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Abstract

In this bachelor thesis we introduce a new problem � tracking by detection of very fast moving
objects in digital video sequences. These objects appear as blurred strokes, which makes
video tracking di�cult. We show that there is useful information about object dynamics
encoded in this motion blur. We propose a method called BSD to detect such objects by
utilizing background subtraction, k-nearest neighbours matching and motion prediction. Our
method is evaluated on collected dataset containing nine video sequences covering various
di�erent phenomena as well as various blurred strokes. Failure modes are analysed together
with suggestions for improvement. One example of real world application is a creation of
arti�cial slow motion video.

Keywords: object detection, visual tracking, motion blur

Abstrakt

V této bakalá°ské práci p°edstavíme nový problém � sledování pomocí detekce velmi rychle
se pohybujících p°edm¥t· v digitální videosekvenci. Tyto objekty se jeví jako rozmazané
£áry, coº velmi zt¥ºuje úlohu sledování. Ukáºeme, ºe práv¥ toto rozmazání uchová uºite£né
informace o pohybu. Navrhneme metodu nazvanou BSD, která takovéto objekty detekuje
pomocí ode£ítání pozadí, k-nejbliº²ích soused· a predikce pohybu. Na²i metodu vyhod-
notíme na kolekci devíti videosekvencí, které pokrývají rozmanitou ²kálu jev·, a ve kterých
se objevují r·zn¥ rozmazané objekty. Rozebereme, pro£ v n¥kterých p°ípadech detekce selºe,
a navrhneme °e²ení pro vylep²ení. Mimo to uvedeme p°íklad reálného vyuºití této metody
a sice p°i um¥lé tvorb¥ zpomalených záb¥r·.

Klí£ová slova: detekce objekt·, sledování objekt·, rozmazání pohybem
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Chapter 1

Introduction

In computer vision, detection is the task of �nding positions of certain objects in digital
images. Almost everyone has used a detector already, either in a digital camera, smartphone
or on social media � a face detector [21]. Detectors are build to detect instances of an object
class like human faces or very speci�c objects � speci�c person in a crowd. There are limitless
areas of application for example: monitoring highway tra�c, surveillance, image retrieval or
automatic inspection of defective parts. One particularly interesting is detection of female
mosquitoes1 and then shooting them with lasers to prevent malaria from spreading.

t t+1

T(x)

I(x) I(x)

Details

t+2 t+3 t+4

Figure 1.1: Tracking by detection of very fast objects.
Current detection methods are localizing the object template T (x) in an image I(x). In this case it is
very hard, because the di�erence between the template and the object appearance at frames t, . . . , t+ 4 is
signi�cant.

1<http://www.intellectualventureslab.com/work/photonic-fence>
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CHAPTER 1. INTRODUCTION

Digital video is a sequence of digital images taken at regular time interval. A face detector
can be used to detect a human face in an individual frame and a speci�c detector can be
trained on this particular face. In the subsequent frames this face can distinguished and
tracked throughout the whole video sequence � this is called tracking by detection.

Visual object tracking (sometimes also video tracking) [9] is a task of estimating the
pose of objects of interest in all frames of an image sequence. Tracking is one of the most
challenging computer vision problems and thanks to rapid improvement of image quality
and resolution as well as increase in computational power over the past decade it is a fast
evolving �eld as well.

The main challenges complicating visual object tracking are similar appearance between
object of interest and background (speci�c person in a crowd), changes in pose (front view ro-
tating to side view), illumination changes (indoor to outdoor transition or weather changes),
partial and total occlusion (person behind a car) and noise (depends on sensor quality).

The output of a visual object tracking method depends on the area of application, more
precisely the accuracy requirement. The object of interest may be represented by a single
point in the image, an axis-aligned bounding box, a rotated bounding box, boundary pixels,
a Kinect-like pose estimation [14] and more. Segmentation is the most precise one � labelling
each pixel as object of interest or background.

a) b)

Figure 1.2: Challenges of visual object tracking.
The objects of interest are detected and shown in red axis-aligned bounding boxes. Image a) represents a
change of target's pose, while image b) represents partial occlusion. Image source: Video Tracking: Theory
and Practice [9]

Tracking is for example used in motion capture systems designed to track special markers
attached to an actor's body or limbs and project their poses onto animated characters.
Another use is in sport statistics to gather information about player position, from where
they shoot and where they aim. It could be also used in advertising to check whether a
certain advert was displayed for certain time in unpredictable scenarios like football, where
adverts on stronger team's half will be less visible in television. In medical area it is used to
track movement of bacteria for research of behaviour patterns or reproduction. The last one
to mention but certainly not the least is surveillance � an example of multi-object tracking
� on airports, roads, railway stations or ports.

2



a) b) c)

Figure 1.3: Applications of visual object tracking.
a) motion capture system, b) bacteria tracking and c) surveillance application . Image sources: a) Screen-
Crush, c©2016, b) - c) Video Tracking: Theory and Practice [9].

Tracking by detection, object of this thesis, estimates object location in each frame
independently and can handle occlusions better than other approaches. It keeps a model,
usually in a template T (X). It tries to �nd the template in an image I(X). The model
can be updated over-time but it has trouble with rapid changes, which can possibly appear
as blurred stroke (see �gure 1.1). Other than that, the template is often represented by
interest points � features. Features often consist of corners or edges, which appear as high
frequency in the image (fast changes over small area). Motion blur has a smoothing e�ect,
thus removing high frequencies and leaving us with no features from I(X) to match template
features T (X).

The contribution of this project is a proposal of a method to �nd fast objects that are
in a single frame covering distance larger than their size and to track them over time. It
is very hard to �nd blurred strokes in a single image so we utilize the fact that they are
moving and we detect them in video sequences. Such objects lack high frequency details
for feature matching approaches and have signi�cantly di�erent appearance than their non-
blurred counterparts. From properties of a motion blur we will estimate a trajectory, which
can be used for deconvolution. Deconvolution is a process of estimating how object may look
like when it is not moving. When we know the appearance of static object, we can place
it along the trajectory and make arti�cial frames which will appear as slow motion video.
This project is motivated by the lack of methods covering presented problem and the fusion
of visual object tracking and super resolution.

The application of this technique could be in creation of arti�cial slow motion video.
This could be further applied in sports as a Hawk-Eye2 like system. A Hawk-Eye is mostly
known from tennis but is also used in other sports such as football, cricket or badminton.
Its goal is to create a three dimensional representation of the trajectory of the ball and show
a close-up of the situation, which was undecidable by referee.

2<http://www.hawkeyeinnovations.co.uk/>

3
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Chapter 2

Background

In this chapter we explain how motion blur appears and how it can encode information about
motion � section 2.1. De�nition of the convolution is presented in section 2.2 as well as how
it can be used to estimate object appearance when it is not moving � section 2.3. Finally a
short introduction to super resolution is presented in section 2.4

2.1 Shutter speed and frame rate

A video camera has a limited temporal resolution which is determined by two parameters �
the shutter speed and the frame rate. The shutter speed [13] is a property of a video camera
and controls the level of blur. It is the time the shutter is open and light is being captured
on image sensor, expressed in fractions of a second: 1

30s,
1
60s,

1
120s etc. Slower shutter speed

means larger motion blur, because the moving object covers a longer distance.

When it comes to capturing a video, we need to factor in another property of a video
camera � the frame rate [12]. The frame rate refers to number of frames captured each
second. The most common ones o�ered by non-professional video cameras are 24, 25, 30 or
even 60 FPS (frames per second). This limits the range of the shutter speed � for example
we cannot choose 30 FPS and shutter speed 1

15s, because this would require exposures of
consecutive frames to overlap. The relation between shutter speed and frame rate is shown
in �gure 2.1.

Faster shutter speed leads to less motion blur, but from the �gure 2.1 we can clearly
see, that we lose a lot of information about trajectory of such fast moving object. For our
method it is advantageous to have shutter speed equal to 1

frame rate to maximize information
gain captured in motion blur. However majority of videos are captured with di�erent shutter
speed to frame rate ratio. The most natural looking motion perceived by humans is produced
by shutter speed equal to 1

2∗frame rate [17].

5
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shu�er speed

1/30

1/60

1/120

exposure dura�on

start of frame

1 second

1 second

1 second

Figure 2.1: Di�erent shutter speeds at 30 FPS.
In green sections camera shutter is open and light (information) is collected by the image sensor. Please
notice the loss of information at lower shutter speeds.

2.2 Convolution

Convolution [22] is a mathematical operation on two functions denoted by asterisk symbol.
It is de�ned as a integral of a product of two functions but one is reversed and shifted.

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ =

∫ ∞
−∞

f(t− τ)g(τ)dτ

Convolution for discrete terms is de�ned as

(f ∗ g)(n) =

∞∑
m=−∞

f(m)g(n−m) =

∞∑
m=−∞

f(n−m)g(m)

When it comes to image processing, we need to extend this convolution into two dimen-
sions, which is done by adding indices for the second dimension

(f ∗ g)(m,n) =
∞∑

k=−∞

∞∑
l=−∞

f(k, l)g(m− k, n− l).

In practice however, we compute convolution for �nite intervals. We de�ne one small ma-
trix (usually called kernel) with speci�c element values which suit our desired operation �
blurring, sharpening, edge detection and more.

For example edge detection can be done by the use of kernels Kx for vertical edges and
Ky for horizontal edges (also known as Sobel operator [18]).

Kx =

−1 0 1
−2 0 2
−1 0 1

 (2.1)

6



2.3. POINT SPREAD FUNCTION

Ky =

−1 −2 −1
0 0 0
1 2 −1


Example of convolution with Sobel kernel can be seen in �gure 2.2.
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Figure 2.2: 2D convolution

2.3 Point spread function

Common approach to describe a motion blur is through point spread function (PSF) [20].
PSF is a convolution kernel (see section 2.2). Motion blur can be modelled by following
noised convolution process

Ib(x, y) = Io(x, y) ∗ h(x, y) + η(x, y), (2.2)

where x and y are pixel coordinates, Ib(x, y) is the image with motion blur, Io(x, y) is
the original image without motion blur, h(x, y) is the point spread function and η(x, y) is
additional noise.

For motions following a straight line, PSF can be parametrized by an angle θ and a
length l. But for more complex motions (like ball bouncing o� a wall at high speed) we need
exact PSF h(x, y). With the trajectory knowledge we could restore original image through
a process called deconvolution (reverse to convolution). The object of deconvolution is to
�nd the most likely original image Io(x, y) given h(x, y), Ib(x, y) and properties of the noise.
Since there is noise η(x, y) present, the solution to deconvolution may be incorrect.

2.4 Super resolution for sequences

When it comes to video sequence, we have two separate resolutions � spatial and temporal.
The spatial resolution [15] is related to physical space. The higher the spatial resolution,

7
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the more information we can get out of it, which is desired for most electronic imaging
applications. The captured spatial resolution is limited by the used image sensors, which are
getting better over time, but their high cost is an important concern in many commercial
SR (super resolution) applications. Most modern approaches [15] fuses more low-resolution
images into one with higher resolution. Spatial resolution is not and object of this thesis.

The temporal resolution is related to time. A standard video camera records at speed
of 30 FPS (frames per second) which is equal to an interval of 0.033 seconds, whereas high
speed camera can record at speed of 10,000 FPS or higher, thus having temporal resolution
of 0.0001 seconds or lower. It may seem reasonable to use high speed camera for better
temporal resolution, but this approach comes with drawbacks. High speed cameras require
additional lightning, which may not be available in some scenarios. Since they capture
tremendous amount of images each second, the amount of captured time is limited thanks
to local memory to several second. In order to capture high temporal resolution they are
reducing spatial resolution. The last but not least is the purchase price.

{ Original frame t

Ar�ficial frame t Ar�ficial frame t  + 0.5

Figure 2.3: N times super resolution visualization.
Each frame is split into N arti�cial frames. This �gure shows two times super resolution. Arti�cial frames
are supposed to be made as convolution of true object appearance with 1/N portion of the trajectory.
Unfortunately this is outside the scope of this project, so simpler method was used.

8



Chapter 3

Related work

3.1 Tracking by detection

Tracking by detection is a common approach to visual tracking as it can handle situations
when the object of interest leaves the scene and reappears later or in the case of heavy
occlusion. This is one of the main problems of long-term tracking in which the tracking
process should run "inde�nitely".

The detector is trained on an object appearance in the initial frame, but this appearance
will in most cases become less relevant over time, as the object may change pose, scale or
the lighting in the scene may change. This problem is investigated in Tracking-Learning-
Detection by Z. Kalal et al. [7]. They use short-term trackers in addition to detector.
Short-term trackers estimate object motion and only require initialization, but accumulate
error over time resulting in a drift. On the other hand, detectors do not drift, but require a
learning stage. Smart cooperation of those components could be bene�cial for both. They use
detector to re-initialize trackers, thus minimizing drift, and trackers to provide weakly labeled
training data for detector. Since the training of the detector is done with unreliable data,
there is a high chance of false positives (wrong detections). In order to compensate detector
errors and learn from its mistakes, they use two experts: P-expert to detect false negatives
and N-expert to detect false positives � providing both positive and negative samples for
detector model.

Other state-of-the-art tracking by detection approach is Struck by S. Hare et al. [6],
which can adapt to changes of tracked object. It uses structured support vector machine
which is a generalization of SVM classi�er. This structured SVM is learned online with
positive and negative samples. They also introduced budgeting mechanism to keep number
of support vectors low which allows real-time applications.

Tracking is a rapidly evolving �eld, every year dozens of new tracking algorithms are
presented, but authors are using di�erent evaluation protocols, thus it is getting harder and
harder to compare them against each other. This was one of the reasons VOT Challenge
1 was made in 2013. Since then a competition of visual tracking algorithms is announced
every year. Evaluation is done unanimously with novel performace evaluation methodology
[8].

1<http://www.votchallenge.net/>
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3.2 Blur

It may seem easy for human to recognize blurred regions in the image, but it is not easy to
formulate an e�ective algorithm for a machine. Many approaches [20] are expecting some
form of PSF and estimating its parameters for deconvolution.

A di�erent approach to blur detection was proposed by Pina Marziliano et al. � A no-
reference perceptual blur metric [10]. They exploit the fact that blur has a smoothing e�ect
on edges. After detecting edges in vertical direction (e.g. using Sobel operator 2.1), they
measure the width of the edge by �nding local minima and maxima in pixel values around the
edge. The �nal blur measurement is calculated as sum of all edge widths divided by number
of edges. Advantages of this approach is low computational complexity and no-reference
property.

A method by Shengyang Dai and Ying Wu [2] is recovering a motion of blurred object
from a single frame. They use image matting techniques which decompose image I as
linear combination of foreground image F and background image B. The constant of this
combination is called α-channel.

I(x, y) = α(x, y)F (x, y) + (1− α(x, y))B(x, y)

They assume that under good lightning conditions, most image boundaries are clear and
sharp for slow moving or static objects. This means that most α values will be binary �
either 1 for foreground or 0 for background. Parameters of motion blur are further found by
looking at non-zero gradient of α-channel. Further they slice the initial image into smaller
ones along the grid and estimate motion of each sub-image. By this approach they can cover
more complex motion blurs.

Figure 3.1: Motion from blur results.
Figure shows results of Motion from blur [2] on rotational (top) and non-parametric (bottom) motion blur
data. From left to right: blurred image, deblurred result, visualization of estimated motion blur vector �eld
and close-up views. Image source: Motion from blur [2].
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3.3. SUPER RESOLUTION

3.3 Super resolution

Temporal resolution of a video sequence is limited by the camera's shutter speed and frame
rate (see section 2.1). Events occurring faster than the frame rate lead to motion blur. Tem-
poral super resolution tries to avoid this by producing arti�cial frames, where the temporal
resolution is high enough to avoid motion blur.

One of the breakthroughs is a method called coded exposure photography [16] � a method
for image deblurring. This method requires modi�cations of the capturing device � its
shutter. This means that this method will not work on any sequence obtained by a device
without this modi�cation. The only requirement is to put an external electric shutter in
front of the camera lens and to synchronize it with the start of the exposure time. When
using conventional shutter, motion blurred objects lose important high-frequency spatial
information (e.g. edges). Instead of leaving the shutter open for the entire exposure duration,
they open and close external shutter rapidly using a pseudo-random binary sequence. This
approach preserves high-frequency spatial details and together with known pseudo-random
sequence the deconvolution (see section 2.3) becomes well-posed problem. A �gure 3.2 was
included for better understanding of this approach and its results.

a) b) c)

Figure 3.2: Comparison between di�erent deblurring techniques.
Figure shows di�erent shutter exposures (top), captured images (middle) and deblurred images (bottom),
traditional exposure (a) and coded exposures (b, c). Image source: Coded exposure photography: motion
deblurring using �uttered shutter [16].

Agrawal et al. [1] combine N low speed cameras to produce N times temporal super
resolution with minimal possible reconstruction noise. They use coded exposure, but instead
of pseudo-random binary sequence, special sequences for each individual camera is used.
The main contribution of their work is a process of generating such binary sequences which
allow more light to be captured. The optimal sampling is computed by minimizing the
mean square error of a binary matrix, which corresponds to closed or opened shutter. This
approach is dependent on the geometric calibration of cameras. The calibration error may
lead to wobbling artifacts in the reconstructed frames.
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Chapter 4

Problem formulation

In this section we will decompose tracking by detection of fast moving objects into several
sub-problems. Each of them will be discussed separately together with an explanation why
was this approach used, what are other alternatives or advantages and disadvantages of
proposed technique. In following sections the notation displayed in table 4.1 will be used.

Variable De�nition

t ∈ N frame number
w ∈ N width of input image
h ∈ N height of input image

s ∈ Z× Z true object appearance
st ∈ Z× Z true object appearance in frame t
rt ∈ Z× Z blurred object appearance in frame t

It(x) ∈ Nw×h×3
0 input image, frame t, pixel x

pt(τ) ∈ R2 point in trajectory in frame t in time τ ∈ [0; 1]
pt ∈ R2 travelled path in frame t
vt ∈ R objects velocity magnitude in frame t
αt ∈ [0, 1] objects opacity in frame t
ct ∈ [0, 255]3 color of foreground (object) in frame t

bt(x) ∈ [0, 255]3 background color of pixel x in frame t
∆
I t(x) ∈ Zw×h×3 di�erence image

Table 4.1: Notation

4.1 Assumptions

For simpli�cation we assume nearly static background.

bt+1(x) ≈ bt(x). (4.1)

Relaxation of this restriction will be done in future work. We would need to align back-
grounds by some transformation function f , but for now under assumption of static back-
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CHAPTER 4. PROBLEM FORMULATION

ground, we de�ne f as identity.

∆
I t(x) = It+1(x)− It(f(x)) (4.2)

Since an object travelling at high velocity appears as blurred stroke and is probably rotating
as well, we assume its �nal color is an integral over all of its colors, and does not change
much in two consecutive frames

ct+1 ≈ ct. (4.3)

And because the time interval between two frames is very short, we suppose that objects
acceleration is negligible, thus

vt+1 ≈ vt. (4.4)

As in many matting algorithms [2], we assume that each image pixel It(x) is a convex
combination of foreground ct and background bt(x).

It(x) = (1− αt(x))bt(x) + αt(x)ct, 0 ≤ αt(x) ≤ 1. (4.5)

Because of negligible acceleration 4.4 the color of the object will be spread uniformly into
blurred stroke meaning constant αt(x) for foreground and zero αt(x) for rest of the scene.

4.2 Di�erence image

Di�erence image or a background subtraction is a technique to obtain image foreground
which usually contains objects of interest. This process is often preceded with other image
processing techniques that align two images so that they backgrounds overlap as much as
possible. Background subtraction strongly relies on static background assumption 4.1 which
is often not applicable in real-world environments. Even when the camera is static, there
may be re�ections, illumination changes or weather phenomena (wind, rain) happening in
the background and thus a�ecting results of background subtraction. These artifacts can be
seen in �gure 5.1. Di�erence image is de�ned as

∆
I t(x) = It+1(x)− It(x)

= (1− αt+1(x))bt+1(x) + αt+1(x)ct+1 − [(1− αt(x))bt(x) + αt(x)ct]
(4.6)

We will get di�erent results for di�erent pixels x, more precisely

∆
I t(x) ≈


0 x from background

α(bt(x)− c) x from object at time t

α(c− bt(x)) x from object at time t+ 1

(4.7)

Each case is analyzed separately in following subsections.
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4.2. DIFFERENCE IMAGE

4.2.1 Background pixels

When subtracting background pixels bt(x) from background pixels bt+1(x), both αt(x) and
αt+1(x) are zero. Therefore we get

∆
I t(x) = bt+1(x)− bt(x) (4.8)

Furthermore after using 4.1 we get

∆
I t(x) ≈ bt(x)− bt(x) ≈ 0 (4.9)

4.2.2 Pixels from blurred stroke at time t+1

From the blurred stroke at frame t+ 1, we are subtracting background bt(x) and we get

∆
I t(x) = (1− αt+1(x))bt+1(x) + αt+1ct+1 − bt(x) (4.10)

Using assumptions 4.1, 4.3 and 4.4, the equation 4.10 is simpli�ed to

∆
I t(x) ≈ αt(ct − bt(x)) (4.11)

4.2.3 Pixels from blurred stroke at time t

When subtracting blurred stroke at frame t from the background bt+1(x) we get

∆
I t(x) = bt+1(x)− [(1− αt(x))bt(x) + αt(x)ct] (4.12)

For simpli�cation of 4.12, assumptions 4.1, 4.3 and 4.4 are used:

∆
I t(x) ≈ αt(bt(x)− ct) (4.13)

Figure 4.1: Di�erence image.

_ =

Frame t+1 Frame t Differential image

Note: Di�erence image has values that are negative. For the purpose of visualization each color channel was
shifted by the minimal value of this channel and then rescaled to interval [0, 255].
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CHAPTER 4. PROBLEM FORMULATION

4.3 Trajectory

The major portion of the trajectory of the fast moving object is encoded in the captured
motion blur. We would like to extract this trajectory and describe it as a function of time.
For this purpose pt(τ) ∈ R2 is de�ned as a function of parameter τ ∈ [0; 1] returning two-
dimensional image coordinates. The direction of the movement also matters, thus we de�ne
pt(0) as a starting point of the trajectory and pt(1) as the ending point. Please notice that
we cannot estimate the direction of the movement from a single frame (see �gure 4.3), and
we need to combine knowledge from at least two frames.

Camera shutter opens at the start of the frame, but can close sooner than the end of the
frame, preventing light from reaching the image sensor and losing much needed information
about trajectory. This phenomenon is explained in detail in section 2.1. The ending point
of the trajectory travelled during open shutter at frame t is de�ned as

pt(τ
M
t ), 0 ≤ τMt ≤ 1. (4.14)

We require a contiguous trajectory between multiple frames

pt+1(0) = pt(1). (4.15)

From the knowledge of the next starting point pt+1(0) de�ne points pt(τMt ) . . . pt(1) as points
on line going from pt(τ

M
t ) to pt+1(0).

pt(0)

pt(1) = pt+1(0)

pt(τt  )

pt+1(τt+1)

Direc�on of movement

M

M

Direc�on of movement

Figure 4.2: Trajectory of a blurred stroke.

Illustration (on the left) of a blurred stroke's trajectory and real-world example (on the right).

4.4 Motion prediction

Motion predictors use objects dynamics obtained from previous frames to predict object's
position in the following frame. Such predictions can narrow our search to smaller area
saving computational power. Motion predictors can be complex, taking into account all
object's positions in the sequence or even use some motion model from previous behaviour
studies [19]. On the other hand the simplest motion predictors are no motion and constant
motion, which require only one previous frame. Fast moving object will usually follow
ballistic trajectory when there is no contact. Direction changes in ballistic curve occurs over
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4.5. DECONVOLUTION

longer periods of time and constant motion predictor is a su�cient method to handle those
changes. This prediction will not work when there is a contact and the trajectory changes
signi�cantly. But in order to calculate the angle of re�ection, we would need to know how
the surface looks like, which is even harder problem, so we may as well call the re�ection
random.

a) b)

Figure 4.3: Visualization of motion prediction.
In the left picture a), a blurred stroke is detected and its boundaries are shown in green. The velocity
vector is estimated from the parameters of motion blur and constant motion predictor guesses two areas
(yellow boxes) where the object might appear in the next frame. To form a contiguous trajectory and
estimate the direction of the motion in current frame, we would need a detection in the previous frame.
Since there was none, we consider both directions.
In the right picture a) we can see position of blurred stroke in the next frame and predicted areas from
previous frame.
In the picture b) the motion prediction (yellow box) is wrong. The object bounces o� the table and
appears in the red ellipse.

4.5 Deconvolution

We would like to further estimate the true objects appearance from the blurred stroke. This
problem can be solved using deconvolution, which is unfortunately an ill-posed problem �
meaning that a tiny change on the input may lead to a huge output di�erence � and is
the reason why it is also called blind deconvolution. Rather than blindly estimating the
convolution kernel, we can predict it using the knowledge of travelled trajectory in the
captured image. For this purpose travelled trajectory in the frame t is de�ned as a set

pt = {pt(0), . . . , pt(τ
M
t )}. (4.16)

The true object appearance s means how the object looks when it is not moving. Our
concern is that every object moving at high speed is possibly rotating at high speed as
well and the deconvoluted object will most likely look like a sphere. Further more it is
impossible to reconstruct �ne details (such as the white lines on tennis ball), because motion
blur destroys important high-frequency information. There is a solution to the loss of high-
frequency information and it has been discussed in section 3.3.

Thanks to the knowledge of the travelled path in the image, resulting blurred stroke can
be perceived as a convolution

rt = st ∗ pt, (4.17)

17



CHAPTER 4. PROBLEM FORMULATION

where rt is known blurred appearance, pt is estimated trajectory and st is true object ap-
pearance. With each additional frame N , where this blurred stroke appears, we can re�ne
�nal object appearance s as a mean of s0, s1 . . . sN−1, sN .

18



Chapter 5

Proposed algorithm

An overview of the whole BSD method is shown in the algorithm 1. In sections 5.1 � 5.7
individual parts of the algorithm are explained in detail.

5.1 MATLAB

The BSD algorithm is written in MATLAB [11]. MATLAB (abbreviation for Matrix lab-
oratory) is a programming language mainly focused on matrix manipulations, plotting of
functions and data, creation of user interfaces and much more. MATLAB was chosen be-
cause images are stored in matrix-like form and MATLAB o�ers Computer Vision System
Toolbox1 which can facilitate a development of such algorithm. For future work it is sug-
gested to reimplement this algorithm in a language such as C++ for a faster performance
and an overall better control over algorithm components.

5.2 Di�erence and binary image

The di�erence image is computed as a di�erence of 2 frames (see �gure 4.1), which is straight-
forward in MATLAB. Because 4.9 is only approximately zero, a small used-de�ned threshold
is used. A binary image is produced with ones on pixels where the di�erence was higher
than threshold and zeros elsewhere.

5.3 Connected components

Using the binary image 5.2, we compute connected components. A connected component �
term from graph theory � is a subgraph in which any two vertices are connected by edges
and are not connected to additional vertices in the supergraph.

When using connected components in computer vision (also known as blob extraction or
region labelling), a graph is constructed � each pixel is corresponding to a vertex and neigh-
bouring pixels are connected by edges. Either 4-connectivity (only horizontal and vertical

1<http://www.mathworks.com/help/vision/index.html>
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CHAPTER 5. PROPOSED ALGORITHM

Algorithm 1: Blurred stroke detector (BSD)

1 function BSD
(imaget, imaget+1, cct−1, predictiont, objectt−1, trajectoryt−1, noiseThr,maxDst);
Input : Two consecutive frames from a video, previous connected components,

motion prediction, previously detected object, previously estimated
trajectory, noise threshold for background subtraction, maximal distance for
KNN matching

Output: Connected components, prediction for future frame, object pose, estimated
trajectory

2 differenceImaget ← imaget+1 − imaget;
3 binaryMaskt ← differenceImage > noiseThr;
4 cct ← getConnectedComponents(binaryMask);
5 if notEmpty(predictiont) then
6 objectt ← cct from predictiont with closest color to objectt−1;
7 if objectt not similar to objectt−1 then

8 return

BSD(imaget, imaget+1, cct−1, [], objectt−1, trajectoryt−1, noiseThr,maxDst)
9 end

10 else

11 o, distance← knnMatch(cct−1, cct);
12 if distance < maxDst then
13 objectt ← o;
14 else

15 objectt ← [];
16 end

17 end

18 predictiont+1 ← makePrediction(objectt);
19 trajectoryt ← estimateTrajectory(objectt, trajectoryt−1);
20 return cct, predictiont+1, objectt, trajectoryt;

20



5.4. K-NEAREST NEIGHBOURS

neighbours are connected) or 8-connectivity (all neighbours are connected � horizontal, ver-
tical and diagonal) can be used. In addition we can get some useful information about each
connected component � its center of mass, a major axis length, an orientation, boundary
pixels and a mean color. This information is used by motion predictor to speed up detection
of blurred stroke in following frame.

Figure 5.1: Connected components of foreground objects.
This binary image was inverted for better visualization. Black pixels represents binary value 1 (moving
objects), white pixels value 0 (background).

5.4 K-nearest neighbours

K-nearest neighbours (KNN for short) [4] is a non-parametric method used for classi�cation
and regression. A non-parametric technique does not make any assumptions on the under-
lying data distribution. This property is very useful, because most of the real world data
does not follow typical assumption (e.g. gaussian distribution). KNN requires that the data
is in a feature space, in another words data can be scalars or vectors. For such data we can
de�ne a distance function, the one commonly used is Euclidean distance. The single number
"k" decides how many neighbours in�uence the classi�cation.

One of the inputs to KNN algorithm is a training set. Such training set Γ is consisted of
n measurements x ∈ X with corresponding classes c. The other input is a distance function
d.

Γ = {(x1, c1), . . . , (xn, cn)}

d = X ×X → R+
0
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When we want to classify a measurement y, we �nd set S of k nearest measurements from
the training set Γ ordered by distance function d(y, xi).

ri : the rank of (xi, ki) ∈ Γ given by ordering d(y, xi)

S = {(xri , cri), . . . (xrk , crk)}

The �nal class assigned to measurement y is class c which has the majority in S.

c = argmax
l∈R

k∑
i=1

[[ci = l]], (xi, ci) ∈ S

Our measurements consist of connected components properties, namely center of mass

and mean color. In two consecutive di�erence images
∆
I t(x) and

∆
I t+1(x), we �nd such

connected components, that their centres of mass are as close as possible and their mean
colors are as close to being opposite as possible (see 4.7). Such connected components are
labelled as tentative blurred strokes and are further checked against trajectory constraint
(see 4.15).

5.5 Motion prediction

Constant movement predictor is used. The object velocity vector is estimated by connected
component's major axis length and orientation. In the next frame KNN approach is not
used, instead connected components in predicted area are checked for color similarity with
detected object in the previous frame. If no such connected component exists or its properties
are far away from previous blurred stroke properties, we run this frame again using the KNN
approach.

5.6 Skeletonization

Skeletonization is a process for reducing regions in a binary image. A skeleton preserves the
extent and connectivity of the original region while discarding most of the original pixels.

We use skeletonization to reduce blurred strokes into their trajectories. We extract
boundary pixels for each blurred stroke and de�ne two pixels � entry and exit. Those are
obtained as nearest boundary pixels between two blurred strokes, thus we need 3 frames
(t − 1, t, t + 1) to obtain entry and exit boundary pixels for blurred stroke at t. Since the
boundary pixels are ordered in a clockwise direction, we can easily obtain two pixel lines �
one going from entry pixel to exit in clockwise direction and the other in counter-clockwise
direction. We than compute skeleton pixels which are equidistant from those line pixels.
Since the pixel lines does not to be equal in length, linear mapping is used (see �gure 5.2).
We further approximate skeleton by straight lines, this process is described in following
section.
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5.7. TRAJECTORY LINE APPROXIMATION

Figure 5.2: The skeletonization and line approximation.
In the left image: entry point (red), exit point (black), points along the boundary in the same distance from
entry point in clockwise and counter-clockwise directions are connected by white lines (only few are shown).
Final skeleton is formed from centres of white lines (blue line).
In the left image: Approximation of skeleton by single line.

5.7 Trajectory line approximation

Ramer�Douglas�Peucker [3] algorithm is used to further reduce number of points in skeleton
by line segments aproximation. This algorithm takes as input ordered set S of n points and
maximal error ε > 0. It approximates this set of n points by a line intersecting 1st and nth

point from this set. Then furthest point i ∈ S from this line is found. If its perpendicular
distance to the line is lower than maximal error ε, approximation is complete using this line.
Otherwise this algorithm is called recursively with �rst set containing points 1 . . . i ∈ S and
second set containing points i . . . n ∈ S and results are merged.
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Algorithm 2: Ramer�Douglas�Peucker algorithm

1 function RDP (points, ε);
Input : Ordered set of 2D points, maximal error ε > 0
Output: Ordered set of 2D points

2 maxDistance← 0;
3 index← 0;
4 for i← 1 to length(points)− 1 do
5 d← perpendicularDistance(points[i], Line(points[0], points[end]));
6 if d > maxDistance then
7 maxDistance← d;
8 index← i;
9 end

10 end

11 if maxDistance > ε then
12 rec1← RDP (points[0...index], ε]);
13 rec2← RDP (points[index...end], ε]);
14 result← {rec1[0...length(rec1)], rec2[1...length(rec2)]};
15 else

16 result← {points[0], points[end]};
17 end

18 return result
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Chapter 6

Data

6.1 Input data

Input data to proposed algorithm is in a form of video sequence. MATLAB supports most
of ordinary video �le formats such as "avi", "wmv" or "mp4". For additional supported
�le formats visit MATLAB documentation1. Another format of input data widely used in
computer vision is frame by frame images, for example used in VOT Challenge2. In order
to use this format please use provided code to convert single frames into a video sequence.

6.2 Output data

The output of BSD algorithm are frame by frame binary masks of blurred strokes as well as
their estimated trajectory. Binary masks contains 0 for background pixels and 1 for blurred
stroke pixels. The trajectory is represented by continuous line segments with time stamps so
the whole trajectory pt can be obtained. This output is ready to be fed to another method
performing deconvolution (see section 4.5) as well as temporal super resolution. Such method
is outside the scope of this project and was replaced by simpler solution.

1<http://www.mathworks.com/help/matlab/ref/videoreader.html>
2<http://www.votchallenge.net/vot2015/dataset.html>
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CHAPTER 6. DATA

Direc�on of movement

t0

t1 t2
t3

t4 t5 t6
t7

Figure 6.1: The output of the BSD algorithm.
The boundary pixels of detected blurred stroke are highlighted in green for t7 frame and in red color for t6
frame. The yellow box represents the prediction for the next frame. The trajectory is shown by a blue and
cyan curve. Cyan segments are interpolated because camera shutter was closed, whereas the blue pieces were
estimated from captured blurred stroke.
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Chapter 7

Evaluation

During the evaluation of BSD detector, we encountered across several problems. Firstly, this
area of computer vision is very much unexplored leaving us with no state-of-the-art methods
for comparison. Secondly there is no standard dataset with video sequences containing
blurred strokes. And �nally during the annotation process of collected sequences, it was
very hard to decide whether some objects should be considered as blurred strokes or not.
We went with very strict approach which may have in�uenced these results signi�cantly.
Ideally we would like to obtain annotation from various sources and get �nal ground truth
by averaging, but this would be both time and resource demanding.

Figure 7.1: Evaluation sequences.
From left to right, top to bottom: ping_pong_side, ping_pong_top, tennis_serve_side, tennis_serve_back,
hockey, squash, tennis_1, tennis_2, william_tell.

7.1 Dataset

In order to �nd strengths and weaknesses of tested method, the dataset should consist of
easy, intermediate and hard sequences and contain as many of possible real world phenomena
as possible. For that reason we chose video sequences containing:

• blurred strokes in horizontal, vertical and diagonal directions

• sudden change of direction of movement (bounce)
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• re�ection

• noise / worse quality

• blurred stroke with similar color as background

• size change

• short blurred duration.

Other phenomena omitted due to our assumptions or overall complexity in computer vision
are for example: illumination changes, partial and full occlusions, camera motion or image
degradation. Preview of collected dataset is shown in �gure 7.1 and detailed info is in table
7.1.

Sequence name Resolution #frames #blur visible Phenomenons

ping_pong_side 1920× 1088 445 371 horizontal, bounce, size change
ping_pong_top 1920× 1088 350 303 horizontal, bounce
tennis_serve_side 1280× 720 68 17 horizontal, short
tennis_serve_back 1280× 720 156 39 vertical, bounce

hockey 960× 540 350 55 horizontal, re�ection, bounce
squash 960× 540 250 74 diagonal, re�ection, bounce, noise
tennis_1 960× 540 128 35 vertical, bounce, worse quality
tennis_2 960× 540 278 216 vertical, bounce, worse quality

william_tell 1920× 1080 119 20 horizontal, size change

Table 7.1: Evaluation sequences

We would like to thank Ing. Filip �roubek, Ph.D. DSc. for providing sequences (a) -
(d). Sequences (e) - (i) were obtained from YouTube1, links to original videos are listed in
Appendix B.

7.2 Annotation

Each frame in the dataset was annotated by a segmentation binary mask, where zero means
background pixel and one stands for pixels in the blurred stroke. This ground truth anno-
tation was made manually in GIMP2 (GNU Image Manipulation Program).

7.3 Performance

To compute precision and recall, we �rst need to de�ne accuracy of a detection. Accuracy
or overlap [8] φ is computed for every frame t as the intersection-over-union

φt =
AG

t ∩AD
t

AG
t ∪AD

t

, (7.1)

1<https://www.youtube.com/>
2<https://www.gimp.org/>
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where AG
t is a ground truth binary image and AD

t is mask of detected blurred stroke. Inter-
section ∩ is de�ned as a number of ones after binary "and" operation. Union ∪ is de�ned
as a number of ones after binary "or" operation. In order to separate good and bad detec-
tions an accuracy threshold of 0.5 is usually used in bounding box evaluation [5]. But the
only justi�cation why this value is used is that it accounts for inaccuracies in ground truth.
Considering very subjective ground truth annotation even correctly detected blurred stroke
may have smaller accuracy due to classi�cation of unclear boundary between blurred stroke
and background. Average overlap φ̄ is de�ned as arithmetic mean of overlaps φt, where
ground truth AG

t was not empty.

a) b) c)

Figure 7.2: Ground truth and detection visualization.
Green line represents detection on a) input image, b) ground truth binary mask, c) combination of image
and ground truth (in red).

We use the terms true positive, true negative, false positive and false negative to compare
results of our detector with our ground truth. Interpretation of these terms is in table 7.2.

Outcome Interpretation

true positive (TP) blurred stroke is in the frame and it is detected (φt ≥ 0.5)
false positive (FP) something is detected but somewhere else (φt < 0.5)
true negative (TN) blurred stroke is not in the frame and nothing is detected
false negative (FN) blurred stroke is in the frame, but it is not detected

Table 7.2: Possible outcomes from hypothesis testing

Since wrong detection is worse than no detection, we prefer low false positive rate over
false negative rate. This also means we are focusing on high precision over high recall.

Precision is de�ned as

Precision =
TP

(TP + FP)
(7.2)

and can be interpreted as a probability that a random detection is correct (φt ≥ 0.5).

Recall is de�ned as

Recall =
TP

(TP + FN)
(7.3)

and can be interpreted as a probability that a random blurred stroke will be detected.
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7.4 Results

Our detector was run on all sequences from dataset 7.1 with same internal parameters. For
each frame, an overlap φt was computed and overlap threshold of 0.3 was used to decide
between TP or FP. We prefer low false positive rate, which is projected in higher precision,
but lower recall.

Sequence name TP FP TN FN Precision Recall Average overlap

ping_pong_side 255 3 71 114 98.8% 69.1% 44.6%
ping_pong_top 176 7 44 122 96.2% 59.1% 35.2%
tennis_serve_side 2 0 43 15 100.0% 11.8% 6.0%
tennis_serve_back 6 3 115 31 66.7% 16.2% 6.9%

hockey 7 52 248 41 11.9% 14.6% 5.8%
squash 2 30 143 74 6.3% 2.6% 2.3%
tennis_1 2 1 89 33 66.7% 5.7% 2.5%
tennis_2 2 3 61 210 40.0% 0.9% 0.5%

william_tell 0 0 85 20 0.0% 0.0% 0.0%

Table 7.3: Results for overlap threshold of 0.3

From the table of results 7.3 we see that this method is performing fairly well on sequences
"ping_pong_side" and "ping_pong_top", where our assumption of static background was
satis�ed the most, the blurred strokes were the longest of all sequences and ballistic curve
lasted for several frames. On sequences "tennis_serve_side" and "tennis_serve_back" most
of the blurred strokes were not that long and the long ones lasted for only couple of frames.
Sequences "hockey" has a shaky camera and shadow re�ection which results in higher false
positive rates. Most movement in background occurs in sequences "tennis_1" and "ten-
nis_2", which is correctly recognized and it does not produce false positives but it has much
stronger response than blurred strokes that are suppressed. Sequence "squash" is very hard,
because the blurred stroke has very similar color as background and is often barely visible.
The arrow in "william_tell" sequence appears as blurred on the sides, but is not moving
very fast, because it is from a slow motion footage.

a) b) c)

Figure 7.3: Ground truth and detection visualization of an object with shadow.
Green line represents detection on a) input image, b) ground truth binary mask, c) combination of image
and ground truth (in red). When a fast moving object casts a shadow on a surface, this shadow appears in
foreground and is a part of detected object.
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7.5 Failure modes

In this section we will explain known problems and drawbacks of current approach that can
be avoided by using di�erent procedures.

a)

b)

Figure 7.4: Failure modes.
Left images are frames from a video sequence, right images are di�erence images.
In a), white object is travelling at high speed over white line which is in the background. This results in one
blurred stroke being separated into two connected components.

In b), two moving objects are touching each other. This will result in one large connected component which
cannot be handled by current motion predictor or KNN approach.

7.5.1 Frames do not change

For unknown reasons, during a compression of a video a strange phenomenon can occur �
same frame is rendered twice. This is not noticeable when watching a video, but can be seen
when going frame by frame. When this happens there is no motion what so ever and our
constant motion prediction fails. Even the di�erence image is blank and we cannot detect
any blurred strokes with the KNN approach.

7.5.2 Two objects are touching

The drawbacks of using connected components is when two objects appear as one component
because they are touching each other. This happens when a fast moving object is bouncing
o� some other moving object (see �gure 7.4). Not only that the change of direction is not
expected by our motion predictor, but also KNN approach will fail in this frame, because we
are not able to match such connected components. This problem could be solved by di�erent
method for computing connected components, like by color similarity.
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7.5.3 Blurred stroke is split by a line

When a fast moving object travels across a background with same color (ping pong ball across
white wall) it is practically undetectable because the �nal color is same as background. But
such background does not have to cover the whole trajectory (see �gure 7.4) and we will
only see parts of blurred stroke. This is also problem for connected components, because
one blurred stroke will be split into two separate components.

7.5.4 Shadow

When fast moving objects approach other surface, they may cast a shadow which will appear
together with them in one connected component (see �gure 7.3). Since we are estimating
blurred stroke's trajectory using boundaries of connected components, the extra surface area
belonging to the shadow will cause problems and lead to incorrect estimation of trajectory.

Figure 7.5: Successful detections.
The detected object is shown in green, its position in previous frame in red, its trajectory is in blue and
the prediction in yellow. From top to bottom, left to right: tennis_serve_side, tennis_1, ping_pong_top,

ping_pong_side, tennis_serve_back, squash, hockey, tennis_2, tennis_serve_side. Best seen when zoomed
at in attached pdf.
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Figure 7.6: False detections.
The detected object is shown in green, its position in previous frame in red, its trajectory is in blue and the
prediction in yellow. Best seen when zoomed at in attached pdf.

In the �rst image the detection is wrong due to noise. In the second image, trajectory is split-
ted into two connected components (discussed in 7.5.3). In the third image multiple instances of the same
object are visible. Due to small camera movement they appear in foreground and are detected as blurred
stroke.
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Chapter 8

Conclusion

We have formulated a new problem � tracking by detection of very fast moving objects.
These objects are captured with signi�cant motion blur, which makes widely used template
matching approaches di�cult. Instead we show that there is useful information about object
dynamics encoded in the blur, which makes tracking easier.

A new method for detection of such objects in a video sequence has been proposed.
The method requires blurred stroke to appear in several consecutive frames in order to be
detected by utilizing background subtraction, k-nearest neighbours matching and motion
prediction. It has been shown that this method performs well when the blurred strokes are
long and follow ballistic trajectory.

In order to evaluate the performance of our method we have collected a dataset of video
sequences, covering many possible scenarios like a sudden change of movement, re�ections,
noise or scale changes. Blurred strokes appear in di�erent orientations, lengths or colors.
The dataset was annotated using segmentation masks of background and blurred stroke.

In addition, we showed how trajectory can be estimated through a skeletonization process
and how is this trajectory used in deconvolution to guess the true appearance of a fast moving
object. The trajectory and the true object appearance are be used in temporal resolution
problem to create arti�cial, more detailed, frames or in another words slow motion video of
the blurred stroke.
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Appendix A

Abbreviations

2D two dimensional

BSD blurred stroke detector

FN false negative

FP false positive

FPS frames per second

KNN k-nearest neighbours

MATLAB matrix laboratory

PSF points spread function

SR super resolution

TN true negative

TP true positive
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Appendix B

Youtube videos

1. Sequence "tennis_1" and "tennis_2" were obtained from
channel: "Tennis Production",
video name: "Tennis Best Points Ever (Part 2) HD".
Start time: 0:00, full link: <https://youtu.be/uy1ULXjkM-E>.

2. Sequence "squash" was obtained from
channel: "Pavel Klimunda",
video name: "M�R Squash 2012 - Petr Martin vs. Daniel Mekbib 3:2".
Start time: 8:42, full link: <https://youtu.be/OcYC4bjElZs?t=8m42s>.

3. Sequence "hockey" was obtained from
channel: "How To Hockey - Coach Jeremy",
video name: "How To Take a Snapshot - On Ice Lesson - Howtohockey.com".
Start time: 5:05, full link: <https://youtu.be/lsxYCuu-DUY?t=5m5s>.

4. Sequence "william_tell" was obtained from
channel: "Dude Perfect"
. video name: "Archery Trick Shots | Dude Perfect".
Start time: 0:58, full link: <https://youtu.be/eCtb_ylVDvU?t=58s>.
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Appendix C

CD content

Directory Content

thesis thesis LATEXsource code
thesis/�gures �gures in higher resolution
code MATLAB source codes
input used video sequences and their ground truth as a binary masks
output binary masks of detected blurred strokes in provided video sequences

Table C.1: CD folder structure.
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