additional pair mutexes because the output of fd
was used as the input of E[fd].

Table 4.3 shows the same results, but as ratios to the maximum number
of inferred pair mutexes. The last row labeled as “Mean” shows arithmetic
means of the values above it. In Fig. A.1, A.2, and A.3 (Appendix A) there
are depicted comparisons between selected combinations of tested algorithms
as scatter plots with logarithmic scales and with added zero. Each point in
the scatter plots corresponds to one problem from the data set.

Table 4.4 shows sums of running times per domain and overall for each
tested algorithm. The results for E[·] are listed with additional number
in parenthesis expressing amount of time spent solely in Algorithm 4, i.e.,
without the time spent by the algorithm that produced the input for E[·].
Table 4.5 contains minimum and maximum running times per problem within
each domain and over all problems within data set. In Fig. A.4, A.5, and A.6
are depicted comparisons of running times as scatter plots with logarithmic
scales. Each point in the scatter plots corresponds to one problem.

Additionally, we managed to perform an exhaustive search of all reachable
states on some problems from the data set, which enabled us to make a
complete list of all mutex invariants of these problems and compare them
with the results of the tested algorithms. The results are listed in Table 4.2
where the column labeled as “all” contains number of all pair mutexes in
the particular problem. The maximum numbers of inferred pair mutexes are
highlighted and the numbers in column “all” are highlighted if some algorithm
managed to infer all pair mutexes in the corresponding problem.

In terms of a number of inferred pair mutexes, the poorest performance has

34

..........................4.1. Comparison in Terms of Pair Mutexes

Ta
bl
e
4.
4:

Su
m

of
ru
nn

in
g
tim

es
in

se
co
nd

s
of

in
fe
re
nc
e
al
go
rit

hm
s.

do
m

ai
n

#
ps

fd
h2

fa
rf

a
E

[fd
]

E
[h

2
]

E
[fa

]
E

[r
fa

]
ba

rm
an

20
0.

23
25
.4
4

6.
38

3.
60

3.
42

(+
3.
20
)

28
.9
7
(+

3.
54
)

10
.8
9
(+

4.
51
)

7.
95

(+
4.
36
)

ca
ve
di
vi
ng

20
0.

19
38
0.
15

13
7.
48

77
.0
4

13
4.
42

(+
13
4.
23
)

42
9.
94

(+
49
.7
9)

19
4.
43

(+
56
.9
6)

22
5.
15

(+
14
8.
11
)

ch
ild

sn
ac
k

20
0.

10
53
.5
2

29
.7
2

32
7.
25

7.
81

(+
7.
71
)

61
.2
2
(+

7.
69
)

37
.3
7
(+

7.
65
)

33
8.
90

(+
11
.6
5)

flo
or
til
e

20
0.

17
7.
18

3.
27

1.
09

2.
44

(+
2.
27
)

9.
23

(+
2.
05
)

5.
45

(+
2.
18
)

2.
65

(+
1.
56
)

ge
d

20
3.
23

31
.6
8

39
.2
6

2.
59

11
.5
9
(+

8.
36
)

39
.8
8
(+

8.
20
)

48
.3
6
(+

9.
09
)

7.
66

(+
5.
07
)

hi
ki
ng

20
0.

17
55
.9
1

4.
03

13
.3
9

6.
43

(+
6.
27
)

61
.7
8
(+

5.
87
)

10
.2
5
(+

6.
22
)

19
.6
8
(+

6.
29
)

m
ai
nt
en

an
ce

20
0.

01
0.
47

2.
81

0.
16

0.
02

(+
0.
00
)

0.
84

(+
0.
37
)

3.
13

(+
0.
31
)

0.
16

(+
0.
00
)

op
en

st
ac
ks

20
0.

34
12
2.
99

23
.0
7

22
.4
5

16
.0
0
(+

15
.6
6)

13
5.
84

(+
12
.8
5)

38
.6
9
(+

15
.6
2)

38
.2
1
(+

15
.7
6)

pa
rk
in
g

20
0.

15
11

81
.0
0

17
7.
70

76
.1
9

15
7.
76

(+
15
7.
61
)

13
32
.0
8
(+

15
1.
08
)

33
4.
40

(+
15
6.
70
)

19
3.
42

(+
11
7.
24
)

te
tr
is

20
0.

64
76
.1
5

34
3.
12

55
37
.3
7

38
4.
51

(+
38
3.
87
)

51
12
.9
4
(+

50
36
.7
9)

27
72
.7
3
(+

24
29
.6
1)

71
73
.3
9
(+

16
36
.0
1)

tid
yb

ot
20

1.
17

84
61
.5
7

43
.8
9

49
2.
31

24
3.
12

(+
24
1.
95
)

87
22
.1
4
(+

26
0.
57
)

30
3.
14

(+
25
9.
25
)

75
2.
27

(+
25
9.
97
)

tr
an

sp
or
t

20
0.

12
38
0.
71

10
.9
5

13
6.
45

52
.0
5
(+

51
.9
3)

43
1.
43

(+
50
.7
2)

62
.5
9
(+

51
.6
5)

18
8.
01

(+
51
.5
6)

vi
si
ta
ll

20
0.

03
55
.2
9

0.
62

12
5.
45

38
.0
8
(+

38
.0
5)

92
.5
6
(+

37
.2
7)

37
.8
4
(+

37
.2
2)

16
1.
05

(+
35
.6
0)

Σ
26
0

6.
54

10
83
2.
06

82
2.
29

68
15
.3
4

10
57
.6
5
(+

10
51
.1
1)

16
45
8.
85

(+
56

26
.7
9)

38
59
.2
6
(+

30
36
.9
7)

91
08
.5
1
(+

22
93
.1
7)

Ta
bl
e
4.
5:

M
in
im

al
an

d
m
ax

im
al

ru
nn

in
g
tim

es
in

se
co
nd

s
of

in
fe
re
nc
e
al
go
rit

hm
s.

do
m

ai
n

fd
h2

fa
rf

a
E

[fd
]

E
[h

2
]

E
[fa

]
E

[r
fa

]
m

in
m

ax
m

in
m

ax
m

in
m

ax
m

in
m

ax
m

in
m

ax
m

in
m

ax
m

in
m

ax
m

in
m

ax
ba

rm
an

0.
01

0.
01

0.
40

2.
83

0.
12

0.
65

0.
07

0.
35

0.
08

0.
32

0.
46

3.
19

0.
21

1.
12

0.
16

0.
79

ca
ve
di
vi
ng

0.
01

0.
02

0.
31

78
.7
8

0.
17

28
.9
9

0.
08

15
.8
4

0.
09

31
.3
4

0.
37

88
.7
9

0.
24

40
.6
8

0.
18

49
.8
5

ch
ild

sn
ac
k

0.
00

0.
01

0.
21

7.
46

0.
16

4.
23

0.
16

66
.5
7

0.
04

1.
01

0.
24

8.
53

0.
20

5.
24

0.
21

68
.4
2

flo
or
til
e

0.
01

0.
01

0.
11

0.
71

0.
06

0.
32

0.
02

0.
10

0.
04

0.
24

0.
15

0.
92

0.
09

0.
53

0.
05

0.
24

ge
d

0.
14

0.
19

0.
09

3.
98

0.
25

4.
70

0.
01

0.
30

0.
19

1.
18

0.
11

4.
97

0.
28

5.
84

0.
03

0.
90

hi
ki
ng

0.
01

0.
01

0.
03

10
.2
7

0.
01

0.
61

0.
01

2.
42

0.
01

1.
12

0.
03

11
.2
8

0.
02

1.
72

0.
02

3.
50

m
ai
nt
en

an
ce

0.
00

0.
00

0.
00

0.
07

0.
01

0.
90

0.
00

0.
02

0.
00

0.
00

0.
00

0.
11

0.
01

0.
94

0.
00

0.
02

op
en

st
ac
ks

0.
01

0.
04

0.
78

16
.6
9

0.
18

2.
73

0.
19

2.
52

0.
14

1.
91

0.
88

18
.2
1

0.
31

4.
60

0.
32

4.
30

pa
rk
in
g

0.
01

0.
01

10
.9
1

13
7.
70

2.
40

19
.1
5

0.
78

9.
94

1.
49

18
.3
9

12
.3
0

15
4.
86

3.
88

37
.1
2

1.
88

23
.4
9

te
tr
is

0.
01

0.
08

0.
24

15
.1
2

0.
86

65
.4
1

6.
15

11
50
.9
7

0.
07

91
.4
1

2.
36

12
18
.9
4

2.
43

61
7.
44

7.
58

15
13
.9
0

tid
yb

ot
0.
04

0.
08

19
3.
02

82
5.
08

1.
30

3.
58

8.
98

47
.0
2

6.
16

21
.5
6

20
0.
80

84
8.
37

7.
87

27
.9
6

15
.7
5

69
.5
4

tr
an

sp
or
t

0.
00

0.
01

0.
15

74
.2
4

0.
04

1.
87

0.
05

28
.7
7

0.
03

10
.6
6

0.
17

84
.8
0

0.
07

12
.6
7

0.
07

39
.9
8

vi
si
ta
ll

0.
00

0.
00

0.
03

15
.2
1

0.
01

0.
09

0.
03

51
.1
4

0.
01

11
.8
8

0.
04

26
.8
4

0.
02

11
.6
7

0.
04

60
.1
7

O
ve
ra
ll

0.
00

0.
19

0.
00

82
5.
08

0.
01

65
.4
1

0.
00

11
50
.9
7

0.
00

91
.4
1

0.
00

12
18
.9
4

0.
01

61
7.
44

0.
00

15
13
.9
0

35

4. Experimental Results
demonstrated algorithm fd with 638 852 inferred pair mutexes. The highest
number of pair mutexes was inferred by h2 (11 929 740) and fa and rfa
inferred overall 4 804 170 and 3 260 044 pair mutexes, respectively. This seems
as a huge lead for h2 before all other algorithms, but careful investigation of
Table 4.1 shows us that the most of the margin is disproportionately made in
a single domain tetris. The reason for this is that domain tetris models
a grid of positions and several objects of different shapes that can occupy
the grid. After grounding, the problems from domain tetris contain a high
number of facts that have strong restrictions on their co-occurrence in the grid
therefore they contain a high number of mutex invariants. In this particular
case, h2 is much more effective in inferring these mutexes than any other
algorithm, but fa is still much more effective than the widely used algorithm
fd. Without domain tetris the numbers are 932 466, 835 880, 616 300, and
587 034 for h2, fa, fd, and rfa respectively. This shows that h2 has still the
best performance, but with much smaller margin from our algorithm fa. This
result is even better reflected in Table 4.3. The algorithm fa has very similar
results (in terms of number of pair mutexes) as h2 in most domains except
aforementioned tetris and also in parking and openstacks (although the
difference is much smaller).

Even though in overall numbers rfa is better than fd, without domain
tetris the algorithm rfa is outperformed by fd. The number of additional
pair mutexes inferred by the algorithm E[·] is not high. The algorithm had
no effect what so ever with h2 (so E[h2] will not be considered anymore)
and in six out of thirteen domains the algorithm was not able to produce a
single additional pair mutex for any input algorithm. The biggest gain was
recorded for E[fa] but it, again, was almost entirely only for domain tetris.
Nevertheless, it provides some gain: in domains cavediving, childsnack,
and openstacks it equals results from fa and rfa; in domain cavediving
it more than doubles the number of inferred pair mutexes for fd; and in
childsnack, ged, and openstacks it even equals the results with h2.

The algorithm h2 demonstrates the best performance in all domains, but
in seven (out of thirteen) domains the results are the same as of fa and they
are also the same in two additional domains if we consider E[fa]. fd achieves
the same results as h2 in six domains (seven in case of E[fd]) and rfa in four
domains (six in case of E[rfa]). Moreover, in the scatter plots comparing
number of inferred pair mutexes between h2 and other algorithms in Fig. A.1
it can be seen that fa has almost the same results as h2 in most problems and
the difference between these two algorithms makes just few problems. The
scatter plots comparing fd with other algorithms (Fig. A.2) show that fa is
strictly better than fd and rfa has comparable results with fd. Nevertheless,
we still should bare in mind that h2 infers only pair mutexes, but fd, fa, and
rfa are able to infer bigger mutexes that can provide more useful information.

We have also analyzed the inferred pair mutexes in pursuit of finding
whether the results from different algorithms can be combined or if there is
an algorithm that generates a superset of some other algorithm. The results
are summarized in a schematic depiction of the outputs of the algorithms

36

..........................4.1. Comparison in Terms of Pair Mutexes

h2

E[fa]

fa

fd

E[fd]

rfa

E[rfa]

Figure 4.1: Schematic depiction of coverage of inferred pair mutexes by each
inference algorithm.

as a set diagram (Fig. 4.1). The diagram shows that h2 inferred in all cases
a superset of all other algorithms and fa inferred a superset of rfa (which
we have already formally proven) and fd. On the other hand, rfa and fd
infer complementary sets of pair mutexes, so these two algorithms could be
combined to increase a number of inferred pair mutexes. Similarly, E[fa]
generates a superset of both E[rfa] and E[fd], and E[rfa] and E[fd]
generate complementary sets that can be reasonably combined.

Considering running times of the algorithms brings a different perspective
to the results. As can be seen in Table 4.4 and Table 4.5, fd is several
orders of magnitude faster than any other tested algorithm. The running
time of fd never exceeds 200 milliseconds and the sum of running times
over all problems in the data set is only 6.54 seconds. On the other hand,
the slowest algorithm is h2 that spent about 3 hours (10 832.06 seconds) on
solving all problems from the data set, the maximum time spent on a single
problem was more than 13.5 minutes (825.8 seconds). The main reason
for such high numbers was a single domain tidybot, the overall running
time of h2 without considering tidybot was more than 39 minutes (2370.5
seconds) and the maximum of almost 2.3 minutes (137.7 seconds). The second
slowest algorithm is rfa having the overall running time of more than 1.8
hours (6815.34 seconds) and the maximum being almost 20 minutes (1150.97
seconds). A disproportionate amount of time was in this case spent in tetris
domain, the overall running time without tetris domain was 21.3 minutes
(1278 seconds) and the maximum was 66.57 seconds. The overall running
time of fa was more than 13 minutes (822.29 seconds) of which almost half
of the time was spent in tetris domain. The maximum running time of fa
was 65.41 seconds (without considering most time consuming domain tetris
the maximum was only 28.99 seconds).

37

4. Experimental Results
A surprising result is that rfa is so much slower than fa even though rfa

is a polynomial algorithm. We think that the main reason for this is that
the actual implementation of rfa does not use any optimization techniques,
but it follows the description given in Section 3.5 which has an asymptotic
complexity of high order polynomial. The second reason is that rfa is
completely implemented in Python whereas fa calls CPLEX library that is
implemented in C which should be also taken into account. Nevertheless,
we believe that rfa can be implemented more efficiently which we should
address in a future work.

Another interesting comparison in terms of a running time is between h2

and fa. h2 is more than ten times slower that fa both in the overall time and
the maximum time (also clearly demonstrated in the scatter plot in Fig. A.4).
Considering the similar results in terms of inferred pair mutexes, fa can still
be contemplated as a viable replacement for h2 taking into account that fa is
able to produce a richer set of mutexes than just a set of pair mutexes. But
it also should be noted that h2 was implemented entirely in Python so it is
reasonable to expect that at least a part of a difference in a running time
between these two algorithms can be diminished by implementing them in C
instead of Python.

Nevertheless, fa can be easily altered to an any-time algorithm just by
setting a limit on a number of the cycles or by prematurely stopping the
computation, because fa produces one correct fa-mutex per cycle. Whereas
h2 must always run until the whole reachability graph is explored because if
it is stopped prematurely the resulting mutexes could be incorrect (h2 must
explore the whole reachability graph to prove that a pair of facts is really a
mutex). Moreover, fa can be easily altered to provide mutex invariants of
some specific shapes and sizes simply by putting more constraints into the
ILP formulation that enables it.

The problems for which we were able to discover a complete list of pair
mutexes is listed in Table 4.2. The table shows that fd and rfa were able to
infer all pair mutexes for two out of seven problems. h2 and fa were more
successful because they managed to infer a complete set of pair mutexes for
three problems. Moreover, Table 4.2 confirms the previous results as it shows
that h2 and fa are able to achieve similar results with exception in domain
tetris. Considering that h2 is a polynomial algorithm and that inferring all
pair mutexes is PSPACE-Complete, it is a rather surprising result that h2

was able to infer more than 99% of all pair mutexes over all of seven problems
and 75% without considering the problem from domain tetris (fa inferred
about 53% of all pair mutexes overall and almost 71% without the problem
from tetris). This result motivates us in pursuing this method of analysis
in a future work. It would be interesting to find out how do the pair mutexes
not found by h2 look like, what are their structure and what is exactly the
reason they were not discovered by h2 (or fa). This type of analysis could
lead to new methods of inference of mutex invariants and possibly to new
heuristic functions that would be somehow complementary to h2 heuristics.

38

............................ 4.2. Comparison of Inferred Mutexes

Table 4.6: Number of inferred mutex invariants.

domain #ps fd fa rfa fa�fd fa�rfa rfa�fd fd�rfa
barman 20 206 498 372 20 20 20 0
cavediving 20 184 800 492 20 20 20 0
childsnack 20 618 618 54 0 20 0 20
floortile 20 575 575 40 0 20 0 20
ged 20 555 555 125 20 20 0 20
hiking 20 229 229 229 0 0 0 0
maintenance 20 0 460 0 20 20 0 0
openstacks 20 730 730 730 0 0 0 0
parking 20 820 820 180 0 20 0 20
tetris 20 52 676 116 20 20 20 0
tidybot 20 60 200 200 20 0 20 0
transport 20 206 206 206 0 0 0 0
visitall 20 20 20 20 0 0 0 0
Σ 260 4255 6387 2764 120 160 80 80

4.2 Comparison of Inferred Mutexes

In the previous section, we provided an analysis of the algorithms for inference
of mutex invariants in terms of pair mutexes that were obtained by decom-
position of the actually inferred mutexes. As mentioned before, this type of
analysis disregards the fact that the mutexes consisting of more than two facts
can provide more useful information than mutexes formed just by a pair of
facts. A translation from PDDL to FDR is one of the applications for which
larger mutexes are desirable as we demonstrate in the next section. Another
possible applications were discussed in Section 3.1 and there are possibly more
to be discovered given the tight relation between satisfiability of planning
tasks and inference of maximum mutexes as described in Section 3.2.2.

The algorithms h2 and E[·] infer only pair mutexes. We have already shown
that given a set of pair mutexes, larger mutexes can be constructed from such
a set using algorithms for enumerating maximal cliques in a graph. But this
approach comes with its price because enumerating all maximal cliques in
a graph is in itself NP-Hard (and discovering just one maximum clique is
NP-Complete). In the data set we used, the construction of larger mutexes
from pair mutexes adds a considerable computational burden because even
though in some cases it took just a few seconds in other cases the construction
of larger mutexes took more than five hours.

For this reasons, we have decided that in this section we compare only
fd, fa and rfa because these algorithms are able to directly infer mutexes
consisting of more than two facts and the comparison in terms of pair mutexes
was already provided in the previous section.

In Table 4.6 we provide a number of inferred mutexes per domain and
overall. The columns labeled as a�b show a number of problems in which
algorithm a generated a richer set of mutexes than b, i.e., a number of
problems in which a inferred more mutexes than b or the number of inferred
mutexes was the same but some mutex inferred by a was a proper superset
of some mutex inferred by b. The latter happened only in a domain ged

39

4. Experimental Results

0
1

2

5

10

20

50

100

0 1 2 5 10 20 50 100

fa

fd

0
1

2

5

10

20

50

100

0 1 2 5 10 20 50 100

rf
a

fd

0
1

2

5

10

20

50

100

0 1 2 5 10 20 50 100

rf
a

fa

Figure 4.2: Number of inferred mutex invariants as scatter plots with logarithmic
scales and added zero.

where fa and fd generated the same number of mutexes in every problem,
but the mutexes inferred by fa contained more facts. In all other domains
none of the algorithms generated a mutex that was a proper subset of any
other mutex generated by any other algorithm.

The highest number of mutexes was generated by fa in all tested domains.
fd generated less mutexes than fa in five domains (out of thirteen), overall
number of mutexes inferred by fd approached only two thirds of the number
of mutexes inferred by fa, and fa generated more mutexes than fd in 120
problems out of 260. Table 4.6 also shows that fa had the best performance
not only in all domains, but also in every tested problem as it is also shown
in scatter plots in Fig. 4.2. rfa was dominated by fa in 160 problems.

rfa achieved better results than fd in four domains and 80 problems and
fd was better than rfa also in four domains and 80 problems. In overall
numbers fd infers about 1.5 times more mutexes than rfa. In terms of inferred
mutexes, fd and rfa are complementing each other (see also corresponding
scatter plot in Fig. 4.2), but there is a huge difference in running times of
those two algorithms which was already discussed in the previous section.

Considering that rfa always produce a subset of fa and that rfa is more
than ten times slower, fa should always take precedence over rfa. This
conclusion could be changed only if rfa was made available in much faster
implementation (which we believe is possible).

40

.......................4.3. Translation to Finite Domain Representation

Table 4.7: Number of variables in FDR.

domain #ps fd fa rfa fa�fd fa�rfa rfa�fd fd�rfa
barman 20 2210 581 971 20 20 20 0
cavediving 20 3726 913 913 20 0 20 0
childsnack 20 1248 1248 2318 0 20 0 20
floortile 20 575 575 2515 0 20 0 20
ged 20 330 330 3019 0 20 0 20
hiking 20 229 229 229 0 0 0 0
maintenance 20 1285 536 1285 20 20 0 0
openstacks 20 1440 1440 1440 0 0 0 0
parking 20 1140 1140 6100 0 20 0 20
tetris 20 16672 676 676 20 0 20 0
tidybot 20 7472 3514 3514 20 0 20 0
transport 20 206 206 206 0 0 0 0
visitall 20 2434 2434 2434 0 0 0 0
Σ 260 38 967 13 822 25 620 100 120 80 80

The comparison between fa and fd shows that fa generates a richer
set of mutexes than fd in all cases, but fa is much slower than fd. On
the other hand, the maximum amount of time that fa spent on a single
problem was just 65.41 seconds which means that fa should be considered
as a replacement for fd whenever it is allowed by time limitations posed on
solving the corresponding task.

4.3 Translation to Finite Domain Representation

One of the applications of mutexes is a translation of planning tasks from
PDDL to Finite Domain Representation (FDR) [Helmert, 2009]. A state in
FDR (without axioms) is represented by a full assignment over all variables
of the planning task, so the translation process must (besides other things)
create a set of variables in such a way that all states that were reachable
in the PDDL formulation are also reachable and expressible in the FDR
formulation. This is the place where mutex invariants take an important
part. Each mutex created from facts of a grounded PDDL consists of facts
from which at most one can be part of any reachable state. This means that
variables of FDR can be created directly from those mutexes that cover all
facts. A special value “none of those” can be added to some variables if it is
required to cover a situation where none of the facts from the corresponding
mutex invariant is present in a state.

In this section, we evaluate fd, fa and rfa algorithms in context of trans-
lation from PDDL to FDR by Fast Downward’s translator preprocessor. The
results are presented in Table 4.7 which contains a number of variables created
by the translation process utilizing different algorithms for mutex inference.
The lower number the better because a smaller amount of variables usually
allows a more compact representation requiring less memory for storing the
reached states. The columns labeled as a�b show a number of problems in
which the translator with the algorithm a generated less variables than with
b (i.e., a number of problems in which a performed better than b).

41

4. Experimental Results

1

10

102

103

1 10 102 103

fa

fd

1

10

102

103

1 10 102 103

rf
a

fd

1

10

102

103

1 10 102 103

rf
a

fa

Figure 4.3: Number of variables in FDR as scatter plots with logarithmic scales.

The translator with fa created the lowest number of variables in all problems
as it is also clearly shown in scatter plots in Fig. 4.3. Overall, the translator
with fd created almost three times more variables than with fa and almost
twice as much than with rfa. The translator with fa provides better variable
encoding than with fd in 100 problems (out of 260) and in 120 problems
the results are better than rfa. These results show how dramatic change in
a number of created variables can provide a stronger algorithm for mutex
inference.

Comparison between fd and rfa shows these two methods can complement
each other because fd provides better results than rfa for 80 problems and
rfa is better than fd also in 80 problems. The scatter plot comparing fd
and rfa in Fig. 4.3 show that fd tend to generate more variables than rfa
overall which is the reason why after summing results from all domains, the
translator with rfa generates only two thirds of a number of variables than
with fd.

The running times in seconds of the whole translation process (not just the
mutex inference) are listed in Table 4.8. The table clearly shows that rfa is
the slowest variant, which was expected given the poor running times of rfa
algorithm (Section 4.2). But note that a disproportionately big amount of
time is spent in a single domain tetris.

The fastest translator utilizes fd which was also expected given the running
times of fd alone that were under a second for every problem in the data

42

.......................4.3. Translation to Finite Domain Representation

Table 4.8: Running times in seconds of a whole translation process.

domain fd fa rfa
sum min max sum min max sum min max

barman 2.94 0.10 0.21 8.90 0.20 0.84 6.08 0.15 0.53
cavediving 14.82 0.09 2.46 151.52 0.25 31.33 90.65 0.16 18.14
childsnack 7.00 0.06 0.81 36.55 0.22 5.03 334.50 0.23 67.41
floortile 1.24 0.04 0.09 4.32 0.09 0.40 2.25 0.06 0.19
ged 5.70 0.19 0.39 41.73 0.29 4.92 5.42 0.05 0.56
hiking 11.19 0.04 1.68 15.08 0.04 2.29 24.41 0.04 4.09
maintenance 0.58 0.01 0.07 3.34 0.01 0.95 0.72 0.01 0.09
openstacks 8.84 0.13 0.91 31.52 0.31 3.59 30.89 0.31 3.36
parking 34.10 0.62 3.13 211.60 3.02 22.24 111.62 1.45 13.14
tetris 71.51 0.72 9.37 392.17 1.36 71.74 5604.18 6.83 1159.70
tidybot 162.64 5.16 12.12 191.38 5.97 14.93 640.48 13.65 58.48
transport 11.29 0.05 1.55 22.07 0.09 3.39 147.61 0.09 30.31
visitall 1.32 0.01 0.19 1.91 0.02 0.28 126.77 0.04 51.33
Overall 333.18 0.01 12.12 1112.07 0.01 71.74 7125.59 0.01 1159.70

set. More surprising result is that the translator with fa is only about 3.4
times slower than with fd even though fa is more than 100 times slower
than fd. If we compare the results from Table 4.4 and Table 4.8 it becomes
clear that the parts of the translation process other than the inference of
mutexes combined are about 50 times slower than fd which explains the
smaller difference of running times in the case of utilization of fd and fa in
the translation process.

Scatter plots in Fig. 4.4 provide more detailed view on the running times.
The scatter plot comparing fd and rfa shows the translator with rfa is faster
than the translator utilizing fd only in a few problems, but an overwhelming
majority of problems was translated faster with fd (in many case more than
ten times faster). The translator with fa is slower than the translator with
fd in all tested problems, in some cases more than ten times slower.

Considering overall numbers, the translator with fa generates about three
times less variables and runs about three times slower than the translator
utilizing fd, which seems to be a reasonable trade off between the number
of created variables and the running time of the translation process. The
maximum amount of time given to optimal and satisficing planners in the
deterministic track of IPC 2014 was 30 minutes. The maximum time the
translator utilizing fa spent on a single problem was 71.74 seconds which
means that the competition planners utilizing fa instead of fd would still
be left with at least little less than 29 minutes for solving the problem, i.e.,
in the worst case the translation utilizing fa would consume only 1 minute
out of 30 more than the original translation process utilizing fd. For these
reasons, fa should be considered as a replacement for fd in the case of a
translation from PDDL to FDR.

43

4. Experimental Results

0.01

0.1

1

10

102

0.01 0.1 1 10

fa
 (

s)

fd (s)

0.01

0.1

1

10

102

103

0.01 0.1 1 10

rf
a
 (

s)

fd (s)

0.01

0.1

1

10

102

103

0.01 0.1 1 10 102

rf
a
 (

s)

fa (s)

Figure 4.4: Running times in seconds of a whole translation process as scatter
plots with logarithmic scales.

4.4 Future Work

The promising results of the algorithms we proposed are a motivation for
further investigation of mutex invariants, their inference and application.

To support more PDDL domains, the algorithms needs to be extended for
negative preconditions and conditional effects. For the algorithms described
in this work, negative preconditions can be safely ignored because they cannot
invalidate definition of fa-mutexes or rfa-mutexes and Algorithm 4 would also
work the same way. However, the question is whether they can be used to
extend the definitions and thus enable it to infer more invariants. On the
other hand, conditional effects must be somehow taken into consideration in
all presented algorithms to make them work.

The measured running times of the algorithm inferring rfa-mutexes clearly
indicate that a faster implementation is required to make it a viable option.
The number of inferred mutexes and above all the number of created variables
in FDR certainly make this algorithm worth the effort.

The ILP formulation used in the algorithm for inference of fa-mutexes
provides a strong tool for alternating the algorithm to deliver a more specific
mutexes of certain shapes and sizes. For example, the translation to FDR
could be encoded directly into ILP. Instead of spending time in inference
of all fa-mutexes only to use some of them later for creation of variables,

44

.....................................4.4. Future Work

we could modify the linear program in such a way it directly generates an
encoding of FDR variables that fulfill some specified objective (e.g., minimal
number of variables or minimal memory footprint of a state).

The applicability of the proposed algorithms will be further investigated.
The most straightforward application of fa-mutexes (and rfa-mutexes) is its
use in a translation to FDR (as was already demonstrated) and we should
evaluate the impact of a different encoding of FDR variables on the actual
planning process. Another application could be heuristic functions that reuse
the inferred mutexes. One example could be a heuristic based on domain
transition graphs (DTG) [Helmert, 2006; Torreño et al., 2014]. This heuristic
was originally proposed for FDR where it is built on top of the variables of
the task. The heuristic can be built directly from inferred mutex invariants
which could provide better heuristic values.

45

46

Chapter 5
Conclusion

This work was focused on inference of mutual exclusion (mutex) state invari-
ants in a context of STRIPS planning. We have introduced two new weaker
types of mutex invariants called fact-alternating mutex (fa-mutex) invariant
and restricted fact-alternating mutex (rfa-mutex) invariant. We have provided
an extensive discussion of differences and relations between these types of
mutex invariants including a complexity analysis based on decision problems
corresponding to finding maximum mutexes, maximum fa-mutexes and max-
imum rfa-mutexes in a planning task. The complexity analysis has shown
that the decision problems corresponding to fa-mutexes and rfa-mutexes are
NP-Complete whereas the decision problem corresponding to a general mutex
is PSPACE-Complete, i.e., it is as hard as a planning itself. We also proved
that the maximum possible number of maximal mutexes, maximal fa-mutexes
and maximal rfa-mutexes is in all three cases exponential in a number of facts
in the corresponding planning task.

Three new algorithms for inferring mutex invariants were introduced. The
first one is able to infer some additional pair mutexes on top of those that
are already provided as its input. The second one is an ILP based algorithm
for inference of fa-mutexes that was proven to be complete with respect to
maximal fa-mutexes. The last one is a polynomial algorithm for inference of
rfa-mutexes.

All three algorithms were experimentally evaluated and compared with
two state-of-the-art algorithms for inferring mutex invariants, namely h2

[Haslum and Geffner, 2000], which is a variant of a generalization of hmax

heuristics, and an algorithm proposed by Helmert [2009] for a translation
of planning tasks from PDDL to FDR that is widely used amongst the
planning community. The algorithm for inference of additional pair mutexes
has shown to be useful only in a limited number of domains. The algorithm
for inference of rfa-mutexes demonstrated good results in a number of inferred
mutexes, but very poor results in terms of running times due to its ineffective
implementation that should be addressed in a future work. However, the
algorithm for inference of fa-mutex proved to be a comparable with both
state-of-the-art algorithms and it was also shown to be a viable replacement
for Helmert’s algorithm in a translation of planning tasks from PDDL to
FDR.

47

48

Appendix A
Experimental Results: Additional Figures

0

1

10

102
103
104
105
106

0 1 10 102 103 104 105 106

fa

h2

0

1

10

102
103
104
105
106

0 1 10 102 103 104 105 106

E
[f
a
]

h2

0

1

10

102
103
104
105
106

0 1 10 102 103 104 105 106

rf
a

h2

0

1

10

102
103
104
105
106

0 1 10 102 103 104 105 106

E
[r
fa
]

h2

Figure A.1: Number of inferred pair mutexes as scatter plots with logarithmic
scales with added zero. Comparison with h2.

49

A. Experimental Results: Additional Figures

0

1

10

102
103
104
105
106

0 1 10 102 103 104 105 106

h
2

fd

0

1

10

102
103
104
105
106

0 1 10 102 103 104 105 106

h
2

E[fd]

0

1

10

102
103
104
105
106

0 1 10 102 103 104 105 106

fa

fd

0

1

10

102
103
104
105
106

0 1 10 102 103 104 105 106

E
[f
a
]

E[fd]

0

1

10

102
103
104
105
106

0 1 10 102 103 104 105 106

rf
a

fd

0

1

10

102
103
104
105
106

0 1 10 102 103 104 105 106

E
[r
fa
]

E[fd]

Figure A.2: Number of inferred pair mutexes as scatter plots with logarithmic
scales with added zero. Comparison with fd.

50

......................... A. Experimental Results: Additional Figures

0

1

10

102
103
104
105
106

0 1 10 102 103 104 105 106

rf
a

fa

0

1

10

102
103
104
105
106

0 1 10 102 103 104 105 106

E
[r
fa
]

E[fa]

Figure A.3: Number of inferred pair mutexes as scatter plots with logarithmic
scales with added zero. Comparison between fa and rfa.

0.01

0.1

1

10

102

103

0.01 0.1 1 10 102 103

fa
 (

s)

h2 (s)

0.01

0.1

1

10

102

103

0.01 0.1 1 10 102 103

E
[f

a
]

(s
)

h2 (s)

0.01

0.1

1

10

102

103

0.01 0.1 1 10 102 103

rf
a
 (

s)

h2 (s)

0.01

0.1

1

10

102

103

0.01 0.1 1 10 102 103

E
[r

fa
]

(s
)

h2 (s)

Figure A.4: Running times of inference algorithms as scatter plots with loga-
rithmic scales. Comparison with h2.

51

A. Experimental Results: Additional Figures

0.01

0.1

1

10

102

103

0.01 0.1 1

h
2
 (

s)

fd (s)

0.01

0.1

1

10

102

103

0.01 0.1 1 10 102 103

h
2
 (

s)

E[fd] (s)

0.01

0.1

1

10

102

103

0.01 0.1 1

fa
 (

s)

fd (s)

0.01

0.1

1

10

102

103

0.01 0.1 1 10 102 103

E
[f

a
]

(s
)

E[fd] (s)

0.01

0.1

1

10

102

103

0.01 0.1 1

rf
a
 (

s)

fd (s)

0.01

0.1

1

10

102

103

0.01 0.1 1 10 102 103

E
[r

fa
]

(s
)

E[fd] (s)

0.01

0.1

1

10

102

103

0.01 0.1 1

E
[f

d
]

(s
)

fd (s)

Figure A.5: Running times of inference algorithms as scatter plots with loga-
rithmic scales. Comparison with fd.

52

......................... A. Experimental Results: Additional Figures

0.01

0.1

1

10

102

103

0.01 0.1 1 10 102 103

rf
a
 (

s)

fa (s)

0.01

0.1

1

10

102

103

0.01 0.1 1 10 102 103

E
[r

fa
]

(s
)

E[fa] (s)

0.01

0.1

1

10

102

103

0.01 0.1 1 10 102 103

E
[f

a
]

(s
)

fa (s)

0.01

0.1

1

10

102

103

0.01 0.1 1 10 102 103

E
[r

fa
]

(s
)

rfa (s)

Figure A.6: Running times of inference algorithms as scatter plots with loga-
rithmic scales. Comparison between fa and rfa.

53

54

Bibliography

Alcázar, V. and Torralba, Á. (2015). A reminder about the importance
of computing and exploiting invariants in planning. In Proceedings of
the Twenty-Fifth International Conference on Automated Planning and
Scheduling, ICAPS, pages 2–6.

Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artif. Intell.,
129(1-2):5–33.

Bron, C. and Kerbosch, J. (1973). Finding all cliques of an undirected graph
(algorithm 457). Commun. ACM, 16(9):575–576.

Bylander, T. (1994). The computational complexity of propositional STRIPS
planning. Artif. Intell., 69(1-2):165–204.

Cresswell, S., Fox, M., and Long, D. (2002). Extending TIM domain analysis
to handle ADL constructs. In Knowledge Engineering Tools and Techniques
for AI Planning: AIPS’02 Workshop.

Fikes, R. and Nilsson, N. J. (1971). STRIPS: A new approach to the applica-
tion of theorem proving to problem solving. Artif. Intell., 2(3/4):189–208.

Fox, M. and Long, D. (1998). The automatic inference of state invariants in
TIM. J. Artif. Intell. Res. (JAIR), 9:367–421.

Gerevini, A. and Schubert, L. K. (1998). Inferring state constraints for
domain-independent planning. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence and Tenth Innovative Applications of
Artificial Intelligence Conference, AAAI, IAAI, pages 905–912.

Gerevini, A. and Schubert, L. K. (2000). Discovering state constraints
in DISCOPLAN: some new results. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence and Twelfth Conference on
on Innovative Applications of Artificial Intelligence, pages 761–767.

Haslum, P. (2009). hm(P) = h1(Pm): Alternative characterisations of the
generalisation from hmax to hm. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling, ICAPS, pages 354–357.

55

Bibliography
Haslum, P. and Geffner, H. (2000). Admissible heuristics for optimal plan-
ning. In Proceedings of the Fifth International Conference on Artificial
Intelligence Planning Systems, AIPS, pages 140–149.

Helmert, M. (2006). The fast downward planning system. J. Artif. Intell.
Res. (JAIR), 26:191–246.

Helmert, M. (2009). Concise finite-domain representations for PDDL planning
tasks. Artif. Intell., 173(5–6):503–535.

Kautz, H. A. and Selman, B. (1992). Planning as satisfiability. In Tenth
European Conference on Artificial Intelligence, ECAI, pages 359–363.

Moon, J. W. and Moser, L. (1965). On cliques in graphs. Israel Journal of
Mathematics, 3(1):23–28.

Mukherji, P. and Schubert, L. K. (2005). Discovering planning invariants as
anomalies in state descriptions. In Proceedings of the Fifteenth International
Conference on Automated Planning and Scheduling, ICAPS, pages 223–230.

Mukherji, P. and Schubert, L. K. (2006). State-based discovery and veri-
fication of propositional planning invariants. In Proceedings of the 2006
International Conference on Artificial Intelligence, ICAI, pages 465–471.

Rintanen, J. (2000). An iterative algorithm for synthesizing invariants. In
Proceedings of the Seventeenth National Conference on Artificial Intelli-
gence and Twelfth Conference on on Innovative Applications of Artificial
Intelligence, AAAI, IAAI, pages 806–811.

Rintanen, J. (2008). Regression for classical and nondeterministic planning.
In Proceedings of the 18th European Conference on Artificial Intelligence,
ECAI, pages 568–572.

Sideris, A. and Dimopoulos, Y. (2010). Constraint propagation in proposi-
tional planning. In Proceedings of the 20th International Conference on
Automated Planning and Scheduling, ICAPS, pages 153–160.

Torreño, A., Onaindia, E., and Sapena, O. (2014). FMAP: distributed
cooperative multi-agent planning. Appl. Intell., 41(2):606–626.

Vallati, M., Chrpa, L., Grzes, M., McCluskey, T. L., Roberts, M., and Sanner,
S. (2015). The 2014 International Planning Competition: Progress and
trends. AI Magazine, 36(3):90–98.

56

