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Abstrakt / Abstract
Tato práce se zabývá problematikou

scanování neznámého okolního pro-
středí pomocí LiDARu, vytvářením
mračen bodů a OctoMap, detekcí no-
vých statických překážek a úpravou
plánovacích algoritmů pro vyhýbání se
těmto překážkám. Při tom také popi-
suje konstrukci pozemního bezpilotního
vozidla a integraci potřebných senzorů
na toto vozidlo.

Klíčová slova: LiDAR; IMU; RTK
GPS; UGV; mračna bodů; OctoMap;
Point Cloud Library; RRT*; Tactical
AgentFly; detekce překážek; plánování
trajektorií.

Překlad titulu: Detekce překážek po-
mocí LiDARu a předcházení kolizním si-
tuacím

This thesis discusses the problematics
of unknown environment scanning us-
ing LiDAR, point cloud and OctoMap
construction, new static obstacles detec-
tion and modification of current plan-
ning algorithms for collision avoidance.
It also describes construction of an au-
tonomous ground vehicle and integra-
tion of necessary sensors.

Keywords: LiDAR; IMU; RTK GPS;
UGV; pointcloud; OctoMap; Point
Cloud Library; RRT*; Tactical Agent-
Fly; collision detection; path planning.
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Chapter 1
Introduction

The use of unmanned aerial vehicles (UAV) and unmanned ground vehicle (UGV)
has grown rapidly in recent years. The related technology is getting cheaper and for
reasonable money it’s possible to buy things we could hardly imagine few years ago. The
time when drones were only an army matter is gone. Nowadays there are many emerging
companies and research institutes trying to develop and use UAV and UGV technology
for different purposes; e.g. filming in hardly accessible areas, security monitoring,
package delivery, self driven cars etc.

This thesis originated from a project whose aim was to develop technology and
methodology of modern remote sensing methods for forestry and game management
based on UAV and LiDAR, which was being solved at AI Center FEE, Czech Technical
University in Prague. We managed to develop SW framework in Java programming
language and to integrate necessary sensors.

The goal of this thesis is to research the problematics of collision avoidance based on
LiDAR range finder, construct an unmanned ground vehicle and integrate additional
necessary sensors onto the vehicle. It also includes creating methods for sensory data
processing, adding the functionality for real time collision avoidance, modifying current
path planning algorithms and testing the results.

1.1 Thesis outline
In the beginning we shortly describe different techniques of navigation and explain why
we use LiDAR and GPS. Then we present a detailed overview of all the sensors, devices
and the computational unit that have to be integrated for successful data collection
and robot movement. In chapter 4, the whole UGV, its construction, its characteristics
and the components placement is explained. It also shows how all the devices are
interconnected and how power is distributed.

With chapter 5 the SW part begins. We discuss the methods for collecting and
processing data followed up by point cloud creation. Afterwards, we describe methods
for point cloud processing which results into the introduction of OctoMap. Then we
explain how collisions are found. Finally, we present available path planning algorithms,
along with our modifications.

In the last chapter we verify the functionality of our solution by a series of experiments
with real world data.
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Chapter 2
Typical methods of navigation

In the last decades there has been remarkable development in localization and mapping
algorithms of navigation systems for indoor/outdoor mobile robots. In indoor cases,
personal service robots perform the missions of guiding tourists in museums, cleaning
rooms or nursing the elderly [1]. In outdoor cases, mobile robots have been used for
the purpose of patrol, reconnaissance, surveillance or exploring planets [2].

2.1 Indoor navigation
The indoor environment usually has variety of features such as walls, doors or furniture
that can be used for mapping and navigation of mobile robots. Since microwaves are
attenuated and scattered by roofs, walls and other objects, the Global Navigation Satel-
lite System (GNSS) significantly loses precision. In addition, the reflections at surface
and inside buildings cause multi-path signal propagation which results in another error.
These very same effects are degrading all known solutions for indoor localization which
uses electromagnetic waves from indoor transmitters to indoor receivers. To compensate
for these problems, a bundle of mathematical and physical methods is applied. Typical
example would be the use of alternative source of navigational information, such as
inertial measurement unit (IMU), camera, or strength of signal from the nearest WiFi
receivers [3].

There are many different systems that use some combination of the sensors described
above. For example, there are WiFi-based positioning systems where the localization is
based on measuring the intensity of the received signal, or grid concepts where a dense
network of low-range receivers is arranged in a grid pattern throughout the space being
observed [4]. There also exist methods based on time of arrival (ToA) where we measure
the amount of time a signal takes to propagate from transmitter to receiver (but other
calculations have to be used because of indoor signal reflection) [3]. Another largely
used method is visual localization based on a system of external cameras recording
small reflective balls attached to the mobile robot, such as Vicon system1 [5]. Of course
there exist also other methods, but the majority of them have one important thing in
common—they are used for localization in a known environment.

In an unknown indoor environment the most frequent approach is implementing
some kind of Simultaneous Localization and Mapping (SLAM) algorithm. SLAM is
concerned with the problem of building a map of an unknown environment by a mobile
robot while at the same time localizing the robot relative to the map [6]. SLAM consists
of multiple parts: Landmark extraction, data association, state estimation and land-
marks update. Each part can be solved by different way and there is a huge amount of
different hardware that can be used. The main part of the SLAM process is extended
Kalman filter (EKF), which always holds the current estimated position. The first step
is to obtain data about the surroundings. For that a sonar, LiDAR or a vision system

1 http://www.vicon.com/
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can be used. Next step is to identify and extract landmarks. Landmarks should be
easily re-observable from other positions, unique and stationary. Then the process of
data association is performed and the same landmarks from different measurements are
paired. Based on these land marks, the EKF can estimate robot position. Computa-
tional demands, together with achieved accuracy, depend on quality and quantity of
used HW and desired output. It is possible to use SLAM solely with LiDAR or camera,
but when additional HW is present (e.g. odometry from wheels rotation), the results
should be generally more accurate1.

2.2 Outdoor navigation
From the description of SLAM written in the last paragraph it may seem that SLAM is
exactly what we are looking for. SLAM used to dominate the area of navigating in an
indoor environment because generally there are more objects present in relatively small
areas. Furthermore, the areas are usually surrounded by walls which make the SLAM
process easier.Since the space in outdoor environment is more “empty”, it is harder to
extract land marks and to estimate the current position. Although there exist methods
that slove this problem, they are computationally expensive. In this thesis we follow a
different approach.

For the positioning and localization of the UGV we use Real Time Kinematic (RTK)
GPS. It’s a technique used to enhance the precision of position data from satellite-based
positioning systems suchs as GPS, GLONASS or Galileo. It uses measurements of the
phase of the singal’s carrier wave, rather than the information content of the signal,
and it provides centimetre-level accuracy [7].

We obtain data from the surroundings around the robot from a light detection and
ranging device (LiDAR). It uses light in the form of a pulsed laser to measure range
of objects around and produces thousands of points per seconds. These points usually
also carry some additional information such as their intensity or a number of return.
With these information we should be able to generate three-dimensional model of the
environment and also its surface characteristics [8].

The third and also the last absolutely necessary sensor is an Inertial measurement unit
(IMU). It is attached to LiDAR and tells us, how LiDAR is positioned at the moment.
Points produced by LiDAR are relative to its centre at the time of the measurement,
points produced by RTK GPS are relative to base (Chap. 3.3]), and IMU measurements
are relative to IMU initialisation position. These measurement must be transformed
into common coordinate system in order to perform calculations upon them.

By using these three sensors and combining them together we can explicitly create
3D maps (point clouds) in real time. We should also be able to navigate in them and
also know our location at every moment. Another advantage of this solution is that we
can later georeference models for another applications.

2.3 Pointcloud
A point cloud is a set of data points in some coordinate system. In a 3D coordinate
system, these points are usually X, Y, Z coordinates and often represent the external
surface of an object. They are usually created by 3D scanners—such as the one we
1 A Tutorial Approach to Simultaneous Localization and Mapping, http://ocw.mit.edu/courses/

aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam blas repo.
pdf
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have built. They consists of all the points that were measured so they can be very
detailed, as there is very little to no compression. However, this also means that the
files are very large, so storing them on a hard drive or viewing them in specific SW
can be computationally demanding. We also can’t hold a point cloud in RAM and try
to apply path planning or navigation algorithms upon it. Also sometimes recording all
the points can be a disadvantage. For example, if there are moving objects (animals,
people) in a scanned area, then the LiDAR measures them on different places in different
time but puts them into one map, which means they look very fuzzy. Some of these
problems are solved by using OctoMap 5.5. For illustration a picture of a pointcloud
of our office is presented (figure 2.1).

Figure 2.1. Height-colored pointcloud of our office. Notice the sitting person in the fore-
ground, shelves on the left, computer screen on the right and window in the background.
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Chapter 3
Sensors and other devices

In this chapter we describe all the sensors and devices that we use on the platform.

3.1 LiDAR
LiDAR Velodyne VLP-16 (figure 3.1) is about 7 cm height cylinder with a diameter of
10 cm. It’s capable of measuring objects distant up to 130 m with precision of 3 cm. It
weighs about 900 grams and it produces 300 000 points per second. It detects multiple
laser beam returns which along with measured intensity can help to identify surface
characteristics of a scanned object (in case of multiple returns typically windows or
leaves). It has 360◦ horizontal field of view and 30◦ vertical, ±15◦ up and down, with
2◦ vertical and 0.1◦ - 0.4◦ horizontal angular resolution.

The LiDAR communicates via Ethernet. It uses its own protocol, which we had to
implement, and sends packets over UDP as a broadcast or to a specified IP address.

Figure 3.1. Velodyne Puck VLP-16

3.2 IMU
Inertial Measurement Unit Microstrain 3DM-GX4-45 (figure 3.2) provides a wide range
of triaxial inertial measurements. It includes direct measurement of acceleration, an-
gular velocity or atmospheric pressure. Sensor measurements are processed through
an extended Kalman filter algorithm to produce high accuracy computed outputs [9].
This device is highly customizable and for the best outputs it must be configured prop-
erly. Configuration includes setting initial heading, magnetometer calibration or output
frequency. There are more output modes but we are using just the basic one which in-
cludes roll, pitch & heading. The computed output accuracy is 0.25◦ for roll & pitch
and 0.8◦ for heading.

Although the IMU integrates also a GPS receiver, therefore it could give us the
absolute localization, it is a standard GPS device whose accuracy is about 2 m. That

5



3. Sensors and other devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
deviation is too much for our application. We need to know the location of the laser
as precise as possible in every moment. Thus we only use IMU for measuring axis
inclinations by which we rotate laser data.

The IMU communicates through a serial port using its own proprietary protocol
which has also been implemented to the mutual framework.

a) b)
Figure 3.2. Microstrain 3DM-GX4-45

3.3 RTK GPS
For centimetre-level relative positioning accuracy we use Piksi RTK GPS from Swift
Navigation (figure 3.3). It is a low-cost, high-performance GPS receiver with real time
kinematics (RTK) functionality. From an architectural point of view, RTK consists of
a base station, one or several rover users and a communication channel between them.
The technique expects that in the neighbourhood of a clean-sky location, the main
errors in the GNSS signal processing (satellite clock bias, satellite orbital error and
the ionospheric & tropospheric delay) are constant, and hence they cancel out when
differential processing is used. RTK devices measure carrier signal, instead of receiving
the information carried (coarse-acquisition code)1, because the phase of the carrier is
changed approx. 1000 more often the C/A. However, the processing of carrier mea-
surements is subject to so-called carrier phase ambiguity, an unknown integer number
of times the carrier wave length, that needs to be fixed in order to rebuild full range
measurements from carrier ones. That is done by re-broadcasting and exchanging the
phase of the carrier between two reference stations. Then there are several different
methods that can use these information and fix the ambiguity. Piksies are based on
single frequency measurements with long convergence time about 10 minutes, because
they only receive data at one frequency (most satellites transmit at two)[10].

It’s worth mentioning once again that by using these devices we get centimetre-level
accuracy but only relative to the base device. We could achieve absolute positioning by
putting the base to a known location and then convert the points in X-Y-Z coordinate
system to the geographic coordinate system, but that is not the goal of this thesis and
we do not need it.

We use two of these devices, one as a rover and one as a base. They both have 2
UARTs providing high-speed 3.3 V LVTTL level asynchronous serial interfaces. One
UART is used for their communicate over 3DR Radios (sec. 3.4) and from the second

1 Coarse/acquisition code is a code with length of 1 millisecond, by which it modulates the carrier
frequency of GPS signal. Each satellite has its own unique pseudo-random code.

6
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Figure 3.3. Swift Navigation Piksi RTK GPS

data is read by rover. Data sent correspond to The Swift Navigation Binary Protocol
which we’ve implemented in the mutual framework.

3.4 3DR Radio
3DR Radio V2 (figure 3.4) is a small, light and inexpensive open source radio platform.
Its working frequency is 433 MHz. The radio can be configured by AT & RT commands.
In the documentation it was stated that the radios typically allow ranges over 300 m
without any configuration, but with the “out of the box” settings we weren’t able to
get past 25 m. After some experimental testing we managed to reach slightly over 100
m distance by reducing the air speed1 parameter from default 128 kbps to 64 kbps and
increasing the transmit power from 11 dBm to 20 dBm. However, we still aren’t able
to get near 300 m or even more which should be possible with the customized settings
we applied, at least according to the documentation. We blame these problems to the
fact, that we were testing the radios and also the whole platform in Prague (at Karlovo
náměstí, Letná or Strahov) and these locations are all very noisy, because this frequency
is often used by a lot of short range devices such as remote car keylocks or smart home
electronics. To further increase the range we could use similar radios working on a
different frequency or mount antennas with higher gain.

3.5 Microhard nVIP2400
For our application, we need to be able to communicate with the onboard computer to
execute control commands and to monitor the behaviour. Since the rover is moving,
the only thing that comes into consideration is some kind of wireless module. At
first, we were using two XBee2 modules. However, they only have one UART port
for communication (which was sufficient for the system console) but once we needed to
1 Air speed controls the rate that the data flow through the air. The lower the air speed, the more robust
the modulation can be which results to greater range. However it lowers the amount of data that can be
transferred.
2 XBee is a small chip (3 x 3 cm) that communicates on 2.4 GHz frequency using the IEEE 802.15.4
networking protocol. For more information look at [http://www.digi.com/lp/xbee]

7
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Figure 3.4. 3DR Radio communication modules

connect to the sensors (mainly LiDAR) directly and not through the onboard CPU unit
we needed an Ethernet port. So we started looking for more robust solution and ended
up using Microhard nVIP2400. Moreover it has a better transmit power and range and
it would also allow us to bridge internet connection from ground station (GS) to rover,
if desired.

a) front side b) back side
Figure 3.5. Microhard nVIP2400 communication modules

The nVIP2400 is a high power broadband Ethernet & Serial Gateway. It is equipped
with an Ethernet port, support for 802.11b/g devices and dual serial ports for integra-
tion with RS232, RS485 or RS422. It is designed to be shock-resistant. It carries data
on 2.4 GHz frequency and uses Orthogonal frequency-division multiplexing (OFDM).
The maximum data rate between two modules is up to 54 Mbps [11]. Theoretically
that should make it possible to stream data from sensors directly to a GS in real time.
However this data rate dynamically changes depending on SNR and would only keep
this high only in a close distance or in an environment with low noise.

3.6 ArduPilotMega
ArduPilot Mega (APM) is an open source unmanned vehicle control board, able to con-
trol autonomous multicopters, fixed-wind aircraft, traditional helicopters and ground
rovers. It is based on the Arduino open-source electronics platform [12]. It includes
3-axis gyroscopes, accelerometers and magnetometers and also requires a GPS to be
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connected to it in order to work. APM board is used to control the vehicle during
tests via the RC controller (we use Aurora 9) or during automated tests where the
control commands are sent from the onboard CPU. We use the APM:Rover firmware
on the board. It supports 8 RC channels with 4 serial ports, it can hold hundreds of
3D waypoints and it logs missions to the internal 6 MB memory. The logs can be later
exported to KML files and opened in programs such as Google Earth.

Figure 3.6. ArduPilotMega 2.6

3.7 Toradex Iris and Colibri T30
Toradex Colibri T30 is a computational unit that runs the software for data acquisition
an processing from all the sensors. It’s a SoC based on NVIDIA Tegra 3 quad-core
Cortex-A9 equipped with 1GB DDR3 RAM (32 bit) and a 4GB eMMC FLASH. This
module is placed into the Iris carrier board that offers many connection interfaces [13].
We use 10/100 Mbit Ethernet for LiDAR connection, 3 UARTs RS-232 (for IMU, RTK
GPS and system console) and USB OTG for GS connection during laboratory testing.
Collected and processed data are logged to microSD card. Even though the sum of
all data rates from sensors is not bigger than the maximum speed of a normal Class
10 card, during the experiments we found out that we need to use an UHS 3 card in
order to be able to write all the data and prevent buffers overfilling. The CPU must
switch processes quite frequently which results in peaks while writing the data. Also
the settings of garbage collector and JVM had to be modified for the application to run
more smoothly. To occupy the least RAM possible, the computational unit is running
our own customized Linux Angstrom distribution that includes predominantly only the
packages that are needed.

a) Iris carrier board b) Colibri T30
Figure 3.7. The computational unit—Toradex Colibri T30 and Iris carrier board

9



Chapter 4
Rover platform

During the research a need for an UGV platform arised and 1:8 model of RC car was
acquired. It’s equipped with brushed motor Himoto RC540 26T with electronic speed
controller WP-1040. We detached its roof cover and we built our own platform on the
chassis instead (figure 4.1).

a) an RC car b) rover chassis
Figure 4.1. An illustrative figure of a similar RC car we used and its chassis

4.1 Communication layer
Figure 4.2 shows how to connect all the sensors and devices mentioned in the previous
chapter. However, to do that physically, a mounting platform had to be constructed.
While designing it we needed to consider sensors’ coordinate systems and their inclina-
tion. We also had to think about possible magnetometer interference caused by rotating
LiDAR mirrors and by the proximity of electronic or metal parts. On top of that, all
GPS antennas (we have three1) should be placed as high as possible with the best
possible unobstructed view around. Microhard modem is connected to Toradex by two
means—RS-232 serial line and Ethernet cable.The former allows us to be connected
directly to the system console, so it can be controlled without a delay and also to see
Linux core debug messages. The latter is used for eventual transfer of bigger data or
internet feeding. The designed platform is made from plastic and has 2 floors.

On the first floor (figure 4.3 and 4.4) we had to put the devices on both sides. On
the bottom side, there is a 5-port 10/100 Mbps Ethernet switch. Because we would like
to implement different GPS device (Novatel OEM628) in future, we’ve already reserved
a place for it next to the switch. On the top of the first floor there is APM, Toradex,
Piksi Rtk, the 9 channel radio receiver Optima 9 and Velodyne VLP-16 interface box.
We put the CPU onto this floor partly also for the reason that it is covered from top
and potential rain shouldn’t get to it. In the back there can be seen a metal holder
1 We have three GPS antennas, because IMU, RTK and APM each need one in order to work.
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Figure 4.2. Interconnection scheme of used devices

Figure 4.3. Design of bottom of the first floor of the mounting platform.

with a hole. It’s intended for a stick which carries the RTK antenna which will then be
approximately 30 cm above the rover. This antenna is placed so high because we need
the RTK GPS to be as accurate as possible.

On the second floor (figure 4.5) there is a place for Microhard modem, 3DR Radio,
IMU GPS antenna, 3DR GPS antenna (APM antenna) and Velodyne LiDAR. That
must be positioned so that we get the maximum from its view. The antennas and other
sensors aren’t a problem for LiDAR, because we are not processing data closer than one
meter. The metal plate in the back is the RTK antenna holder again. The similar plate
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Figure 4.4. Design of top of the first floor of the mounting platform.

Figure 4.5. Design of second floor of the mounting platform.

on the left side of the second floor is a holder for an advanced1 antenna for Novatel
OEM628.

4.2 Power
The motor and the steering servos are powered from a NiMH 7.2 V / 3300 mAh battery.
The ESC has 5 V / 2 A battery eliminator circuit (BEC) by which it supplies power
to the APM and the RC receiver. However, we have a lot of devices onboard and this
BEC wouldn’t be sufficient (see table 4.1). Moreover, the devices are much heavier
(approx. 5 kg) than what the RC model was designed for and sometimes there happen
1 With an ongoing GPS modernization, all the GPS satellites launched since 2005 don’t only transmit
coarse-acquisition code on the original L1(1575.42 MHz) frequency but they also transmit on L2 (1227.60
MHz) frequency which allows the receiver to calculate ionospheric corrections and get better accuracy [14]
[15].
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to be high energy peaks (caused by motor) during which the voltage drops resulting
into APM restart. We can also divide the devices into to groups: those with an input
voltage of 5 V and those with input voltage of 12 V.

Device Max power consumption [W]
Microstrain IMU 0.9
Piksi GPS 0.6
Microhard modem 2
Velodyne LiDAR 8
switch 0.9
fan 4
Toradex Colibri T30 6

Table 4.1. Power consumption table. Values taken from devices product sheets.

Therefore, power for all the other devices is supplied from another battery—3-cell
LiPo 11.1 V / 4000 mAh. We created our own power distribution splitters for both
5 V and 12 V (figure 4.6) to reduce the amount of power cables. The 12 V splitter
is connected directly to the battery and powers LiDAR, switch, Microhard modem,
cooling fan, a LED indicator and Toradex, The 5 V splitter is connected to Toradex 5
V output pin and delivers power to IMU and Piksi GPS.

a) 5 V b) 12 V
Figure 4.6. 5 V and 12 V power distribution splitters.

Because complete discharge can permanently damage both of the batteries, we had
to make sure that would not happen. Concerning the NiMH battery, the ESC will take
care of that. It reduces engine power when voltage drops below 4.5 V and completely
shuts off the battery when it drops below 4 V. For the LiPo battery we’ve made a LED
indicator (figure 4.7) from 4 Zener diodes that is able to indicate 5 voltage levels: under
9 V, 9-10 V, 10-11 V, 11-12 V and above 12 V.

Constructed rover is shown in figure 4.8.
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Figure 4.7. Voltage LED indicator

Figure 4.8. Complete rover. Model used for all tests.
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Chapter 5
Data processing and representation

We’ve written the SW framework for processing data from sensors in Java. An emphasis
was placed on modularity enabling us to easily parametrize or swap them. These
modules are discussed in this chapter. They process incoming data, which ends in a
creation of a point cloud (set of data points in 3D space representing external surface
of an area or an object). An abstract scheme of the system architecture is presented in
Fig. 5.1.

5.1 Initialization phase
When the application starts, the configuration file is loaded and the rest of the appli-
cation behaves according to it. That relates to IP addresses and other communication
ports of the sensors, mounting offsets and desired outputs. Then the sensors are ini-
tialized and data acquisition checker is started. That part assures that all necessary
sensors are connected and sending valid data. If the initialization passes successfully,
then the starting procedure is finished.

5.2 Time synchronization
The final processed point that is about to be put into a 3D map is a result of processing
data from three sensors—LiDAR, IMU and RTK GPS. Every sensor sends data with a
different frequency, has a different (or its own) time system a is connected to the CPU
in a different way. Therefore the time it takes data to reach Toradex differs. Also it is
impossible to determine, when will data be processed. Because of these reasons we’ve
implemented two-step time synchronization.

5.2.1 Time systems shift correction
All calculations are done in system time of Toradex. LiDAR VLP-16 has its own time
system, that starts with time 0, when LiDAR is started. Microstrain IMU uses GPS
time that it obtains from satellites. To convert these time systems to Toradex system
time, the time synchronization module is used. It measures the difference between
Toradex system time when data were received at the Toradex side and data creation
time in sensor time system. By these measurements we should obtain the time shift
between individual time systems. However, these time shifts are very inaccurate, be-
cause the transmission time is protracted by transmission lines data flow control and
Toradex and Java buffers. Therefore we are constantly repeating this measurement for
10 seconds and the lowest values measured are declared as the time shift. These values
are then added to data creation time in sensor time system which gives us data with
Toradex system time. These calculations are performed for LiDAR and IMU. Piksi
GPS uses the same GPS time as IMU so its data are shifted in the same way. Possible
difference of different GPS time on different satellites is in nanoseconds and that can
be omitted [16].
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Figure 5.1. An abstract scheme of data processing necessary for point cloud creation.

5.2.2 Static time delay at transmission lines

The IMU is connected to Iris by a serial line (RS-232). The transmission at this line
is protracted by a constant delay. We measured this delay using round trip mechanism
to be 1409 µs. Similarly we measured time delay for LiDAR, which is connected by
Ethernet and uses UDP protocol, to be 3195 µs. Once these constant delays are mea-
sured, they are deducted from the corresponding time frame shift (described in Subsec.
5.2.1) yielding us the offset value used for the correction of all the measurements from
corresponding sensor.
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5.3 Data aggregation
After time synchronization is completed, data gather in a data aggregation module from
where they are either directly passed to an output writer, which saves them to the SD
card or they are passed to a calculator, which further processes them in real time.

5.4 Calculation
When sensor data have correct timestamp, they are ready to be transformed (to recal-
culate the position of all the points measured by LiDAR from LiDAR local coordinate
system to a common coordinate system). This can be done either in real time while
sensing—and we have to do that while we want to use LiDAR data for navigation—or
offline in the lab from saved data as mentioned in previous section. The latter has an
advantage that a human eye may supervise the process and specifically tune it for better
outcome. Also GPS positioning data can be processed with available offline correction
data, which would result into more precise point cloud.

5.4.1 Time interpolation
Data from sensors are sent with a different frequency. In one second up to 300 000 points
are received from LiDAR, while it’s only 100 records from the inertial measurement
unit and only 10 positioning records from RTK GPS. Therefore, we can not match the
measurements one-to-one. The process is a as follows. For every LiDAR point two
bounding IMU records are found and linearly interpolated based on time resulting in
one IMU record that is finally used for the original LiDAR point. The position record
from Piksi GPS is obtained using the very same principal.

5.4.2 Transformation
After the time interpolation, points can finally be localized in the common coordinate
system. The localization consists of two parts. First part is compensation of LiDAR
inclination and rotation which is taken care of by the IMU. The second part is LiDAR
(rover) translation. We get that by subtracting the base position from the actual
position.

When the transformation is done, the point is passed along. Now it is either saved
to a binary file and then it can be converted to one of the two maps we use (pointcloud
or OctoMap) or it’s passed to the OctoMap directly, which is the case of this thesis.

5.5 OctoMap
OctoMap is an efficient probabilistic 3D mapping framework based on OcTrees. Since
OcTrees are the key component of OctoMap, we describe them first.

5.5.1 OcTree
An OcTree is a tree data structure where each node corresponds to a single cube

and has exactly eight sub-nodes. They are the 3D analogy of quadtrees. OcTrees are
most often used to partition a three dimensional space by recursively subdividing it into
eight octants (figure 5.2). The subdivision point is implicitly the center of the space it
represents (i.e., the point defines one of the corners for each of the eight children). These
cubic volumes are usually called voxels. The root node represents a finite bounded space
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Figure 5.2. Recursive subdivision of a cube into octants and corresponding OcTree [17].

so that the implicit centers are well defined. The maximum space the map (root node)
can represent depends on the resolution (on the size of the smallest cube) by formula:

r · 2n

where r stands for resolution and n for depth. For example, OctoMap implementation
uses OcTrees with a depth of 16, which gives us a cubic area with a volume of 655.36 m3

for r = 1 cm. The tree can be cut at any level to obtain a coarser subdivision. An
example of an OcTomap for occupied voxels at several resolutions is shown in figure 5.3.

Figure 5.3. Multiple resolutions of the same object. Occupied voxels are displayed in
resolution 8 cm, 64 cm and 128 cm. [18]

The OctoMap library[18] implements a 3D occupancy grid mapping approach, it is
written in C++ and it is designed for:.Full 3D model. The map is able to model any environment without prior assumptions

about it. It models occupied areas as well as free space but unlike pointcloud it also
implicitly encodes unknown areas into the map. This would be very important, if we
wanted to implement autonomous exploration of an environment..Updatable. It is possible to add new information from sensors at any time. Modeling
and updating is done in a probabilistic fashion. This is useful for getting rid of sensor
noise or dynamic, moving objects..Flexible. The extent of the map does not have to be known in advance. The map is
dynamically expanded as needed instead. Because it is multi-resolution a high level
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planner is able to use a coarse map while a local planner may operate using a fine
resolution..Compact. Thanks to the probabilistic approach, instead of storing all the points in
the memory, only their probabilistic representation in voxels is stored. This allows
for efficient path planning or other mathematically complex algorithms [18].
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Chapter 6
Obstacle detection

For the UGV to safely move around it’s necessary to avoid collisions with obstacles.
In our approach, we are not trying to locate and to segment individual obstacles. The
environment is represented by an OcTree which is created by OctoMap and we take
all the occupied voxels as one obstacle instead. Therefore, the UGV has to move in a
way it doesn’t intersect with the OctoMap. The OcTree is used because of low memory
requirements and probability approach in the environment modelling. And in this
OcTree the collisions are found using Flexible Collision Library (FCL) (Sec. 6.3).

6.1 Data preparation
We want the OcTree to represent the obstacles as accurately as possible. However, the
OcTree must not contain ground, because that is not an obstacle, so we have to separate
it out. We also need to filter out noise, otherwise we would detect false collisions with
obstacles that don’t exist.

During the creation of an OcTree, with addition of every point a ray casting operation
(Sec. 6.2) is performed. This operation is slow, but necessary because of the proba-
bilistic nature of OctoMap. It wouldn’t be a problem in a simulation but in real time
collision avoidance application, we need to reduce the time it takes as much as possible.
To reduce the number of voxels every ray casting operation updates, we just decrease
the OcTree resolution. However, the tests showed that it is not enough with the amount
of data Velodyne VLP-16 produces. Therefore, downsampling of the initial point cloud,
which would reduced the number of these operations, had to be implemented.

So before we actually create the OcTree, it’s necessary to prepare and modify the
point cloud that we obtain from LiDAR as described in Chap. 5. The majority of
the described problems are solved by using Point Cloud Library (PCL)1. It is an open-
source C++ library containing many modules for point cloud processing. It can be used,
for example, for filtering outliers from noisy data, stitching 3D point clouds together
or object recognition based on their geometric appearance. It is split into more smaller
modules, which can be compiled separately, therefore saving memory space [19].

6.1.1 Noise filtering
Typically, during laser scanning and point cloud creation there are measurement errors.
These errors can be caused, for example, by wrong time frame adjustment of sensors
or by a simplification of the calculations. So the first thing that is applied to incoming
3D points is noise filtering. Although OctoMap probabilistic nature also allows “noise
filtering”, it filters rather dynamic objects. Therefore the PCL is used for filtering the
actual noise.

Different parts of a point cloud have usually varying densities so the point cloud has
to be filtered in a statistical manner. The Statistical Outlier Removal filter module2 of
1 http://ns50.pointclouds.org/about/
2 http://pointclouds.org/documentation/tutorials/statistical_outlier.php
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the PCL is capable of that. It’s based on the computation of the distribution of point-
to-neighbours distances in the input dataset. For each point the mean distance from k
neighbours are computed. By assuming that the resulted distribution is Gaussian with
a mean µ and a standard deviation σ, all points whose mean distances are outside the
interval

〈µ− σ · std mul, µ+ σ · std mul〉 (1)

are considered as outliers and filtered. The std mul is a standard deviation multiplier
and is set by user, as well as k. We set the values to k = 50 and std mul = 0.55. It
basically means that all points with a distance larger than 0.55 of the standard deviation
of the mean distance to the query point will be removed. An example of a point cloud
filtration is shown in Fig. 6.11.

Figure 6.1. An example of noise filtration. Original point cloud in the first picture, pro-
cessed final point cloud in the second picture and removed points (noise) in the third

picture.

6.1.2 Downsampling
Since OctTree is in essence a grid (we use OctoMap with resolution of 20 cm), we do
not need huge amount of points (a precise point cloud) to be inserted into it. The
insertion would slow down data processing and bring no benefit. Instead, a grid can
be inserted into an OctoMap directly. If it is dense enough, there will be no difference
(grid containing 1/4 points of the initial point cloud is enough). All we need to do is to
down sample the original points in a way it would still accurately represent measured
point cloud in terms of its size, shape and proportional density of points.

We accomplished this by using The PCL Voxel Grid filter module 2. First step is to
divide the whole space into 3D boxes of specified size. Then there are two ways how
downsampling can be done. The points can either be approximated with one point
in the center of every occupied voxel or the exact location of their centroid can be
computed. In the Voxel Grid filter the latter approach is used. It’s a bit slower but
more accurate. See Fig. 6.2 and 6.3 for an example.

6.1.3 Ground segmentation
The PCL Sample Consensus module3 is used for segmenting ground from incoming point
clouds. It’s based on Random sample consensus (RANSAC) iterative model parameters
fitting algorithm [20], which randomly selects a set of data points from a model and
creates a sub-model (a plane in our case). Then it counts how many points from the
original model would fit this sub-model according to specified parameters. This process

1 Data source: https://raw.github.com/PointCloudLibrary/data/master/tutorials/table_scene_lms400.
pcd
2 http://pointclouds.org/documentation/tutorials/voxel_grid.php
3 http://docs.pointclouds.org/trunk/group__sample__consensus.html
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Figure 6.2. Voxel grid downsampling example of point cloud taken at Letná. The point
cloud is downsampled using voxels with 5 cm edge. It contains 832 082 points.

Figure 6.3. The same image as 6.2 but without the grid downsampling. It contains 2 098
699 points.

is repeated for a fixed time and then the best output is picked. The estimated plane is
defined with perpendicular normal vector, thus by formula:

ax+ by + cz + d = 0. (2)

Parameters of this filter, that have to be set in advance in order to work properly are:
maximal angle of plane inclination from horizontal plane α, maximal vertical distance
from the plane v and maximal distance of the points inside the plane from each other
s. An example of segmented point cloud can be seen in Fig. 6.4.
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Figure 6.4. Segmentation of the ground plane from point cloud captured at Letná. Seg-
mented points are coloured green.

6.2 OctoMap updates and ray tracing
OctoMap assumes that endpoints of a measurement correspond to obstacle surfaces and
that the line of sight between sensor origin and endpoint doesn’t contain any obstacles.
To efficiently determine the map cells which need to be updated, a ray-casting operation
is performed that determines voxels along a beam from the sensor origin to the measured
endpoint. An example can be seen in figure 6.5. This operation is executed on every
point that is inserted into OctoMap, so it needs to be as efficient as possible.

The probability P (n|z1:t) of a leaf node n to be occupied after the given sensor
measurements z1:t is estimated as

P (n|z1:t) =
[
1 + 1− P (n|zt)

P (n|zt)
1− P (n|zt−1)
P (n|z1:t−1)

P (n)
1− P (n)

]−1
(3)

where zt is the current (latest) measurement, P (n) is a prior probability, and P (n|z1:t−1)
is the previous estimation. The term P (n|zt) denotes the probability of voxel n to be
occupied given the measurement zt. The common assumption of a uniform distribution
between occupied and free voxel leads to a prior probability P (n) = 0.5.

By using log-odds notation, Eq. (3)can be rewritten as

L(n|z1:t) = L(n|z1:t−1) + L(n|zt) (4)

where
L(n) = log

[
P (n)

1− P (n)

]
. (5)

This formulation speeds up the map update process because multiplications are replaced
by addition. Note that log-odds values can be converted into probabilities and vice versa
and OctoMap therefore stores these values for each voxel instead of the probability so
logarithms do not have to be computed during each update.

From Eq. (4) it’s evident that if a voxel was observed as free for m times, then
it has to be observed occupied at least m times again before it is considered occupied
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Figure 6.5. Updating OctoMap with two consecutive measurements. The black small
rectangle can represent a moving object or noise in the environment. Green cells represent
free space, purple occupied space, and unknown voxels are left white. The half purple half
green square is either occupied or free depending on OctoMap the currently set parameters.

(assuming that free and occupied measurements have equal weight). While this property
is desirable in static environments, in mobile robotics we want the map to be able to
adapt to dynamic changes quickly. To ensure this, OctoMap uses an upper and lower
bound on the occupancy estimation and instead of using Eq. ((4)) directly, occupancy
estimations are updated according to the formula:

L(n|z1:t) = max(min(L(n|z1:t−1) + L(n|zt)), lmax), lmin) (6)

where lmin and lmax denote the lower and upper log-odds clamping bounds. This
modified update formula limits the number of updates that are needed to change the
state of a voxel [18].

In the last paragraph we considered the nodes being updated as misses and hits had
the same weight. However, that was done just for the simplicity of the explanation.
These values, along with the clamping thresholds, are not intended to be the same,
they are strongly sensor-dependent and we had to experimentally adjust them to fit
Velodyne VLP-16 and our application needs.

6.3 Collision detection
When a point cloud is processed we can finally create an OcTree. An example of one
is shown in Fig 6.6.

Collision detection is done with the help of Flexible Collision Library (FCL) 1. FCL
is a collision and proximity library that integrates several techniques for fast and accu-
rate collision detection and proximity calculations. It is designed to perform multiple
queries on different model representation - including OcTree. Its four main capabili-
ties are discrete collision detection, continuous collision detection, separation distance
computation and penetration depth estimation [21]. We use the first two.

The usage is very simple. First we set the size of a block representing an UGV
(40 × 30 × 60) cm. Then, in the case of discrete collision detection, we set a position
of an UGV and ask the FCL if it collides with the OcTree. In the case of continuous
collision detection, we set two positions and the FCL computes if there is an intersection
with the environment between those two.

1 ]http://www.willowgarage.com/blog/2012/02/29/flexible-collision-library]
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Figure 6.6. Final OcTree map of Letná. Filtered ground and noise. It is the same envi-
ronment as shown in Fig. 6.4. Voxel resolution is 20 cm.
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Chapter 7
Planning algorithms adjustments

To use the collision detection ability we’ve discussed in Chap. 6, we must integrate it
into a planning framework. At AI Center, a system for simulation and command &
control of unmanned aerial vehicles is being developed.

7.1 Tactical AgentFly
TAF is a system written in Java which utilizes Groovy files for its configuration. It
focuses on a research and development of planning and coordination algorithms for
automated data collection by teams of cooperating UAVs. It supports both persistent
surveillance of a selected area and tracking of mobile ground targets. TAF is an agent-
based system. An agent in computer science refers to a software entity which has its own
intelligence, is situated in some environment, can sense it, and is capable of autonomous
actions in this environment in order to meet its design objectives [22]. There are usually
more agents and they can interact with each other. The graphical user interface of TAF
can be seen in Fig. 7.1.

Figure 7.1. TAF GUI. Left part of the picture shows the environment. Blue dots are the
waypoints, small circles along the line in front of rover represents the remaining plan. The
purple circle and rectangle are obstacles which a vehicle should avoid. The blue rectangle
shows a surveillance area, but it has no vehicle assigned. In the right part of the picture

mission control window is shown.

7.2 TAF modification
Tactical AgentFly was developed for work with unmanned aerial vehicles. Since the
constructed rover we used during the experiments is a terrestrial vehicle, not only
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the existing planning algorithms but also the parts responsible for correct behaviour
according to physical parameters and movement model constraints had to be modified.

An unmanned system in TAF consists of a Ground Control Station (GCS) and un-
manned vehicles (agents). A GCS is a control part of the system that runs remotely on
a different (often portable) computer, where a human operator can give orders (mis-
sions). It communicates with UAVs and UGVs via radio.The agents are represented by
two parts:.Aviator. An aviator contains a set of planning algorithms that together ensure a

complex behaivour of an agent. It is the part of the agent that is responsible for
higher level control. For example, it can add vehicle a capability of surveillance,
tracking, cooperative collision avoidance etc. Since the majority of these functions
aren’t needed, we used settings from a hexa copter and only replaced the trajectory
planner to our RRT based one; Sec. 7.2.2..Embodiment. An embodiment represents physical parameters, sensors and actuators
of a vehicle in the system. By sensors it is meant, for example, a position (GPS) or
a battery. Actuator is a device that can perform an action or operation, in our case
the APM autopilot. We had to change physical parameters like minimum, optimal
and maximum speed, autopilot serial port or the distance to waypoint to be marked
as “passed”. Embodiment also ensures mutual data exchange. It sends data from
sensors to aviator, which returns back computed plans. OctoMap is provided to the
system through embodiment.

During the development of the planning algorithm, we had to modify two parts of
TAF system:.Rover model for simulation. When an algorithm or a concept is being developer, it

is first tested in a simulation and after proven working, it can deployed on a real
platform. Since TAF offers models of planes and copters, but no ground vehicle, it
had to be implemented. However, this was not the main part of our research, we
basically took the copter one and changed its parameters to match our ground vehicle
and it turned out to be sufficient..A planner. To study and implement (or modify) planning algorithms was also a
part of this thesis. First, we started with modification of a simple planner included
in TAF based detecting the coordinates of a collision point and trying to somehow
bypass this point. That turned out to be inefficient and improper, predominantly in
an environment with many obstacles. For that reason, an RRT algorithm[23] was
implemented and used for trajectory planning.

7.2.1 Simple trajectory planner
Firstly, we tried to modify a simple trajectory planner already implemented in TAF
system, that supported cylindrical and spherical obstacles and we added support for a
block obstacle. The functionality is following: Every time the (re)planning algorithm
is started, it iterates over all known obstacles, finds intersections points and tries to
push them away, out of the borders of the obstacle. Regarding obstacles with circular
shape, there are always two intersection points. A point lying in the middle of them
is calculated and shifted perpendicular to their connection line, towards the obstacle
boundary and outside. Example can be seen in Fig. 7.2.

Avoiding a block obstacle is different. When the intersection points are found, again
the middle point is calculated. Now however, it is moved to the closest corner (or one
of the two closest, depends on the intersection line). From this corner it connects the
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Figure 7.2. Simple collision avoidance algorithm example on a round shaped obstacle.

starting point and the end point. If a middle point is found again, previous procedure
is repeated and the new middle point is moved to another corner. Example shown in
Fig. 7.3.

Figure 7.3. Simple collision avoidance algorithm example on a block obstacle.

This planner works when the blocks are far from each other. But if we wanted to
use this planner with an OcTree, that would definitely not be that case. Let’s just say
an object in real life has dimensions 1 × 1 × 1 m. And we use an OcTree with voxel
edge length of 20 cm. That would result into 125 block cubes. Let’s also say that the
trajectory intersects with 100 of these cubes. The planner solves the intersection of
the first cube. However, it moves the middle point into another cube, that previously
was not intersected. Now by applying the same algorithm again, the new middle point
could be moved back to the first cube or to any other. This would result in cycles in
the algorithm, producing no or incorrect results. Of course, in the previous scenario,
we could merge all the cubes into one big obstacle, but generally, that is not possible.
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7.2.2 RRT* trajectory planner
The problems described in the previous section led us to an algorithm based on RRT
(Rapidly-exploring Random Trees). A rapidly exploring random tree is an efficient
algorithm for path planning in continuous environment with non-convex obstacles. It
does so by “randomly” filling the space with points connecting them to the closest,
already connected, points. The word randomly is put into quotation marks, because it
is not complete random generation of a point within a specified area. RRT is focused on
exploring places not yet visited. With this approach it should search all the imaginary
parts (locations) of the environment with similar time and not prioritize any.[24]

One advantage of RRT path planners is, they don’t need to know the coordinates of
a collision. If there is a collision between a point and a closest point from a tree, then
the point is not added. So the tree is growing randomly in the space with no collision.
The algorithms need to know where the beginning and the goal is. Around the goal
coordinate there is a target region, which needs to be reached because hitting the goal
point by another randomly generated point has zero probability. The algorithm can be
stopped when the first path from the beginning to the end is found or it can be limited
by time or number of iterations and the search process may continue to possibly obtain
better result.

This planner was merged with Flexible Collision Library. Since the RRT algorithm
is simpler than RRT* but works on the similar principal, our modifications including
FCL incorporation is described on it. The explanation of RRT with the image 7.4 is
taken from [23]..1. The algorithm is initialized with graph that includes single vertex (beginning) and

no edge..2. At each iteration a point is sampled. In this step we had to make sure, that the
sampled point doesn’t lie in a occupied position by OctoMap. If it does, another
point is sampled..3. The nodes of the tree are traversed and the nearest node is found..4. An attempt is made to connect the nearest node. In this step, the method for
checking if two points could be connected, was implemented. A size of a vehicle has
to be set. Therefore, between two points there can be a path available for a small
vehicle while being no for the other..5. If such a connection was successful, the sample point is added to the vertex set
and the edge between it and the nearest node is added to the edge set..6. As soon as the tree contains a node in the goal region, the algorithm is stopped.

Figure 7.4. A scheme of RRT path planning algorithm.

Opposite of RRT, RRT* includes a cost function—in our case distance. Also instead
of further tree expansion in case of RRT, RRT* algorithm tries to improve already
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found solution by generating the points closely to the found trajectory. An example
of paths generated by RRT* algorithms is shown in Fig. 7.5 and 7.6. The image is
taken with the help of iRRT simulator1 created by researches from Correll Lab at the
University of Colorado.

Figure 7.5. The environment in which the RRT* planning algorithm should find a path
from the green circle to the red one.

1 http://correll.cs.colorado.edu/?p=1623
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Figure 7.6. Found path between green and red circle along with the whole generated tree.
This is the first path found, but it can be improved by additional iterations.
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Chapter 8
Experiments

Two types of experiments were conducted. In the first one we tested point cloud creation
and in the second one we tested collision avoidance with path planning. Despite the
fact that the invented algorithms proved to be working, there are still several problems
that prevent them to be put onboard instantly, and have to be solved. These problems
are also discussed here.

8.1 Point cloud creation tests
The first point clouds of an outside environment were taken at Charles square and
Strahov. The measurement were performed 10 times in each location. The best results
are shown in Fig. 8.1 and 8.2.

Figure 8.1. The best scan of Charles square.

After we analysed those point clouds, we discovered the first problem—using RTK
float solutions of Piksi 8.1.1.

8.1.1 RTK float solution imprecision
Piksi RTK have three output types. One of them is classical single point GPS and the
other two are RTK solutions—float and fixed. Which one is provided strongly depends
on the number of visible satellites and weather conditions. Fixed one has centimeter-
level localization accuracy, while the accuracy of the float one is between 5 to 22 cm.
Two tests regarding this problem were conducted. First one shows the behaviour during
statical scanning. The point cloud is shifted only in z axis while the horizontal position
is held. It is shown in Fig. 8.3. In the second test the point cloud creation with moving
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Figure 8.2. The best scan of Strahov.

Figure 8.3. Static scan with float RTK solution. Even though the position is held in the
horizontal plane and doesn’t move, notice how shifted in the z direction the point cloud is.

rover and float RTK solution was examined. The result can be seen in Fig. 8.4. The
point cloud is blurred in every direction.

The solution is to pair LiDAR data with fixed RTK GPS positioning data only.

8.1.2 RTK antenna offset
If a UGV moves along a straight line, the translation measured by RTK GPS is the
same for both the rover and the GPS antenna. But if the rover turns, the LiDAR starts
going “around” the GPS antenna. Theoretically, if the rover went in a circle with radius
r around the GPS antenna, the GPS would show the same coordinates the whole time,
but the centre of LiDAR could be shifted by 2r. This is illustrated in Fig. 8.5. If we
say that on the rover r = 0.5 m, then the fixed RTK precision, that was gained by using
Piksi, would degrade back to the level of normal GPS.

The consequences of this problem are shown in Figures 8.6 and 8.7. The objects
are shifted in a pattern corresponding to rover trajectory. This was solved by adding

33



8. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 8.4. Scan with float RTK solution. In this case the rover was moving so the
translation is applied. The point cloud is fuzzy in all directions and absolutely not suitable

for any application.

Figure 8.5. Antenna offset from LiDAR.

an antenna offset into the transformation process of point cloud creation described in
5.4.2. Refer to [25] in case of deeper interest.

It’s worth to mention that at this point of the development, all the outputs come from
real time processing. All the models above were computed onboard. While this saved
some disk space and largely reduced the amount of data being written to memory card,
it also made the debugging and post processing much harder. In the end we decided
to simplify output operations (reduce redundant data and change from double types
to float) and added the possibility to write directly all data from sensors to the card,
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Figure 8.6. Shifted objects as a result of antenna offset.

Figure 8.7. Shifted objects as a result of antenna offset. The rover took a “reverted G”
trajectory as can be seen in the picture.

leaving the post processing for later. Of course this should be enabled only when the
goal is accurate point cloud creation, not a real time collision avoidance.

8.2 Improved point clouds
When the problems mentioned in previous section were solved, we identified another
issue—difference between IMU and RTK coordinate system. The following experiments
were performed in two locations. Photographs 8.8 and 8.9 show how these locations
look.

8.2.1 Difference between IMU and RTK coordinate system
X and Y axis of IMU coordinate system don’t match the same axis of RTK Piksi
coordinate system. Piksi x axis is aligned to south-north direction. According to the
documentation IMU yaw is 0◦ when pointing to north. But tests showed this angle
varied ±30◦. Magnetometer measurements and calibration tests were performed, but
the problem was not fixed. Resultant point clouds are shown in Fig. 8.10 and Fig.
8.11.

Although the problem was not fixed in terms of finding an automated real time
solution, we managed to fix the pointcloud in offline processing. Corrected point cloud
are presented in Fig. 8.12 and 8.13. These two point clouds also served for following
experiments regarding collision avoidance (Sec. 8.3).
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Figure 8.8. Photo of one of the areas where experiments described in Sec. 8.2 and Sec.
8.3 were conducted.

Figure 8.9. Photo of one of the areas where experiments described in Sec. 8.2 and Sec.
8.3 were conducted.

8.3 Collision avoidance
As an input point cloud data sets we took the corrected point clouds discussed in Subsec.
8.2.1. Upon them, 2 different tests were conducted. In the first test, the processing
(noise reduction, downsampling, ground segmentation; see Chap. 6), as well as the
OctoMap creation, was prepared in advance. Then the OctoMap was loaded and path
planning with collision avoidance was tested. The area is a flat, square-shaped, with
few placed obstacles marked in red ellipses in Fig. 8.8.

In the second test, point cloud processing, along with the OctoMap creation, was
run in parallel with path planning and collision avoidance simulating behaviour in real
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Figure 8.10. The result of point cloud creation assuming that IMU and RTK GPS coor-
dinate systems are identical. In this picture they differ by 5◦.

Figure 8.11. The result of point cloud creation assuming that IMU and RTK GPS coor-
dinate systems are identical. In this picture they differ by 11◦.

environment.It is a rectangle-shaped area with granite benches around and a 60 cm
high flowerbed inside. Fig. 8.9 shows how the place really look.

8.3.1 OctoMap prepared in advance
This test consisted of two parts. The first verified the functionality of point cloud pro-
cessing and the second one the functionality of collision avoidance. Modules parameters
were:.OctoMap: resolution 20 cm; hit probability 0.58, miss probability 0.4; max. clamping

threshold 0.97; min. clamping threshold 0.12; OctoMap raycasting range clamping
60 m.
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Figure 8.12. Manually corrected point cloud. This point cloud also serves as an input
data set for the first experiment of path planning and collision avoidance.

Figure 8.13. Manually corrected point cloud. This point cloud also serves as an input
data set for the second experiment of path planning and collision avoidance.

.Downsampling: voxel size 5 cm..Ground filter: max. points horizontal distance 0.1975; ground filter max. d 0.3 (Sec.
6.1.3); max. ground plane angle inclination 0.3 rad.

Firstly the OctoMap representation of the environment prepared. The point cloud
8.12 was divided into 5 parts according to the time when they were taken, then these
parts were sequentially processed and inserted into the OctoMap. The processing part
is presented in Fig. 8.14, the final OctoMap is in Fig. 8.15.

Collision avoidance test is performed in TAF (Chap. 7.1). Robot size is set to
1 × 1 × 2 m to be sure that the collision is always detected and to add some safe
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Figure 8.14. Point cloud preparation. Each fifth is processed independently and then
inserted into OctoMap. Black line represents rover trajectory. Blue points represent points
that are passed along, green points are filtered. Notice the obstacles marked in red. Each
part is processed independently (e.g. the filtered plane has slightly different coefficients)
that is why the long brick is filtered in cases 3 and 4 but is kept in steps 1, 2 and 5. The
trash bin is always kept. The small brick (can be seen in Fig. 8.8) is too low and therefore
filtered as ground. Original size of the PC is 2 624 000 points, 1 015 142 points after

downsampling and 715 503 after ground segmentation.

margins around the obstacles. The path is set manualy through waypoints. How the
planner solved the situation is captured in Fig. 8.16.

During this test we focused on three obstacles, they are marked in red ellipses in Fig.
8.8. The trash bin and the long brick on the left were successfully recognized, while
the small brick “behind” the trash bin was filtered as a ground. We did not manage to
find the parameters of ground filtration that would keep the brick as an obstacle. If the
parameter of point vertical distance was lowered, it would not filter the whole ground,
because the points in the point cloud belonging to the ground are vertically spread in
about 20 cm.
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Figure 8.15. OctoMap for path planning and collision avoidance test #1. OcTree resolu-
tion is 20 cm.

Figure 8.16. Collision avoidance test #1. Blue dots represent OctoMap obstacles (Fig.
8.15). The path was set by the blue waypoints (connected by white lines). How the
collision was solved and obstacles bypassed show the grey waypoints connedcted with red

lines. This solution was found in 0.5 seconds which is the RRT* planner time limit.

8.3.2 On the fly processing with collision avoidance
In this test the point cloud processing was run in parallel with path planning and
collision avoidance simulating the map exploration. Point cloud points were mapped
on the trajectory where the UGV sensed them in a real environment. When the UGV
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in the simulation got close to the trajectory, corresponding parts of the point cloud
were processed and sent into OctoMap. Right after the OctoMap received them, the
planner could avoid obstacles in these parts. The OctoMap model after discovering
all the points was saved and is shown in Fig. 8.17. The path planning with collision
avoidance part of the test is captured in Fig. 8.18 and Fig. 8.19. Modules parameters
were:.OctoMap: resolution 20 cm; hit probability 0.63, miss probability 0.4; max. clamping

threshold 0.97; min. clamping threshold 0.12; OctoMap raycasting range clamping
60 m..Downsampling: voxel size 5 cm..Ground filter: max. points horizontal distance 0.3; ground filter max. d 0.3 (Sec.
6.1.3); max. ground plane angle inclination 0.1 rad.

Figure 8.17. OctoMap from the second test. OcTree resolution 20 cm. For illustrative
purposes.

The rover was given two waypoints and managed to get on them successfully while
avoiding progressively added obstacles. The points corresponding to the rover driven
trajectory were processed and added to OctoMap every 0.5 second (the same period as
RRT* search max. time). The CPU of the machine performing the simulation (Intel i5
2430m 2.4 GHz) was on 75% of maximum load.

A video of this experiment is on the attached CD. Because the point insertion into
OctoMap and collision detection has higher priority, there is about 0.5 seconds delay
in displaying the obstacles in TAF.
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Figure 8.18. Collision avoidance test #2 part 1. Picture number 2 shows the starting and
goal position of first target. Pictures 2-9 show how the UGV was moving and the map was
incrementally built. In picture 10 another target waypoint was selected and the pictures

11-24 show the progress again. Continuation in Fig. 8.19.
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Figure 8.19. Collision avoidance test #2 part 2.
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Chapter 9
Conclusion

In this work we dealt with problem of navigation of unmanned vehicles. Firstly we
reviewed existing approaches to point cloud creation, path planning and collision avoid-
ance. Then we started working with sensors. We implemented their communication
protocols and integrated them under both Windows and Linux operating systems. We
designed Java framework for point cloud creation and implemented it. To carry out
field experiments a rover platform was built. We acquired an RC model, used its chas-
sis, servos and controller and built extra two-floor platform onto which we placed the
sensors.

When we started sensing the environment, the framework could only create the
point clouds in real time. That turned out to be very inefficient because point cloud
was very difficult to analyse. To overcome this issue the possibility for sensors raw
data acquisition was implemented. After that, during offline point cloud creation, we
identified and fixed several both software and hardware errors. The software ones
were usually related to issues that were omitted in invited solutions, e.g. alignment
between coordinate systems of different sensors or wrong time frames adjustments.
The hardware errors included wrong sensors placement or use of inadequate devices
(radios).

Once we were able to produce correct point clouds, we started integrating the software
required for collision avoidance and path planning. We modified specific parts of TAF
system, whose main focus were aerial vehicles, to match our requirements for rover.
We implemented OctoMap. We tested and incorporated Flexible Collision Library into
collision detection module of TAF. We found out that a point cloud has to be filtered,
downsampled and the ground has to be segmented before inserting into OctoMap.
Otherwise the collision detection would not work in the desired manner.

Last thing was the modification of planning algorithms in TAF for rover usage.
Firstly we implemented a simple planner, but since it turned out not to be working
properly with the higher amount of present obstacles, with few modifications we inte-
grated already available RRT* planner.

The result is a robust software framework that could be used in applications of un-
manned ground vehicles equipped with LiDAR, IMU and RTK GPS, for path planning
and collision avoidance.

9.1 Future work
To be able to put the presented framework onboard the usage or the environment of
operation should be discussed. The algorithms and presented ways of collision avoidance
will work but proper parameters of models processing must be set accordingly. Because
they depend on the environment, one possibility could be measuring some sample areas,
surfaces and objects and create a table of values and measured objects.

Also hardware computational requirements should be measured. The tests showed
high CPU load. That would even increase while running in real time, because of
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point cloud creation, which itself usually consumes about 160% out of 400% available
performance on Toradex (quad-core). But while that could be solved by a proper
parallelization, providing there is still enough computational power available, problems
with RAM are expected. While PC creation is running, there is about 0% - 20% out
of 1 GB RAM available. That is not enough and RAM upgrade should be considered.

However, the most important task is to find an automated fix for elimination of
the misalignment between IMU and RTK GPS coordinate systems. A solution to fix
this issue offline was found and used during the experiments, but without proper point
cloud available in real time, we can not process it, create OctoMap, therefore perform
collision checks and navigate in the environment.
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Appendix A
The attached CD-ROM

The picture below shows the tree structure with included files :

Figure A.1. CD content

.The pdf version of this thesis can be found in the pdf directory..The OctoMap files regarding test in Sec. 8.3 are located in OctoMap directeroy.
They can be opened in Octovis1..Point cloud las files in point clouds directory were used for tests described in 8.1 and
8.3.2. They can be open with one of the many available las viewers such as Quick
Terrain Reader2, SAGA Gis3 or even online variants..The video in the video folder is captured the experiment described in 8.3.2.

1 http://wiki.ros.org/octovis
2 http://appliedimagery.com/download/
3 http://www.saga-gis.org/en/index.html
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Appendix B
Abbreviations

UAV Unmanned aerial vehicle, commonly known as a drone, as an unmanned
aircraft systems, is an aircraft without a human pilot aboard.

UGV Unmanned ground vehicle. The same as UAV except it’s terrestrial and
operates on the ground.

LiDAR LiDAR stands for an acronym of Light Detection and Ranging. It’s
a surveying technology that measures distance by illuminating a target
with a laser beam.

FEE Faculty of electrical engineering.
GPS Global position system is a space-based navigation system that provides

location and time information in all weather conditions, anywhere on or
near the Earth, where these is an unobstructed line of sight to four or
more GPS satellites.

GNSS Global Navigation Satellite System is a satellite system that is used to
determine the geographic location of a user’s receiver anywhere in the
world.

IMU An inertial measurement unit is an electronic device that measures and
reports a body’s specific force, angular rate and the magnetic field sur-
rounding the body.

ToA Time of Arrival is the travel time of a radio signal from a single trans-
mitter to a remote single receiver.

SLAM Simultaneous localization and mapping is the computational problem
of constructing or updating a map of an unknown environment while
simultaneously keeping track of an agent’s location within it.

GLONASS GLObal NAvigation Satellite System is a space-based satellite naviga-
tion system operating in the radionavigation-satellite service and used by
the Russian Aerospace Defence Forces providing an alternative to GPS.

UDP User Datagram Protocol is one of the core members of the Internet
protocol suite.

RTK Real Time Kinematic satellite navigation is a technique used to enhance
the precision of position data derived from satellite-based position sys-
tems.

UART Universal Asynchronous Receiver/Transmitter is usually an individual
integrated circuit used for serial communications over a computer or
peripheral device serial port.

LVTTL Low-Voltage Transistor-Transistor Logic is a class of digital circuits
built from bipolar junction transistors and resistors.

GCS Ground Control Station is a control center that provides the facilities
for human control of unmanned vehicles on the ground or in the air.

APM ArduPilot Mega is an open source UAV platform, able to control au-
tonomous multicopters, fixed-wing aircraft, traditional helicopters and
ground rovers.
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RC Radio control is used for control of model vehicles from a hand-held radio

transmitter.
LiPO Lithium-ion polymer battery is a rechargeable battery of lithium-ion

technology in a pouch format.
NiMH Nickel-Metal Hydride battery is a type of rechargeable battery.

ESC Electronic speed controller is an electronic circuit with the purpose to
vary an electric motor’s speed, its direction and possibly also to act as a
dynamic brake.

SNR Signal-to-noise ratio is a measure used in science and engineering that
compares the level of a desired signal to the level of background noise.

RANSAC RANdom SAmple Consensus is an iterative method to estimate param-
eters of a mathematical model from a set of observed data which contains
outliers.

PCL Point Cloud Library is a standalone, large scale, open project for 2D/3D
image and point cloud processing.

FCL Flexible Collision Library that integrates several techniques for fast and
accurate collision detection and proximity calculations.

TAF Tactical AgentFly is a agent-based software system for command & con-
trol and simulation of autonomous vehicles with main focus on an area
surveillance or mobile ground target tracking.

RRT Rapidly-exploring Random Tree is an efficient algorithm for searching
and path planning in nonconvex environments.

CA Collision Avoidance.
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