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Anotace:  

Práce obsahuje teoretické odvození vztahů pro výpočet vlastních tvarů a 

modálních participačních faktorů s použitím metody konečných prvků. Dále 

pak popis jejich využití pro výpočet odpovědi elastického tělesa na externí 

buzení. Přibližná odpověď tohoto systému je počítána pomocí tak zvaného 

reduced order model postupu. Druhá část práce pak popisuje realizaci 

praktického výpočtu na komerčně vyráběné motorové pile.  

Anotation: 

Thesis contains the theoretical derivation of the relations for the calculation 

of the unit normal eigen modes and the modal participation factors with the 

aid of finite element method. Further  a description of their application for 

calculation of an elastic body response to an external excitation is 

presented. The response of the system is calculated with the aid of the 

reduced order model approach. The second part of the thesis then describes 

the practical application of this method on a model case of a commercially 

produced chainsaw. 
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1. Introduction 
This diploma thesis was created with cooperation with Andreas STIHL AG 

& Co. KG, company that develops professional handheld power  equipment. 

Professional machines have to fulfill a great quality demands. One of those 

demands is that the usage of the machine should be easy and comfortable. 

From this point of view the important criterions are the weight of the 

machine and also the level of vibration on the handles of the machine. 

Machines marked as “professional tools” i.e. machines predetermined to be 

used during 8-hours work shift have maximal level of vibration on handles 

established by ISO norm [1]. Problem with high vibration, which does not 

fulfill this ISO norm, occurs during the design process very often. In such a 

case it is necessary to find modifications of the machine structure which 

have no influence on its function and minimal influence to the stiffness of 

the machine, but the vibration level is much more damped. Prototype 

creating and vibration measuring proved to be expensive and time 

consuming way for finding these changes. Numerical simulation of the 

vibration is on the other hand much quicker and cheaper way and therefore 

is used very often. 

Calculation of the vibration is based on the theory of linear elasticity, which 

was described by many different authors , for example [2], [3] or [4]. Theory 

of the linear elasticity mathematically models the dynamic behavior of the 

elastic structure with the aid of partial differential equations . For solution 

of these equations, numerical techniques like the finite element method can 

be used. The numerical techniques are described for example in [5], [6], [7], 

[8] or [9]. Solving the dynamic equations obtained by discretizing linear 

elasticity problem using the finite element method is a very complex and 

complicated process. Therefore many authors try to find a ways how to 

simplify it. One of the method, that is described for example in [10], [11] is 

modal decomposition and reduce order modelling. The main part of the 

thesis focuses on the description of this  method. 

1.1. Basic concepts of modal decomposition 

Any physical system can vibrate. The frequencies at which vibration 

naturally occurs and the modal shapes which the vibrating system assumes 

are properties of the system, and can be determined analytically using modal 

analysis. For elastic body are these frequencies usually called eigen 

frequencies and these shapes are called the unit normal eigen modes. The 

unit eigen modes can be identified experimentally, see [10] or can be 

calculated using the modal decomposition, see [5]. Theoretically, for the 

continuous model, there exists an infinite number of the eigen modes. 

Nevertheless in order to approximately describe the dynamic behavior of 

such system, it can be sufficient to use only a few of the eigen modes. Such 

an approach is usually called the reduced order modelling (ROM) [11]. Each 
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of these modes is associated with a fixed oscillation frequency. The 

response of the system to an external loading then can be approximately 

described as linear combination of these eigen modes. The coefficients used 

in this linear combination are called  the modal participation factors  [12]. 

Precision of such computation is obviously dependent on the number of used 

modes [10]. The other possibility for the dynamical system behavior 

modeling is the application of the finite element method and solving 

directly the time dependent problem. In such a case, the solution is obtained 

as a linear combination of unit basis functions [9]. Difference between the 

modal decomposition and this direct orthogonal decomposition is shown in 

Figure 1.1.  

Figure 1.1 Modal decomposition 
 

 

1.2. Goals of the diploma thesis 

This diploma thesis is created with the cooperation with Andreas STIHL AG 

& Co. KG. The main goal is to improve the methodology standardly used by 

STIHL to calculate vibrations on chainsaw handles that occur as a response 

to the excitation from the crankshaft revolving. The standardly used 

methodology is based on the direct calculations with aid of the commerce 

finite element method solver  called PERMAS. Information about this 

software can be found on developer’s website [13] or in the software manual 

[12]. The newly developed methodology, based on the modal 

decomposition, uses the PERMAS solver for the computation of the unit 

normal eigen modes and the modal participation factors (see [11], [12]). 

Post processing of these results is then done in my own program called 

Participation Magic, programed within the Matlab GUI. Vibration curve is 

in Participation Magic recalculated as a linear combination of the unit eigen 

modes. This procedure allows us to use only the dominant modes of the 

calculated vibration curve. Such an approach is  usually called the reduced 

order modelling [5], [11]. Moreover this methodology allows to identify the 
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sources of the maximal vibration, i.e. to find the dominant unit eigen modes 

which cause highest vibration. Identifying of the dominant unit eigen modes 

provides an important information, which can help the engineer responsible 

for the structure design to take measures exactly aimed to the damping of 

those vibrations. 

1.3. Structure of the diploma thesis 

The diploma thesis is divided into the theoretical part and the practical. The 

theoretical part starts with the description of the needed  mathematical 

background, then the basic equations of the linear elasticity model are 

shown. Next part then contains the full description of the linear elasticity 

problem (dynamic and static) from the viewpoint of the structural 

mechanics. Further the description of the discretization using the FEM is 

presented and the derivation of all equations needed for the computation of 

the modal basis and system response to the external excitation is shown. 

The practical part contains description of the test model used for 

computations. This model is not part of the thesis as it is  owned by Andreas 

STIHL AG & Co. KG, Further the description of the preprocessing of the 

model in accordance with the inner STIHL standards is presented. For the 

preprocessing procedure the commerce software called Medina was used. 

For more information about this software see developer’s website [14] or 

the software manual [15]. Follows description of all inputs required by 

PERMAS solver for the computation. Next part describes the post 

processing of the results performed by the developed program Participation 

Magic i.e. calculating vibration curve from modal basis and mod al 

participation factors. Last part describes the tools of Participation Magic 

that can be used for finding dominant eigen frequencies as well as for 

examining needed size of the modal basis.   
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2. Mathematical background 
This part of diploma thesis presents  short overview of well-known 

definitions and theorems from the linear algebra and the functional analysis, 

that can be found for example in [16], [9], [17]. First, eigen values and 

eigen vectors as well as generalized eigen values and eigen vectors are 

described. These are needed further in the text for solution of the dynamic 

problem of linear elasticity.  Next section is about a numerical method that 

can be used for finding eigen values. Section about function spaces and 

their properties follow. In the last part of this chapter several important 

theorems needed for finite element method are included.  

2.1. Eigen values and eigen vectors 

Eigen values are involved in solution of many practical problems. In 

mathematics they are used for solution of ordinary and partial differential 

equations. In physics eigen values are usually used in problems regarding 

oscillations and oscillators. In mechanics, their use involves a wide range of 

applications from simple ones as finding of the principal axes of stress and 

strain, to more complicated, as finding normal eigen modes of a component 

or a structure. 

2.1.1. Definition of basic matrix properties 

In this part, an overview of well-known results from linear algebra is 

presented, see [16]. Here, we shall work with vectors in    and matrices in 

    . In the practical part of diploma thesis , we mostly consider symmetric 

positive definite matrices. Definition of  these properties follows.  

First let us define the transposition of a matrix. 

Definition 2.1. Matrix                is called transposed matrix to a 

matrix   (   )       if         holds for all    . The transposed matrix is 

denoted by     

Further, we recall the definition of symmetric matrix. We shall see later that 

symmetry of the matrix is a very strong property.  

Definition 2.2. Matrix         is called symmetric if         holds for 

all    , i.e.      

As already mentioned another very important property of a matrix is being 

positive definite matrix. 
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Definition 2.3. Matrix         is called positive definite, if      

∑           
     

holds for arbitrary vector         . 

In order to decide whether a symmetric matrix is positive definite , the 

Sylvester’s criterion can be used.  

Lemma 2.1. (Sylvester’s criterion) Let matrix         be symmetric. 

Then it is positive definite if and only if all the main minors          of 

the matrix   are positive. Here, the main minors mean 

 

           |
      

      
|           |

          

          

    
          

|. 

(2.1) 

2.1.2. Eigen values and eigen vectors of matrices 

For calculations of the vibration eigen values and eigen vectors of a matrix 

can be. We start with the definition of the eigen values.  

Definition 2.4. Let   be a real matrix        . A complex number       

    is called an eigen value of the matrix  , if there exists a nonzero vector 

      such that 

        (2.2) 

The vector    is called the eigen vector, which corresponds to the eigen 

value  

It is clear that for an eigen value   the corresponding eigen vector is not 

unique. Usually, the normalized eigen vectors ‖ ‖    are used. Using 

equation (2.2), it can be easily shown that the eigen values of the matrix   

are the roots of a characteristic polynomial. 

Lemma 2.2. Let matrix   be a matrix        . Then the eigen values   of 

the matrix   are roots of equation 

            , (2.3) 

where   denotes the identity      matrix. 

For eigen values   of matrix   it is easy to show that they sat isfy following 

properties, see [16], [18]: 

 The matrix   has eigen value 0 if and only if it is singular.  

 The eigen values of identity matrix   are ones and every vector is 

eigen vector.  

 Let matrix   has eigen value   then matrix         has eigen 

value    . 

 . 
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 Let   be an eigen value of matrix   and   the corresponding eigen 

vector, then the inverse matrix     (if it exists) has the eigen value 

1/λ and the corresponding eigen vector is the same vector  .  

 The eigen vectors corresponding to different eigen values of the same 

matrix   are always linearly independent .  

 Let   be the eigen value of matrix   and   be the corresponding eigen 

vector. Then the eigen value of a matrix    is     and the 

corresponding eigen vector is  . 

 Let   be a real matrix and   be its real eigen value. Then there exists 

an eigen vector whose components are real numbers.   

It is well known that the characteristic polynomial of a matrix        has 

in complex plane   solutions. In practical problems we often rather seek real 

eigen values. To guarantee that the eigen values of a matrix are real 

numbers the following theorems can be used, see [9]. 

Lemma 2.3. Let    be a symmetric matrix. Then all its eigen values are 

real. 

Moreover eigen vectors of symmetric matrix have another important 

property. 

Lemma 2.4. Let   be a symmetric matrix. Then the eigen vectors 

corresponding to different eigen values are orthogonal. Moreover, there 

exists an orthonormal base formed of eigen vectors of the matrix  . 

Furthermore, if the matrix is also symmetric and positive definite, it has 

another property.  

Lemma 2.5. Let    be a symmetric matrix. Then it is positive definite if and 

only if all of its eigen values are real positive numbers. 

For a symmetric positive definite matrix its square root can be defined.  

Lemma 2.6. Let matrix         be a symmetric and positive definite. Then 

there exists a matrix  , such that     . The matrix   is called the square 

root of the matrix   and it is denoted by    ⁄ .  

Proof of this statement 

As matrix         is symmetric, it can be written as (see Lemma 2.4.) 

                      , 

where           are the positive eigen values of the matrix   and   is a 

matrix formed from orthonormal base of eigen vectors. As      , the 

matrix   reads 

      . 
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Now the matrix   defined by 

      ⁄   , where    ⁄      (  
   

   
   

    
   

)  

satisfies 

         

2.1.5. Generalized eigen values and eigen vectors 

For a solution of a dynamic problem of linear elasticity, generalized eigen 

values problem is used. Let us start with the definition of generalized eigen 

values and eigen vectors, see [17]. 

Definition 2.5. Let     be matrices          . Let   be a regular matrix. 

Complex number           is called generalized eigen value of matrices 

   , if there is a nonzero vector       such that 

         (2.4) 

The vector    is called generalized eigen vector corresponding to 

generalized eigen value     . 

Similarly, as for eigen values problem, the generalized eigen values are 

roots of the characteristic equation. 

Lemma 2.7. Let     be matrices          . The generalized eigen values 

  of matrices   and   are the roots of equation 

            . (2.5) 

For generalized eigen values and eigen vectors of symmetric and positive 

definite matrices following lemma can be proved. 

Lemma 2.8. Let           be a symmetric positive definite matrices. Then 

there exist   real positive eigen values    with the corresponding real eigen 

vectors   , such that            and moreover 

   
            , 

 

(2.6) 

   
            . 

 

(2.7) 

Proof  

Let us consider equation         

As   is symmetric positive definite matrix, the square root of the matrix   

exists. Now, multiplying (2.4) by       from the left we get the equation 

                       , 
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Now using the substitution         we get 

               . 

Finally denoting                we can see that equation (2.4) is equivalent 

to equation   

     , 

where   is a symmetric positive definite matrix. 

Following Lemmas 2.1.3. and 2.1.4. there exists   eigen values      and 

the corresponding real eigen vectors    of the matrix  .  Thus generalized 

eigen vectors are given by               

 

2.2 Numerical techniques for finding eigen values and eigen vectors 

Analytical ways of finding eigen values of a matrix are not suitable for  

finding the eigen values and eigen vectors of large matrices because they 

requires large amount of mathematical operations.  In the practical part we 

often work with stiffness matrix and mass matrix.  Size of the stiffness 

matrix and mass matrix is proportional to the number of elements of FE 

model and therefore its size can be in millions. In most cases calculating all 

eigen values and eigen vectors is not necessary. Calculating only the small 

number of them (hundreds) is sufficient. Therefore numerical techniques 

allowing to find easily only several eigen values are being used.  

For overview of numerical methods see e.g. [6]. Here, only the idea of the 

power method is described.  

Power method 

Let us consider symmetric positive definite matrix        . Such a matrix 

has    linearly independent real eigen vectors which form a base of   

dimensional vector space   . An arbitrary vector        thus can be written 

as a linear combination of the basis vectors, i.e. 

 
   ∑    

 

   

  
(2.8) 

where    are the eigen vectors of matrix  . Using the definition of eigen 

values (2.2), the product     can be written as 

 
     ∑      

 

   

  
(2.9) 
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Using this repeatedly we get the     iterated vector    as 

 
          ∑    

   

 

   

  
(2.10) 

Here we can see, that the influence of the  largest eigen value, compared to 

the others increases for    . Therefore we can, according to [6], use Von 

Mises theorem to evaluate highest eigen value.  

Theorem 2.1. (Von Mises theorem) Let us assume that the matrix   has   

linearly independent eigen vectors and eigen value    that has the highest 

absolute value i.e. |  |  |  |    , then 

 
   
   

  
 

  
                    

(2.11) 

Let’s assume an arbitrary vector   that is not perpendicular to the eigen 

vector   .  

From the Von Mises theorem we get 

 
      

   

      

    
  

(2.12) 

 

where the values         
     are usually called Schwarz’s constants, see 

also [6]. 

Calculating other eigen values 

The above described procedure allows us to calculate only the highest 

(dominant) eigen value. In order to compute also the other eigen values, the 

concept of a reduced matrix can be used, see [6]. 

Theorem 2.2. Let   be a matrix which has an eigen value   . Let     be the 

eigen vector corresponding to the eigen value   . Let us assume an 

arbitrary vector    such that       . Then the matrix 

            
  (2.13) 

(called the reduced matrix) has the same eigen values as the original matrix 

  with the only exception of the eigenvalue    that is replaced by 0.  

The above described procedure then is used repeatedly to calculate the 

other eigen values of the matrix  . 
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2.3. Function spaces 

In this section the definition of the vector space is given and its basic 

properties are described. For more information see [9] [19]. 

Vector spaces 

Let us recall here that a set   is a real linear vector space, if the operations 

addition of two vectors and multiplication of a vector by a real number are 

defined on   and satisfy the following relations. For arbitrary vectors 

      and real number       hold      ,     . Further, for an 

arbitrary element     there exists an opposite element –     for which 

holds         . For more details see [20].  

In order to define convergence, the normed linear spaces are used. 

Definition 2.6. (Norm definition) Let   be a vector space. Function 

‖ ‖        is called norm if  

‖ ‖    for all    , 

‖  ‖  | |‖ ‖  for all           , 

‖   ‖  ‖ ‖  ‖ ‖  for all    . 

Then the space is called normed linear space. If  additionally the normed 

linear vector space   is complete, then it is called Banach's space. The 

definition of the complete space can be found for example in [19] or in [20]. 

In next section we will often work with linear and bilinear forms.  

Definition 2.6. (Linear form) Let   be a Banach’s space. Then a mapping 

       is called a linear form if for arbitrary vectors          and a real 

number     holds 

                , 

           , 

The linear form       is called bounded if there exists  

        such that|    |   ‖ ‖ , for any     

The linear form       is called bounded if and only if it is continuous, 

i.e. holds 

           for arbitrary convergent sequence      . 
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Definition 2.7. (Bilinear forms)  Let   be a Banach’s space. Then a 

mapping           is called a bilinear form if for arbitrary vectors 

        , and for arbitr1ary real number     holds 

                      , 

                      , 

               , 

               , 

Similarly, the bilinear form       is called bounded if there exists  

        such that|      |   ‖ ‖ ‖ ‖ , for any       

The bilinear form is bounded if and only if it is continuous.  

For the application of FEM the special function spaces called the 

Lebesgue’s spaces are used, see e.g. [20]. 

Lebesgue’s spaces 

The space of all functions such that ∫ | |    
 

 
   ,      is called the 

Lebesgue’s space      . Here   is a bounded domain with the Lipschitz`s 

continuous boundary, see [20] for the definition of the Lipschitz`s 

continuous boundary. This space is Banach`s space with the norm defined 

by ‖ ‖      (∫ | |    
 

 
)
 

 ⁄
. Let us mention that the concept of the 

Lebesgue’s space is complicated, e.g. the involved integral is so called 

Lebesgue’s integral, see [9]. 

We shall also work with Sobolev’s spaces, which are another example of 

Banach`s spaces, for more information see [9]. 

Sobolev’s spaces 

The Sobolev’s space is defined by the relation 

                               | |    , 

where      ,            is the multi-index,     are the partial 

derivatives     
 | |  

        
 and   is a bounded domain with the Lipschitz`s 

continuous boundary.  The space         is the Banach`s space with norm 

defined by 

‖ ‖      ‖ ‖
         ( ∑ ‖   ‖     

 

| |  

)
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The semi-norm of the space         is defined by 

| |      | |
         (∑ ‖   ‖     

 
| |  )

   
. 

The Sobolev’s space         with the special choice     are at the same 

time  Hilbert’s spaces, see [9]. We use the notation              . 

2.4. Important theorems for finite element method 

In order to introduce a weak formulat ion of a boundary value problems, the 

Green`s Theorem is usually applied.  

Theorem 2.3. (Green’s theorem)  

Let      be a bounded domain with the Lipschitz’s continuous boundary, 

then for arbitrary functions            holds 

 
∫

  

   
    ∫           ∫

  

   

 

 

    
 

  

 

 

 
(2.14) 

where               is the outward unit normal to the boundary of  . 

Further, for the finite element method the concept of the reference element 

is used, where the integration needs to be transformed on the reference 

element using the substitution theorem.  

Theorem 2.4. (Substitution theorem)  

Let      ̃    be a continuously differentiable mapping of the domain  ̃ to 

the domain  . Let   be a function         , then holds 

 
∫        ∫ (   ̃ )|    ̃ |   ̃

 

 

 

 

  
(2.15) 

where |    ̃ | is the absolute value of the determinant of the Jacobi’s matrix 

of the mapping  . 

In order to show some important properties as  V-ellipticity, the generalized 

Poincare’s inequality can be used.  

Theorem 2.5. (Generalized Poincare’s inequality) 

Let      be a bounded domain with the Lipschitz’s continuous boundary 

  . Let      be a part of the boundary of   that has positive       

dimensional measure. Then there exists a constant      such that 

 ‖ ‖        (| |      |∫  
 

 
  |

 
) holds for all         . (2.16) 

   

Very important theorem for showing existence and uniqueness of the 

solution of the linear elasticity problem is Lax -Milgram theorem. 
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Theorem 2.6.  (Lax-Milgram theorem) Let   be a Banachs space,   be a 

linear form on   and   be a symmetric bilinear form on  . Let       be 

such positive constants that for arbitrary       holds 

|      |   ‖ ‖ ‖ ‖ , 

        ‖  ‖ , 

|    |   ‖ ‖ . 

Then there exists exactly one      such, that for any     holds 

            . 

Moreover the norm of    is bounded by 

‖  ‖  
 

 
. 

For Lax-Milgram theorem and its proof, see [9]. 
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3. Mathematical description and numerical 

approximation 
This part deals with the deformation of an elastic body. In order to 

mathematically model its behavior, the continuum assumption is made. Then 

the mathematical model describing the static and the dynamic problems of 

elasticity is presented. Continuum assumption means that we neglect the 

molecular interactions in material and assume a continuous behavior, more 

details can be found in [2].  Further we shall use the assumptions that the 

deformation is small and also that the behavior of the material is linear, see 

also [2]. 

3.1. Static problem of linear elasticity. 

First, we start with a formulation of the static problem of linear elasticity, 

assuming that only steady state solution is sought.  

3.1.1. Hooke's law, tensors of deformation, Lamé-Navier's equation 

Elasticity can be considered as the ability of material to reversibly deform 

itself in response to the action of external forces. If the deformation is 

completely reversible and time independent, then we speak about ideal 

elasticity. If the relationship between the force and the deformation is 

linear, we speak about linear elasticity. This is usually true if the 

deformation is small.  Under these assumptions the basic equations of linear 

elasticity describing the elastic structure deformation can be written, see 

[2]. 

In order to describe a deformation of an elastic body, we start with the 

definition of a displacement vector.  

Displacement vector 

Let us consider an arbitrary point      of the undeformed body represented 

by a bounded domain      in the cartesian coordinate system            

 . By acting of external forces the point      is shifted to a point      , 

where            ) denotes the coordinates of the point      . The 

displacement vector              at the point      is then given by 

            . 

 
(3.1) 

Tensor of finite deformation 

Deformation of the body    means a change of its shape, due to the action of 

the external forces. The external forces change the mutual position of the 

different particles of the body. In case that after removal of the external 

forces the body returns to its original shape, we speak about reversible 
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(elastic) deformation, otherwise we speak about irreversible deformation 

[2]. The deformation of the body, according to [2] can be characterized by 

the tensor of the finite deformation   given by 

 
    

 

 
  [

   

   
 

   

   
 (

   

   
)(

   

   
)]  

(3.2) 

 

In the case of small deformation the derivatives of the displacement vector 

  are small |
   

   
|   . Then the term (

   

   
) (

   

   
) is negligible compared to 

   

   
, 

In such a case, the deformation can be described using only (simplified) 

linear tensor of small deformation see [2]. 

Tensor of small deformation 

The tensor of small deformation is given by 

 
    

 

 
[
   

   
 

   

   
]  

(3.3) 

In this diploma thesis the components of the tensor of the finite deformation 

are denoted by     and the components of the tensor of small deformation is 

denoted by    . 

The inner body forces are described by stress. 

The stress tensor 

The stress tensor represents the density of  the inner forces in the body 

acting between two parts of this body at the point   . The stress at point    is 

fully determined by 9 components written as. 

 
  [

         

         

         

]  
(3.4) 

see e.g. [21] . These components form a second order tensor  , which is 

called the stress tensor, see [19] or [4]. 

The three diagonal components of the stress tensor correspond to the 

stresses in the normal directions, 6 remaining components then represent the 

shear stresses. It can be shown (see [2]), that for the non-diagonal 

components of the stress tensor following relationships hold 

                               , 

i.e. the stress tensor is symmetric and has only 6 independent components. 

Under the assumption of small deformations, a linear relation between the 

stress tensor and the deformation tensor  given by extended Hooke's law can 

be used, see [2]. 
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Extended Hooke's Law 

Under the assumption of the linear behavior of the material, the stress 

tensor   modelled by the linear relation 

        (3.5) 

 

where   [                              ]
 ,   [                              ]

  and 

        is the matrix of a material model, i.e.  

 

   

⌈
⌈
⌈
⌈
⌈
 
                              

                              

                              

                              

                              

                              ⌉
⌉
⌉
⌉
⌉
 

, 

 

(3.6) 

where       are components of the     order tensor again denoted by   , 

which is symmetric, with the respect to the first and the second pair of 

indices, which means             for all        , see [2]. 

In the most general case there are 21 independent coefficients        of the 

extended Hook's Law [2]. However this is only the case of materials, that 

have different behavior in every direction, for example some composites or 

material with the trigeminal crystal lattice. In what follows, we shall restrict 

ourselves to the case of an isotropic material.  

The extended Hooke`s Law for the isotropic material we shall write as 

        (3.7) 

Equation (3.7) can be also written for the components of the tensor   

     , i.e. 

                  (3.8) 
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3.1.2. Hooke`s law for isotropic material 

For an isotropic material only two independent coefficients of the extended 

Hooke's Law exists. These two coefficients are called Lame's constants and 

are denoted by   and  . The matrix of the isotropic material model     can be 

written as 

   

⌈
⌈
⌈
⌈
⌈
 
         

           
          
        
        
      ⌉

⌉
⌉
⌉
⌉
 

, 

or for the components 

                       (3.9) 

Behavior of the isotropic materials is often described by another set of 

constants   ,  . Constant    is called tensile modulus or Young’s modulus, 

   is called Poisson’s constant.  The constant   is also often called shear 

modulus and marked as  . The  following relations between   ,   ,  ,   can 

be found for example see [2], i.e. 

 

         
         

   
, (3.10) 

         
 

      
. 

         
    

             
  

         
  

       
  

 

(3.11) 

 

(3.12) 
 

(3.13) 

Lame-Navier's equation 

The elastic body is in steady state solution (or in equilibrium) if each 

infinitesimal element within it is in equilibrium. The equilibrium of the 

structure represented by   is described by Lame-Navier's equation, i.e. at 

every point     holds 

     

   
       

(3.14) 

where          denotes the volume forces acting at the point  .  
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By combining the Lame-Navier's equation (3.14), the Hooke's law (3.5) and 

the relation for the tensor of small deformation (3.3) we get Lame's equation 

  

   
( 

   

   
)  

 

   
( 

   

   
)  

 

   
( 

   

   
)        

(3.15) 

 

where   and   are Lame`s constants. 

This equation can be written in the vector form  

                         . (3.16) 

 

3.1.2. Static linear elasticity - problem description 

We assume a solid body represented by bounded domain   that is loaded by 

volume and surface external forces at boundary   . In order to describe the 

steady state of the structure  , we assume that the deformation is small and 

we use the isotropic material model.  

For the description of the steady state of the structure   we have the 

following equations: the Lame-Navier's equations (3.14), extended Hooke's 

law for isotropic material (3.5) and equation for tensor of small deformation 

(3.3). In order to enclose the model , the boundary conditions on    needs to 

be specified. 

The boundary    is divided into two parts          . On    the boundary 

condition for the displacement   is used. On    the external surface forces 

are applied.  

Dirichlet boundary condition 

This kind of boundary condition prescribes the value of the displacements   

on the Dirichlet part of boundary    i.e. 

                               , (3.17) 

where             . Particularly, the condition         is being used to 

suppress any deformation on this part of the boundary. 

Neumann boundary condition 

The Neumann type of boundary conditions is used to describe the action of 

external surface forces. 

                     , (3.18) 

where              is the vector of the unit outer normal to the    at the 

point       and    are the surface forces.  
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Static elasticity problem 

We seek a vector function                     ̅  such that satisfies 

equation (3.14) in   and the boundary conditions (3.17), (3.18). 

3.1.3. Weak formulation of the static problem of linear elasticity 

The partial differential equation (3.14) has one disadvantage, its solution 

with continuous     order partial derivatives are not guaranteed to exists, 

even in the case that the formulation of the problem is correct and the 

"physical" solution exists. However it is possible to define the problem 

more generally with the aid of the so-called weak formulation, see [9]. 

We start with the definition of the  space of test functions       

[       ]             . Further we multiply the     equation of (3.14) by the 

    component of a test function      and integrate over  . We get 

∫  
       

   
      

 

 
∫        

 

 
, 

where the components        are given by (3.8). 

Further we apply Green's theorem (2.14) on the left hand-side of equation 

and get 

∫ (          )        ∫       
   

   
   

 

 
  

 

   
∫        

 

 
. 

Now, we use that the function     on    and the boundary condition (3.18) 

on   . We get 

∫       
   

   
   

 

 
 ∫         ∫         

 

  

 

 
. 

Now we rewrite the first term using the symmetry of the tensor   and tensor 

of small deformations    

      
   

   
 

 

 
(      

   

   
)  

 

 
(      

   

   
)  

 

 
(      

   

   
)  

 

 
(      

   

   
)   

 

 
(      

   

   
)  

 

 
(      

   

   
)        

 

 
(

   

   
  

   

   
), 

where we denote         
 

 
(
   

   
 

   

   
). 
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By substituting back into equation we get the final relation 

 
∫                   

 

 

 ∫         ∫         
 

  

 

 

  
(3.19) 

which holds for an arbitrary     . Equation (3.19) is a weak formulation 

of the static problem of linear elasticity.  

Denoting 

        ∫                      
 

  
, (3.20) 

and   

      ∫        ∫        
 

  

 

  
, (3.21) 

equation (3.19) then can be written as 

            . (3.22) 

Nonzero Dirichlet boundary condition 

Generally the Dirichlet condition can be nonzero      on   . In such 

case, we assume the function    is the trace of a function  ̂  [     ] . The 

solution of the weak static problem of linear elasticity is sought in the form 

    ̂    , where       is an unknown function, which satisfies 

                

for all     . 

Using the linearity of the form   we get the formulation: Find      , such 

that 

                      (3.23) 

holds for all     . 

We can see that the problem with the nonzero Dirichlet boundary condition 

can be reformulated as a problem with the zero Dirichlet boundary condition 

and a modified right-hand side. Further in this diploma thesis only the zero 

Dirichlet boundary condition shall be considered. 

Static weak problem formulation 

We seek function   [       ]   such that for arbitrary function          

satisfies equation  ∫                    
 

 
 ∫         ∫         

 

  

 

 
, where          

is given by (3.8) and      at   . 
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3.1.4. Discretized weak problem of static linear elasticity 

We would like to approximate continuous problem of the linear elasticity by 

discrete problem. Let us consider a finite dimensional subspace       , 

with          . Let functions              form basis of the 

function space   . An arbitrary function       then can be written as a 

linear combination of the base functions of the function space   . We call 

function    the solution of the discrete problem of linear elasticity if 

                holds for all      , (3.24) 

where          and       are given by 

            ∫                       
 

  
  (3.25) 

       ∫        ∫        
 

  

 

  
. (3.26) 

As the function       is a linear combination of the base functions      , 

the discrete weak problem of static linear elasticity can be formulated for 

the basis functions instead of for   . In such a case the discrete problem 

reads 

               .   (3.27) 

Stiffness matrix, right-hand side vector 

In order to find a solution of the discrete problem (3.24), we write    

written as a linear combination of the basis functions i.e. 

    ∑     
 
   .   (3.28) 

By substituting relation  (3.28) into equation (3.27) and using the linearity 

of the form   we get 

∑                 
 
   . 

or in the matrix notation 

     ,  (3.29) 

Where   is the stiffness matrix given by 

  (

                         
                         

    
                         

) 

And   is the load vector given by 

  [                     ]
 . 
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The vector of unknowns reads 

  [        ]
 . 

We can see, that the solution of the discrete problem of the static linear 

elasticity (3.24) is equivalent to the solution of the system of linear 

equations (3.29). 

By solving this linear system we get the coefficients   . The solution    of 

the discrete problem (3.24) is given by relation (3.28), see [9], [5]. 

It can be shown that, under the considered boundary conditions, the matrix 

  is symmetric and positive definite. See [5]. 

Equation (3.19) holds for an arbitrary set of base functions. In order to 

obtain matrix   which is sparse, the base function with small supports are 

usually selected. The support of the function is a part of the domain of the 

function, where this function is nonzero. Such a choice leads to          

  for most of the indices        . Obtaining sparse matrix saves computer 

memory, simplifies matrix multiplication and allows us to use iterative 

method for solution of the system of equations . 

3.2. Dynamic problem of linear elasticity 

Similarly to the static problem of linear elasticity we assume a solid body 

represented by bounded domain   that is loaded by volume and surface 

external forces. Now, the considered forces can be time dependent. 

Moreover for the dynamic problem initial conditions need to be specified. 

In order to describe the dynamic problem of linear elasticity , see [2], we 

include the inertia forces into equation (3.14) for static equilibrium. 

  
    

   
  

    

      , 
(3.30) 

where        represents the density of the material in the point  . In this 

diploma thesis we assume that density is piecewise constant and positive 

      . In the dynamic problem stress, the displacement and the external 

force load are also functions of   and  , i.e.            ,           ,   

       . 

By combining equation (3.30), the Hooke's law (3.9) and the tensor of small 

deformation (3.3) we can obtain Lame's equation for dynamic problem that 

contains only    as a variable 

  

   
( 

   

   
)  

 

   
( 

   

   
)  

 

   
( 

   

   
)      

    

   
  

 

(3.31) 
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where               are the Lamé`s coefficients of the material at the 

point  . Again   and   are assumed to be piecewise constants constant . 

Boundary conditions 

Similarly to the static case we consider only the Dirichlet or Neumann 

boundary conditions, which now can be time dependent. 

Dirichlet boundary condition 

This kind of boundary condition prescribes the value of the displacements   

on the Dirichlet part of boundary    i.e. 

                        . (3.32) 

   
 

Similarly to the static case    is the trace of a function  ̂  [     ]  

  ̅           . 

Neumann boundary condition 

The Neumann type of boundary conditions is  used to describe the action of 

external surface forces and is given by 

                        , (3.33) 

 

where   is the vector of the unit outer normal to the    at point       and 

   are the surface forces.  

Initial conditions 

In order to enclose the dynamic model of the linear elasticity it is necessary 

to add a state of the structure at time     on the whole domain   i.e. initial 

conditions 

                      

 

(3.34) 

        

  
   ̅̅ ̅                   

(3.35) 

Dynamic elasticity problem formulation 

We seek a function                ̅     ̅           such that satisfies 

equation (3.30) for any [   ]    , initial conditions (3.34), (3.35) and 

boundary conditions (3.32), (3.33). 
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3.2.1. Weak problem formulation 

Similarly to the static problem we start with the weak formulation of the 

dynamic problem. Again we denote the space of test functions       

[     ]              and multiply the     equation (3.11.) at arbitrary time 

    ̅by the     component of a test function      and integrate over  . We 

get 

  ∫
    

   

 

 
     ∫  

    

   

 

 
     ∫       

 

 
.  

 

(3.36) 

Further we apply Green's theorem (2.4.4.) , boundary conditions, use the 

symmetry of the tensor   and we get 

 
∫                

 

  

∫  
    

   

 

 

    ∫        
 

  

 ∫        
 

  

  
(3.37) 

 

where            and             . 

Let us denote  

        ∫                      
 

  
, (3.38) 

 
       ∫           ∫           

 

  

 

  

 
(3.39) 

and 

  (
    

      )  ∫  
    

   

 

 
   . 

(3.40) 

Then the problem (3.36) can be written as 

 
 (

    

   
   )               . 

(3.41) 

 

Weak dynamic problem formulation 

We seek a function         , which for any   satisfy             

[       ]  , 
    

    [     ]  such that for any     ̅ equation (3.41) holds for 

any test function     . Further,   is assumed to satisfy the boundary 

condition      at    and the initial conditions (3.34), (3.35).  
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3.2.2. Semi-discrete weak dynamic problem 

Similarly to the static problem, we consider finite dimensional function sub-

space      ,          . Basis function of    are denoted by 

         and arbitrary function       can be written as a linear 

combination of base functions. We seek at every     for a solution     

             in the form         ∑           
 
   . By substituting this form 

into equation (3.41) we get the following relation 

 
∑  ̈         

 

   

 ∑          

 

   

         
(3.42) 

where  ̈  denotes the second (time) derivative of  the coefficient           ̈  

    

   
. 

The right-hand side form   and the coefficients    are functions of time  . 

Problem is now semi-discretized i.e. discrete in space and continuous in 

time. 

Equation (3.42) can be written in the matrix notation as 

   ̈        (3.43) 

where the mass matrix   is given by 

  (

                         
                         

    
                         

), 

And   is the stiffness matrix already defined by 

  (

                         
                         

    
                         

). 

The load vector   reads 

       [                           ]
  

and the vector of   unknowns is given by 

       [        ]
 . 
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3.2.3. Damping of the system 

Damping is an influence within or upon an oscillating system that has the 

effect of reducing oscillations over time. In the physical processes it usually 

represents the dissipation of energy stored in the considered system. For the 

FEM simulations usually a linear model of damping is used. This model is 

represented by including the velocity dependent term   ̇ into equation 

(3.43). Here, the damping matrix   is considered as a linear combination of 

stiffness and mass matrix [5], i.e. 

          , (3.44) 

where                   Such a damping is called proportion damping, see 

[5] [7]. The coefficients       are usually chosen to be small .  

Including the damping matrix into equation (3.43) we get equation for the 

damped dynamic system excited by external forces, i.e. 

   ̈    ̇      .  (3.45) 

3.2.4. Free vibration analysis 

In order to find the solution of equation (3.25.) let us start with a simplified 

problem without damping and external forces. Such problem is usually 

called free vibration analysis. In this case the so called eigen frequencies 

and the so called  normal eigen modes of the structure can be determined. 

The simplified equation reads 

   ̈      . (3.46) 

Solution of equation (3.46) is expected to be periodic. The system of 

equations (3.46) is linear, general solution is linear combination of the 

functions of the fundamental system [22]. The fundamental system is 

formed from functions 

     [                ]       , (3.47) 

 

where             . 

Now, by taking   given by (3.47) and substituting it into equation (3.46), 

we get 

                   , 

which is equivalent to equation 

          . 

http://en.wikipedia.org/wiki/Oscillator
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This equation represents a generalized eigen value problem described in 

section 2.1.5. It can be shown that there exist    eigen values representing 

the eigen frequencies            . For each eigen frequency     there 

exists a corresponding eigen vector    representing a normal mode of the 

system. Usually the normalized vectors  ̂ are used, according to [5], i.e. 

  ̂ 
 
  ̂     for             (3.48) 

We call   ̂ the unit normal eigen mode corresponding to the eigen frequency 

  . In the following text we shall denote the unit normal eigen modes by      

(without    ̂). 

3.2.5. Damped free vibration analysis 

Furthermore a damped system given by equation (3.45) is considered, 

without external forces (i.e. zero right-hand side). The system reads  

   ̈    ̇      .  (3.49) 

In order to solve the problem (3.49) the transformation of this second order 

system to the first order system can be used, see [5]. 

Let us denote     ̇, we get 

   ̇         ,  (3.50) 

which is equivalent to equation 

 
[
  
   

]  [ ̇
 ̇
]  [

  
  

]  [
 
 
]  [

 
 
].  

(3.51) 

Similarly to the non-damped case we consider a solution in form 

     [                ]       , 

   ̃ [                ]   ̃    , 

(3.52) 

   

Now substituting relations (3.52) into equation (3.37) we get 

 
( [

  
   

]  [
  
  

])  [ ̃
 
]  [

 
 
].  

 

(3.53) 

Equation (3.53) is again the general eigen value problem, but now the 

matrices [
  
   

] and  [
  
  

] are unsymmetric and not positive definite, 

Under the assumption that the damping is the described with the aid of the 

damping matrix given by equation (3.44) the situation is much simpler.  
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3.2.6. Eigen frequencies of damped system  

Let us consider equation (3.49) with the damping matrix    given by (3.44), 

i.e. 

   ̈    ̇        (3.54) 

According to [5], a solution of equation (3.49) is expected to be in the form 

                 .  

 

(3.55) 

Now substitute relation (3.55) into equation (3.49), which gives relation for 

    and vector  . 

                   .  (3.56) 

Furthermore using matrix   given by (3.44) leads to 

                      , 

or equivalently after rearrangement 

       

     
         

 

(3.57) 

Denoting 

       

     
     

(3.58) 

in equation (3.57) we get again the generalized eigen values problem 

described in section 2.1.5.  

            (3.59) 

Here   represents the eigen frequency of the non-damped system. 

Now let us decide under which assumptions are eigen values   of equation 

(3.59) real, complex or purely complex.  

 

Rearranging (3.58) we get 

           
        , (3.60) 

which is a quadratic equation with the discriminant given by 
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In case       are small enough, such that    , the roots      of equation 

(3.60) are complex numbers,  the solution is a goniometric function and 

system vibrates. On the other hand, if    , then the roots      of equation 

(3.60) are real, solutions are exponential functions and no vibrations occur. 

In the case that    , i.e.        
       , we speak about the critical 

damping. 

Let us focus on the of low damped vibration case, i.e.    . In this case the 

roots of equation (3.60)  are 

     
       

  √ 

 
 

       
 

 
  √   

          

 
       

where   
       

 

 
 and   √   

          

 
. Here,    is a damping 

coefficient and     is the eigen frequency of the damped system (a modified 

eigen frequency of the undamped system  ). 

Now, the fundamental system of solutions is formed from functions  

   
             

  [                   ], 

   
             

  [                   ], 

where         and    is the real eigen vector corresponding to the eigen 

frequency   . 

The real fundamental system reads  

   
           , 

   
           . 

Any solution of equation (3.49) can be written as a linear combination of 

functions from the fundamental system, i.e.  

 
  ∑    

   

 

   

 [                     ] 
(3.61) 

We have shown that the real positive solution of the problem given by 

equation (3.49) exists in case that the structure of damping matrix is given 

by equation (3.44). Solving system (3.49) we can get   eigen frequencies   

and   unit eigen vectors  , corresponding to these eigen frequencies. Eigen 

vectors   represent unit normal eigen modes of damped system. 
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3.2.7. Frequency response analysis and modal participation factors 

Now the full discrete problem of dynamic linear elasticity given by equation 

(3.45) is considered. The damping matrix   is given by relation (3.44) and a 

special choice of the right-hand side term (described further) is taken into 

account. We seek the solution of the problem as a linear combination of the 

unit eigen modes with time dependent coefficients . This procedure, 

described for example in [5], is called the decomposition to the modal basis. 

The complex coefficients used in this linear combination are then called the 

modal participation factors.  Decomposing to the modal basis using the 

modal participation factors  is a widely used way to evaluate any kind of 

vibrations [5].  

Let us consider the solution, according to [5], of equation (3.45) as a linear 

combination of the unit normal eigen modes, i.e. 

      ∑   
 
      , (3.62) 

where       are unknown functions and where    denote the unit normal 

eigen modes of the system represented by equation (3.45), see section 3.2.5. 

Now by differentiating of      given by equation (3.62) and substituting the 

result into equation (3.45) we get 

   ∑   
 
      ̈   (∑   

 
   ̇   )   (∑   

 
      )        (3.63) 

 

Further, multiplying equation (3.63) by   
  from the left we get  

   
   ∑   

 
     ̈    

  (∑   
 
   ̇   )    

  (∑   
 
      )       .     (3.64) 

 

System (3.64) is a second order system of   linear differential equations 

with   unknown functions      . System (3.64) is simplified by using 

relations, see [5] 

   
      ;    

      ;    
        for    , (3.65) 

 

and   

   
         ;     

       ;    
       . (3.66) 

 

System (3.64) now leads to   second order linear ordinary differential 

equations for unknown functions         , see [5] 

     ̈      ̇         .             ,  (3.67) 

 

where       . 
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We can see that each equation of system (3.67) can be now solved 

separately. Any general solution of such second order ordinary differential 

equation can be written as a sum of a particular     and the general solution 

of the homogenous equation    , i.e. 

            

The general solution of the homogenous equation reads (see section 3.2.6) 

         
                

           , (3.68) 

 

Where    is the damping coefficient and      is the eigen frequency, see 

section 3.2.6.  

We can see, that solution (3.68) contains the exponential function    , 

where    , this part of the solution approaches zero with increasing time. 

As we are interested in long term solution, we shall focus more on the other 

part of solution. 

In order to calculate the particular solution    the linearity of the system 

(3.67) is used. The     right-hand side term of (3.67) can be decomposed to 

      direction. See the derivation of the right -hand side term in section 

3.2.1. and 3.2.2. 

                

 

(3.69) 

 

In the practical part of this thesis the right-hand side term in equation (3.67) 

represents the excitation from the revolving of the crankshaft, which is 

periodical and almost sinusoidal. Therefore we consider that right -hand side 

term of equation (3.67) can be approximated with the aid of the discrete 

Fourier transformation. Applying the discrete Fourier transformation to    

we get  

    ∑ [         (    )           (    )]  [         (    )   
   

         (    )]  [         (    )                  ], 

 

(3.70) 

 

where     is the number of orders,             are coefficients of the 

Fourier transform and   is the excitation force frequency, i.e.  engine 

frequency. Using 3 orders for modeling excitation from crankshaft revolving 

was found to be sufficient for the considered case.  

Now using linearity of the system (3.67) we can solve the     equation of the 

system (3.67) separately for each direction and each order, which means 

that we consider the    in form  

                          . 

 

(3.71) 

 



38 
 

Using this decomposition originally one equation was decomposed into    

equations. In what follows, solution of equation for one order and one 

direction is shown, the process is similar for other directions and orders. 

Particular solution is sought, according to [5], in the shape 

                           , (3.72) 

 

where         are unknown constants and     is frequency, obtained 

from decomposing excitation force using Fourier transform, see equation 

(3.70). 

Now, let us once and twice derivate equation (3.72). Substituting the result  

into equation (3.67) we get 

    
   [                      ]  

    [                      ]    [                      ]  

                      . 

 

(3.73) 

 

From this equation we can get conditions for      . 

          
              , 

 

(3.74) 

          
              . 

 
(3.75) 

Finally, solving this system of equations we get the result 

 
   

                
    

          
                     

   

 

(3.76) 

 
   

                 
    

          
        

        
     

  
(3.77) 

 

The     solution of equation (3.67) for    given by (3.71)(i.e. for one order 

and one direction) then reads 

        
              

                     

           . 

 

(3.78) 

 

Considering only the solution without the transient component given by 

relation (3.68) we get 

                          . (3.79) 

 

or 

                                       , (3.80) 
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where    √  
    

   and        
  

  
. The coefficients       are the modal 

participation factor for the considered order  , the considered direction and 

the given excitation frequency  . Substituting relation (3.80) into the 

considered solution shape (3.62) we get the steady state solution of  equation 

(3.67). 

      ∑   
 
                (3.81) 

 

3.2.8. Modal participation of points of interest 

Relation (3.81) represents solution at all points of the discretized structure, 

particularly is possible to obtain solution  for a specific point by multiplying 

relation (3.81) by a vector representation of the point of interest      , i.e. 

                  ∑        
 
      , 

where             . Denoting            and                   we get 

         ∑   
 
      . 

 

(3.82) 

 

Now, expecting excitation force   decomposed, we can use the relation 

(3.80) to get equation 

 

or 

        ∑   
 
                          

 
        ∑   

 
              . 

 

(3.83) 

 

(3.84) 

 

Substituting   ̂       we get 

         ∑   ̂            
 
 , (3.85) 

 

where coefficients   ̂    represent modal participation factors of one point 

of interest of the model. Here, the excitation forces decomposed into the 

orders and directions is considered (see equation (3.70)), therefore this 

solution is valid only for one order and one direction. In praxis we are 

interested in solution for all direction and all orders combined with many 

different excitation frequencies. How to work with the modal participation 

factors in this situation is described in practical part.  

3.3. Conclusion of theoretical part 

In theoretical part we have derived equations  needed for the computation of 

the unit eigen modes, modal participation factors and frequency response of 

a structure to external excitation. Now let us move on to the practical part , 

where the theoretical knowledge will be used for solving practical problems.  
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4. Practical realization 
In this part of the diploma thesis, created in cooperation with Andreas 

STIHL AG & Co. KG is described the practical realization of the modal 

decomposition and usage of the modal participation factors in the problem 

of computing vibration. Main goal, assigned by STIHL, was to improve the 

STIHL standard methodology for the vibration computation on the chainsaw 

handles. This vibration occurs as a response to the excitation from the 

crankshaft revolving. For the computations commerce software called 

PERMAS is standardly used by STIHL. PERMAS is an internationally 

established FE analysis system developed by INTES GmbH. PERMAS 

enables us to perform comprehensive analyses and simulations in many 

fields of applications like stiffness and stress analys is, contact analysis, 

vibration computations, acoustic simulations or electromagnetic fields 

simulations. The data management and the built -in solution algorithm in 

PERMAS are suitable for the calculation of very large models. Standardly 

project with well over 20 000 000 unknown degrees of freedom can be 

solved. PERMAS also supports more than 50 element types for static and 

dynamic calculations including linear and non-linear elements. For this 

diploma thesis only the modules for linear static and dynamic computations 

are used. Information about PERMAS can be found on the INTES website 

[13]or in PERMAS user manual [12].  

Description of the standard method used by STIHL   

Machines marked as “professional tools” i.e. machines predetermine d to be 

used during 8-hours work shift have a maximal level of vibration on handles 

established by ISO norm [1]. To check if the demands of this ISO norm are 

fulfilled, STIHL has a standard methodology for vibration computation. 

This methodology is based on the modal vibration calculations with the aid 

of PERMAS, which computes a vibration curve at a selected point, for the 

whole range of the engine speeds. In PERMAS this computation is called 

Frequency response analysis (FRA), see [12]. The vibration curve obtained 

from FRA is then compared with the allowed value to assess if the limits for 

vibrations are fulfilled or not. The standard STIHL methodology does not 

give any answers, what measures to take, in case that the limits given by 

ISO norm are not fulfilled. That is the concern of the newly developed 

methodology. 

Description of the newly developed method  

The main idea of the newly developed method is  to analyze the influence of 

the individual eigen modes to the total result and then approximately 

reconstruct vibration curve, using only the modes with high influence. Such 

approach is called reduced order model ling (ROM), see [5] or [11]. Using 

only the high influence modes for vibration curve reconstruction allows  to 
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identify the sources of the maximal vibration, i.e. find the dominant unit 

eigen modes which cause the highest vibration. Identifying of the dominant 

unit eigen modes provides an important information, which should help 

engineers responsible for the structure design to take measures exactly 

aimed to the reducing those vibrations. 

The newly developed method uses PERMAS to calculate the modal basis 

and the modal participation factors and then it reconstructs the vibration 

curve as a linear combination of the modal basis vectors . For theoretical 

derivation of this procedure see section 3.2.  For the postprocessing of the 

results, an existing tool, Participation Magic, was thoroughly revised and 

reprogramed. Original Participation Magic was designed only for 

visualization of the modal participation factor amplitudes.  New, redesigned 

Participation Magic allows us to reconstruct the vibration curve from the 

modal participation factors and analyze influence of the individual eigen 

modes to the total result in a user friendly graphic interface.   

Before we start to describe how the curve reconstruction in Participation 

Magic works, let us describe the used FEM model and other inputs required 

by PERMAS for computations.  

4.1. Model description and preprocessing 

STIHL develops and manufactures many different  chainsaws and other 

tools. The newly developed method was tested on a FEM model of the 

chainsaw MS661, see [23]. CAD model of this chainsaw is in Figure 4.1. 

All computation results presented in this thesis were performed on this 

model. In next sections the test model and other inputs to the simulation 

including the load forces, material data and bonds between the parts are 

described. PERMAS typically uses two kinds of inputs - binary input file 

(BIF) that contains the meshed structure model and text files containing 

information about the material and loading. 

4.1.1. Structure model and finite element mesh realization 

The used CAD model is owned by Andreas STIHL AG & Co. KG. Model 

was preprocessed according to the internal standards of STIHL. For the 

meshing and other preprocessing procedures like rigid body elements (RBE) 

creating and bonds creating, the commerce software MEDINA was used. For 

more information about MEDINA see [14] or [15]. Small parts with 

negligible impact to the total stiffness of the structure were replaced by 

mass points connected to the structure by rigid body elements (RBE). The 

smallest parts, with mass less than 1 gram, were neglected. Used type of 

elements is, according to the inner STIHL standards, mainly quadratic 

tetrahedron elements (in PERMAS terminology called TET10). For some 
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parts (like the guiderail) linear hexahedral and prismatic elements were used 

(in PERMAS terminology called penta or  hexa elements). Preprocessed 

model is shown in the Figure 4.2. The number of nodes and elements of  the 

used mesh is shown in Table 4.1. 

 

 

Figure 4.2 Preprocessed model 
 

 

 

 

 

 

 

 

Figure 4.1 CAD model 
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Table 4.1 

 

Mesh quantities 
 

 

 

 

 

 

 

4.1.2. Points of interest 

Our concern is to calculate the vibration on the handles, while the chainsaw 

is being used, i.e. is held by user and the engine is running. Simulation 

should be in accordance with the reality, therefore we simulate the holding 

of the machine by adding an additional RBE bonds. On the tops of these 

RBE bonds are sets of springs and masses which simulate hand, forearm and 

arm. The configuration is typically in accordance with DIN45677  [24].  

Experience shows, that such simulated holding of the machine is in good 

accordance with reality. ISO norm [1] specifies points on the handles which 

have to satisfy vibration limits - we would called them points of interest . 

These points are on the handles next to the spots used for holding of the 

machine. Therefore we add another RBE bonds next to the spots used for 

holding. On their tops are points evaluated in  the vibration analysis- points 

of interest. Positions of the RBE bonds are shown in Figure 4.3. 

Figure 4.3 Points for vibration evaluating 
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Tetra 10 elements 1774738 
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4.1.3. Input text files 

In addition to the preprocessed model stored in binary input files, PERMAS 

requires additional text files. These text files contain material data and 

information about loading.  

Material data text file was created in accordance with PERMAS 

nomenclature and contains material data for every part of the model. 

Loading due to the crankshaft revolving is stored in another text file. This 

loading was calculated externally. STIHL intern software called PANAMA 

[25] was used for this calculation. This software uses crankshaft geometry 

and gas pressure in combustion chamber as inputs and analytically 

calculates loading on the crankshaft bearings. These bearings are simulated 

by the RBE bonds and their positions are shown in Figure 4.4.  Loading 

calculated by PANAMA is decomposed to the       directions and 

decomposed to orders with the aid of a discrete Fourier transformation. 

Such decomposition is required for the modal participation factors 

calculation, see section 3.2.8. Part of the loading text file calculated by 

PANAMA and text file with material data are included in the appendix.  

Figure 4.4 Loading points 
 

 

 

  

Loading 

points 
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4.2. Computing in PERMAS 

In the previous section, all inputs required by PERMAS for the vibration 

computation were described. In this section analyses performed by 

PERMAS and their results are described. Both methods- standard STIHL 

and newly developed method, uses PERMAS for vibration computations. 

The newly developed method additionally auses a program called 

Participation Magic programed in Matlab. Analyses required (by standard or 

new method) are – Frequency response analysis (FRA), Modal participation 

factor analysis and Eigen frequencies and eigen modes analysis (EFEMA). 

More detailed description of the individual analyses follows. Scheme of 

PERMAS inputs and outputs is shown in Figure 4.5 

Figure 4.5 Inputs and outputs scheme of computing performed by 

PERMAS 
 

 

 

 

 

 

 

 

 

 

 

4.2.1. Eigen frequencies and eigen modes analysis 

Eigen frequencies and eigen modes analysis  performed in PERMAS solves 

the free vibrations problem, which was theoretically described in section 

3.2.6. Results of the free vibration analysis are eigen frequencies and 

normal unit eigen modes, that are stored in the binary output file. These 

results are readable by post processing software, where they can be 

animated. As was derived in theoretical section (see 3.2.6. and 3.2.7.), the 

number of eigen frequencies depends on the size of the stiffness matrix and 

the mass matrix. For an approximation of the machines dynamic behaviour 

it is not necessary to compute all the eigen frequencies, therefore a  

frequency limit for the calculation has to be chosen. Usually, an upper limit 

for eigen frequencies is prescribed. Upper limit means that PERMAS 

Bounds between parts 
Text file 

Preprocessed Fem model 
Binary input file 

Loading from revolving of 
engine  
Text file 

 
PERMAS 

 

Eigen frequencies and 
eigen modes analysis 
Binary output file 

Frequency response 
analysis 
Text file 
 

Modal participation 
factors analysis 
Text files 

Material characteritics 
Text file 
 
 



46 
 

calculates only the eigen modes with eigen frequency lower then this limit.  

INTES recommend the use the following relation for calculating frequency 

limit [13] 

                       , 

where      is frequency limit for eigen frequencies,       is engine frequency 

limit and       means number of orders used in discrete Fourier 

transformation to decompose the excitation forces (see section 3.2.4. or 

section 4.1.3.).  

For the test model, the frequency limit has been set to 

                      . 

For the test model 254 eigen frequencies have been found in this frequency 

limit. Further 254 normal unit eigen modes belonging to the computed eigen 

frequencies were calculated. In Figure 4.6 a few illustration pictures of the 

computed normal eigen modes computed is shown. The visualisation of 

these modes was done in postprocessing program MEDINA [14], [15] .  

Note: Normal unit eigen modes have no size. They show only the ratio of 

the deformation in the model, i.e. colours in Figure 4.6 are only for better 

visualisation and no scale is included. 

4.2.2. Frequency response analysis (FRA) 

FRA performed by PERMAS computes maximal acceleration, which occurs 

as a response to the external excitation in one selected point for the whole 

range of engine speeds. The result of this analysis is a vibration curve 

stored in a text file. Calculating frequency response was theoretically 

derived in section 3.2.7. The Figure 4.7 shows the vibration curve 

calculated for the test model.  
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Figure 4.6 Normal eigen modes examples  
 

 

Figure 4.7 Frequency response curve 
 

 

Note: The scale of vertical axis in Figure 4.7. has been deleted due to the 

protection of data owned by Andreas STIHL AG & Co. KG 
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Curve in Figure 4.7 shows the absolute values of the vibration calculated by 

PERMAS on the test model. It is known that different frequencies of the 

vibration are perceived by the human body with different intensity. Usually 

the low frequencies between 5Hz and 30Hz are the most uncomfortable for 

human body, whereas people are not so sensitive to higher frequencies. For 

assessing of the vibration intensity, according to ISO norm [1], it is usual to 

apply a rescale function on the absolute vibration curve. Using the scaling 

function we obtain so called human sensitiv ity value curve (HSV).   

Vibration curve recalculated to HSV 

Norm ISO 5349-1 [1] specifies the conversion from absolute values to HSV 

values. HSV scale function in logarithmic coordinates is displayed in 

Figure 4.8. The graph shows that scale-value is always less than 1. Result 

vibration recalculated according the ISO 5349-1 is therefore always lower 

than absolute values. Figure Figure 4.9 shows the frequency response curve 

for the test model recalculated to the HSV scale . For more information 

about recalculating to HSV see [1]. 

Figure 4.8 AHV curve 
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Figure 4.9 Frequency response curve, rescaled into AHV 
 

 

Note: Due to data protection, owned by Andreas STIHL AG & Co. KG, was 

deleted scale of vertical axis in Figure 4.9. 

4.2.3. Modal participation factors analysis (MPFA) 

MPFA performed by PERMAS calculates modal participation factors within 

the frequency limit (see section 4.2.1.) for the whole range of engine speed. 

MPFA uses modal decomposition, which was  theoretically described in 

section 3.2.7. Output from the MPFA is a set of text files containing modal 

participation factors for the individual eigen frequencies. Modal 

participation factors are written in output text file as complex numbers (see 

section 3.2.7.). 

Output file contains one modal participation factor (one complex number, 

which represents one sine curve) for every combination of eigen  frequency, 

order, direction, point of interest and engine frequency. The total number of 

modal participation factors is  

                                      , 

where       means number of modals participation factors,       means 

number of, directions,       means number of orders,       means number 

of points of interest,       means number of engine speed steps and      

means number of eigen frequencies calculated in the chosen frequency limit.  
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Number of calculated modal participation factors for  the test model was 

                                    . 

In the newly developed method, all these modal participation factors have to 

be analysed to approximately reconstruct the vibration curve  using reduced 

order modelling. It is obvious, that such a number may not be analysed 

manually. It is difficult to even open the output files with a text editor.  For 

this task, new software called Participation Magic was created. Before we 

start with the reduced order modelling description, let us describe how to 

reconstruct a vibration curve from all calculated eigen modes. For a better 

understanding of how the vibration curve reconstruction works, it is good to 

recalculate modal participation factor from the complex numbers to sine 

curves. 

Recalculation from modal participation factor to sin curve 

As already mentioned, every modal participation factor calculated by 

PERMAS is a complex number, which can be represented by a vector in 

complex plane or a sine curve. For some applications it is better to have the 

modal participation factors represented by vectors, for some application it is 

better to work with sine curves. Description of the recalculation from vector 

shape to sine curve follows.  

Shape of a modal participation factor obtained from PERMAS is 

       , 
 

(4.1) 

where      . 

General sine curve is described by equation 

                    
 

(4.2) 

where   represents excitation frequency, i.e. engine frequency in the actual 

situation and coefficients      can be calluclated from modal participation 

factors 

    √     , (4.3) 

 

       ( 
 

 
 ). 

 

(4.4) 

Relations (4.3) and (4.4) are obvious from Figure 4.10. 
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Figure 4.10 Recalculation of the MPF from vector in complex plane to 

sine curve 
 

 

Vibration curve reconstruction from modal participation factors  

In this section it is described how to reconstruct vibration curve from modal 

participation factors, using all of them. As already mentioned, PERMAS 

calculated one modal participation factor for every combination of eigen 

frequency, order, direction, point of interest and engine frequency.  Now let 

us select a fixed engine speed, direction, point and order - we will call this a 

situation. For every situation we get a number of modal participation factors 

equal the number of calculated eigen frequencies.  

When we add up all the modal participation factors  in one situation and 

recalculate the result into a sine curve, we get one sine curve that represents 

a waveform of acceleration over one revolution of crankshaft in the 

respective situation. 

    ∑                                 

 

(4.5) 

   

                   (4.6) 

Our concern now is to obtain a curve of maximal acceleration for the whole 

range of engine speed for one order and one direction. Therefore, in the next 

step we take maximal value from each of the previously computed sine  
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curves and plot it into the engine frequency/ acceleration graph. Result is a 

frequency response curve for one order and one direction. Described 

procedure is shown in Figure 4.11. 

 

Figure 4.11 Summation of the MPF in one situation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Due to data protection, owned by Andreas STIHL Ag & Co. Kg, was 

deleted scale of vertical axis in Figure 4.11 

We can compute the frequency response curve, as described above, for 

every direction. Sum of these curves represents the acceleration in all 

directions. For the summation the vector summation rule was used, 

according to [1]. This is also in accordance with the way in which the 

experiments are evaluated. Again scheme of the summation is shown in 

Figure 4.12. 
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Figure 4.12 Summation frequency response curves over directions  
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Note: Due to data protection, owned by Andreas STIHL AG & Co. KG, was 

deleted scale of vertical axis in Figure 4.12. 

Same summation rule can be used for the orders to get the complete 

frequency response curve over all orders and directions.  For summation the 

vector summation rule was used again, according to [1] Scheme of the 

summation is shown in Figure 4.13. 
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Figure 4.13 Summation frequency response curves over orders  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Due to data protection, owned by Andreas STIHL AG & Co. KG, was 

deleted scale of vertical axis in Figure 4.13. 

4.2.4. Reduce order modelling 

The procedure described in the section 4.2.3. allows the calculation of the 

frequency response curve, which is exactly the same as the frequency 

response curve obtained from the FRA (see section 4.2.2.). Our concern now 

is to find the dominant eigen modes and approximately reconstruct the 

frequency response curve using only these dominant eigen modes. 

Reconstruction of the frequency response curve using only the modes with 

very high amplitudes proved to be a wrong way. Frequency response curve 
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than the frequency response curve calculated from all modes. Reason of this 

high inaccuracy is simple, the modal participation factors contain two 

pieces of information- the amplitude and the phase shift. This means, that 

two similar modes with a very high amplitude and a phase shifted by 1 80 

degrees may almost completely cancel each other out.  When added together 

the influence of such modes on the vibration curve is negligible. Experience 

shows, that these cases are very common and eigen modes with the highest 

amplitudes are rarely impacting the result the most. Therefore, in the newly 

developed method, another approach to the reduce order modelling was 

chosen. In the first step, the frequency response curve is calculated using all 

eigen modes. Then the frequency response curve is computed again, but 

some eigen modes are neglected. The difference between these two curves is 

calculated and converted to a percentage format and displayed in a plot. 

Using this process repeatedly, we can obtain a plot that contains information 

about the impact of different eigen modes to the total result.  

The total number of combinations for such procedure is unbearably high. 

For example, the test model has 254 eigen modes within the given frequency 

limit. This means that  the total number of combination is  

 
      ∑

    

        
      

   

   

  

 

(4.7) 

This is of course incredibly high number and therefore some simplifications 

are needed. The finding of high impact modes is in the newly developed 

method performed by Participation Magic. The description of used 

simplification is described in the section 4.3.  

4.3. Participation Magic 

Participation Magic is a tool, programed in Matlab GUI interface, developed 

for the postprocessor analysis of the modal participation factors. It allows 

us to plot the modal participation factors, reconstruct the frequency 

response curve from the modal participation factors and most importantly 

can be used to analyse the influence of the modal participation factors and 

the corresponding eigen frequencies to the reconstructed vibration curve. 

Identifying of the dominant unit eigen modes provides an important 

information, which can help the engineer responsible for the structure 

design to take measures exactly aimed to the damping of those vibrations.  
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4.3.1. Participation Magic interface 

The Participation Magic interface is designed to be user friendly.  It consist 

of two user controls panels Figure 4.14-(1) and Figure 4.14-(4) and four 

plots- Amplitude plot Figure 4.14-(2), Frequency Response plot Figure 

4.14-(3), Vector plot Figure 4.14-(4) and frequency impact plot  Figure 

4.14-(5). Full Participation Magic documentation is in the appendix, here 

only the main functions of the program, plot description and  basic interface 

description are shown.  

Figure 4.14 Participation magic interface 

 

 

4.3.6. Participation Magic user control panels 

Main function of the Participation Magic is to postprocess and display the 

modal participation factors obtained from PERMAS. User controls allows  us 

to read PERMAS data files - Figure 4.15-(1) and configure plots Figure 

4.15-(2-9). Participation Magic strictly requests PERMAS data format. 

Panels with plot settings, Figure 4.15-(2-9), are used for selecting data 

displayed in plots and for their graphics customization. For closer 

description of the control panels see Participation Magic documentation in 

the appendix. 
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Figure 4.15 Participation Magic- user control Panels 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2. Amplitudes of the modal participation factors plot 

Amplitude plot is a tool that gives the user a general overview of the 

influence of the different eigen modes to the total result  (i.e. influence to 

vibration curve). It displays amplitudes of the modal participation factors , 

defined by equation (4.3), as a function of the engine frequency and the 

eigen frequency. The vertical axis represents the number of the given eigen 

mode, the horizontal axis represents the engine frequency.  Amplitude values 

are represented by colours. Every point in the graph represents one 

amplitude of one modal participation factor. From this plot we can easily 

see, which amplitudes are the highest. However, the eigen modes with high 

amplitudes are actually rarely impacting result the most.  Experience shows 

that there is only a low number of the eigen modes that significantly affect  

the final result. Other tools in Participation Magic are aimed to finding 

these dominant eigen modes. Amplitude graph for the test model is in the 

Figure 4.16. 
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Figure 4.16 Amplitude plot in Participation Magic 
 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3. Frequency response plot 

The newly developed methodology is based on the vibration curve 

reconstruction from the modal participation factors. Therefore obviously, 

one of the basic functions of the Participation Magic is to compute and 

display the vibration curve from the modal participation factors. Example of 

the vibration curve calculated in Participation Magic is in the Figure 4.17. 

Participation Magic uses the procedure described in the section 4.2.3. to 

calculate the frequency response curve from the modal participation factors. 

This allows us to compute frequency response curve for any direction, any 

order or any combination- for example it is possible to calculate a vibration 

curve for the first and second order in z direction. Participation Magic also 

allows us to recalculate the vibration curve from absolute values into HSV 

values (see section 4.2.2.). Another advantage of this tool is that it allows 

us to compute the frequency response curve only from a certain section of 

the eigen modes and compare it with the curve computed from all modal 

participation factors. This function allows a much deeper insight into the 

inner behaviour of the structure. Example of a comparison of two curves 

performed in Participation Magic is in the Figure 4.15 Switching between 

directions allows us to find for example dominant direction or order of  

vibration (if such exists). 
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Figure 4.17 Frequency response plot in Participation Magic 
 

 

Figure 4.18 Frequency response curves comparison  
 

 

In the Figure 4.18 two frequency response curves calculated for the test 

model are compared. The blue curve is computed using a full spectrum of 

eigen frequencies and corresponding eigen modes, the red one neglect all  

eigen frequencies higher than 1500Hz. Is it obvious that impact of the 

neglected eigen frequencies is negligible, especially in the area of the low 

frequencies that are most important (see the chapter about AHV 4.2.2.).  
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4.3.4. Frequency impact analysis plot 

Frequency impact analysis is a tool of Participation Magic, which helps the 

user to find the dominant eigen modes. The dominant eigen modes are such  

modes, that create major part of the vibration curve, i.e. our concern is to 

find a low number of eigen modes and approximately reconstruct the 

vibration curve using only these modes.  As already mentioned in section 

4.2.4. a vibration curve reconstruction using only the modes with  the 

highest amplitudes proved to be a wrong way. Therefore, Participation 

Magic uses another approach to find the dominant eigen modes. First, the 

vibration curve is calculated using all eigen modes.  Then the vibration curve 

is computed again, but some eigen modes are neglected. The difference 

between these two curves is calculated and converted to the percentage 

format and displayed in a plot. Using this process repeatedly we can obtain 

a plot that contains information about the impact of the different eigen 

modes to the total result. Due to the incredibly high number of 

combinations, it is impossible to calculate all of them. Therefore, 

Participation Magic uses the following simplification.  

First, the vibration curve is calculated using all eigen modes. Then is 

vibration curve calculated again but the first eigen frequency is neglect. In 

the next step, the difference between these two curves is calculated, 

converted to percentage format and displayed in Figure 4.19-(1) as one 

vertical line. In the next loop, the first and the second eigen frequencies are 

neglected and so on. Result of this calculation for the test models is in the 

Figure 4.19-(1). 

The same procedure is then applied in the opposite direction , i.e. in the first 

loop the last eigen frequency is neglected. In second loop  the last frequency 

and the last but one eigen frequencies are neglected and so on. The result is 

again converted to the percentage format  and displayed in plot.  Result of 

this calculation for the test models is in the Figure 4.19-(2). 

The frequency impact analysis plots help the user to make the correct eigen 

modes restrictions for the vibration curve reconstruction. For example in the 

test case displayed in Figure 4.19-(1-2) we can see that the frequency limit 

(see 4.2.1.) used for the calculation of eigen modes is unnecessarily high 

(large green area in the Figure 4.19-(2)). Neglecting the eigen modes above 

eigen mode #45 has almost zero influence on the total result. We can also 

see (green strip in the Figure 4.19-(1), that neglecting the modes lower than 

#25 also has only very small influence on the total result. This means that, 

in the test case, we can approximately reconstruct the vibration curve using 

only eigen modes #25-45. 

  



61 
 

Figure 4.19 Frequency impact analysis plot in Participation Magic 
 

 

 

 

 

 

 

 

 

In the Figure 4.20 the scheme of creating frequency impact analysis plot in 

Participation Magic is once again shown. 

Figure 4.20 Frequency impact analysis computation scheme 
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4.3.5. Vector plot 

Every modal participation factor consists of two pieces of information- 

amplitude and phase shift . Therefore, it is not possible to display both of 

these information for the whole range of the engine speed and for all eigen 

frequencies in one plot (4 dimensional plot would be needed- eigen 

frequency/engine frequency/ amplitude/ phase shift ). However, if a fixed 

engine frequency is selected,  it is possible to display the modal 

participation factors as vectors in a complex plane, i.e. for the selected 

engine speed the vector plot allows us to display both parts of modal 

participation factor- amplitude and phase shift . This is very useful, because 

it allows us to display relations between the eigen modes and allows to 

assess their impact on the final result. It is recommended to use this tool 

after using the Frequency impact analysis (see section 4.3.4.) to decreasing 

the number of the considered eigen modes. This plot can be displayed for 

any engine speed. The example of vector plot for the test model is in the 

Figure 4.21. 

Figure 4.21 Vector plot in Participation Magic 
 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.5. Participation Magic license 

The development of Participation magic was financed by Andreas STIHL 

AG & Co. KG and is intended for STIHL internal use only. For this reason, 

it was not possible to include the compiled program in the appendix.  
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5. Conclusion 
The main goal of this diploma thesis, defined by the client - Andreas STIHL 

AG & Co. KG, was to improve the methodology standardly used by STIHL 

for calculation of vibration on the chainsaw handles that occurs as a 

response to the excitation from the crankshaft revolving. The standard 

methodology is based on the direct calculations with aid of the commerce 

finite element method solver called PERMAS. The result of  this STIHL 

standard methodology is the vibration curve for the whole range of engine 

speed. This curve is used, according to ISO norm [1], to assess whether the 

calculated machine fulfills the vibration limits or not.  

Within this thesis a new methodology was developed for vibration 

calculations. The newly developed methodology uses the reduced order 

modeling approach to approximately reconstruct the vibration curve from 

the modal participation factors and the unit normal eigen modes. During the 

creating of this new methodology, a complete theoretical background was 

derived. All relations needed for the calculation of the modal participation 

factors and unit eigen modes were described from the spatially discretized 

equations of the linear elasticity.  For the space discretization, the finite 

element method was used. In praxis, the unit normal eigen modes and the 

modal participation factors were calculated by PERMAS (see [12], [13]). 

Further, the thesis contains the description of vibration curve reconstruction 

procedure from the modal participation factors and the unit normal eigen 

modes. The reconstruction of the vibration curve is performed by newly 

implemented software called Participation Magic. This software uses the 

unit normal eigen modes and the modal participation factors calculated in  

PERMAS as an input to reconstruct the vibration curve. Participation Magic 

also allows us to evaluate the influence of the individual modes and 

approximately reconstruct the vibration curve with only the dominant 

modes, using the so called reduced order model. An easy identification of 

the dominant unit eigen modes is the biggest advantage of the newly 

developed method because it provides an important information, which 

helps engineers responsible for the structure design to take measures exactly 

aimed at reducing those vibrations. 

Within this thesis, the newly developed method was tested on a model of the 

chainsaw MS661, see [23]. Realization of the test computations also 

required the solving of technical issues during the model preprocessing in 

accordance with the internal STIHL standards (see section 4.1) or assessing 

the results in accordance with the ISO norm [1]. 

The main output of this diploma thesis is  the complete methodology, which 

uses PERMAS and Participation Magic,  for computing vibrations on the 

chainsaw handles. The method is universal and can be used for any hand 

held power equipment. Thanks to the user friendly graphic interface and 
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high level of automation in Participation Magic, it can be used without 

deeper understanding of the concepts of the reduced order modeling and 

modal decomposition. This should allow a quick and easy use by any 

customer. Currently (June 2015), the newly developed method and 

Participation Magic are being tested in simulations performed for STIHL. 
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6. Used marking overview 
  - Amplitude of the modal participation 

factor 

 - Damping matrix 

   - Matrix of material model  

   - Isotropic material model matrix 

  - Set of complex numbers 

 - Discriminant 

   - Main minors 

  - Identity matrix 

  - Surface forces 

  - Load vector 

  - Complex unit 

   - Hilbert’s space 

  - Stiffness matrix 

  - Mass matrix 

  - Outer normal vector 

  - Set of natural numbers 

  - Set of real numbers 

  - Time 

  - Displacement vector 

   - Discretized displacement vector 

   - Dirichlet boundary condition 

   - Neumann boundary condition 

   – Zero Dirichlet boundary condition 

 - Continues test function 

   - Discrete test function 

   - Space of continues test functions 

   - Space of continues test functions 

  - Eigen vector 

     - Sobolev`s space 

  – Spatial coordinates 

  - Complex number 

   - Domain with Dirichlet boundary 

condition 

   - Domain with Neumann boundary 

condition 

  - Tensor of small deformation 

     - Coefficient of the damping model 

  - Tensor of finite deformation 

  - Lame constant 

  –Lame constant 

  - Matrix of eigenvalues 

  - Density 

  - stress tensor 

  - Phase shift of the modal participation 

factor 

   - Base functions 

  - Eigen frequency of non-damped system 

  - Excitation frequency 

  - Eigen frequencies of damped system 
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 Part of the file containing modal participation factors computed by 

PERMAS (txt) 
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