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Abstract 

Maritime container transport plays a major role in international trade. As such, it can be 

an attractive target of acts of unlawful interference, e.g., smuggling, piracy or terrorism. One 

major issue of maritime security is the container screening at ports, which is the main focus of 

this thesis. The goal of this thesis is to study the efficiency of different designs of screening 

systems using simulation. The literature review covers contemporary laws and requirements, 

container screening equipment and processes related to screening that take place in seaports. 

Next, operation of three screening checkpoints models, which symbolize predominant 

approaches to container screening, is simulated in Arena Simulation Software. The simulated 

cases are a representation of shipping containers through the transatlantic route from the 

European Union to the United States. The results are subsequently analyzed in order to gain 

insight into various aspects of checkpoint operation. Furthermore, recommendations on 

implementation of container screening at maritime terminals are provided to both policy makers 

and terminal designers. 

 

Keywords: container screening, maritime security, container terminal operations, Arena 

Simulation Software, security checkpoint 
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Chapter 1: Introduction 

Since the tragic events of the 9/11 terrorist attacks, the perception of transportation 

security has changed significantly. The last decade saw the introduction of new security 

measures in both passenger and freight transport. This trend is still ongoing and most likely will 

continue in the future, since the nature of threats against transportation is continuously changing. 

In June 2014 the Council of the European Union (2014) has identified risks and threats in 

the maritime domain that can pose a potential risk to European citizens and European Union 

(EU) Member States. Most notably, the list includes terrorism, proliferation of weapons of mass 

destruction or cross-border crime, such as smuggling, human trafficking, and etc. It is safe to say 

that the same threats exist all around the world, including the United States (U.S.). To prevent 

such acts of unlawful interference against maritime freight transport, complex proactive security 

systems must be implemented. 

1.1 BACKGROUND 

1.1.1 Multi-layered Approach to Transportation Security 

One of the most prominent approaches to ensure proactive transportation security is to 

implement the so-called multi-layered approach. Initially introduced in passenger air 

transportation by Transportation Security Administration (TSA), this concept relies on 

introducing multiple security measures (layers) throughout the whole transportation process. The 

combination of all layers provides increased probability of threat detection, more robust security 

system and generally enhances the level of transport infrastructure security (TSA 2014). Figure 
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1.1 depicts the application of the multi-layered approach to maritime container transport. 

However, this figure does not include all the available security measures. 

 

 

Figure 1.1: Layers of Maritime Container Security 

 

The key information for preventing crimes such as weapons smuggling through a port of 

entry is information about the content of the container. Therefore, based on the customs 

requirements, every container must be accompanied by a cargo manifest, which generally 

specifies its contents, consigner (sender), consignee (recipient), shipper, ports of departure and 

destination, and etc. Nowadays, the cargo manifest is mostly electronic. However, there is no 

guarantee that the information contained in the manifest is genuine or has not been tampered 



 3 

with. If there is such uncertainty, the actual contents of the container shall be verified by 

container inspections. 

The inspections can either be done physically by trained personnel or using special 

automated equipment, in which case it is described as screening or scanning. The screening 

requirements and procedures are established by both international and national legislations, 

which will be reviewed in the next section of this chapter. 

1.1.2 International Screening-Related Legislation 

At the international level, the most influential international organization dealing with 

custom inspection in global trade is the World Customs Organization (WCO). Its main goal is to 

set international customs standards that shall lead to harmonization and simplification of the 

global trade, improving the efficiency of customs administrations of its member states. These 

standards also include SAFE Framework of Standards to Secure and Facilitate the Global Trade 

(SAFE Framework) that focuses on the Supply Chain Security (SCS). This document sets the 

minimal requirements for security of logistic chains, including maritime cargo screening. It states 

that at the request of the state of destination, the custom administration of state of departure shall 

perform an outbound inspection of high-risk containers and cargo, preferably using non-intrusive 

detection equipment (WCO 2012). In addition, it defines basic rules for Authorized Economic 

Operator (AEO) programs, which strengthen SCS through customs-to-business partnership. 

The maritime and port security is the subject of the International Ship and Port Facility 

Security (ISPS) Code. Developed by United Nation (UN) agency International Maritime 

Organization (IMO), it came into effect in July 2004 as a response to the 9/11 event. It contains 

guidelines for maritime vessels and facilities of international ports, which ensure that risk 

management techniques are used for the determination of security measures (IMO 2014). 
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1.1.3 Related Legislations in U.S. 

To protect its borders against possible threats related to transported cargo, the U.S. have 

adopted the principles of risk assessment to conduct cargo inspections. Based on the rule called 

Importer Security Filing and Additional Carrier Requirements (also known as 10+2 rule), the 

cargo information carried by all U.S. bound vessels must be transmitted electronically to U.S. 

Customs and Border Protection (CBP) at least 24 hours before loading the cargo in the port of 

departure. Importers must provide 10 data elements (such as name and address of buyer, seller, 

country of origin etc.) and carriers two additional data elements (vessel stow plan, container 

status message) (CBP 2009). This and additional information is used for the purposes of high-

risk shipment identification, which is carried out by the Automated Targeting System (ATS). 

Based on the output of ATS, containers are selected for screening. 

To enhance the efficiency of the risk-based approach to screening, the Customs-Trade 

Partnership against Terrorism (C-TPAT) program was established based on the framework given 

by WCO SAFE Framework. The C-TPAT member operators are obliged to implement a certain 

level of security measures and co-operate with CBP to protect the supply chain. Both parties 

benefit from the C-TPAT - the members can enjoy competitive advantages (such as expedited 

processing etc.) and the CBP can utilize its resources for better risk assessment and target higher-

risk cargo shipments (CBP n.d.). 

In addition, one of the first measures after 9/11 was the establishment of the Container 

Screening Initiative (CSI) under the jurisdiction of CBP. Its core elements are: 

 Identifying and targeting of containers that pose a threat by using intelligence and 

automated advance targeting information systems; 
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 Prescreening of containers that pose a risk at the port of departure before their arrival at a 

port of entry; 

 Using state-of-the-art detection technology to scan high-risk containers. 

The CSI is based on cooperation with foreign ports, where a team of both CBP and 

Immigration and Customs Enforcement (ICE) officers are deployed to conduct container 

screening before containers are loaded onto vessels heading for U.S. As of 2014, CSI has been 

implemented in 58 ports worldwide (CBP n.d.). 

However, there are legal exceptions to the risk-based approach to screening. In 2006, the 

Security and Accountability for Every Port Act of 2006 (SAFE Port Act) has been enacted. One 

of its sections defines the obligation to screen all import containers in the 22 busiest seaports 

using radiation detection equipment (U.S. Government Printing Office, 2006). This measure was 

expanded by the Implementing Recommendations of the 9/11 Commission Act of 2007 – it 

states that containers shall not enter the U.S. unless they have been screened using Non-Intrusive 

Imaging (NII) and radiation detection equipment at the port of departure before being loaded 

onto the vessel (U.S. Government Printing Office, 2007). 

The deadline for screening of 100% US-bound containers was originally set to the 1st of 

July 2012. However, due to the high costs and technical problems, the deadline was postponed 

twice, currently being 2016 (Homeland Security News Wire, 2014). Moreover, the industry 

community is concerned with delays and extra cost this measure could bring. According to GAO 

(2012), the future of 100 % screening of U.S. bound containers is uncertain and further research 

on its feasibility should be carried out. 
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1.1.4 Related Legislation in the EU 

The EU has adopted the risk-based approach to screening as the main method of ensuring 

supply chain security, i.e., only containers that are targeted for inspection are screened (EC 

2005). Carriers are required to electronically transmit the Entry Summary Declaration (ENS) 

data to the Customs authorities of EU member states. The measure applies to all imported goods 

to the EU, goods to be transshipped through the EU, goods to be reloaded in an EU port for 

transit and freight remaining on board. The data is used for risk assessment of cargo, based on 

which NII inspections are carried out. The ENS data include information about consignor and 

consignee, goods specification, and etc. (EC 2006). 

The EU has implemented its version of customs-to-business partnership program, simply 

called the Authorised Economic Operator (AEO). Unlike import-focused C-TPAT, it is focused 

on both import and export. Based on an agreement between U.S. and EU, both programs are 

mutually recognized (EC 2014). 

Besides the mutual recognition of AEO and C-TPAT programs, the EU is cooperating 

closely with U.S. in the matter of customs based on Agreement on Customs Cooperation and 

Mutual Assistance in Customs Matters from 1997. This agreement was expanded in 2004 to 

include cooperation related to supply chain security, particularly the CSI. Lastly, a Joint 

statement on supply-chain security was signed by EU and US officials in 2011, outlining a joint 

agenda between European Commission and DHS on future approach to customs, aviation 

security, maritime security, research and development (EC 2014). 
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1.2 THESIS OBJECTIVES 

The thesis has several objectives, the first of which is to provide a detailed review of the 

topic of container screening at seaports. It should cover all related legislations, equipment and 

methods, as well as different approaches to implement screening. 

The second objective is to review the proposed concept of 100% container screening and 

its potential impact on container terminal operation and supply chain. 

The third objective is to create simulation models in the Arena Simulation Software and 

simulate the operations of screening checkpoints. Three configurations of screening checkpoint 

are modelled, each of which corresponds to a different approach to screening containers. 

The fourth objective is to analyze the output of the simulation and provide insight into the 

behavior of simulated checkpoints under different operational conditions. 

Finally, the fifth objective of the thesis is to provide recommendations for policy makers 

and terminal designers on how to implement screening at seaports, using the findings of the 

simulations.  

1.3 THESIS OUTLINE 

Chapter 1 serves as an introduction to maritime shipping security and provides reviews of 

the related legislation at international level, in the U.S. and in the EU. 

Chapter 2 is devoted to overview of equipment and technology that is currently used for 

screening of containers in seaports. 

Chapter 3 focuses on security processes all maritime containers undergo when they are 

being shipped from the EU to the U.S. In addition, currently used methods for container 

screening and checkpoint configurations are described. 
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Chapter 4 introduces the 100% container screening concept that in the future should be 

implemented when importing maritime containers to the U.S.. As it is a highly controversial 

concept among the industry experts, a literature review of its possible impact and issues is 

conducted as part of the chapter. 

Chapter 5 describes the experiments that were conducted in the Arena Simulation 

Software. It defines the models that were used for the simulation of container screening 

checkpoints, as well as the settings that were used for running of the simulations. 

Chapter 6 analyzes the first part of the simulation results that were conducted for low 

container traffic. It provides insight on how the checkpoint could behave during operation at a 

container terminal with low rates of container arrivals. 

Chapter 7 continues the analysis of results which correspond to high container traffic that 

can be expected at container terminals with high throughput. 

Chapter 8 provides recommendations for both policy makers and terminal designers on 

the topic of container screening implementation. 

Chapter 9 concludes this work and suggests potential and future research directions. 
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Chapter 2: Container Screening Equipment 

The aim of this chapter is to review the equipment currently used for container screening 

at seaports. Equipment for radiation detection and NII will be covered. 

2.1 RADIATION DETECTION EQUIPMENT 

Radiation detection screening serves to detect radioactive material concealed in 

containers. The inspection can be divided into primary and secondary. Currently, the most 

widely used equipment are the Radiation Portal Monitor (RPM) for primary inspection and 

Radiation Isotope Identification Device (RIID) for secondary inspection. 

2.1.1 Radiation Portal Monitor 

The RPM (Figure 2.1) is a passive, non-intrusive screening system used to screen 

containers and vehicles for radiation. The system is composed of two panels, each located on 

opposite site of a truck lane, through which a vehicle with a container shall pass, to detect 

radiation. The radiation sensors can be based upon several principles. According to OIG DHS 

(2013), the majority of RPMs used in U.S. use sensors that compose of tubes filled with 

polyvinyl toluene plastic and helium-3, which serves as neutron moderator. In addition to the 

sensor panels, the RPM system includes control unit to relay alert messages or system status and 

various accessories, such as traffic lights, booths, and etc. 

The RPM performance parameters vary according to its vendor. For instance, the false 

alarm rate of RPM systems by TSA Systems (today’s Rapiscan Systems), which were used 

during the Secure Freight Initiative (SFI) pilot project in 2008, is quoted to be less than 1 in 1000 

containers. The optimal speed of truck passing through the same RPM system was quoted to be 5 

mph (8 km/h) (Bennett and Chin 2008). 
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Figure 2.1: Radiation Portal Monitor (RPM) 

(Gowadia and Koeppel 2014) 

 

According to OIG DHS (2013), as of August 2012, there were 444 RPMs installed in 

U.S. seaports, originally installed by Domestic Nuclear Detection Office (DNDO) and operated 

by CBP. The GAO (2007) estimates the average cost of an RPM unit itself to be $55,000, with 

additional $200,000 required for its installation. 

The RPM systems are reported to have two significant disadvantages. Firstly, they cannot 

detect shielded radioactive material. Secondly, they cannot distinguish between Naturally 

Occurring Radioactive Material (NORM) and threat objects. This can lead to higher false alarm 
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rate as well as the need to conduct secondary detection to identify the nature of the detected 

radiation source (Qi et al. 2011). 

These limitations encouraged the development of the next generation radiation detection 

equipment, called Advanced Spectroscopic Portal (ASP). Developed by DNDO from 2005, it 

was supposed to distinguish between NORM and threat objects, provide very high detection rates 

and relatively low inspection times (Qi et al. 2013). However, the project was abandoned in 2011 

because of operational and technical challenges (OIG DHS 2013). 

2.1.2 Radiation Isotope Identification Device 

To determine the nature of radiological alarm at RPM, secondary inspection must be 

carried out. If the alarm is confirmed by another RPM, the alarm must be resolved by trained 

personnel using handheld RIID. The most commonly used types of RIID are either sodium-

iodide (NaI) based, or high-purity Germanium (HPGe) based. The former provides lightweight 

equipment solution (5.5 lbs), while the latter offers high resolution, but also weighs more (40 lbs) 

(Bennett and Chin 2008). In addition to RIID, the personnel conducting the secondary radiation 

inspection must use personal radiation pagers for health and safety reasons. 

According to Qi et al. (2013), the process of secondary radiation detection inspection 

with RIID can create a delay between 5 and 15 minutes (or more) per container. The result of 

RIID inspection determines if further security measures shall be taken, for example the isolation 

of the container or intervention of specialized action team. 

As a part of their research, Bennett and Chin (2008) conducted a market survey of 

secondary radiation inspection equipment. The overview of costs states the average price of RIID 

to be $10,300 per unit and price of a personal radiation pager to be approximately $1,000 per 

unit. 
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2.2 NON-INTRUSIVE INSPECTION 

A NII system serves to identify the container contents without the need to open the 

container and physically inspect it. It can help to identify various kind of contraband, including 

weapons and drugs. Generally, a NII system provides an image of container contents, which is 

reviewed for the presence of undesirable objects. 

Current NII systems are usually based on Gamma ray or X-ray imaging technology (CBP 

2013). X-ray-based systems use X-ray generator to emit X-rays to penetrate the inspected 

containers. The objects inside the container absorb a certain amount of X-ray radiation and thus 

alter the original emitted radiation. The altered X-rays are consequently detected by radiation 

detectors. Since different materials differ in radiation absorption, an image representation of 

container contents is created. To penetrate the container casing, X-ray systems use high energy 

radiation, ranging from 2.5 to 9 MeV. Gamma ray systems function on a similar basis, only use a 

radioactive source, e.g. Cobalt-60 or Cesium-137, as the source of radiation (Bennett and Chin 

2008). Naturally, appropriate health and safety procedures are implemented when operating NII 

equipment. 

NII equipment can be divided into several groups according to their properties. The NII 

systems can be stationary (whole facility, gantries etc.), semi-stationary (trailers) or mobile 

(truck-based). Screening procedures may also vary. The majority of NII systems require the 

vehicle with the container to pass through the equipment. However, some NII systems require 

the driver to operate the vehicle with the container during the actual screening, while other 

require the driver to exit the vehicle beforehand, using conveyor systems to pull the vehicle 

through the equipment. 
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Figure 2.2: Stationary NII Equipment – Smith Detection HCVS 

(Poverello 2012) 

 

In addition, high capacity NII systems and low capacity NII systems can be 

distinguished. The former offer high throughput of screening, processing up to 150-200 

containers per hour. However, their accuracy is limited due to low level of radiation used. 

Because of that, additional inspections might be required. The other type, low capacity NII 

systems, utilizes a high level radiation to produce container images. This leads to higher 

accuracy, but also lower throughput (approximately 20 containers per hour) and more advanced 

safety measures, such as encasing the NII equipment in a layer of concrete (Policy Research 

Corporation 2009). 

As Bennett and Chin (2008) noted, since the NII systems generally do not provide any 

automatic alarm notification, the NII images must be analyzed visually by trained personnel. 

This can lead to longer inspection times since the duration of NII inspection depends on the 

image review time or higher alarm rates, because of involvement of the human factor. However, 

some vendors offer software-based tools for NII image analysis that can assist the NII operators, 

improving system throughput and reliability of detection. Qi et al. (2011) reported the reliability 

of NII detection to be higher than 98% on average. 
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Figure 2.3: Mobile NII Equipment – Rapiscan Eagle M60 

(Rapiscan Systems 2014) 

 

The wide variety of systems available in the market is reflected in the price range of the 

NII equipment. It depends on the detection technology (Gamma or X-ray) and type of NII system 

(stationary, semi-stationary, mobile) or other NII configuration. In the market review conducted 

by Bennett and Chin (2008) the cost of NII system varied from about $1 million to $4 million. In 

addition, their research revealed that the annual maintenance of NII equipment is roughly equal 

to 10 % of the original price of purchase. 

2.3 SUMMARY 

The container screening equipment forms a crucial part of the container terminal security 

infrastructure. Currently, there is a wide variety of different equipment compliant with security 
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measures available in the market. With new technologies, the market may become even more 

diverse in the future. 

The Table 2.1 sums up the general information about all the types of equipment currently 

being used for radiation detection and NII container inspections. The container throughput and 

inspection time for RPM systems were estimated based on the previously quoted truck operation 

speed, length of the truck carrying one 40 ft. container and 10-second headways between arriving 

trucks. In addition, container throughput is not given for RIID system, since only small 

percentage of selected containers undergo RIID inspection. 

Table 2.1: Overview of Container Screening Equipment 
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Low capacity 

system 

Contraband, 

threat objects 
~ 20 

2 – 5 minutes 

(depending 

on image 

review time) 

> 98 % $1-4 million 

High 

Capacity 

System 

Contraband, 

threat objects 

up to 

150 -200 

 

  



 16 

Chapter 3: Transatlantic Container Screening Processes 

Chapter 3 provides a thorough review of security processes containers go through during 

its handling in the port.  The focuses are the current practice of screening of export containers in 

EU ports and import containers at U.S. ports. The Port of Hamburg in Germany and the Port of 

Houston, Texas are used as examples.   

3.1 TRANSATLANTIC CONTAINER SHIPPING PROCESS 

To understand how container security processes influence the whole shipping process, 

this section describes the process of shipping containers between EU and U.S. The process is 

depicted in the Figure 3.1 where the solid line symbolizes the physical container flow and the 

dotted line information flows. 

 

 

Figure 3.1: Container Supply Chain between the EU and U.S. 
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The shipping process starts in an EU member state when a container is loaded and sealed 

with a container seal (with a unique number) in the location of the consignor (sender), e.g. a 

factory (EC 2002). The information about the cargo is shared with the freight forwarder, a 

company that handles the land transportation to the port. The cargo information is used to create 

cargo and container manifests, documents that accompany the container during the whole 

process of shipping. The manifests are shared with the customs administration in both the EU 

and U.S. for evaluation. If there is a justifiable security concern, container inspection can be 

conducted once the container arrives at the EU port. If the container poses no threat, it is cleared 

for loading onto a vessel, after which the actual transport across the Atlantic Ocean is conducted 

by a maritime operator. 

When transporting containers to the U.S., freight forwarders and maritime operators are 

required to transfer extra information to CBP based on the Importer Security Filing and 

Additional Carrier Requirements (10+2 rule) prior to loading of the vessel (CBP 2009). The CBP 

uses this information for the purposes of targeting containers for inspection in the U.S. ports. In 

addition, according to the WCO (2012), the WCO members can request the customs 

administration of the port of departure state to conduct additional inspection. This means the 

CBP can contact the customs agency at the EU port of departure and request the latter to conduct 

additional screening. Moreover, if the port participates in the CSI program, it must fulfill 

additional requirements for container inspection. 

Once the container is unloaded and inspected in the U.S. port, a freight forwarder 

provides transport to the location of the consignee (recipient) of the goods. If goods for multiple 

consignees are present in the container, the container is deconsolidated first by the freight 

forwarder. 
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3.2 CONTAINER INSPECTIONS AT THE PORT OF DEPARTURE 

3.2.1 Outbound Container Inspection Processes 

The process of container handling starts when the container arrives at the port area. In 

general, the freight forwarder must report the arrival to the container terminal operator either in 

advance or during terminal gate check-in. If the container is targeted for inspection, screening is 

conducted either at the terminal gate or at a detached screening location, depending on the port 

layout. Screening in the EU ports is usually conducted using NII. Radiation detection equipment 

might also be used, although in a very small scale (Representative of Main Customs Office Port 

of Hamburg 2014). According to European Commission working paper (2010), the percentage of 

containers that are selected for screening ranges from 0.1% in larger ports to 3% in smaller ports. 

If the NII equipment detects a threat or contraband, the container is detained, opened and 

physically inspected. Further investigation might also ensue, depending on the nature of security 

violation. 

If the container is cleared from the inspections or had not been selected for screening 

previously, it is cleared to enter the container terminal. At the check-in gate, all documents are 

checked before allowing the vehicle with the container to enter the terminal. The container seal 

(including its engraved seal number) is checked against any sign of tampering (EC 2002). In 

addition, if the container is reported to be empty, it is opened to verify whether it is actually 

empty (Representative of Main Customs Office Port of Hamburg 2014). If any issue is 

discovered, the container may be subjected to additional inspections. The next step in the process 

is the actual container handling at the terminal. The container is unloaded from the vehicle and 

put in a stack at the container yard. There it may dwell for a certain period of time before being 

loaded onto a vessel. The inspection process is depicted in Figure 3.2. 
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Figure 3.2: Container Inspection Flow Chart at Port of Departure in the EU 

 

3.2.2– Container Inspection Process at Port of Hamburg, Germany 

To discover the current state of container inspections in the EU ports, an email interview 

with a representative of Main Customs Office Port of Hamburg was conducted in June 2014. The 

Port of Hamburg was selected because it is one of the most important ports in Europe, especially 

for the region of Central Europe. 

The Port of Hamburg is the largest container port in Germany and second largest in 

Europe.  In 2013, 9.3 million Twenty-Foot Equivalent Units (TEU) were handled in its container 

terminals. It is located in the north of Germany on the river Elbe, approximately 130 kilometers 
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from the North Sea. The location of the Port of Hamburg makes it a major transportation hub, 

offering connection to the inland Europe via highway, rail or inland waterways (Hafen Hamburg 

Marketing 2014). 

The screening of containers in the Port of Hamburg is conducted at a detached facility 

designated as Containersprüfunganlage (CPA) (Container Inspection Facility in German) under 

the jurisdiction of the Customs Office Waltershof. There is only one screening facility (see 

Figure 3.3) that serves all container terminals in the port. If a container is targeted for inspection, 

it must be transported from the terminal to the screening site by a truck. 

 

 

Figure 3.3: Port of Hamburg Screening Site Satellite Image 

(Google 2014) 
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The equipment available for screening is X-ray-based NII system. Its average throughput 

was quoted to be 6 containers (trucks) per hour. The average delay caused by the screening 

procedure is reported to be 20 minutes per container or vehicle. The hit rate (ratio of threats 

detected to containers screened) of the NII inspection is estimated to be approximately 50%. In 

case of an alarm, the container is inspected physically. Only the containers targeted for 

inspections are screened, regardless whether they are import or export container  The decision to 

screen a container is done based on available information or upon request of the WCO member 

state. 

3.3 CONTAINER INSPECTIONS AT THE PORT OF ARRIVAL 

3.3.1 Inbound Container Inspection Processes 

The whole handling process starts with the arrival of the vessel at the container terminal. The 

placement of screening site may depend on the terminal layout. For example, at the Port of Long 

Beach, containers that are selected for screening are gathered on the wharf and screened using 

mobile NII equipment (Pulse of the Port: New Scanning Technology 2012). However, other 

ports (especially small ports) may place NII screening equipment at a designated site where the 

containers are brought for screening. After passing the screening process, the container is 

handled in the port and loaded onto a truck that will provide land transport to its destination. The 

RPM screening of containers is usually conducted at the terminal exit gate prior to leaving the 

terminal. According to OIG DHS (2013), if a RPM indicates the presence of radioactive 

material, the alarm must be confirmed using a different RPM to eliminate unnecessary secondary 

inspections caused by equipment errors. If the alarm is confirmed, secondary inspection with 

usage of RIID devices is conducted. This inspection serves to determine the nature of detected 
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radiation and to distinguish between natural radiation and possible threats. If the latter is 

detected, further actions such as isolation of container or intervention of special radiological 

teams are taken. 
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Figure 3.4: Container Inspection Flow Chart at U.S. Port of Arrival 
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3.3.2 Container Inspection Process at Port of Houston 

To gain information for their research, Qi et al. (2011) conducted an interview with Port 

of Houston CBP Officers in November 2010. Their findings provide an insight on how 

legislation requirements are implemented and show examples of the best practices in the 

container screening implementation. 

Port of Houston is located Houston, Texas, on the shore of Gulf of Mexico. It is one of 

the most important U.S. ports, being the busiest port in terms of foreign tonnage and 2nd busiest 

in the terms of overall tonnage (Collier 2013). 

The Port of Houston implements both approaches to screening of imported containers, 

e.g. risk-based approach for NII inspection and 100% screening for RPM inspection. According 

to the interview, less than 5% of containers is selected for NII screening. In addition, a few 

containers are physically inspected either based on screening alarms or CBP officer’s discretion. 

For that purpose, all CBP officers are trained to supervise incoming cargo. The delay time of 

screening process (including RPM, RIID and NII) per container is estimated to take 

approximately 30 – 35 minutes (Qi et al. 2013). Figure 3.5 show the satellite image of check-in 

and check-out gate for the Bayport Container Terminal and a detail of RPM checkpoint. 

The targeting of containers for inspection is based on the cargo manifests. The 

information in the manifest is reviewed for red flags (warning signals) or incomplete items. If 

any ambiguities are found, further information can be requested from the shippers, thus delaying 

the shipment. In addition, first time shippers and previous violators are checked more 

thoroughly. The study of Qi et al. (2013) estimates that 10% of all cargo comes from suspicious 

importers and 80% of all contraband is carried by suspicious importers. These percentages were 

based on interviews with CBP officers and their experience. 
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Figure 3.5: Bayport Container Terminal, Port of Houston – Check-in/out Gate For Trucks and 

RPM Screening Site Detail 

(Google 2014)  
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Chapter 4: One Hundred Percent Container Screening Concept 

As mentioned in the introduction, the Implementing Recommendations of the 9/11 

Commission Act of 2007 extends the screening of containers in the U.S., mandating that all U.S. 

bound containers are screened in the port of origin by RPM and NII equipment. This requirement 

is highly controversial amongst the industry and its experts. This chapter introduces the concept 

of 100% screening, with the first part describing the processes involved and the second part 

being literature review of its possible impact. 

4.1 ONE HUNDRED PERCENT CONTAINER SCREENING PROCESSES 

The Implementing Recommendations of the 9/11 Commission Act of 2007 (further 

referred to as the 9/11 Act) does not specify any details about the 100% container inspection 

except that it must be performed using NII and radiation detection equipment prior to loading 

onto U.S.-bound vessel (U.S. Government Printing Office 2007). Nevertheless, the inspection 

flow chart can be created by modifying the inspection flow charts from the previous chapter. 

The inspection is performed in the port of departure. Firstly, after checking the 

documents and container seal integrity, the container undergoes primary radiation detection 

inspection by a RPM. If there is an alarm, radiation detection inspection is performed using a 

RIID. If the RIID identifies that the radiation is not NORM, the container is detained and further 

actions to resolve the situation ensue. 

After the radiation detection inspections, all containers that have no alarm proceed to the 

site of NII inspection. To accommodate for a large volume of containers, high capacity NII 

systems should be used. If threat objects or contraband is detected in the image provided by the 

NII equipment, the container is detained and physically inspected. Otherwise, containers that 
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pass the inspection are cleared and continue to the terminal, where they are eventually loaded 

onto the vessel. 
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Figure 4.1: 100% Container Screening Inspection Flow Chart 

 

4.2 ISSUES WITH ONE HUNDRED PERCENT CONTAINER SCREENING 

Unfortunately, the transition to 100% screening of U.S.-bound containers is not without 

difficulties. Even eight years after enacting the 9/11 Act in 2007, these issues are not fully 
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resolved, leading to discussions about abandoning the concept completely (Homeland Security 

News Wire 2014).  

The feasibility of full deployment of 100% container screening was tested in a series of 

pilot projects from 2006 to 2007. The selected ports for full deployment were Southampton in 

United Kingdom, Port Qasim in Pakistan and Puerto Cortéz in Honduras. Several other ports 

(e.g. Singapore and Hong Kong) participated only in limited deployment test. In the following 

sections, observations on these pilot projects shall be used to support and justify concerns of the 

industry related to 100% screening. 

4.2.1 Port Layout Issues 

Since substantial area is required for placement of the screening site and truck waiting 

area, a question arises on how to implement the new screening site to the current port layout. 

There are several options for locating the 100% container screening site: 

 Outside the port area at specifically devoted site; 

 At the port gates, in which case the site will serve all container terminals at the port; 

 Inside the port area, but outside container terminals; 

 At container terminal gates; 

 Inside the terminal (Policy Research Corporation 2009). 

The main factor for choice of screening site location would be the land availability. Many 

ports face area constraints. Devoting valuable space inside the terminal as screening site may 

hinder future terminal expansion. However, acquiring land for screening checkpoint outside the 

terminal or port may require additional significant cost. This issue cannot be generalized, each 

port or terminal authority must make a decision based on their situation. 
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Figure 4.2: Pilot Project Site in Port of Southampton 

(Policy Research Corporation 2009) 

 

The placement of the site also influences operation procedures in the port. For example, 

during the pilot project in the Port of Southampton, the screening site was placed outside the 

terminal (Figure 4.2). Being equipped with three RPMs, one Advanced Spectroscopic Portal 

(ASP) and one NII machine, it covered area of 30 000 m2. An issue arose when handling 

containers delivered to the terminal by rail, which form 27% of the container traffic (compared to 

truck accounting for 70% and feeder ships for 3%). Those containers had to be brought to the 

inspection area, creating extra 1124 container moves during the 10-week test period. According 

to the Policy Research Corporation (2009), this extra drayage would cost approximately 

€159.374 per year (€54.5 per container), effectively increasing price of handling of rail 
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transported containers by 20%. In addition, it created extra workload for the rail terminal 

personnel. If this is implemented permanently, additional workforce would be needed. The extra 

costs lead to the concern that 100% screening may divert cargo from rail to road, thus 

contributing to road congestion. 

4.2.2 Truck Congestion 

One of the major concerns of 100% container screening is that the new checkpoint will 

generate truck congestion, further worsening the situation in some container terminals, gates or 

port entrances. 

The truck operators would be directly affected by increased congestion. Their trucks 

would have to spend more time queueing for container inspection, which would increase their 

turnaround time. This would lead to increased prices of land transport (Bennett and Chin 2008). 

Furthermore, due to increased waiting time of trucks, unless consignors dispatch the containers 

earlier, the shipment may miss its vessel. The whole land transport of the supply chain may need 

to be adjusted to new conditions introduced by 100% screening. 

In addition, there other indirect impacts of new checkpoint implementation. Firstly, 

increased truck congestion brings environmental issues such as increased emissions due to 

increased truck idling time. Secondly, the truck waiting areas at the container terminals, gates 

and port entrances may not be able to sustain increased number of trucks in queues. Some ports 

may have an issue with expanding the truck areas due to the terminal layout, which may move 

the congestion to public roads, influencing passenger traffic. 
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4.2.3 Relocation of Container Traffic 

Implementation of 100% screening concept may bring significant changes on the current 

shipping market, changing the current container shipping routes. The concern is that small ports 

could become less competitive in handling U.S.-bound container traffic. Although ports with 

small volume of U.S.-bound cargo should generally expect lower investment costs and 

operational issues, the costs related to 100% container screening would be divided among 

smaller volume of containers. This may lead to higher increase in handling fees such that the 

small port would no longer be competitive and could lose their U.S.-bound container traffic to 

larger ports in the area. For example, this scenario may happen in Netherlands, where ports of 

Amsterdam and Vlissingen could be threatened by Port of Rotterdam (Policy Research 

Corporation 2009).  

On the other hand, this trend may be beneficial for some ports. As the report on EU 

perspective of 100% container screening by Policy Research Corporation (2009) illustrates, 

implementing new screening system may bring the port a competitive advantage and new 

customers. This happened during the pilot project in Port of Qasim, Pakistan, when the container 

traffic of the port increased by 3% (Policy Research Corporation 2009). According to the report, 

the traffic increase occurred because the implementation of pilot project theoretically reduced the 

time to get through all the formalities at U.S. ports, which the local exporters welcomed. 

4.2.4 Checkpoint Performance and Reduction of Container Output 

As has been previously mentioned, several major container ports, such as Singapore, 

participated in the partial deployment pilot project of the 100% container screening system. Their 

experiences revealed significant issues related to the 100% screening checkpoint performance. 
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For instance, Port of Singapore agreed to participate in the trial, allowing screening of 

containers shipped by American President Lines (APL) in the Pulau Brani container terminal. 

The implementation of the project was scheduled for second half of 2008. However, Port of 

Singapore withdrew from the trial in August 2008. The Ministry of Transport of Singapore 

provided several reasons for abandoning the project, among which is the concern of checkpoint 

congestion (Policy Research Corporation 2009). 

 The Port of Singapore is heavily focused towards transshipment containers (which 

makes up 85–90% of all its traffic), that are brought to the port by feeder vessels. These 

containers would have to be brought to the screening site (at the terminal gates), prolonging the 

trips of the prime movers (terminal tractors). It was estimated that without the screening, if one 

feeder vessel carrying 300 containers is served by 3 quay gantry cranes and 5 prime movers are 

assigned for each quay gantry crane, it is possible to handle 31 containers per quay gantry crane 

per hour. However, if screening of all containers is implemented, the handling rate is reduced to 

18.35-20.8 containers per quay gantry crane per hour due to longer trips of the prime movers. 

Unloading a single feeder vessel with 300 containers would be prolonged from 3.2 hours to 4.8 

hours. The terminal would thus experience significant drop in container handling output and 

would not be able to sustain the previous level of service. Furthermore, the financial loss created 

by the output drop in the port of Singapore would be as high as $575,800 per annum (Policy 

Research Corporation 2009). 

 4.2.5 Cost Concerns 

As already illustrated by several examples in this chapter, the concept of 100% container 

screening can potentially have very high implementation and operation costs. Bennett and Chin 
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(2008) attempted to estimate these cost for a generic small container port and for a generic large 

container port. 

The small port estimate was based on Puerto Cortes in Honduras, which in 2006 had total 

throughput of 507,946 TEUs, of which 162,741 TEUs were shipped directly to U.S. Similarly, 

the large port estimate was based on the Port of Antwerp, Belgium. Its total throughput in 2006 

reached 7 million TEUs, whereas 347,848 TEUs were shipped directly to U.S. Costs for terminal 

level installation (each terminal has its own screening checkpoint) and port authority level 

installation (screening checkpoints are shared by multiple terminals) were determined. The 

following types of costs were calculated: initialization costs, annual operation costs and annual 

operation costs, including the annualized life cycle cost of the equipment. In addition, screening 

fees per container were determined, the first one showing the fee if only U.S. bound containers 

are screened, whereas the second one is related to screening of all export containers regardless of 

their destinations. The estimates are shown in Table 4.1. 

As can be observed, the cost are quite substantial, especially for the terminal level 

deployment. On the other hand, it should provide much larger screening capacity and dissipate 

queue. The screening cost per container depends largely on the amount of container traffic in the 

port. If screening is applied to all exports, the unit cost drops significantly. Unfortunately, the 

estimates do not contain indirect costs of screening, such as the cost of extra drayage within the 

terminal. Therefore, it can be expected that the overall cost would be higher than the estimates 

provided. 
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Table 4.1: One Hundred Container Screening Cost Estimates 

(Bennett and Chin 2008) 

 Small port Large port 

Installation level Port authority Terminal Port authority Terminal 

Initialization costs $7,432,734 $14,865,468 $14,865,468 $74,447,340 

Annual operational cost $4,689,730 $8,979,460 $8,979,460 $43,338,099 

Annual operational cost 

(10 year life cycle) 
$5,433,003 $10,466,007 $10,466,007 $50,782,833 

Screening fee (U.S.-

bound export only) 
$63 $122 $45 $219 

Screening fee (all 

export) 
$39 $74 $4 $21 

 

The EU quite strongly opposes the concept of 100% container screening because of 

several reasons, one of which is the high implementation cost. Currently, majority of European 

ports have screening systems at their disposal. The European Commission (2010) estimates that 

the share of containers screened at EU ranges from 0.1% in larger ports to 3% in smaller ports. 

The transition to 100% container screening would therefore be a significant step with major 

consequences, for example re-designing of current ports. Such adjustments would have very high 

economical costs. European Commission (2010) assumes that the total cost of transition to 100% 

screening would be between €280 million as of 2012. Taking into account investment for 

additional terminal operation, the number would increase to €430 million by 2020. In addition, 

the operational cost would be affected, requiring additional staff (1750 new staff in 2012 and 

2220 persons by 2020) to perform the screening and related port operations. Besides, other 

expenses, such as depreciation, maintenance or energy consumption, would further increase the 
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operation cost, that were estimated at €180 million annually in 2012 and €225 million annually 

in 2020. Needless to say, such amounts would present a significant burden for EU ports, and the 

cost will eventually be passed down to shippers and then consumers. 

4.2.6 Operational and Technical Issues 

During the pilot projects, several operational and technical issues appeared. For instance, 

during the pilot project in Port Qasim in Pakistan, the Integrated Cargo Container Control (IC3) 

system, that performed screening through a live video link inspected by CBP and Pakistani 

customs officers, was tested. However, the system experienced problems with data connection to 

CBP National Targeting Centre that resulted in system outage. The issue led to delays in clearing 

of containers through the inspection and subsequently through the terminal (Policy Research 

Corporation 2009). 

Other technical issues arose during the partial deployment pilot project in the Port of 

Hong Kong in 2007. The participating terminal operator Modern Terminals Ltd. experienced 

multiple equipment malfunctions. Between November 19th 2007 and January 10th 2008 the 

checkpoint equipment was out of order for 450 hours over 29 days in a 52-day trial period, 

reaching a breakdown rate of 35.6% (Policy Research Corporation). The issues were mitigated 

by strengthening the technical support of the equipment manufacturer. 

One of the most prominent operational issues was related to availability of container data 

that are collected under the 10+2 rule 24 hours before loading of the container onto the vessel. 

For instance, in the Port of Southampton, a large number of containers arrives at the port more 

than 24 hours prior to vessel departure. Therefore, the CBP did not have the electronic manifest 

information at the time of screening, which brought several complications, for example for 

resolving radiation alarms on shipments that contained NORM. A similar issue was observed 
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during the pilot project in Puerto Cortes, Honduras. Virtually all containers arrived to the 

screening site before the electronic manifest data was submitted to CBP. Therefore, all the 

arriving containers were screened regardless of their destinations. Later into the pilot project, the 

Honduran customs officers divided the containers into U.S.-bound and non-U.S.-bound on the 

basis of documentation review, which was later validated by CBP once it received the electronic 

manifest (Policy Research Corporation 2009). However, this method would not be applicable in 

busier ports, as screening at such scale may not be feasible.  

4.3 SUMMARY 

The implementation of 100% screening is by no means a trivial tasks. There is a large 

variety of factors that have to be considered for every port. Otherwise, issues may arise, whether 

they may be related to terminal operation, its layout or checkpoint performance. All of the issues 

mentioned in this chapter eventually lead to unnecessary financial losses and extra expenses that 

can be utilized in a more efficient manner. In the highly competitive global trade market this 

could bring undesirable consequences for ports, shippers, truck operators and even indirectly end 

customers.  

Experts argue that risk based screening is sufficient for providing port security. Since it is 

mandatory to provide advanced information about the cargo electronically, targeting of 

containers for inspection has become quite efficient. However, Elsayed et al. (2009) provided 

some interesting notions on container inspection. They assumed that the number of container 

inspections is dependent on the budget. When they increased the hypothetical budget for 

screening by 11%, the probability of missing suspicious cargo decreased from 0.03 to 0.0002. 

Therefore, it can be argued that screening of all containers may bring very high level of security, 

but also at a very high cost. 
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Nevertheless, the goal of this thesis is not to justify the policy, but to provide new insight 

into its impact and introduce recommendations for its implementation. Thus the issues 

mentioned in this chapter may be mitigated or approached in a proper way, based on the findings 

in Chapters 6 and 7 of this thesis. 
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Chapter 5: Screening Checkpoint Simulation 

This chapter is devoted to the description of simulations that were conducted in order to 

assess the operational impact of 100% screening legislation. 

From the wide range of simulation tools, Arena Simulation Software, or Arena in short, 

was selected to be used in this research. It is a discrete event simulation software developed by 

Rockwell Automation that is widely used in various engineering and business applications 

(Rockwell Automation 2005). The version that was used in the thesis was 14.70.03, run in 

Training/Evaluation Mode (Student version). 

5.1. REVIEW OF ARENA 

Rountree and Demetsky (2004) were among the first to make experiments related to 

transportation security in Arena. Their research focused on screening of cargo at airports. They 

compared several different approaches to screening air cargo, each of which utilized a different 

combination of screening equipment. Their research proved that Arena is suitable for modelling 

of transportation security processes, whether they take place at an airport or seaport. 

Qi et al. (2013) used Arena to compare different screening equipment used for container 

inspections. Using the Arena model, the usage and operation of new screening technologies were 

explored. 

Jenkins et al. (2014) used Arena to assess procedures at a U.S. land port of entry. They 

modelled various security processes at a border checkpoint, such as queuing at lanes before the 

border check, checking of documents by an officer or backscatter screening. Their research 

provided insight into possible outputs of the simulation, which included waiting times per each 

vehicle, queue properties, number of vehicles processed etc.   
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5.2 SIMULATION IN ARENA 

As mentioned in the above review, Arena is well suited for modelling the flows of 

entities such as containers. A container inspection simulation model was constructed with flow-

chart logic using various Arena modules that perform specific functions in the model. The 

following paragraphs introduce the modules that were used to model the processes in the 

container screening checkpoint, their properties and parameters used in the simulation. In 

addition, simulation settings under the Run Setup menu is explained. 

Since available information about certain container screening parameters and their 

distributions are unfortunately limited, assumptions were made in the model. The assumptions 

were based on the available information, recommendations from Arena User’s Guide (Rockwell 

Automation 2005) and by Kelton et al. (2007) or previous research. 

5.2.1 Create Module – Time between Container Arrivals 

The Create module is used to generate containers and enter them into the screening 

system.  For representing the system input of container arrival rate, exponential distribution was 

used. The Arena User’s Guide (Rockwell Automation 2005) recommends this distribution to be 

used to model inter-event times in random arrivals of entities. In this case, it generates time 

between arrivals of containers, i.e., their time headways, into the screening system. The 

exponential distribution has only one parameter - its mean that corresponds to the average time 

between container arrivals. During the simulation, the value of this parameter was changed 

multiple times in order to examine the behavior of the checkpoint under different arrival rates in 

order to determine the system’ screening capacity. 
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5.2.2 Decide Module – Selection for Screening, Screening Alarms 

The Decide module is used for modeling decision-making processes in the simulated 

system. It separates the flow of entities based on various conditions, such as probability, attribute 

values, variable values, entity type or defined expression (Rockwell Automation 2005). 

In the case of simulating container screening checkpoint, the Decide module was used for 

modeling the selection of containers for screening and setting screening alarms. The decision 

was based on probabilities of the different outcomes that are estimated from the available 

information. During the different simulation runs, the values of those probabilities were changed 

to determine the behavior of the checkpoint under different operational conditions. 

5.2.3 Process Module – NII Screening, RPM Screening and RIID Inspection 

The Process module serves as the main processing method in the simulation. It simulates 

resources (such as screening equipment) that are occupied to perform certain process or tasks. 

The arriving entity “seizes” the available resource for a user defined process time, during which 

simulated process or task takes place. This time can be specified using a suitable distribution. 

After the process time has elapsed, the entity releases the resource and let it continue to the next 

module. The resource is than seized by another arriving entity and the whole process is repeated. 

As mentioned, the process time can be defined using various distributions. In this case, 

different distributions were selected for each method of screening, i.e. RPM, RIID and NII. 

The RPM screening time was modelled using a uniform distribution. As mentioned in 

Chapter 2, the optimal operating speed of trucks going through the RPM system is quoted to be 5 

– 8 mph (Bennett and Chin 2008). Assuming that the length of the truck carrying one 40-foot 

container to be 65 feet, the time of screening will be 5.54 – 8.86 seconds. However, if the time 
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reserve for entering and clearing the inspection site is added, the screening time may be extended 

to an interval from 15 to 30 seconds. 

For RIID, a uniform distribution was used to represent the duration of the inspection as 

well. The available sources (Qi et al. 2013) provide the duration of the inspection to be between 

5 and 15 minutes. These values will be used as parameters for the uniform distribution in the 

simulation. 

The NII screening time was modelled using a triangular distribution with minimum value 

of 1 minute, mode of 1.5 minutes and maximum of 5 minutes. As mentioned in Chapter 2, the 

NII screening times was quoted to have a range from 2 to 5 minutes (Bennett and Chin 2008), 

depending on the image review time. However, as Bennett and Chin (2008) observed, the 

average inspection time per container is approximately 1 minute, since majority of the images 

are not expected to contain any strikingly suspicious anomalies and there is no need for thorough 

and time-consuming image analysis. Therefore, the triangular distribution was selected to reflect 

this fact. In addition, the specified values of the distribution parameters have already accounted 

for possible delays caused by preparing the inspection (driver leaving the truck) or moving of the 

truck into position. 

5.2.4 Record Module – Recording Various Statistics of the Container Flow 

The Record module serves to collect statistics in the simulation model. In our case, 

statistics were collected on the number of containers that will be subjected to inspections and 

number of containers that are detained or cleared through the inspection. Other statistics, such as 

queue length, delay, and etc., are provided through the automatically generated report at the end 

of the simulation. 
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5.2.5 Dispose Module – Clearance and Detention of Containers 

The Dispose module is used as an ending point for entities in the simulation model. In the 

model of screening checkpoint, there are two Disposed modules, one for containers that are 

detained (did not pass the inspection) and the other for containers that are cleared through the 

inspection. 

5.2.6 Simulation Inputs and Outputs 

The objective of the simulations is to determine the capacities and performances of 

different screening checkpoint designs under various operational conditions. These conditions 

will be created using the different values of input parameters, such as: 

 Arrival rates of containers (headways between container arrivals); 

 Percentage of containers targeted for screening; 

 Number of inspection lanes for trucks carrying containers. 

The Arena model provides a number of simulation outputs that were used for the 

evaluation and comparison of the screening systems. In the analysis, the dependency between the 

inputs and outputs will be analyzed for better understanding of the checkpoint behavior. In 

addition, several parameters that are critical for security checkpoint performance will be 

determined. The main outputs provided by simulation are: 

 Delays per container (include total time spent in the system, waiting time, 

screening time); 

 Queue length (at each screening station or equipment); 

 Screening stations utilization (necessary to determine the checkpoint capacity). 
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5.2.7 Simulation Settings 

In order for the model to function properly and provide useful data, the simulation 

procedure must be properly set up. This section therefore goes through the simulation settings 

under the Arena menu Run Setup. 

Table 5.1: Simulation Modules Parameters 

Module Distribution 

Create module – container arrival headway Exponential (avg. varies) 

Process module - RPM screening 
Uniform (minimum 15 sec, maximum 30 

sec) 

Process module - RIID screening 
Uniform (minimum 5 min, maximum 15 

min) 

Process module – NII screening 

Triangular (minimum 1  minute, most 

probable value 1.5 minutes, maximum 5 

minutes) 

Decide module – Containers screening 

selection (NII Case 1 and 3) 
5 % 

Decide module – RPM alarms 5 % 

Decide module – RIID alarms 10 % 

Decide module – NII alarms 5 % 

 

To gain more variability that reflect the randomness of the container arrivals, screening 

times etc., 100 replications were performed for each run. The lengths of simulation run for 100 

replications vary according to the simulated experiment (4 or 12 hours), depending on the 

number of containers in the system. In addition, one hour of warm-up period was added at the 

beginning to the simulation length to avoid potential inaccuracy of the results caused by initial 

conditions of the model. The base time unit of the model is minutes (hence the results provided 
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in the software are in minutes). Statistics were collected on entities (e.g. total delay per 

container), resources (e.g. utilization of screening checkpoint), queues (e.g. average number of 

trucks) and processes (e.g. waiting times at individual screening stations). Table 5.1 sums up all 

the input parameters of individual modules in the models. 

5.3 SIMULATION LIMITATIONS 

Several test runs were performed to verify the behavior of the model and gain feedback 

about the model parameters. They were run with different values of container headway (from 

one to 10 minutes between container arrivals). In each run 100 replications were performed. The 

test run revealed one limitation of Arena Training & Evaluation Mode (student version). 

When experimenting with low headways between containers (three minutes and less), the 

simulations was unexpectedly terminated by an error. This happened because the academic 

version of Arena is limited to 150 entities in the system at any time. In case of low container 

headways, the model was not able to service all generated entities and queue grows until it 

reached its maximum entity limit and the simulation was terminated. This can be bypassed by 

lowering the simulation length to 5 hours or less, which does not allow the queue to grow to the 

150 entity limit before the end of the simulation. Therefore, when conducting experiments where 

the checkpoint runs at its capacity, the simulation length will be shortened. 

Another limitation of the model is that its parameters were not based on real-life 

operation and measurements. Unfortunately, such data are very hard to obtain due to their 

sensitive nature. Nevertheless, even with the parameters estimated on available sources, general 

conclusions regarding 100% screening can be drawn. If in the future the methodology introduced 

in this thesis should be used, the use of parameters based on real-life measurements is 

recommended. 
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 5.4 SIMULATED CASES 

This section describes the cases of screening checkpoints that will be simulated. The case 

studies were selected to reflect the changes introduced by the new legislation. The modeled cases 

correspond to three approaches to screening: 

 Risk-based approach – only containers that are targeted for inspection based on their 

risk are screened. This method is currently used in majority of the ports around the 

world, including EU ports (detailed description has been provided in section 3.2). 

 100% screening approach – all containers arriving to the terminal are screened using 

both NII and RPM. This approach is required to be implemented in terminals handling 

U.S.-bound cargo by the 9/11 Act (for detailed information see section 4.1).  

 Hybrid approach – all arriving containers are screened using RPM, whereas only 

targeted containers are screened using NII. This type of screening is currently 

implemented in the 22 busiest ports in U.S. according to the SAFE Port Act (description 

appears in section 3.3). 

5.4.1 Case 1: Risk-Based Approach 

Case 1 corresponds to the current method of screening in EU ports. The inspection is 

based on risk-based screening principle, where only the selected containers undergo NII 

inspection. Based on the interview with representative of Main Customs Office Port of Hamburg 

(2014), radiation detection equipment is available as well; however it is used only when 

necessary.  Therefore it is not included in the model. This type of screening procedure is fully 

compliant with EU and international legislation. This case served as the benchmark for 

comparison with 100% screening checkpoint. The screenshot of the Arena model for Case 1 is 

shown in the Figure 5.1.  The inspection process is the same as in Figure 3.2. 
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Figure 5.1: Case 1 Arena Model Screenshot 

 

5.4.2. Case 2: 100% Screening  

Case 2 corresponds to the method of screening that will be in the near future mandatory 

for container terminals handling U.S.-bound cargo as required by the 9/11 Act. All containers 

without exception go through both methods of screening, i.e. RPM and NII. The Arena model for 

this case is depicted in Figure 5.2. The inspection process is the same as in Figure 4.1. 

This model provides the main focus of this thesis and majority of conclusions drawn 

depend on the results of this particular model. This model can be used to test the design of a 

screening system compliant with the latest U.S. legislation. 

 

 

Figure 5.2: Case 2 Arena Model Screenshot 
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5.4.3 Case 3:  Hybrid Approach 

Case 3 is an interpretation of currently used checkpoint in the U.S. In this case, hybrid 

inspection is implemented, i.e., all containers are screened using RPM and those selected for 

more thorough inspection undergo NII screening. This method is required in U.S. according to 

the SAFE Port Act of 2006. The Arena model for this case can be found in Figure 5.3. The 

inspection process corresponds to flow chart in Figure 3.4. 

The idea behind this model is to compare the hybrid screening operation (Case 3) with 

100% screening operation (Case 2). Since NII screening is the most problematic part from the 

capacity point of view (NII has a longer screening time than RPM), the overall checkpoint 

performance of Case 3 should be much better than Case 2.  

 

 

Figure 5.3: Case 3 Arena Model Screenshot 

 

5.5 SIMULATED EXPERIMENTS 

The following paragraphs describe the experiments that were conducted to evaluate the 

three cases of checkpoint operations. The experiments have been divided into 2 groups based on 

the simulated container arrival rates. 
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Firstly, to evaluate the system performance under low traffic operations, simulations were 

run for container headway ranging from three minutes to 10 minutes (which corresponds to six – 

20 containers per hour) with a step size of 0.5 minute (total of 15 simulation runs per each case). 

This experiment used only one lane per each screening station. For each value of container 

headway, there were 100 replications, each of which will be 13 hours long including the warm-

up period. Simulations shall be conducted for Cases 1, 2 and 3 under the same settings to have 

comparable results. 

Secondly, high container arrival rate operations were simulated in a similar fashion. 

Container headway input ranged from one minute to 5 minutes (corresponding to 12-60 

containers per hour) with a step size of 0.25 minute (total of 17 simulation runs for each case). In 

this experiment one lane will be used for RPM and RIID stations, but there will be 2 lanes for 

NII screening. In addition, to avoid the limitation of academic version of Arena, the replication 

length was reduced to 5 hours including the warm-up period. The number of replications for each 

run remained at 100. Simulations shall be conducted for each case under the same settings to 

have comparable results. The summary of simulation settings can be seen in the table below. 

The results were evaluated for various indicators of the checkpoint performance, such as 

the total delay created by the inspection, waiting time in the queue, number of containers waiting 

in the queue, station utilization, and etc. 
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Table 5.2: Simulation Settings 

 Low container traffic High container traffic 

Container headway input 3 – 10 min (0.5 min step) 1 – 5 min (0.25 min step) 

Container arrival rates 6-20 containers per hour 12-60 containers per hour 

Replication length 

(including warm-up period) 
13 hours 5 hours 

Warm-up period 1 hour 

Number of replications 100 

Number of inspection lanes 

1 for RPM 

1 for RIID 

1 for NII 

1 for RPM 

1 for RIID 

2 for NII 
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Chapter 6: Results with Low Container Traffic 

Chapter 6 presents and analyzes the first half of the results obtained from Arena 

simulation software in order to gain insight into various aspects of checkpoint operation. Firstly, 

the performance indicators of the screening checkpoint are explained for better understanding of 

the text. Next, the results for low container arrival rates are evaluated. 

6.1 CHECKPOINT PERFORMANCE INDICATORS 

Since the screening checkpoint can be described as a queuing system, several terms used 

in queuing theory can be applied in the analysis. Firstly, the majority of plots uses the quantity 

average arrival rate as an X-axis. Based on the queueing theory, the arrival rate describes the 

rate at which containers arrive at the checkpoint. Since the model in Arena uses the average 

headway (time between container arrival) as an input parameter, the average arrival rate has be 

calculated using the following equation (Taha 1997): 

𝜆 =
1

ℎ
  

where the average arrival rate is denoted as λ and the headway as h. The unit of measurement 

used in this thesis is minutes for the headway and containers per hour (or minute) for the arrival 

rate. It should be noted that if the arrival rate is mentioned in the text or the plots, it is 

exclusively the arrival rate for the whole checkpoint, not the individual stations. 

As mentioned in Chapter 4, one of the major screening related concerns of terminal 

operators is the possible reduction of handling capacity. This is closely linked to the output of the 

screening system – if the new system interferes with the feeding of containers to the terminals, 

the handling equipment (such as cranes) may become underutilized. Therefore, the checkpoint 
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output will be analyzed, showing the total number of containers that were processed during the 

simulations. 

The output of Arena contains data on the duration of the inspection, such as screening 

time, waiting time and total delay. The screening time is the duration of the screening process 

itself. It is denoted as service time (μ) in the terminology of queuing theory. The waiting time is 

the time period a container (a truck) spends waiting in a queue, i.e. waiting time in the queue 

(WQ).  Finally, the total delay in Arena denotes the total time a container spends at the inspection 

checkpoint. This simulation output corresponds to the time spent in the system (WS). Since we 

assume the transfer time between individual stations to be zero (the truck does not need to move 

long distances between stations), the time spent in the system is the sum of the 2 previous 

quantities (service time and waiting time). All the previously mentioned terms can either have a 

global value for the whole checkpoint or values for individual stations. 

If both average arrival rate λ and average service rate μ are known, the utilization factor 

(ρ) can be calculated using the equation 

𝜌 =
𝜆

𝜇
. 

If the utilization factor is greater than 1, the queue length will grow to infinity, meaning 

that the checkpoint does not manage to screen all incoming containers (Taha 1997). Otherwise, if 

the utilization factor is less than 1, the system is in a recurrent state, meaning the queue will grow 

and dissipate alternately. The utilization factor is useful for illustration the screening capacity of 

the checkpoint. 

The number of trucks in a queue (queue length) is a crucial indicator for design of 

screening station, namely the waiting area for trucks. The maximal value of the queue length is 

especially important, since the waiting area has to sustain the maximal expected queue. In the 
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terminology of queuing theory, the queue length is denoted as number of items (containers) in 

the queue (LQ). 

Finally, the Arena output called utilization shows the usage of the screening equipment. It 

can be calculated as a percentage of time the screening equipment is in use. The utilization 

corresponds to detector occupancy in traffic engineering. Therefore, a term occupancy of a 

screening station will be used to avoid confusion with the utilization factor ρ. 

6.2 CHECKPOINT OUTPUT 

The Table 6.1 compares the checkpoint output in all simulated cases. It is quite surprising 

that there is little difference between the three simulated cases. This can be explained by the fact 

that the during low container traffic the checkpoint does not operate at its capacity. 

Table 6.1: Checkpoint Output 

Input  

Headway 

[min] 

Arrival 

rate 

[cont./h] 

Case 1 

[cont./h] 

Case 2 

[cont./h] 

Case 3 

[cont./h] 

3.00 20.0 20.2 20.1 20.0 

3.50 17.1 17.3 17.0 17.1 

4.00 15.0 15.1 15.2 15.0 

4.50 13.3 13.4 13.4 13.3 

5.00 12.0 12.0 12.0 12.1 

5.50 10.9 10.9 10.8 10.9 

6.00 10.0 10.0 10.0 10.1 

6.50 9.2 9.3 9.3 9.3 

7.00 8.6 8.5 8.6 8.7 

7.50 8.0 7.9 8.1 8.1 

8.00 7.5 7.4 7.5 7.7 

8.50 7.1 7.0 7.1 7.2 

9.00 6.7 6.6 6.6 6.8 

9.50 6.3 6.3 6.3 6.4 

10.00 6.0 5.9 5.9 6.1 
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However, there are bigger differences between the three cases if we focus on the number 

of containers that were detained during the screening operations. The average detention rates and 

their standard deviations are listed in the Table 6.2. It can be observed that the Case 2 has the 

highest detention rate, while Case 1 and Case 3 are roughly equal. If we assume that the 

detention rate corresponds to the level of security, it can be concluded that screening of all 

containers would improve security at container terminals. However, in our simulation, targeting 

of the containers for inspection in Cases 1 and 3 was random. In reality, sophisticated algorithms 

are used, so the level of security should be much higher. 

Table 6.2: Average Checkpoint Detention Rates 

  Case 1 Case 2 Case 3 

Average Detention Rate [containers] 0.24% 5.40% 0.27% 

Standard Deviation [containers] 0.02% 0.25% 0.03% 

 

6.3 SERVICE TIME  

6.3.1 Average Station Service Times 

Since the model uses the same distributions for duration of the screening in all simulated 

cases, the average service time for individual screening stations is roughly constant all the time. 

The Table 6.2 contains the average values for individual stations across all simulations, as well 

as averages calculated using the assumed distribution. Although the RIID inspection has the 

highest service time, it should be noted that only a small volume of containers undergo this type 

of inspection. 

  



 53 

Table 6.3: Screening Stations Service Times 

Screening Station 
Distribution 

Average [min] 
Average Service 

Time [min] 

Standard Deviation 

[min] 

Radiation Portal Monitor (RPM)  0.3750 0.3748 0.0005 

Radiation Isotope Identification 

Devices (RIID)  
10.0000 9.9803 0.1269 

Non-Intrusive Equipment (NII) 2.5000 2.5235 0.0318 

 

6.3.2 Average Checkpoint Service Time 

Similarly, the values of average service time for the whole checkpoint have been 

calculated. Once again, the distributions of service time remain the same, as well as approximate 

number of containers that undergo screening. The Table 6.3 contains the summary of the results. 

It should be noted, that the values in the table are averaged across all incoming containers, even 

the ones that are not selected for screening (Case 1 and 3), which leads to a significant decrease 

in the service time per container. As expected, the 100% screening (Case 2) has the largest 

average service time, reaching the value of 3.3609 minutes with a standard deviation of 0.0114 

minutes. The service time between simulations did not fluctuate significantly, as its standard 

deviations are low. 

Table 6.4: Checkpoint Service Times 

Simulated 

Case 

Average Service 

Time [min] 

Standard Deviation 

[min] 

Case 1 0.1299 0.0016 

Case 2 3.3609 0.0114 

Case 3 1.0012 0.0074 
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6.4 WAITING TIME  

The waiting time in the queue is an important indicator for truck operators. While the 

truck with a container waits in a queue, it is usually idling. That leads to wasting of fuel and 

economic loss for the operators, not to mention unnecessary engine emissions. 

6.4.1 Average Checkpoint Waiting Time  

Let us consider the total waiting time in the queues for the whole checkpoint. According 

to the simulation output, there is typically negligible waiting time for Case 1 (not even reaching 

1 second) and Case 3 (range 1.76 – 5.08 seconds). However, for the case of 100% container 

screening (Case 2), the average waiting time increases rapidly with increasing arrival rate, 

ranging from 0.5 minute to 6.76 minutes (Figure 6.1). 

 

 

Figure 6.1: Average Waiting Time in the Queue 
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The biggest share of average waiting time in Case 2 can be accounted to NII screening 

station (on average 96.62%, compared to 1.29% for RPM and 2.09% for RIID). This leads to a 

conclusion that the NII station is the biggest bottleneck in the case of 100% container screening. 

Nevertheless, if the container terminal’s traffic corresponds to the simulated range, on a typical 

day of operation there should be no congestion severe enough to disrupt the operation of the 

truck operators. 

6.4.2 Maximum Average Checkpoint Waiting Time  

However, we should also focus on the values of maximal average waiting time in the 

queue. In Arena, this was the highest average waiting time among the 100 replications in a 

simulation run, for a certain container arrival rate. As can be seen from the plot at Figure 6.2, the 

maximum average waiting time in Case 2 starts increasing rapidly at the arrival rate of 12 

containers per hour (2.4 minutes), eventually reaching 25.28 minutes. This is already quite 

significant. Should such case apply, the container terminal operators ought to analyze their traffic 

statistics to determine whether such arrival rate is occurring frequently or not. If the answer is 

yes, adding a checkpoint lane for NII station should be considered. For comparison, a simulation 

with the same setting for 20 containers per hour but with 2 NII lanes was conducted, which led to 

decrease of maximum waiting time to 0.7061 seconds, effectively eliminating the queue 

(reduction by 97.21%). Other measured parameters showed a similar trend. 
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Figure 6.2: Maximal Average Waiting Time in the Queue 
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whereas there is just NII inspection at Case 1 (8 seconds per container on average). As was the 

case for waiting time in the queue, the average time spent in the checkpoint is highest for Case 2. 

During low arrival rates, screening time forms a majority of the total time spent in the system, 

whereas as the arrival rate rises, the waiting time in queue becomes the major contributor to the 

time spent in the system. 

 

 

Figure 6.3: Average Time Spent at the Checkpoint 
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6.5.2 Maximum Average Time Spent in the System 

The results of maximum average time spent in the system (Figure 6.4) is quite similar to 

the results for maximum average waiting time (Figure 6.2), since the former is created by adding 

values of the service time (which is more or less constant) to the latter. Therefore, the same 

conclusion as in section 6.2.3 can be made. 

 

 

Figure 6.4: Maximum Average Time Spent at the Checkpoint 
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ranges from 0.001 to 0.009. There was only a negligible difference between Case 2 and Case 3. 

The fact that there is no significant queuing at the RPM station is confirmed by the maximum 

value of containers waiting. On average, there were at most 2 or 3 trucks with containers waiting 

in a queue at a time in both simulated cases. 

 

 

Figure 6.5: Average Number of Containers in the NII Queue 
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no significant difference between Case 2 and Case 3. This means that for the simulated arrival 

rates, no high capacity waiting area is needed in case of RPM and RIID station. 

However, this is not the case for the NII station especially for the case of 100% screening 

of containers. As can be observed at the Figure 6.5, the average number of containers in the 

queue significantly larger in Case 2 when compared to Case 1 and 3 (which are practically 

identical). With increasing arrival rate the average number of containers in the queue increases 

rapidly. 

 

 

Figure 6.6: Maximal Average Number of Containers Waiting in the NII Queue 
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23 containers, compared to 1 in Case 3 and 3 in Case 1. If the queue reaches the length such as in 

Case 2, the waiting area at the station should be properly designed to accommodate such number 

of trucks carrying containers. 

6.7 SCREENING STATION OCCUPANCY  

6.7.1 RPM and RIID Occupancy 

Since in both related cases (Case 2 and 3), 100% of incoming containers is screened 

using the RPMs, there is no significant difference in the RPM station occupancy. This was 

confirmed by the simulation results. The maximum value of occupancy reached 12.61% (at 

arrival rate 20 cont./h), while the lowest reached approximately 5% (at arrival rate 6 cont./h). 

The simulation output is plotted in Figure 6.7. 

 

 

Figure 6.7: Occupancy of RPM and RIID Stations 
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The occupancy of RIID station does not differ significantly between the two applicable 

cases (Case 2 and 3), since number of containers that are screened using RIID is roughly the 

same (5% of the traffic according to the Decide module in Arena).  The occupancy ranges from 

5% to 17.33%. The plot of RPM and RIID occupancy can be observed in Figure 6.7. 

6.7.2 NII Occupancy 

The most interesting results can probably be observed for NII screening (Figure 6.8).  

Since in Case 2 all incoming containers are screened, the occupancy of NII equipment is quite 

high – it ranges from 24.69% to 83.33%. On the other hand, in Cases 1 and 3 the occupancy was 

once again roughly equal, reaching values in the range of 1.31% - 4.37%. 

 

 

Figure 6.8: Occupation of the NII Station 
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6.7.3 Maximum Occupancy of the Screening Stations  

Based on the best fitting trend line functions of the occupancy data (plotted in Figures 6.7 

and 6.8), the arrival rates at which the screening stations are 100% occupied were calculated. 

This can be regarded as the maximal value of arrival rate that one lane of a station is able to 

service. Beyond that value the queue will grow to infinity. Please note, that the arrival rate does 

not correspond to the output of the screening station, which depends on the number of containers 

that are actually screened. The calculated values can be observed at the Table 6.5. 

The calculations showed that the maximum screening output (that corresponds to 100% 

occupancy) is approximately 160 containers per hour for a RPM station, 6 for RIID station and 

24 for NII station. All stations have one lane available. The calculated values in the table 

fluctuate since, they are calculated from an output that varies with every simulation. 

Table 6.5: Occupancy Trend Lines and Maximal Arrival Rates for Screening Stations 

  

Simulated 

Case 
Trend Line Function R2 

Max. Arrival 

Rate 

[cont./h] 

Max. Output 

[cont./h] 

R
P

M
 

Case 2 𝑦 = 0.6299𝑥 − 0.058 0.9996 158.85 158.85 

Case 3 𝑦 = 0.6154𝑥 + 0.1153 1.0000 162.31 162.31 

R
II

D
 

Case 2 𝑦 = 0.8211𝑥1.0063 0.9963 118.18 5.91 

Case 3 𝑦 = 0.8196𝑥1.0059 0.9986 118.62 5.93 

N
II

 Case 1 𝑦 = 0.2034𝑥1.0274 0.9988 416.74 20.84 

Case 2 𝑦 = 4.1626𝑥 − 0.1525 0.9997 24.06 24.06 

Case 3 𝑦 = 0.1997𝑥 + 0.1516 0.9983 499.99 25.00 
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6.9 LOW TRAFFIC SIMULATION RESULTS SUMMARY 

The data from the simulation output brought many intriguing notions. Firstly, it can be 

concluded that 100% screening of containers has the largest potential for queuing of containers. 

Secondly, when screening 100% of incoming containers, the NII station poses the bottleneck in 

the system. The simulation results will be further evaluated in Chapter 7. 
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Chapter 7: Results with High Container Traffic  

Chapter 7 continues the presentation and analysis of the simulation results. The behavior 

of the checkpoints and their stations will be analyzed under the conditions of high container 

traffic that are described in Chapter 5. 

7.1 CHECKPOINT OUTPUT 

The Table 7.1 lists the simulated output rates for all the three simulated cases. It can be 

observed that in Case 2 there is a noticeable drop in the output rate at the arrival rate of 60 

containers per hour. The checkpoint would most probably not able to service all incoming 

containers at this arrival rate, hence the drop in output. 

Table 7.1: Checkpoint Output Rates 

Input  

Headway 

[min] 

Arrival 

rate 

[cont./h] 

Case 1 

[cont./h] 

Case 2 

[cont./h] 

Case 3 

[cont./h] 

1.00 60.0 60.3 48.3 59.3 

1.25 48.0 48.5 46.3 47.5 

1.50 40.0 40.0 40.3 40.3 

1.75 34.3 34.5 34.3 34.5 

2.00 30.0 30.0 30.3 30.5 

2.25 26.7 26.8 26.5 26.8 

2.50 24.0 24.0 24.5 24.3 

2.75 21.8 21.5 21.8 22.0 

3.00 20.0 19.8 20.3 20.0 

3.25 18.5 18.3 18.3 18.5 

3.50 17.1 17.0 17.3 17.3 

3.75 16.0 15.8 16.3 16.0 

4.00 15.0 14.8 15.0 15.3 

4.25 14.1 14.0 14.0 14.3 

4.50 13.3 13.3 13.5 13.5 

4.75 12.6 12.5 12.5 12.8 

5.00 12.0 12.0 12.0 12.3 
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Since the same model logic as in the low container traffic was used, the average detention 

rates and their standard deviations for high container traffic are not significantly different. Their 

values are shown in Table 7.2. 

Table 7.2: Average Checkpoint Detention Rates 

  Case 1 Case 2 Case 3 

Average Detention Rate [containers] 0.24% 5.56% 0.23% 

Standard Deviation [containers] 0.02% 0.16% 0.03% 

 

7.2 SERVICE TIME  

7.3.1 Average Station Service Times 

As expected, the screening times do not differ significantly from the values in the 

previous chapter, since the same distributions are used. In addition, the values are very close to 

the averages of the screening time distributions. The RIID has the longest duration, while RPM 

the shortest. 

Table 7.3: Screening Stations Service Times 

Screening Station 
Distribution 

Average [min] 
Average Service 

Time [min] 

Standard Deviation 

[min] 

Radiation Portal Monitor (RPM)  0.3750 0.3747 0.0005 

Radiation Isotope Identification 

Device (RIID)  
10.0000 9.7605 0.3344 

Non-Intrusive Equipment (NII) 2.5000 2.4711 0.0821 
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7.2.2 Average Checkpoint Service Time 

Since the distributions of service times are identical as in low container traffic, the 

average service times and their standard deviations are approximately identical in the case of 

high container traffic. Therefore, the same conclusion can be drawn. The 100% screening 

checkpoint (Case 2) has the highest average service time per container, because the screening 

time is averaged across all incoming containers.  

Table 7.4: Checkpoint Service Times 

Simulated 

Case 

Average Service 

Time [min] 

Standard Deviation 

[min] 

Case 1 0.1308 0.0033 

Case 2 3.3594 0.0207 

Case 3 1.0019 0.0091 

 

7.3 WAITING TIME  

7.3.1 Average Checkpoint Waiting Time  

According to the simulation, the average waiting time for the checkpoint is practically 

negligible in Case 1 (between 0.00 and 0.18 seconds) and Case 3 (between 2.78 and 23.00 

seconds). In Case 2, the queue length depends on the arrival rate. At arrival rate of less than 20 

containers per hour the waiting time is less than 30 seconds. If we compare this waiting time 

value to low container traffic with similar arrival rate, it has been reduced since two NII lanes are 

used. However, if the arrival rate is increased above 35 container per hour, the average waiting 

time rises significantly, reaching its maximum of 36.06 minutes for 60 containers per hour 

(Figure 7.1).   
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Despite the fact that the NII station uses 2 lanes, it has once again proven to be the 

dominant source of the waiting time in Case 2. For example, at arrival rate 60 containers per 

hour it accounted for waiting time 35.89 minutes. At the same arrival rate the average waiting 

time at the RPM station was 7.03 minutes and at RIID station 4.8 minutes. 

 

 

Figure 7.1: Average Waiting Time in the Queue 

 

7.3.2 Maximum Average Checkpoint Waiting Time  

Let us consider the maximum average waiting time for the whole checkpoint (Figure 

7.2). While there is a similar trend as in the average waiting time, the values of maximum 

average waiting time have increased. If the arrival rate rises beyond 40 containers per hour, the 

time spent in the queue surpasses 10 minutes, ultimately reaching its peak of 68.57 minutes at 60 
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containers per hour. Therefore, if the terminal expects the typical arrival rate higher than 40 

containers per hour, adding additional NII inspection lanes should be considered. 

 

 

Figure 7.2: Maximal Average Waiting Time in the Queue 

 

7.4 TIME SPENT IN THE SYSTEM  
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can be made for Case 3 (average time of 1.12 minutes in the system). As expected, based on the 

0

10

20

30

40

50

60

70

80

10 15 20 25 30 35 40 45 50 55 60 65

Ti
m

e 
[m

in
]

Arrival rate [cont./h]

Max. Avg. Waiting Time in the Queue

Case 1 Case 2 Case 3



 70 

previous results, Case 2 checkpoint is very dependent on the value of the arrival rate. It works 

relatively efficiently up to the arrival rate of 40 container per hour, beyond this value significant 

delays can be observed. 

 

 

Figure 7.3: Average Time Spent at the Checkpoint 

 

7.4.2 Maximum Average Time Spent in the System 

As the maximum average time spent in the checkpoint corresponds to the sum of service 

time of the whole checkpoint and the maximum waiting time in the queue. Its plot in Figure 7.4 

follows the same pattern that has been observed in Figure 7.2. Once again, it can be observed 

that if the arrival rate in Case 2 is less than 40 containers per hour, the checkpoint provides 

acceptable level of delay.  Case 1 and Case 3 checkpoints once again generate little or no delay. 
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Figure 7.4: Maximum Average Time Spent at the Checkpoint 

 

7.5 NUMBER OF CONTAINERS IN THE QUEUES  

As has been established in the previous chapter, there is a queue at each screening station. 

Firstly, let us analyze the queue at the RPM station (Case 2 and Case 3). The number of trucks in 

the queue is on average between 0.0032 and 0.1196. These values are low since most of the time 

there is no queue. According to the results, the maximum average number of trucks in the queue 

is between 2 and 7 containers. From the point of view of terminal infrastructure, queue of this 
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Figure 7.5: Average Number of Containers in the NII Queue 

 

Let us continue the analysis with RIID station (Cases 2 and 3). Since only 5% of 

containers is selected for RIID screening in both applicable cases, there typically should not be 
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per hour the average number of trucks in the queue does not even reach 1. However, after this 

value is exceeded, the queue builds up fast, reaching its peak of 37.2 containers at 60 containers 

per hour. As has already been speculated, using two lanes at this arrival rate is probably not 

sufficient. 

 

 

Figure 7.6: Maximal Average Number of Containers Waiting in the NII Queue 

 

This claim is supported by the results of maximum average number of trucks in the 

queue. While there is approximately 13 containers in the queue at the arrival rate of 35 

containers per hour, there are 133 containers at arrival rate 60 container per hour. This level of 

congestion is practically impossible to manage in terms of the size of the waiting area. Therefore, 

installation of additional NII lane would be required. 
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7.6 SCREENING STATION OCCUPANCY  

7.6.1 Stations Occupancy 

The increased value of arrival rate in high container traffic simulation resulted in higher 

occupancy of both RPM and RIID stations. The number of inspection lanes remained the same, 

each station has only one lane available. Once again, no significant difference between Case 2 

and 3 occupancies has been observed. The minimum value of occupancy for RPM was 7.5% at 

arrival rate 12 cont./h and for RIID 10.28% at the identical arrival rate. The maximum values of 

occupancy reached as high as 51.3% for RIID and 37.94% for RPM, both at the maximum 

simulated arrival rate of 60 containers per hour. The output of the simulation is plotted in Figure 

7.7. To conclude, both RPM and RIID station, even though equipped with just one inspection 

lane, are still able to provide satisfactory performance despite the increased arrival rates. 

 

 

Figure 7.7: Occupancy of RPM and RIID Stations 
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7.6.2 NII Station Occupancy 

Since NII station has two lanes available, the results are substantially different from the 

previous simulation, mostly in Case 2. Utilizing two lanes significantly reduced the occupancy 

for lower arrival rates, while enabling screening of higher arrival rates (Figure 7.8). An 

interesting observation how the station behaves at peak occupancy can be made. Although at the 

arrival rate of approximately 48 containers per hour the station is still not fully utilized 

(occupancy of 96%), the queues and waiting times grow rapidly. Had arrival been increased 

beyond 60 containers per hour, which corresponds to maximal utilization (99.97%), the queueing 

would even intensify. On the other hand, at the minimum simulated arrival rate (10 cont./h) only 

one inspection lane would suffice, since the two lanes were underutilized (24.83%). 

 

 

Figure 7.8: Occupation of the NII Station 
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7.6.2 Maximum Occupancy of the Screening Stations  

In the same fashion as in Sub-section 6.7.3, maximal arrival rates for each stations were 

calculated using trend line functions of the occupancy data plot. The obtained results (Table 7.4) 

differ from the previous chapter, since the simulation had different settings and therefore the data 

does not fit the same functional forms. Nevertheless, the maximum calculated screening output 

was 160 containers per hour for RPM, approximately 6 containers per hour for RIID and about 

50 containers per hour for NII. 

Table 7.5: Occupancy Trend Lines and Maximal Arrival Rates for Screening Stations 

  

Simulated 

Case 
Trend Line Function R2 

Max. 

Arrival Rate 

[cont./h] 

Max. 

Output 

[cont./h] 

R
P

M
 

Case 2 𝑦 = 0.6312𝑥 − 0.0761 0.9998 158.55 158.55 

Case 3 𝑦 = 0.6142𝑥 + 0.2647 0.9997 162.38 162.38 

R
II

D
 

Case 2 𝑦 = 0.0015𝑥2 + 0.747𝑥 + 0.9025 0.998 108.86 5.44 

Case 3 𝑦 = −0.0003𝑥2 + 0.8461 − 0.1063 0.9979 123.74 6.187 

N
II

 

Case 1 𝑦 = 0.1101𝑥 − 0.035 0.9987 908.58 45.43 

Case 2 𝑦 = −0.0197𝑥2 + 3.0781 − 10.755 0.994 56.185 56.19 

Case 3 
𝑦 = 3. 10−6𝑥3 − 0.0005𝑥2

+ 0.1253𝑥 − 0.164 
0.9981 336.88 46.84 

 

7.7 HIGH TRAFFIC SIMULATION RESULTS SUMMARY 

The conclusions from this chapter are similar to ones in the previous chapter. The model 

representing 100% screening checkpoint (Case 2) once again generates the highest queue length 

and waiting time out of the three simulated cases. The main culprit is NII as well, although in the 

case of high container traffic simulation two lanes were used for NII. 
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Chapter 8: Recommendations on Design of Container Screening Systems  

Chapter 8 proposes recommendations on screening of containers for both policy makers 

and container terminal designers. Firstly, results from the previous chapters and information 

from literature review will be used to make proposals on possible changes to current legislation. 

Secondly, recommendations on how to implement 100% screening checkpoint at seaports will be 

given.  

8.1 RECOMMENDATIONS FOR POLICY MAKERS 

As has been mentioned in the introduction, there is an ongoing debate on the topic of 

100% screening among the industry experts. The feasibility of the concept has been questioned 

numerous times, because of astronomical costs, technical issues and operational constraints. 

Indeed, as has been confirmed by the simulation in Arena in Chapters 6 and 7 of this thesis, if the 

100% screening checkpoint (Case 2) is not designed properly, it does not provide satisfactory 

performance. For instance, if insufficient number of inspection lanes at NII screening station is 

used, there can be heavy congestion at the checkpoint, resulting in a drop of quality of service of 

the terminal. As a consequence, the supply chain and trade between the EU and U.S. can be 

disturbed to an unexpected degree. Is there an alternative for screening all incoming containers? 

If we consider the current arrangement at the EU ports (Case 1), we come to the 

conclusion that although it does not generate significant congestion and delays, it lack one 

crucial component – radiation screening. Therefore, it does not meet the demand on the increased 

security of the supply chain. 

However, even among the current methods of screening, there is an alternative to the 

100% screening concept. Currently, in U.S. ports, the hybrid approach to screening (Case 3) is 
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implemented. While all containers undergo the radiation inspection like in case of 100% 

screening, only containers targeted for inspection are screened using NII equipment. This 

significantly reduces values of all negative performance indicators, such as queue length or delay 

as has been proven by the simulation. 

Besides the delay, truck congestion at container terminals has to be considered. The 

current trend in development of container terminals is to provide environment friendly operation. 

For instance, to meet this goal, renewable sources of energy are used to power the handling 

equipment. The congestions at terminals created by 100% screening would go against the 

“green” effort of terminal operators, since it would bring increased levels of emissions caused by 

idling of trucks in the queue. 

To support this claim, the results of the simulation were analyzed to determine possible 

levels of engine emission caused by queuing at the checkpoint. The values were calculated by 

multiplying the truck waiting time by idling emission rates provided by U.S. Environmental 

Protection Agency (2008). Trucks incoming to the terminal are assumed to be classified as 

heavy-duty diesel vehicles (HDDV), gross vehicle weight class VIIIb. The resulting rates of 

emissions per hour of checkpoint operation for volatile organic compounds (VOC), 

hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOX) and particulate matter (PM2.5 

and PM10) are provided in the Table 8.1. It compares the rates for Case 2 and 3 and for arrival 

rates 20 container per hour (low traffic simulation) and 48 container per hour (high traffic 

simulation). 
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Table 8.1: Emission Rates (Grams per Hour of Checkpoint Operation) 

    

VOC 

[g/h] 

HC 

[g/h] CO [g/h] 

NOX 

[g/h] PM2.5 [g/h] PM10 [g/h] 
2
0
 c

o
n
t.

/h
 

Case 2 9.66 9.80 79.34 97.41 2.62 2.76 

Case 3 0.12 0.12 0.98 1.20 0.03 0.03 

4
8
 c

o
n
t.

/h
 

Case 2 33.79 34.27 277.55 340.79 9.17 9.65 

Case 3 0.90 0.92 7.43 9.12 0.25 0.26 

 

Although trucks in the EU have a different engine specification and therefore the absolute 

values of emissions may vary, the percentage by which the emissions are reduced by transition to 

hybrid approach to screening remains constant. In the case of arrival rate 20 containers per hour, 

the emissions were reduced by 98.77% just by transition from 100% screening to hybrid 

approach. Similarly, the rates for 48 containers per hour dropped by 97.32%. That is a significant 

difference in a long term, especially for CO and NOX emissions, which are both highly harmful 

for the environment. 

Table 8.2 Effect of Transition from 100% Screening to Hybrid Approach 

 

20 cont./h 48 cont./h 

Waiting Time in the Queue -98.75% -97.36% 

Time Spent at the Checkpoint -89.10% -90.67% 

No. of Trucks in RPM Queue 0.00% -3.94% 

No. of Trucks in RIID Queue 1.08% 4.99% 

No. of Trucks in NII Queue -99.97% -99.99% 

Truck Emissions -98.77% -97.32% 

 

To conclude, it is recommended that the 100% screening approach would be abandoned 

in favor of the hybrid approach, which would provide comparable level of number of containers 

screened by radiation while having lower cost, better operational performance and as 
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substantially negative impact on the environment. Table 8.2 provides percentages, by which the 

average values of the observed parameters are reduced by the transition. 

8.2 RECOMMENDATIONS FOR TERMINAL DESIGNERS 

Implementing of screening checkpoint to existing infrastructure can be a great challenge, 

especially in the case of 100% screening checkpoint. The following section therefore provides 

several recommendations for the terminal designers that may help them with the design. 

8.2.1 Usage of Simulation 

As has been discovered during the visit of Port of Hamburg, the terminal designers 

currently do not utilize any simulation software to simulate and verify the design of terminal 

checkpoints (Representative of Main Customs Office Port of Hamburg 2014). Instead, they rely 

on experience and expert opinion. As valuable as it may be, the screening of containers on a 

mass level is relatively new concept. Therefore simulation software should be used to help with 

the design, at least for the validation of the expert’s design. 

As has been demonstrated by the thesis, one possible choice of simulation software is the 

Arena Simulation Software. It is relatively intuitive and user-friendly, while providing functions 

that are necessary for simulation of the checkpoint operation. The biggest issue with Arena 

discovered during this research was the limitation of the academic edition, which is limited to 

150 entities in the system at any time during the simulation. However, if a designer uses a 

standard license of Arena, this issue does not apply. 

If a terminal designer should decide to use Arena Simulation Software for the purpose of 

design of screening checkpoint, the models defined in the thesis may be used as a template. 

However, it is recommended that the distributions for screening time are revisited and adjusted 
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to specifications given by the screening equipment manufacturer. Similar recommendation 

applies to the simulated input, which should correspond to the expected container traffic in the 

terminal. 

8.2.2 Implementation of Simulation Output 

The simulation of the checkpoint behavior provides useful information on the checkpoint 

operation and design. However, the terminal designer must make several important decisions 

when implementing the output of the simulation in reality. 

The crucial decision is which the type of checkpoint is to be implemented. The choice 

will probably very often be made based on the minimum legislative requirement. However, a 

terminal designer may choose to go beyond the minimum requirement and implement more 

advanced security methods in order to gain competitive advantage over other terminals. 

Next, the number of inspection lanes should be determined. This should not be done just 

by dividing the expected container arrival rates by the theoretical capacity of each lane. It is 

preferable to set an acceptable level of delay or queue length first and subsequently estimate the 

necessary number of lanes based on simulation. 

For instance, if a terminal operator decides to have a screening checkpoint based on 

100% screening with the expected arrival rate is 48 containers per hour, and he has a choice of 

how many lanes of NII station to implement (as one lane for RPM and one lane for RIID are 

sufficient according to the earlier reported simulation results). A quick simulation has been 

conducted based on the high container traffic for the Case 2 model, the results are summed up in 

Table 8.3. Should the terminal designer set the average acceptable level of delay (time spent in 

the system) per container to 10 minutes, it is clear that two NII lanes will not be sufficient and 

three lanes must be used instead. Similarly, if there is a demand to eliminate the queues entirely, 



 82 

one additional lane (total of four lanes) must be added. However, this is assuming that the quality 

of operation has a priority over the cost of screening implementation. 

Table 8.3: Influence of No. of NII Lanes on Operation at Arrival Rate 48 cont. per hour 

No. of NII 

Lanes 

Avg. Time 

in the 

System 

[min] 

Max. Avg. 

Time 

in the System 

[min] 

Avg. No. of 

Containers 

in the NII Queue 

Max. Avg. No. 

of Containers 

in the NII Queue 

2 13.6379 34.8416 8.3421 27.5145 

3 4.1980 5.4300 0.4630 1.3644 

4 3.7117 5.5267 0.0913 0.2704 

 

Although in the case of RPM station, one lane was able to provide an acceptable output at 

all simulated arrival rates, it might be prudent to implement at least 2 lanes if the budget allows. 

As mentioned in Chapter 3, it is a good practice to implement 2 or more lanes, so that an alarm at 

one RPM may be verify with the second RPM. 

Finally, the checkpoint placement and layout should be decided (the possible options are 

listed in in Section 4.2.1). The decision should be based on land availability inside the port and 

the terminal traffic circulation pattern. For instance, if the seaport in the EU consist of multiple 

terminals each serving a shipping line which has a small share of U.S. bound traffic, it is 

recommended to create a dedicated screening site for all terminals. On the other hand, if there is 

a terminal with a major share of U.S. bound traffic, a more suitable solution would be to build a 

screening site dedicated to the terminal in question. 

To conclude, it should be noted that the recommendations for terminal designers in this 

chapter should not be regarded as a universal rule. Every seaport is different in layout, budget, 

traffic or other operational constraints. Therefore, the terminal designers should decide what kind 

of checkpoint configuration suits their situations the best. 
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Chapter 9: Conclusion  

9.1 SUMMARY OF RESEARCH 

The research in this thesis was devoted to the topic of container screening in seaports. 

Although this area does not often receive spotlight on the transportation and logistics research 

scene, it is important for ensuring the safety and security of the global supply chain. In order to 

provide background necessary to understand the issue, the first four chapters of the thesis 

introduced the most important concepts, legislation and technical means of screening of 

containers at seaports with a focus on shipping containers from EU to U.S. Subsequently, models 

representing three major approaches to screening were formulated and created in the Arena 

Simulation Software. Using the models, the operations of the screening checkpoints were 

simulated and evaluated. The experience and results gained by performing the simulation served 

as a basis for recommendations on container screening at seaports for both policy makers and 

terminal designers. 

9.2 CONTRIBUTIONS 

The thesis compared various operation aspects of three screening approaches by 

simulation. There are two parties that can benefit from the information provided in the thesis. 

Firstly, the policy makers can learn from the analysis of the three approaches to screening in 

order to support more efficient solutions in future legislation. Secondly, terminal designers can 

use the simulation method described in the thesis during the process of screening checkpoint 

design. This way, more efficient checkpoint design might be achieved. 
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9.3 LIMITATIONS 

There are several limitations in the research that should be addressed if using the models 

described in the thesis for a design of a checkpoint. Firstly, the distributions used for screening 

time at the screening stations are based on estimates from available resources. Despite best 

efforts, real data from seaports were not obtained. Therefore, when using the simulation method, 

new distributions should be devised for the simulated case. Secondly, there has been an issue 

with the limitations of the academic edition of Arena simulation software, which limited the 

scope of the simulation. It is thus recommended to get a standard industry license which should 

not have this issue. 

9.4 FUTURE RESEARCH 

There are several aspects of container screening, which can be used for future research. 

For instance, a research devoted to risk-based screening can be suggested, focusing on data 

analysis used for targeting containers for screening. Alternatively, on a more technology-oriented 

note, emerging screening technologies and their impact can be researched. Finally, the 

simulation method used in this thesis can be revisited in order to perform a sensitivity analysis, if 

the number of container that are screened changes. 
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Glossary 

Container inspection – a process of security check of an intermodal freight container. It can 

include checking of all documentation, container screening (radiation detection or non-

intrusive imaging) or physical inspection of the container. 

Container screening – a method that utilizes detection equipment to inspect and identify 

contents of an intermodal freight container without opening it. A term “container 

scanning” is a synonym. 

Inspection lane – a road lane for one truck at a screening station. 

Naturally Occurring Radioactive Material (NORM) – a material that has detectable level of 

naturally occurring radiation, but poses no security threat. 

Non-Intrusive Imaging (NII) – a method of screening, which generates the image of container 

contents without opening it in order to detect illicit objects inside. 

Radiation detection – a part of the screening process that serves for detecting radioactive 

material inside the container. It can be either primary (using RPM) or secondary (using 

RIID), which ensues when there is an alarm at the primary detection. 

Radiation Isotope Identification Device (RIID) – handheld device that is used for secondary 

radiation detection. 

Radiation Portal Monitor (RPM) – a stationary device that is used for primary radiation 

detection. 

Screening checkpoint – a designated area at a seaport or terminal, where screening of containers 

is conducted. 

Screening station – an area inside the screening checkpoint, where particular screening 

equipment is placed (e.g. RPM, RIID, NII) and used. 

Supply Chain Security (SCS) – protection of supply chain against malevolent acts of unlawful 

interference that could disrupt the supply chain or in any way endanger general 

population. 
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