
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s Thesis

Algorithm with Quality-Runtime Tradeoff
Parameter for Attack Policy in Attack

Graphs for Network Security

May, 2016 Author: Elnaz Babayeva

Supervisor: Karel Durkota





i



Author statement for undergraduate thesis:

I declare that the presented work was developed independently and that I have listed

all sources of information used within it in accordance with the methodical instructions

for observing the ethical principles in the preparation of university theses.

Prague, date
signature

ii



Acknowledgement

I would like to thank my supervisor Ing. Karel Durkota for regular and very useful

consultations, helpful advice and for the time Ing. Karel Durkota has devoted to control

and improve my work. I would like to thank my family and close friends for their help

and support during my studies.

iii



iv



Abstrakt

Hledáńı optimálńı strategii v útočném grafu je považována za NP těžkou úlohu.

Correlated Stackelberg Equilibrium (CSE) aproximuje Strong Stackelberg Equilibrium

(SSE), který hledá optimálńı strategie pro dva hráče, obránce a útočńıka. Tato práce

se zabývá použit́ım iterativńıch algoritmů s účelem zmenšeńı času běhu CSE algoritmu.

Iterativńı algoritmy umožňuj́ı postupně zlepšovat dolńı odhad optimálńı strategie. Tenhle

zp̊usob slouž́ı k směrováńı prohledáváńı útočného grafu a sńıžeńı složitost́ı prostoru řešeńı.

Navržená technika snaž́ı se naj́ıt kompromis mezi kvalitou řešeńı a časem běhu algoritmu.

Kĺıčová slova

(śıt’ové zabezpečeńı, teorie her, útočný graf, honeypot alokace, iterativni algoritmus, kom-

promisńı parameter)
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Abstract

Finding the optimal policy in the attack graph is known to be an NP-hard problem.

Correlated Stackelberg Equilibrium (CSE) approximates Strong Stackelberg Equilibrium

(SSE), which finds the optimal policy profile for two players, a defender and an attacker.

This thesis investigates the application of iterative algorithms to reduce the computation

time of CSE algorithm. Iterative algorithms allow improving lower bound to the optimal

attack policy. It can be used to direct exploration of the attack graph and by that to

reduce the complexity of the searching space. Proposed techniques look for a tradeoff

parameter between algorithm’s quality and its runtime.

Keywords

(network security, game theory, attack policy, honeypot allocation, iterative algorithms,

tradeoff parameter)
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Chapter 1

Introduction

Networked computer systems have got a wide range of usage for the last decades. As

a result of it, not only the term of a cyber attack was invented, but also the number

of computer attacks increases every year. Recently there has been research interest in

the game-theoretic approach to secure networked computer system, so we also focus on

hardening networked computer system using game theory and decoy host for the attacker

called honeypots.

Even for a small network there is a need to have an automated decision system to

reduce the successful attacks. Attack Graph (AG) is a representation of vulnerabilities

analyzing network and detecting weak places. AG represents all the known sequence of

the actions, which the attacker can use to compromise the target in the networked system.

With AG, we can calculate the risk of the successful attack (Noel a Jajodia, 2004).

There are game-theoretic approaches which use attack graphs to find what parts of

the network are not secured and try to harden them. One of the methods to decrease the

risk of the attacks is to set honeypots (HPs) into the network (Durkota et al., 2015b).

There are two reasons to set up honeypots. Firstly, get a record of the attacker’s activity,

thereby to get a deep look at the methodologies of the network insecurity. Secondly,

honeypots can serve as Intrusion Detection System. The main goal of a honeypot is to

distract the attacker from real hosts. But it is expensive to set and assemble a believable,

hardly detectable honeypot.

In paper (Durkota et al., 2015b), the authors use the game-theoretic model to choose

what real hosts to duplicate as honeypots to develop a more secure network. The game-

theoretic model proposes an interaction between two players, attacker and defender, to

find the best strategies for both of them. With AG, we find an optimal plan for the

attacker to get the highest reward as possible. The defender, an administrator of the

1



2 CHAPTER 1. INTRODUCTION

network, decides for the type of honeypot and looks for a tradeoff between the cost of a

honeypot and his loss in case of a successful attack.

The current algorithm generates all relevant attack plans, which attacker can apply

and then find the best host type for setting up HPs. In addition, the general case of

Strong Stackelberg Equilibria (SSE) is NP-hard problem. Authors in (Durkota et al.,

2015a) present linear program form of SSE approximation that finds a close solution in

polynomial time. The problem of this LP formulation is that it needs all the attack plans

in advance to construct LP and to find the optimal strategy for the defender. To reduce

the number of attack plans, authors use only promising ones for the network.

In this work we propose an iterative algorithm for finding attack policies and itera-

tively build honeypot allocation game, avoiding calculating all the attack policies opti-

mally. We introduce two iterative algorithms for AG: Iterative Deepening and Iterative

Bounding Algorithm. In iterative algorithms, the defender has an optimistic belief how

much he loses if the attack succeeds while the attacker has a belief that he gets less than

he could. We limit the attacker’s actions and find a lower bound of the attacker’s best

plans, then investigating what is the best choice for the defender in this iteration. Iter-

atively we increase the number of attacker’s actions approaching to the optimal solution

of the honeypot allocation game.

The first part of the work focuses on iterative algorithms, and it’s application to

attack graphs. The second part describes iterative algorithms implementation to the

honeypot allocation game and choosing iterative parameter which finds a tradeoff between

computational time and effectiveness of the algorithm.



Chapter 2

Background

2.1 Network

We describe a computer network as a list of host different types T , such as firewall, server,

workstation, etc. Two hosts are of the same type if they run the equal services, have the

same connectivity in the network and have the equivalent value for the player. All hosts

of the same type produce the same attack space, presenting the same vulnerabilities of

the network, so they can be represented only once in the attack graph due to scalability.

During the attack a specific host of given type is chosen randomly. Formally, a computer

network x ∈ NT
0 contains xt hosts of type t ∈ T . For example in Figure 2.1(a), the set

of types is T = (WS,DB) and n = (10, 1), meaning that in the network there are 10

workstations (WS) and one database (DB).

(a) Simple Network

T = {DB,WS}

(b) Local Network

T = {DB,WS,FW,S}

(c) Chain Network

T = {DB,WS}

Figure 2.1: Different simple networks.
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4 CHAPTER 2. BACKGROUND

2.2 Attack Graph

There are various representations of attack graphs. We use dependency AND-OR attack

graphs because they are compact and allow better analysis. They are directed graphs,

which have AND and OR nodes, where a fact is OR node and an action is AND node.

Fact f is a logical statement about the network, while an action could make the facts

true. Fact nodes bring a reward for the attacker. An action a has preconditions (pre(a))

and effects (eff(a)). Preconditions – a set of facts, which must be true before a can

be performed, and effects – a set of facts which will be true if action a succeeds. The

edges of the graph represent the relations between action and its preconditions or effects.

We apply a monotonicity assumption (Qian et al., 2010), that once some fact is true, it

will remain unaltered during entire attack. Every action is assigned a probability that

this action succeeds and a cost — the price the attacker pays to perform the action

whether the action succeeds or not. Besides, there is a set of host types the attacker

interacts with, if some fact is true. Formally, attack graph can be represented like a tuple

AG = 〈F,A, T, r, p, c, hp〉, where

• T is set of host types in the network

• F is a finite set of facts

– Tf ⊂ T is set of host types the attacker interacted with if fact f is true

• A is finite set of actions

– Fact f ∈ F depends on action a ∈ A if f ∈ eff(a) and action a depends on f

if f ∈ pre(a)

• r : F → R is a reward (denoted as rf )

• hp: A→ [0, 1] is a probability that action interacts with honeypot, denoted as hpa.

¯hpa = 1− hpa is probability that action does not interact with honeypot

• p: A → [0, 1] is a probability that action succeeds, denoted as pa. We define

p̄a = 1− pa probability that action fails

– If hpa > 0 then pa + p̄a = ¯hpa

• c: A→ R is cost of the action, denoted as ca
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For example, in Figure 2.2 there is an example of attack graph. Diamonds and rect-

angles are facts, where rectangles are facts which initially true and diamonds are facts

initially false. Diamonds are denoted by label and set of type hosts Tf ⊂ T . Actions are

rounded rectangles denoted by tuple 〈pa, ca〉. The attack proceeds from top to bottom.

In this particular AG there is only one reward, when attacker achieves root privileges on

database server (1: execCode). At the beginning attacker can perform following actions:

9:RULE 20 or 15:RULE 1. If the attacker decides to infect a website (action 9:RULE 20 )

he immediately pays ca = 4 and with probability pa = 0.8 the user will browse malicious

website and fact 8:accessMaliciousInput becomes true.

Figure 2.2: Attack Graph

There are several tools to generate the attack graphs automatically. We useMulV AL 1,

which builds graphs from information collected by scanning tools likeNessus 2 orOpenV AS3.

Costs and probabilities could be estimated using Common Vulnerability Scoring System

(CVSS) in the National Vulnerability Database or directly from the administrator of some

network.

1http://people.cis.ksu.edu/ xou/mulval/
2http://www.tenable.com/products/nessus-vulnerability-scanner
3http://www.openvas.org/
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Figure 2.3: Optimal attack policy for the attack graph depicted on Figure

2.2. Solid arcs show the subpolicy, if the action is successfully

executed, dashed if action fails. Also, there is expected utility

EC for every action.

2.3 Attack Policy

By solving AG we mean to find attack policy, which characterizes every action during

an attack. Formally, attack policy (AP) is an oriented tree ξ for evaluating AG. Nodes

of attack policy are actions A. Performing action a ∈ A has three possible outcomes,

represented as edges: the action succeeds, fails or interacts with the honeypot. If the

action has interacted with HP, then the attack ends. Otherwise, the attacker can execute

action b ∈ A, if ∀pre(b) ∈ F are true. We define a history of attack ζ as a list of tuples

〈a, label〉, where a ∈ A and label = {true, false} denoting if the action succeeds or not.

History ζ constructs order of the actions being executed during the attack.

We define an expected cost of every attack policy ξ. Let χ be a node of AP and ψχ

be a subtree of node χ. Suppose action a has been exploited at the node χ, which means

that ∀f ∈ pre(a) are true. Then ψχ+ is a subtree of success, ψχ− is a subtree of fail, then

expected utility ϑ of ψχ can be calculated recursively as follows:

ϑ(ψχ) = −ca + (1− hpa) · (pa · (ϑ(ψχ+) + reff(a)) + p̄a · ϑ(ψχ−)) (2.1)
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The optimal policy is a policy which brings the highest expected utility. To find the

optimal policy we need to find all the policies and their expected utilities. In Formula 2.1

we need to take into account two points. Firstly, a reward could be taken only once.

Assuming that there are two actions a, b ∈ A and f ∈ eff(a), f ∈ eff(b), rf > 0. If the

attacker performs action a and it succeeds, he gets a reward rf . During an attack, he

could perform successfully action b, but he does not get a reward rf because it has been

obtained by action a. Secondly, we assume that the attacker is a rational player, that he

attacks according to the optimal attack policy to get the highest reward. For the first

time, the attacker attacks a specific host h of type t ∈ T , which is chosen uniformly. If

the attacker interacts with host type t in the future during the attack, he will interact

with the same host h, because the reward is the same for every host type and probability

of interacting with honeypot drops to zero. The attacker can terminate an attack at any

time.

Figure 2.3 depicts the optimal AP for the attack graph in Figure 2.2 without hon-

eypots. Nodes represent suggested actions; solid arc represent subpolicy if the action

succeeds, and dot arcs represent subpolicy if the action fails. In Figure 2.3 the first

suggested action is 9: RULE 20, if it fails, the attacker’s next best choice 15:RULE 1

otherwise he proceeds with 7:RULE 2. In every action’s subpolicy we calculate expected

utility EC if the policy is followed. The rational attacker terminates the attack if there

are no actions to perform, expected utility is lower than the cost of actions or all the

rewards have been collected.

2.4 Markov Decision Process

To compute the optimal attack policy, we use a finite horizonMarkov Decision Process,

denoted as MDP. MDP represents all possible attack policies in the attack graph for a

single network. In MDP, we define a set of states S. Every state s ∈ S consists of i) set

of actions As, which can be exploited in this state ii) Ts ⊂ T the set of host types the

attacker has interacted with and ii) Fs ⊂ F the set of achieved facts. Every action has a

probability of success, failure or interacting with honeypots. If the attacker interacts with

honeypot, then the attack ends, otherwise if there are more actions to commit, a new

state is generated as outcome of that action. If action a made a fact f ∈ eff(a) true and

r(f) > 0 then the action brings a reward. The rewards are summed and represented in
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terminal states of the game. Moreover, the MDP is a tree, where nodes are states S, and

edges represent actions A′, probabilities of actions modeled like a chance nodes. Attacker

chooses an action in each of MDP states. Formally, MDP for AG can be represented as

tuple < A′, S, P,R >, where

• A′ = A∪Γ is set of actions, where Γ is termination action, which has cΓ = 0, pΓ =

1, TΓ = ∅

• S is a set of states, where s = (As, Ts, Fs)

• P a
ss′ ∈ [0, 1] the probability that from state s with action a can be reached state s′

• Ra
ss′ is the attacker’s reward for performing action a in state s heading to s′, it

depends on cost of action ca, the set of facts which are true Fa and probabilities of

success and interacting with honeypots.

2.5 Partial Observable Markov Decision Process

In the previous section, we describe MDP for the game tree for one network, and MDP is

perfectly observed, but the defender hardens the network by setting up a honeypot. We

assume that the attacker knows how many honeypots are allocated, but his ambiguity is

about the type of honeypot. Therefore the attacker does not know precise structure of

the network, he only has a prior belief (based on statistics) what network he observes. So

the problem is translated to Partial Observable Markov Decision Process (POMDP).

For example in Figure 2.4(a) the attacker has belief that with probability 0.4 he observes

a network z1 and with 0.6 observes network z2. The same action in different networks can

lead to the different probabilities, so for computing the probabilities in various MDP we

use Bayes rule. If we are in a state s and βj(s) is a probability that we are in j’s MDP in

state s. After performing action a we occur in state s′ with probability pj(s, s
′, a). Now,

updated probability in state s′ is βj(s
′)=

pj(s,s
′,a)βj(s)

∑M
i=1

pi(s,s′,a)pβi(s)
, where M is the number of all

MDPs.
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(a) Network z1 (b) Network z2

Figure 2.4: Two networks of AG depicted Figure 2.2 with different allo-

cation of HP. HP are denoted by yellow color. For attacker

these networks are indistinguishable.

2.6 Closed Under Rational Behavior Set

For game theory analysis we are interested also in attacker’s behavior in all possible beliefs

among indistinguishable networks. The defender chooses how to allocate the honeypot,

thereby changing attacker’s belief. However in case we do not know the probability of the

networks, we need to compute a set of attack policies that are optimal for some beliefs.

By that, we divide attacker’s belief space, and for each belief, we have his optimal attack

policy.

In one attack graph, there is an exponential number of MDP attack policies. To re-

duce that number, we use only rationazable attack policies.A attack policy is raionazable

”if and only if it is the attacker’s best response to some belief about the network”(Durkota

et al., 2015a). Closed Under Rational Behavior (later on CURB) is a set of all rationaz-

able attack policies. For example in Figure 2.5(a) is depicted the optimal attack policy

ξ2, when attacker has a prior belief hp = 1.0 that HP is host1 for the attack graph in

Figure 2.4(a). Therefore, attacker’s decision about AP depends on his belief if the hon-

eypot is assembled in the network or not. In Figure 2.5(a) attacker has a prior belief that

he observers network z, where no honeypots are placed and in z1 where HP is host1 -

– network depicted Figure 2.4(a). The attacker chooses optimal strategy ξ1, depicted in

Figure 2.3, if his belief that honeypot is set less than 0.74, otherwise he chooses policy

ξ2.
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15:RULE 1 (remote exploit of a server program)
p=0.2,c=5.0,EC=194.2

n15F0
27:RULE 4 (multi-hop access)

p=1.0,c=4.0,EC=996.0

F T

+1000.0

(a) Optimal AP, when HP is set with hp = 1 (b) CURB of Attack Policies for two networks

Figure 2.5: Example of CURB

2.7 Contribution

Even having only rationazable attack policies in CURB, the scalability increases expo-

nentially. We would like to introduce iterative algorithms which limit actions in the

attacker’s policies. Algorithms iteratively make CURB more complicated and iteratively

it reaches to the optimal solution. This approach is needed for the honeypot allocation

game, which will be described later.



Chapter 3

Solving Iterative Attack Policies

3.1 Iterative Algorithms

As it is said in ”A Dictionary of Computing” by John Daintith the iterative improvement

is ”a technique that approaches a solution by progressive approximation” (Daintith a

Wright, 2008). So iterative algorithm with every iteration approaches closely to the

optimal solution. In this chapter, we propose iterative algorithms which find a lower

bound (LB) of the attacker’s CURB by limiting the number of the attacker’s actions. It

is lower bound, because with every iteration we increase number of actions, so attacker

can get more chances to increase the reward and have a successful attack. Let ξm and

ξm+1 be the optimal attack policy in iterative step mth and m+ 1th respectively.

Proposition 1. Expected utility of optimal attack policy in m + 1th iteration is at least

as good as expected utility of optimal attack policy in mth iteration: ϑ(ξm) ≤ ϑ(ξm+1).

Proof. In every iteration we increase number of actions which the attacker can exploit. In

m+1th iteration could be action which brings a reward rf , not obtained in mth iteration.

Therefore, expected utility increases. If there are not such a reward or to obtain it costs

more than it’s own value, then the optimal attack policy will remain the same as in mth

iteration.

We concentrate at the attacker’s CURB and push it the optimal solution. We intro-

duce two algorithms, which limit the attacker’s actions: Iterative Deepening algorithm

and Iterative Reward Bounding algorithm. Iterative Deepening algorithm limits the

depth of the game tree and does not allow to exceed limited number of actions in a se-

quence. In every iteration, we increase the number of actions in the sequence. Iterative

11
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Reward Bounding algorithm prunes the states if their estimated reward is less than some

chosen value. We use heuristics to estimate the reward of the state. According to the

heuristics, the algorithm decides to which state the attacker should proceed further. In

both of these methods there is parameter of quality, iterative step. We try to find such

a parameter which will decrease runtime and number of expanded states. In Iterative

Deepening it is max-depth and in Iterative Reward Bound it is min-utility. We concen-

trate on these two algorithms, because they have clearly definite iterative quality and

with final approximation reach to the optimal solution. For example, we consider an al-

gorithm which combines some actions into one, but then it was uncertain how to disjoin

them and what price and cost should be for this action.

3.2 Iterative Deepening Algorithm

In Iterative Deepening Algorithm (later ID) we propose to limit the depth of the attack

policy. The idea is that there is no policy generated with the sequence more than number

of limited actions. We define max-depth as a variable which limits the depth of the

tree. Increasing max-depth we increase competent sequence of actions which attacker

can follow. Therefore with incrementing max-depth, we have more chances to get higher

reward and greater expected utility of the optimal attack policy. Algorithm terminated

when no states were pruned, and therefore it reached the optimal solution.

The problem is to set up iterative step, meaning how to change max-depth for every

iteration. Attack graph is surely solved optimally when max-depth= |A|, because per-

mitted sequence of actions will be maximum, and the attacker chooses the optimal AP

among all the possible generated policies. If max-depth is set up to 1, all the polices will

be consisted from one action, but there is no guarantee that the attacker gets a reward

and his optimal strategy is not to attack. We propose an algorithm which calculates

minimum number of actions in the attack policy for the attacker to get at least one

reward.

In our attack graph, depicted in Figure 2.2, there are five actions which could be

executed and it is the maximum sequence of actions which could be in the attack policy.

In a case of this AG, there must be minimum two actions to bring a reward for the

attacker. Attack policies ξ1 and ξ2 consisted of 2 actions are depicted in Figure 2.2 as

red and green lines respectively. Calculated the expected reward for these two polices
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9:RULE 20 (Browsing a malicious website)
p=0.8,c=4.0,EC=715.2

n9F0
7:RULE 2 (remote exploit of a client program)

p=0.9,c=1.0,EC=899.0

F T

+1000.0

(a) Optimal AP when max-depth= 2

15:RULE 1 (remote exploit of a server program)
p=0.2,c=5.0,EC=766.36

9:RULE 20 (Browsing a malicious website)
p=0.8,c=4.0,EC=715.2

27:RULE 4 (multi-hop access)
p=1.0,c=4.0,EC=996.0

F
7:RULE 2 (remote exploit of a client program)

p=0.9,c=1.0,EC=899.0

F T

+1000.0

F T

+1000.0

(b) Optimal AP when max-depth= 3

Figure 3.1: Iterative Deepening Algorithm applied to AG in Figure 2.2

are ϑ(ξ1) = 188.2, while ϑ(ξ2) = 715.2. Optimal attack policy is ξ2 and it is depicted in

Figure 3.1(a).

In the previous example max-depth was two. If we increment max-depth by one, an

optimal attack policy looks like in Figure 3.1(b). With max-depth= 4 we have found

optimal policy which is depicted in Figure 2.2(b).

3.3 Iterative Reward Bounding Algorithm

In Iterative Reward Bounding Algorithm (IRB) we introduce an algorithm which prune

the subpolicies that have a low reward for the attacker.

For state s ∈ S we calculate heuristics h(s) of expected reward. To calculate a

heuristics we translate AG into attack tree, deleting edges from AG which violets tree

structure. Then for every reward rf , rf > 0 we are looking for the path from rf to the

state s, calculating the cumulative probabilities of reaching the state s. Total heuristic

is sum of weighed rewards. Heuristics is admissible because we do not take into account

costs of the actions, so heuristics of the state does not overestimate the expected utility

of the state.

Taking advantage of the heuristics, we limit the expected cost of the states by param-

eter min-utility. For every state s we calculate its heuristic h(s) and if h(s) <min-utility

we prune out the search and by this limit attacker’s possible actions.

It is clear that the expected utility of the optimal attack policy is always higher than

0, because if it is negative, attacker chooses not to attack the network. Therefore, we find
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(a) min-utility= 740 (b) min-utility= 650 (c) min-utility= 190

Figure 3.2: The optimal AP for differentmin-utility for AG in Figure 2.2

the optimal attack policy for AG with min-utility= 0, because no state are pruned. The

first iterative step is with min-utility= h(s0), where s0 is the first state in MDP. If all the

possible actions As0 ⊆ A are exploited in s0, we get P
a
s0−>s′ < 1.0, then h(s′) <min-utility

and AP does not expand further. So, it is the first reasonable maximum for min-utility,

because for w > h(s0),min-utility = w, IRB cuts the s0 right away and the optimal

policy for the attacker is not to attack. The interval of min-utility, which can be chosen

for the first state is [0, h(s0)]. Algorithm terminates and finds the optimal solution when

no states are pruned, so it does not always demand to be solved at min-utility= 0. In

Figure 3.2 are depicted the optimal attack policies with different min-utility for AG in

Figure 2.2.



Chapter 4

Experiments

The experiments analyze the algorithms for iterative computation of the attack policies

for different graphs. We would like to present the algorithm’s influence on time and

number of expanded states in every iteration. All experiments run on one core of Intel i5

2.4GHz processor with 3.5GB memory limit. We use two different computer structures,

which are depicted in Figure 2.1(b) as business and in Figure 2.1(c) as chain network.

Connections between the host types in the network correspond to actions in the attack

graph. Attack graphs were generated with MulVAL, and additional cost, and probabilities

were added using CVSS. They are different size and complexity, for better representation

they are divided into two groups. In all attack graphs, only one host was noted as a

reward, and it’s price was set to 1000. Moreover, we have not hardened network with the

honeypot. Graphs denoted as Rand were created by the random connection of the hosts.

4.1 Iterative Deepening Algorithm

In this section we evaluate ID algorithm for different networks incrementing max-depth

by 1. It is minimal iteration step, and it shows all possible iterations and its influence

on execution. As it can be seen from Figure 4.1 time and number of expanded states

monotonous increasing and they are not directly proportionally. For example, after mth

iteration, Chain-8 takes less amount of time than Rand-60, but expands about 2000000

states more. Time depends not only on the number of states but also on the complexity

of the graph. Moreover, for AG Chain-8 it takes similar amount of time to solve AG

with max-depth= 22 and optimally with max-depth= 28. That is why it is important to

15
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set iterative parameter optimally to reduce total computational time. For example, for

AG Chain-8 if iteration step increases by 1, total computational time is ttotal = 6722s,

while for step 3 time is ttotal = 4252. Techniques how to choose optimally iterative step

will be discussed in the next chapter.

The attacker’s optimal strategy depends on the graph structure, action costs and

success possibilities. We estimate these values for graph Chain-7 choosing action proba-

bilities uniformly and costs randomly from the interval from 0 to 100. The reward remains

the same. As it can be seen from Figure 4.2, characteristic of the actions has a significant

impact on the investigating of the optimal solution. The time interval is in range 4200

to 3.4 · 105 and number of expanded states is in the range from 1000 to 5.4 · 106. From

Figure 4.2(a) can be seen, that the expected utility approaches to the optimal solution in

first 5-6 iterations in most of the cases. The rest of the iterations calculates the decimal

places of the expected utility or continues looking for the optimal solution by exploit-

ing more states. For us, it is important that time and number of expanded states are

monotonously increasing with some iterations.
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Figure 4.1: Iterative Deepening Algorithm applied to different graphs.

4.2 Iterative Reward Bound Algorithm

The same graphs were used for Iterative Reward Bound Algorithm. In IRB, it is not

clear how to decrease min-utility for each iteration. Attack graph is solved optimally,

when min-utility= 0. For better analysis we reversed x-axis to have a clear vision that
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Figure 4.2: Iterative Deepening Algorithm applied to Chain-7.
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Figure 4.3: Iterative Reward Bound Algorithm applied to Chain-7.

time and expanded states increases as min-utility reaches zero. First min-utility is chosen

depending on heuristics of initial state s0. We have used two different iteration steps:

constant and depending on heuristic. In Figure 4.4(a) are depicted graphs, where in

every iteration min-utility was decreased by 50. For example, if in mth iteration min-

utility= 473.5, then in m + 1th min-utility= 473.5 − 50 = 423.5. And in Figure 4.4(b)

are graphs, where min-utilitym+1 =min-utilitym − h(s0) · 0.1666. For Chain-8 it takes

5 iteration to solve optimally and approximately all the states were exploited in the

first iteration. If in Chain-8 we set iteration step to 50, meaning min-utilitym+1 = min-

utilitym -50, overall time is 3174s while for min-utility depicted on Figure 4.4(b) it is

3494s. The problem is converted to set up optimally iteration step.

We also investigate graph Chain-8 substituting different probabilities and costs as we

have done for ID algorithm. As in ID algorithm, IRB algorithm reaches close approxi-

mation to the optimal solution in the first couple of iterations. For example, if we take

the highest graph in Figure 4.3 it converges to the optimal solution on the first iteration
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and then inspecting all other possible ways to get a reward.
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Figure 4.4: Iterative Reward Bound Algorithm applied to different graphs.

4.3 Comparison of Two Methods

As it can be seen from the graphs depicted in Figure 4.1 and Figure 4.4, computational

time and number of expanded states is not significantly different from each other. But

taking into account the graph Chain-7 ID algorithm expands in average five times more

states than IRB algorithm and takes 33% more computational time. We suppose that

IRB algorithm will give us better results than ID. In the next chapter, we intend to

adopt these algorithms into honeypot allocation game, introduce some modification of

IRB algorithm and choosing optimal iteration step.



Chapter 5

Imperfect Information Honeypot

Allocation Game

Our game is an extensive two-player game with imperfect information. In this game, the

attacker has prior beliefs about basic network topology, what is not always true in the real

world problems. We assume that he has knowledge about the subset of host types used in

the network, referring to it as a basis for the network: e.g. server, firewall, workstation.

In this extensive form game, a chance player is called nature. Nature selects a network

from the set of the possible networks, extensions of the basis. It is common knowledge

for the defender and the attacker. The defender observers actual network and hardens

it by adding honeypots. The attacker monitors the resulting network, after nature’s and

defender’s actions, and attacks it according to the optimal policy in the attack graph of

this network. After honeypot placement, different networks could look indistinguishable

to the attacker. For example Figure 2.1(a) shows a possible network, and Figure 5.1

depicts a full game for this network.

5.0.1 Nature’s Actions

In the network we define T as a set of host types, n ∈ N as a total number of hosts and b

basis network. Network basis describes the content of a network. X is the set of possible

networks, which must include basis frame and n− |T | hosts in addition. In Figure 2.1(a)

the set of host types is T = {DB,W}, where DB-database, W-workstation and we set

the basis is b = (1, 0), which means that there is only a database in the network. Setting

up n = 2, generated set of basis extension is X = {(1, 1), (2, 0)}. Nature choose x ∈ X,

with uniform probability p = 0.5.

19
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Figure 5.1: Simple game tree with |T | = 2 host types, basis b=(1,0), n=3

and k=1 HP. There are two actions a and b with costs ca = 4

and cb = 3 resp.; rewards ra=30 and rb=20; and success prob-

abilities pa = 0.7 and pb = 0.4. Costs of assembling honeypot

cha = 5, chb = 2.

5.0.2 Defender’s Actions

The defender, player d, can put k honeypots of type T where k ∈ N into every network

x ∈ X. Set of the defender’s actions is Y = {y ∈ NT
0 |

∑
t∈T yt = k}. As a result, we

receive a set Z = X × Y , combination and confluence of sets X and Y . Z is a set of all

networks created by nature’s ∀x ∈ X and defender’s action ∀y ∈ Y , where each host of

type t consists of xt real hosts and yt HPs. Therefore, total number of type hosts t in

the network z is zt + yt. The attacker’s probability of interacting with a honeypot in the

host t is yt
xt+yt

. In addition, there is a defined cost for every honeypot cht ∈ R+, the price

defender should pay to install and assemble the HP of the type t. In Figure 5.1 defender

adds k = 1 honeypot, thereby Y={(1,0), (0,1)}. Resulting set Z consists of 4 different

networks Z={(2,1), (3,0), (2,1), (1,2)}, in the first two elements the HP is in database,

in others in workstation.



21

5.0.3 Attacker’s Actions

The attacker, player a, has imperfect information about the network. Assuming that

he can observe the number of hosts of each type, but he does not distinguish real hosts

from honeypots. Information sets are used to model the imperfect observation. Networks

in information set are identical for the attacker. If two networks z, ż ∈ Z, z = (x, y)

and ż = (ẋ, ẏ), ∀t ∈ T ẋt + ẏt = xt + yt, then z, ż belong to one information set I ∈ I.

Two networks z, ż ∈ I have the same structure of attack graphs, and differ only in the

probability of interacting with HP, which has an influence on success probability and

total expected utility. In other words, the attack policies generated in the network z and

ż are the same (ξz = ξż). Later, we denote different networks as game states. In the

Figure 5.1, the attacker observes three information sets, two of them are singletons {(3,1),

(1,2)} and one information set consists of two networks I1 = {[(2, 0), (0, 1)], [(1, 1), (1, 0)]},

where the first coordinates (2,0),(1,1) are the choice of nature and the second (0,1), (1,0)

are defender’s actions how to place HP. Executing the attack policy heads to the end of

the game, terminal states. For example, for information set I1 the attacker chooses action

a. In our example, there is one reward, and if action a succeeds then the attacks finishes.

With probability p̄a = 0.3 the action a fails and then the attacker executes action b, if it

also fails, the attack is finished, because there no more actions for the attacker.

5.0.4 Players’ Utilities

To compute the players’ utility in terminal states in each leaf l we need three components:

Rl-the sum of rewards for successfully executed hosts which were on the way from the root

to this terminal state l; Cl the sum of the costs of every action, which was performed along

the path; and Hl the defender’s price of setting honeypots along the path. Moreover the

defender utility is computed by ud(l) = −Rl−Hl and the attacker’s utility ua(l) = Rl−Cl.

The utility of the attack policy is the expected utility of the terminal states. In our

example, every leaf of the game tree has two values. The defender’s utility is the top

value, and the attacker’s utility is the bottom one. For example let compute leaf l1,

marked bold in the network z1. Action b brings a reward rb = 20 and costs cb = 3. Before

the action b, the attacker has failed to exploit action a. The total cost C = ca+cb = 7. In

the network z1 honeypot’s type is database and c
h
a = 5. Therefore, ud(l) = −20−5 = −25

and ua(l) = 20− 7 = 13.
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5.0.5 Solution Concept

We define Stackelberg solution concept for this game where a leader is a defender and

a follower is an attacker. The defender commits to a publicly known strategy and the

attacker plays the best response to the strategy of the leader. Also, we follow an as-

sumption of breaking the ties of the leader (Yin et al., 2010). We try to maximize the

defender’s utility on the assumption, that the attacker will play a best response.

We determine the standard definitions from the extensive-form game. The set of

actions which player follows in the game is called strategy. Any strategy must be complete

meaning that in every uncertain state player decides what action to play. Pure strategy

πi assigns every information set Ii exactly one action. Πi is a set of all pure strategies

of player i. Formally, πi : hi → ah, where hi ∈ H, ah ∈ A(h). Mixed strategy δi is a

probability distribution on pure strategies, δi = △πi, where πi ∈ Πi and△ is a probability

distribution (Bosansky a Cermak, 2015). A strategy dominates another strategy if it

always gives a greater utility to the player, regardless of what the other players are doing.

Best response is the strategy or strategies which produce the most favorable outcome

for a player with regard to other players’ strategies (Fudenberg a Tirole, 1991). Let denote

set ∆d (resp. ∆a) as a set of mixed strategies of player d (resp. a). If the player d has a

strategy δd ∈ ∆d, then the player a, playing best response (later on τ) chooses strategy

δa, where δa ∈ ∆a and ua(δa) ≥ ua(δ̄a) ∀δ̄a ∈ ∆a and uj(δj) is the utility function, if the

player follows this strategy (Osborne, 2004).

For our game Stackelberg Strategy profile is:

(δd, πa) = argmax
δ′
d
∈∆d,π

′

a∈BRa(δ′d)

ud(δ
′
d, π

′
a) (5.1)

5.1 Game Approximation

The general case of computing SSE of imperfect information game is NP-hard. Also,

the game tree grows exponentially with increasing number of honeypots, hosts or types

of hosts. We will use the approximation of the SSE that finds a close solution to it in

polynomial time. In (Bosansky a Cermak, 2015) authors present a linear program (LP)

to compute SSE of a game matrix. The LP finds a probability distribution over maximum

utilities for the defender, considering that the attacker plays best response. In (Durkota

et al., 2015b) authors present formulation of extensive-form game into LP. Matrix game
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is constructed for every information set. Therefore, our game is presented as a collection

of matrices, and formulated as a single LP problem.

In Figure 5.2 is shown the translation from extensive-form game into two normal-form

games. There are two information sets I1 and I2. The nature plays action x1 (resp. x2)

with probabilities σ1 (resp. σ2). Therefore, the defender plays y1 or y3 in x1, while y2 and

y4 in x2. The attacker has three various attack policies s1, s2, s3, but each of them has

a different probability of success. The probability of the matrix game is assigned at the

leaves of the game tree. In addition the probabilities of attacker strategies should sum to

the nature probabilities, meaning that p1 through p3 should sum to σ1.

Figure 5.2: Translation of extensive game into two normal-form game

The problem of this LP formulation is that it needs all the attack policies in ad-

vance to construct LP and find the optimal strategy for the defender. In one attack

graph there is exponential number of MDP attack policies, therefore we consider only

rationazable strategies from CURB for every information set. In CURB there all attack

polices which must be in SSE, because any attack policy in SSE is set of the attacker’s

best response, so it must be rationazable, and if it is, it must be in CURB. Moreover,

authors in (Durkota et al., 2015a) present CSE algorithm, which use LP formulation and

incremental pruning alogrithm (IPA) (Cassandra et al., 1997). IPA is an algorithm of

backward induction that in every attacker’s state propagates the CURB set for the part

of POMDP that begins in that particular decision state. Formally, let state s has a set

of actions A. CURB as a set of attack policies Ξa is explored ∀a ∈ A for the part of

POMDP after the action a is exploited. After committing action a in state s there is

a attack policy ξb, which extends the set of attack policy ξb ∈ Ξa. Then from
⋃

a∈A Ξa
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we calculate a CURB for state s. And this algorithm is done recursively for every state.

Solving the LP formulation, we find a mixed strategy for the defender: the marginal

distribution over all the possible defender’s actions.

5.2 Problem Statement

As it is mentioned before CSE algorithm needs to know all the attack policies in advanced.

For larger games calculating all attack policies takes great amount of time and memory.

In this work, we try to reduce the computation of attack policies and calculate only the

relevant policies for some information sets.

The idea is after every iteration, solve LP and give the defender opportunity to decide

what game states are the best strategy for him and expand further only some information

sets.

We consider defender’s Upper Bound CURB which we refine by iterative methods

to the optimal solution. If we considered Lower Bound, CURB could never reach the

optimal solution because there could be some information sets I, which has low expected

utility in some iteration, while they are part of the optimal solution. Considering Upper

Bound (UB), we always choose the most promising information sets with the highest

expected utility of their optimal strategies. We guarantee to reach the optimal solution

because ud decreases in every iteration and LP considers maximizing overall ud. As it

is mentioned above, ud = −H − R and ua = R − C, where H is constant. Because

we look for defender’s UB, R should get higher with an increasing number of iterations.

Therefore, total attacker’s utility increases, and in m+1th iteration he gets higher utility

than in mth. We neglected the cost of the actions in the attack because the attacker plays

best response. So, the problem of defender’s UB can be converted into attacker’s LB.

The idea is to limit the number of attacker’s actions and iteratively increase them.

By this, we are getting LB for the attacker, because with every iteration he has greater

chances to receive a reward. In every iteration, we propose not to refine all information

sets, but only in the promising ones. We would apply Iterative Deepening and Iterative

Reward Bounding algorithms to reduce solving all information sets optimally.
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Iterative Algorithm on HP

Allocation Game

6.1 Application of Iterative Algorithms into Game

The number of information sets monotonous increases with a number of honeypots, hosts

or host types. As it is mentioned before, in every game state g in the information set I the

attack policies are identical, the only difference is expected utilities of attack policies in

various game states. In general, LP algorithm looks for marginal distributions of the most

promising networks to put the honeypots in order to get a minimal loss. CSE demands

the solution of each information set and expected attacker’s utility of the policies in all

the game states in the information set. Formally, let’s say that the game has set I of

information sets I = {I1, I2, I3, I4}, and game states G = {g1, g2, g3, g4, g5, g6}, where

{g1, g3} = I1, {g2, g4} = I2, {g5} = I3, {g6} = I4. We run CSE algorithm, solving all

the information sets optimally. It return a set of game states Gopt = {g1, g5, g3}, where

Gopt is the best solution for the defender to place honeypot to get minimum loss. On the

one hand, we have found the optimal strategy for the defender, on the other hand it was

unnecessary to solve optimally information sets I3 and I4, because they do not influence

the solution.

Inspiring by this idea that we do not have to solve all the information sets optimally

we suggest to solve every information set iteratively by ID and IRB algorithms. For

example, if we limit all the attack policies by two actions and solve LP, the solution

will be G1 = {g1, g2, g3, g4}. Then we refine information set I1 and I2, allowing them

to increase the number of actions in the attack policies. Solving LP again, we can get

25
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another game states G2 = {g1, g6} and continue refining different iterative sets I1, I4 until

we do not find the optimal solution.

Therefore, information sets for m + 1 iteration are chosen from the solution of LP

algorithm in mth iteration. LP finds a solution in polynomial time. Therefore, it is not

so time-consuming to run it after every iteration. Eventually, some information sets have

to be solved optimally to make sure that we have found the optimal solution of this HP

allocation game. Our intention is to set the refinement parameter param (min-utility

and max-depth discussed in Part 1) in order to solve as less information sets optimally as

possible. By this, we reduce computational time and number of expanded states.

In Algorithm 1 is shown pseudocode of the application iterative algorithms to the

game. As it can be seen we do not refine all the information sets, but only these which

are the best for the defender according to the attacker’s optimal attack policies in the

current iteration. Let denote information set satisfiable, if LP chose it in the previous

iteration.

6.2 Iterative Deepening

In ID algorithm, we iteratively increment the depth of attack policies in the information

sets. Formally, let I be the set of all information sets of the game. For every information

set we find minimum number of actions min-depth to get a reward (this is param1 in

Algorithm 1). Therefore, we get a pair 〈Ik, param1〉, where Ik ∈ I and param1 is the

minimum depth of attack policy in Ik to get a reward. The first iteration is ∀Ik ∈ I, we

run ID with corresponding parameter max-depth= paramm. Then we increase max-depth

for satisfiable set. The main contribution is how to set up a parameter to decrease total

computational time, which will be described later for both algorithms. In Figure 6.1(a)

is shown the refinements of the CURB over different depth of one particular IS. As it is

seen, increasing the depth CURB tides to optimal policies, depicted as a red line.

6.3 Iterative Reward Bound

IRB algorithm for AG prunes state, if h(s) <min-utility and then monotonously decreas-

ing min-utility in order to reach optimal solution. For this game, we change heuristics
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Input: Set < InformationSet > I

Output: Map < GameState, Probability > defenderStrategy

defenderStrategy ←Map < GameState, Probability >;

strategiesSet← Set < Strategies >;

for each Ik from I do

paramIk
1 ← tradeoff parameter of the first iteration for Ik information set;

strategiesSet.add(IterativeAlgorithm(Ik, param
k
1));

end

ISToRefine = LP (strategiesSet) returns IS which are the best choice for the

defender in this iteration;

while all I from ISToRefine are not solved do

for each Ik from ISToRefine do

if Ik is not solved then

paramIk
m ← a trade off parametr fo IS Ik in mth iteration;

paramIk
m+1 = changeParametr(paramIk

m);

strategiesSet.add(IterativeAlgorithm(Ik, param
Ik
m+1));

end

end

ISToRefine = LP (strategiesSet);

end

defenderStrategy ← from last ISToRefine the defender optimal game state and

probability;
Algorithm 1: Iterative Refinement Algorithm

(a) ID algorithm (b) IRB algorithm

Figure 6.1: Iterative refinement of CURB set.
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because now we have to take into account beliefs about the network. Now heuristic is

defined by the state and the game state in IS. First parameter for information set Ik

is min-utilityIi = max(h(gj(s)), where gj ∈ Ii, s = s0. For some s ∈ S, difference in

the value of heuristics in various game states could be significant. Therefore, we have

chosen maximum for all game states to avoid extra deepening to the game tree. Our

algorithm returns the CURB of attack policies. If there is the set of {g1, g2..gi} ∈ Ii, and

gi is pruned, meaning that hgi(s) <min-utilityIi, then for g−i ∈ Ii,where hg−i(s) >min-

utilityI−i, we continue calculating attack, while for gi attack ends in state s and returns

current policy. For satisfiable information sets, we decrease min-utility to get closer to the

optimal solution. As it is mentioned above, IS is solved optimally when min-utility= 0.

In Figure 6.1(a) is shown the CURB’s refinements with different min-utility. Decreasing

min-utility the CURB is approaching to the optimal solution.

6.4 Tradeoff Parameter

The main issue in iterative algorithms is that we have to solve the information sets for

a couple of times and some of them completely to reach the optimal solution. In other

words, it increases overall computational time. To find a compromise between reducing

the total number of expanded states and computational time we suggest to use some

techniques of choosing the iterative parameter, which information sets should be updated

and some modernization of algorithm.

6.4.1 Iterative Reward Bound Completed Algorithm

We introduce an approach for Iterative Reward Bound algorithm to stop the attack for

all the game states in IS if one of them has been pruned. Let gi ∈ Ii has been pruned.

IRB continues to expand policy further for other states g−i ∈ Ii, where g−i) 6==gi . Here we

suggest to terminate the attack for all gi ∈ Ii, if gi does not satisfy the condition hgi <min-

utility. Experiments show that this modification IRBC has a greater success than IRB

because it immediately terminates the attack and returns current optimal attack policies

for every game state.
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6.4.2 Parameter Modification

First of all, we can increase or decrease iterative parameter constantly, like it was shown

for AG in the first part. The method is denoted as Const. Formally, if Im in mth

iteration has the parameter set by paramm and has not been solved, in m+1th iteration

paramm+1 = paramm + const, where const > 0 for ID algorithm and const < 0 for IRB.

This method is insufficient because, for different AG, optimal const is different.

Also, we examine another approach which changes the parameter due to the number

of times we have chosen some IS - proportional distribution method (PD). For

this method we define a tuple 〈Ii, n, paramIi(m)〉. Suppose that CSE algorithm chooses

IS Ii in every iteration. We expand this information set mopt times until it is solved

optimally. This information set is promising because the defender has the intention

to play it in every iteration. Therefore, to decrease computational time, we change

iterative parameter paramIi(m) proportionally to m, where m is number how many times

the defender has chosen Ii. Then, every m is assigned a value modification coefficient

θm ∈ [0, 1], initializing how should be changed the iterative parameter. For the next

iteration m + 1 for Ii, paramIi(m+1) = paramIi(m) ∗ θm. We define a threshold mthresh

for n. If defender plays Ii mthresh times, IS is solved optimal. By that, we avoid extra

deepening.

6.4.3 Iterative Reward Bound Approach

Another approach distinguishes game states in one information set for IRB and IRBC

algorithms, denoted asGSmethod. Let Ii ∈ I have set of the game states Ii = {g1, g2..gi}.

Every gj ∈ Ii has different network topology and placements of HPs. Therefore, for some

s ∈ S, hgj(s) 6= hgi(s), i 6= j, because the probability of approaching rewards are various

in the game states gj and gi. Initially, IRB has one min-utility for every IS. In GS we

propese a modification of IRB, which has various min-utility for different game states.

Formally there is a tuple 〈min-utilityg, g〉, where ∀g ∈ Ii, Ii ∈ I. This reformation is

valuable, because considering one min-utility for all game states, can lead to the situation

where in g1 IRB has already found optimal solution, while in g2 it is still needed more

iterations to reach it. It allows us to find the optimal solution for every game state more

uniformly.

In Iterative Reward Bound algorithm we prune states according to heuristics. We

propose a technique, denoted as H, that uses the heuristics value of the pruned state
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in the following iteration. Consider that state s in gi ∈ Ii was pruned, therefore

hgi(s) < min-utilitygi . After some iterations, Ii is again satisfiable. Then min-utilitygi =

f(hgi(s)), where f is decreasing modification function, for example application of Const

or PD methods. This approach allows us not to change parameter blindly, but have real

value, when the algorithm terminated in the previous iteration.

6.4.4 Choice of Information Set

We have tried to keep track of how much defender’s belief is put to information sets. We

suggest an approach limiting number of iteration sets (LIS), which does not take

all the information sets chosen by LP, but only the most promising ones. As promising,

we denote those which have the greatest probability to be selected by the defender. LP

algorithm returns a tuple 〈g, pd(g)〉, where g is a game state, pd(g) is the probability

to choose this game state by the defender. After every iteration we calculate the total

probability pd(Ii) =
∑

gi∈Ii
pd(gi). We expand further v information sets with greatest

pd(Ii) among all the IS .



Chapter 7

Experiments

We experimentally evaluate and compare our iterative algorithms and application of

different techniques to them. Also, we compare runtime of iterative approaches and CSE

algorithm. Firstly we examine all the techniques in one network. Secondly, we apply the

best one on different graphs and make some comparison. All experiments run on one core

of Intel i5 2.4GHz processor with 3.5GB memory limit.

7.1 Network

We use two different computer network topologies, which are depicted in Figure 2.1(b)

as business and in Figure 2.1(c) as chain network. Connections between the host types

in the network correspond to actions in the attack graph. Actions’ success probabilities

pa are generated using CVSS. Action costs ca are chosen randomly from the interval

[0,100], the host type values rt and the honeypots’ costs cth are chosen proportionally,

more valuable host type has higher price for assembling honeypots. The basis b of the

network for a business network is set {S, DB, WS} and for a chain is {WS, DB}. We

scale the network by adding more host types, a number of hosts and honeypots.

31
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7.2 Experimental Approach of Choosing Tradeoff

Parameter

In the previous chapter, we introduce some approaches of choosing the parameter for

iterative step. We tested them on the same network with five different host types, seven

hosts and one honeypot. It the first part of the experiments, we set up the parameters

randomly, choose the best approach and continue investigating it further.

In Table 7.1 we introduce a solution of the best methods from the previous chapter

implicated on IRBC and ID algorithm. Empirically IRB algorithm was insufficient, it

consumes 45% more than CSE algorithm and prune maximum 10% of states. IRBC

algorithm is the most effective algorithms among all. It prunes about a quarter of states

and contributes less time than ID algorithm.

The best technique for IRBC algorithm is mixture of percentage distribution (PD)

and heuristics (H) approach. In PD method a parameter represents a list of coefficients

list = [a1, a2..an] how to change min-utility, where ai > ai+1, ai ∈ [0, 1]. These restrictions

are set up in order to reach optimal solution with increasing number of iterations. Before

the iterations min-utility0(Ii) = maxgi∈Ii(hgi(s0)) for all information sets. If information

set Ii was chosen by the defender m times, then min-utilitym(Ii) = am· min-utility0(Ii).

For this network, the best choice for PD is a list PD1 = [0.8, 0.4, 0], meaning that if IS

Ii has been chosen two times, in the third iteration it is solved optimally. Combination

of PD and H sets up min-utility not by the heuristic of an initial state, but by the

heuristic of the state which has been eliminated. If state s in game state gi is pruned

we calculate heuristic hgi(s) for all gi ∈ Ii. If in m
th iteration Ii is again satisfiable then

min-utility= am ·hgi(s), where am ∈ list from PD approach. This combination implicated

on IRBC algorithm shows better time than CSE and prunes 27% of the states.

Another satisfiable approach is a union of PD and GS methods. The only difference

from PD method, that we distinguish gi ∈ Ii and respectively the heuristic of s0 in

different game states. Therefore, min-utility0(gi) = hgi(s0). From PD follows that if Ii

is satisfiable in mth iteration then min-utilitym(gi) = am· min-utility0(gi) ∀gi ∈ Ii. This

method consumes in significantly more time than CSE and prunes 20% of states.

In LIS method after every solution of LP, we chose only v promising information sets

for the further expansions. In current example for mth iteration we set up v = |I ′|/2,

where I ′ is set of information sets which are the optimal solution for the defender in mth

iteration. We combine it with previous best methods: H+PD and GS+PD. Union of
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Algorithm Method Change of parametr Time in ms Expanded states

IRBC Const1 150 91254 7956

Const2 min-utiltity/2 95321 7931

PD1 [0.8, 0.4, 0] 54763 7361

PD2 [0.8, 0.5, 0.25, 0] 63215 7923

GS+PD1 52501 6952

H+PD1 50087 6453

LIS+H+PD1 |I ′|/2 138508 6961

LIS+GS+PD1 |I ′|/2 159501 7002

ID Const3 5 67032 8043

PD3 [min-depth, 0.4|A|, |A|] 54321 7400

CSE 52646 8876

Table 7.1: Application of different methods on IRBC algorithm

these three approaches gives us 20% less number of expanded states but consumes in 2.5

more runtime than CSE algorithm.

In ID algorithm the best technique how to change max-depth is PD method. In

Iterative Deepening, we approach the optimal solution of Ii when max-depth= |A|, where

A is a set of possible actions. As it was mentioned, we proposed an algorithm which finds

the minimal depth min-depthIi in order to reach some reward in AG. Therefore, for PD

list = [a1, a2..an], where ai+1 > ai, a1 = min-depth, an = |A|. If Ii is satisfiable in mth

iteration, then max-depthIi = list(m). PD3 expands more states than IRBC, but it finds

the solution almost as fast as CSE.

In conclusion for further investigating and comparing it with CSE algorithm, we will

consider four highlighted methods in Table 7.1.

7.3 Scalability

In this section, we introduce the runtime and the number of expanded states for different

techniques. As it is mentioned in the section above PD is the best approach to set up the

tradeoff parameter between time and number of expanded states. In previous experiments

elements of list in PD was chosen randomly. We ran more experiments on different

networks with different min-utility in order to gain information about i) time of solving
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game optimal with this min-utility ii) the probability of returning to the information set

after the first iteration. With this information, we found the best coefficient for list in

PD, which reduces an overall computational time for the game solution. Therefore, for

IRBC algorithm and PD method list = [0.74, 0.43, 0]. For ID algorithm, it was difficult

to set up list uniformly, because the different network has a different number of actions,

and coefficients of list mostly depend on this number. Empirically the best list for ID

algorithm is list = [min-depth, 0.52N,N ].

In Figure 7.1 there is comparison of a number of expanded states of iterative algo-

rithms for chain network and in Figure 7.2 the average runtime of these algorithms with

five runs. We increase the number of host types T, the number of hosts n and number

of honeypots k. The missing data demonstrates that the computer was not able to solve

it due to small memory limit. From the results, it can be seen that in the majority

of the networks iterative methods expand fewer states than CSE algorithm. As it was

expected IRBC algorithm has better pruning characteristics than ID algorithm. HPD

(H+PD) method applied to IRBC algorithm expands the least number of states, in aver-

age 23-35% less than CSE. But the time of iterative algorithms reaches twice more than

in CSE algorithm, even though in some networks they show better computational time

than CSE. The experiments were held for business network and reached similar results

as for chain network: HPD technique appeared to be the most efficient.

7.4 Results

In conclusion, we introduce some techniques of setting up the tradeoff parameter and

modification of iterative algorithms how to reduce the number of expanded states. Iter-

ative Reward Bound algorithm with pruning technique HPD presents the best solution,

reducing 30% of the state. We have expected that decreasing number of expanded states

we would decrease overall computational time. Unfortunately, experiments show that

iterative approaches are slower than CSE algorithm. The bottle-neck of the iterative

algorithms is that each IS in every iteration should be solved from initial state until one

of the states is pruned, or IS is solved optimally. The solution how to reduce the time is

for every IS to remember the set of states S which has been pruned in the previous itera-

tion and if IS is again satisfiable, then to begin computation from the set states S. This

approach has some negative aspects. Firstly for a larger network it will fall on memory
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Figure 7.1: Comparison of approximation scalability for for chain network

with t type hosts, n hosts and k honeypots.

limit. Secondly, after each iteration LP demands of the CURB set for each information

set, meaning that attack policies should be recomputed for each IS.
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Figure 7.2: Comparison of number of expanded states of different ap-

proaches for chain network with t type hosts, n hosts and k

honeypots.



Chapter 8

Conclusion

We study a network security game, where the attacker has imperfect information about

the network. We continue investigating the previous work of finding the optimal SSE

strategy profile. In this work, we try to find a tradeoff parameter for CSE algorithm

to reduce the overall computational time of the game. We examine two iterative algo-

rithms which avoid solving the game completely and still finding the optimal solution.

We analyze different techniques for the tradeoff parameter and apply them to iterative

algorithms. Some of them are efficient and reduce the game complexity by 30%.

Unfortunately, we have not decreased overall computational time. The problem is that

we recompute attack policies in the attack graphs from the beginning in every iteration,

even if in the previous iteration they were partially solved. If we remember the structure

of the attack graph in every iteration, we expect to reduce time also by 30%. But it is

insufficient to approach due to the memory limit.

In further research, we plan to focus on the quality of the attacker’s CURB. We

suggest not to solve it optimally and neglect some attack policies, to find the compromise

between the runtime and optimal solution.

Personally, I have discovered a study called Game Theory and gained knowledge in

the network security. I am interested in the exploration of this problem and will continue

to work on it.
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