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1. Introduction

This diploma thesis was created with cooperation with Andreas STIHL AG
& Co. KG, company that develops professional handheld power equipment.
Professional machines have to fulfill a great quality demands. One of those
demands is that the usage of the machine should be easy and comfortable.
From this point of view the important criterions are the weight of the
machine and also the level of vibration on the handles of the machine.
Machines marked as “professional tools” i.e. machines predetermined to be
used during 8-hours work shift have maximal level of vibration on handles
established by ISO norm [1]. Problem with high vibration, which does not
fulfill this ISO norm, occurs during the design process very often. In such a
case it is necessary to find modifications of the machine structure which
have no influence on its function and minimal influence to the stiffness of
the machine, but the vibration level is much more damped. Prototype
creating and vibration measuring proved to be expensive and time
consuming way for finding these changes. Numerical simulation of the
vibration is on the other hand much quicker and cheaper way and therefore
is used very often.

Calculation of the vibration is based on the theory of linear elasticity, which
was described by many different authors, for example [2], [3] or [4]. Theory
of the linear elasticity mathematically models the dynamic behavior of the
elastic structure with the aid of partial differential equations. For solution
of these equations, numerical techniques like the finite element method can
be used. The numerical techniques are described for example in [5], [6], [7],
[8] or [9]. Solving the dynamic equations obtained by discretizing linear
elasticity problem using the finite element method is a very complex and
complicated process. Therefore many authors try to find a ways how to
simplify it. One of the method, that is described for example in [10], [11] is
modal decomposition and reduce order modelling. The main part of the
thesis focuses on the description of this method.

1.1. Basic concepts of modal decomposition

Any physical system can vibrate. The frequencies at which vibration
naturally occurs and the modal shapes which the vibrating system assumes
are properties of the system, and can be determined analytically using modal
analysis. For elastic body are these frequencies usually called eigen
frequencies and these shapes are called the unit normal eigen modes. The
unit eigen modes can be identified experimentally, see [10] or can be
calculated using the modal decomposition, see [5]. Theoretically, for the
continuous model, there exists an infinite number of the eigen modes.
Nevertheless in order to approximately describe the dynamic behavior of
such system, it can be sufficient to use only a few of the eigen modes. Such
an approach is usually called the reduced order modelling (ROM) [11]. Each
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of these modes is associated with a fixed oscillation frequency. The
response of the system to an external loading then can be approximately
described as linear combination of these eigen modes. The coefficients used
in this linear combination are called the modal participation factors [12].
Precision of such computation is obviously dependent on the number of used
modes [10]. The other possibility for the dynamical system behavior
modeling is the application of the finite element method and solving
directly the time dependent problem. In such a case, the solution is obtained
as a linear combination of unit basis functions [9]. Difference between the
modal decomposition and this direct orthogonal decomposition is shown in
Figure 1.1.

Figure 1.1 Modal decomposition
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1.2. Goals of the diploma thesis

This diploma thesis is created with the cooperation with Andreas STIHL AG
& Co. KG. The main goal is to improve the methodology standardly used by
STIHL to calculate vibrations on chainsaw handles that occur as a response
to the excitation from the crankshaft revolving. The standardly used
methodology is based on the direct calculations with aid of the commerce
finite element method solver called PERMAS. Information about this
software can be found on developer’s website [13] or in the software manual
[12]. The newly developed methodology, based on the modal
decomposition, uses the PERMAS solver for the computation of the unit
normal eigen modes and the modal participation factors (see [11], [12]).
Post processing of these results is then done in my own program called
Participation Magic, programed within the Matlab GUI. Vibration curve is
in Participation Magic recalculated as a linear combination of the unit eigen
modes. This procedure allows us to use only the dominant modes of the
calculated vibration curve. Such an approach is usually called the reduced
order modelling [5], [11]. Moreover this methodology allows to identify the
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sources of the maximal vibration, i.e. to find the dominant unit eigen modes
which cause highest vibration. Identifying of the dominant unit eigen modes
provides an important information, which can help the engineer responsible
for the structure design to take measures exactly aimed to the damping of
those vibrations.

1.3. Structure of the diploma thesis

The diploma thesis is divided into the theoretical part and the practical. The
theoretical part starts with the description of the needed mathematical
background, then the basic equations of the linear elasticity model are
shown. Next part then contains the full description of the linear elasticity
problem (dynamic and static) from the viewpoint of the structural
mechanics. Further the description of the discretization using the FEM is
presented and the derivation of all equations needed for the computation of
the modal basis and system response to the external excitation is shown.

The practical part contains description of the test model wused for
computations. This model is not part of the thesis as it is owned by Andreas
STIHL AG & Co. KG, Further the description of the preprocessing of the
model in accordance with the inner STIHL standards is presented. For the
preprocessing procedure the commerce software called Medina was used.
For more information about this software see developer’s website [14] or
the software manual [15]. Follows description of all inputs required by
PERMAS solver for the computation. Next part describes the post
processing of the results performed by the developed program Participation
Magic 1.e. calculating vibration curve from modal basis and modal
participation factors. Last part describes the tools of Participation Magic
that can be used for finding dominant eigen frequencies as well as for
examining needed size of the modal basis.



2. Mathematical background

This part of diploma thesis presents short overview of well-known
definitions and theorems from the linear algebra and the functional analysis,
that can be found for example in [16], [9], [17]. First, eigen values and
eigen vectors as well as generalized eigen values and eigen vectors are
described. These are needed further in the text for solution of the dynamic
problem of linear elasticity. Next section is about a numerical method that
can be used for finding eigen values. Section about function spaces and
their properties follow. In the last part of this chapter several important
theorems needed for finite element method are included.

2.1. Eigen values and eigen vectors

Eigen values are involved in solution of many practical problems. In
mathematics they are used for solution of ordinary and partial differential
equations. In physics eigen values are usually used in problems regarding
oscillations and oscillators. In mechanics, their use involves a wide range of
applications from simple ones as finding of the principal axes of stress and
strain, to more complicated, as finding normal eigen modes of a component
or a structure.

2.1.1. Definition of basic matrix properties

In this part, an overview of well-known results from linear algebra is
presented, see [16]. Here, we shall work with vectors in R™ and matrices in
R™ ™ 1In the practical part of diploma thesis, we mostly consider symmetric
positive definite matrices. Definition of these properties follows.

First let us define the transposition of a matrix.

Definition 2.1. Matrix B = (b;;) € R™" is called transposed matrix to a
matrix A = (aij) € R™™ if a;; = bj; holds for all i,j. The transposed matrix is
denoted by AT,

Further, we recall the definition of symmetric matrix. We shall see later that
symmetry of the matrix is a very strong property.

Definition 2.2. Matrix A€ R"*" is called symmetric if a;; = a;; holds for
alli,j, i.e. A=AT

As already mentioned another very important property of a matrix is being
positive definite matrix.
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Definition 2.3. Matrix A€ R" ™ is called positive definite, if xTAx =
Zi']-xl-al-jxj > 0,

holds for arbitrary vector x € R™; x # 0.

In order to decide whether a symmetric matrix is positive definite, the
Sylvester’s criterion can be used.

Lemma 2.1. (Sylvester’s criterion) Letr matrix A € R™*"™ be symmetric.
Then it is positive definite if and only if all the main minors Dy,D, ...D, of
the matrix A are positive. Here, the main minors mean

a1 Q12 - Qip (2.1)
D. = D, = A1 Az . . p. = Az1 Qzz ... (Q2pn
1= a1, = ay, ay, yarany n = : : . : .

Ap1 Qpz - Qpp

2.1.2. Eigen values and eigen vectors of matrices

For calculations of the vibration eigen values and eigen vectors of a matrix
can be. We start with the definition of the eigen values.

Definition 2.4. Let A be a real matrix A € R"*". A complex number 1; 1 €
C is called an eigen value of the matrix A, if there exists a nonzero vector
u € C" such that

Au = lu. (2.2)
The vector u is called the eigen vector, which corresponds to the eigen
value A.
It is clear that for an eigen value A the corresponding eigen vector is not
unique. Usually, the normalized eigen vectors [|u|l, =1 are used. Using
equation (2.2), it can be easily shown that the eigen values of the matrix A
are the roots of a characteristic polynomial.

Lemma 2.2. Let matrix A be a matrix A € R"*". Then the eigen values A of
the matrix A are roots of equation

det(A—AE) =0, (2.3)
where E denotes the identity n X n matrix.

For eigen values A of matrix A it is easy to show that they satisfy following
properties, see [16], [18]:

e The matrix A has eigen value 0 if and only if it is singular.

e The eigen values of identity matrix E are ones and every vector is
eigen vector.

e Let matrix A has eigen value A then matrix B = (A+ E) has eigen

value A + 1.
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e Let A be an eigen value of matrix A and u the corresponding eigen
vector, then the inverse matrix A~ (if it exists) has the eigen value
1/ and the corresponding eigen vector is the same vector u.

e The eigen vectors corresponding to different eigen values of the same
matrix A are always linearly independent.

e Let A be the eigen value of matrix 4 and u be the corresponding eigen
vector. Then the eigen value of a matrix A% is 1% and the
corresponding eigen vector is U.

e Let A be a real matrix and A be its real eigen value. Then there exists
an eigen vector whose components are real numbers.

It is well known that the characteristic polynomial of a matrix A € R™"has
in complex plane n solutions. In practical problems we often rather seek real
eigen values. To guarantee that the eigen values of a matrix are real
numbers the following theorems can be used, see [9].

Lemma 2.3. Let A be a symmetric matrix. Then all its eigen values are
real.

Moreover eigen vectors of symmetric matrix have another important
property.

Lemma 2.4. Let A be a symmetric matrix. Then the eigen vectors
corresponding to different eigen values are orthogonal. Moreover, there
exists an orthonormal base formed of eigen vectors of the matrix A.

Furthermore, if the matrix is also symmetric and positive definite, it has
another property.

Lemma 2.5. Let A be a symmetric matrix. Then it is positive definite if and
only if all of its eigen values are real positive numbers.

For a symmetric positive definite matrix its square root can be defined.

Lemma 2.6. Let matrix A € R"*™ be a symmetric and positive definite. Then
there exists a matrix B, such that BB = A. The matrix B is called the square
root of the matrix A and it is denoted by AY?.

Proof of this statement
As matrix A € R™*" is symmetric, it can be written as (see Lemma 2.4.)
UTAU = diag(A4,2; ... 1) = A,

where 44,4, ... 4,, are the positive eigen values of the matrix A and U is a
matrix formed from orthonormal base of eigen vectors. As UTU = E, the
matrix A reads

A =UAUT.
12



Now the matrix B defined by
B = UAYV2UT, where AY? = diag(1;/%, 2% ... /%),
satisfies

BB = A. ]

2.1.5. Generalized eigen values and eigen vectors

For a solution of a dynamic problem of linear elasticity, generalized eigen
values problem is used. Let us start with the definition of generalized eigen
values and eigen vectors, see [17].

Definition 2.5. Let A,B be matrices A,B € R™*™. Let B be a regular matrix.
Complex number A; A€ C is called generalized eigen value of matrices
A, B, if there is a nonzero vector u € C" such that

Au = ABu. (2.4)
The vector u is called generalized eigen vector corresponding to
generalized eigen value A € C.

Similarly, as for eigen values problem, the generalized eigen values are
roots of the characteristic equation.

Lemma 2.7. Let A, B be matrices A,B € R**™. The generalized eigen values
A of matrices A and B are the roots of equation

det(A — AB) = 0. (2.5)
For generalized eigen values and eigen vectors of symmetric and positive
definite matrices following lemma can be proved.

Lemma 2.8. Let A,B € R™*™ be a symmetric positive definite matrices. Then
there exist n real positive eigen values A; with the corresponding real eigen
vectors u;, such that Au; = 1;Bu; and moreover

ujBu; =0 i #j, (2.6)
ujAu; =0 i#j. (2.7)

Proof
Let us consider equation Au = ABu.

As B is symmetric positive definite matrix, the square root of the matrix B

exists. Now, multiplying (2.4) by B~1/2

from the left we get the equation
B-1/24B~12B1/2y = 3p'/%y,
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Now using the substitution BY?u = z we get
B~ 12AB 12z = )z.

Finally denoting € = B"Y24AB~1/2 we can see that equation (2.4) is equivalent
to equation

Cz = Az,
where C is a symmetric positive definite matrix.

Following Lemmas 2.1.3. and 2.1.4. there exists n eigen values A; > 0 and
the corresponding real eigen vectors z; of the matrix C. Thus generalized
eigen vectors are given by u; = B"Y%z; m

2.2 Numerical techniques for finding eigen values and eigen vectors

Analytical ways of finding eigen values of a matrix are not suitable for
finding the eigen values and eigen vectors of large matrices because they
requires large amount of mathematical operations. In the practical part we
often work with stiffness matrix and mass matrix. Size of the stiffness
matrix and mass matrix is proportional to the number of elements of FE
model and therefore its size can be in millions. In most cases calculating all
eigen values and eigen vectors is not necessary. Calculating only the small
number of them (hundreds) is sufficient. Therefore numerical techniques
allowing to find easily only several eigen values are being used.

For overview of numerical methods see e.g. [6]. Here, only the idea of the
power method is described.

Power method

Let us consider symmetric positive definite matrix 4 € R™*™. Such a matrix
has n linearly independent real eigen vectors which form a base of n
dimensional vector space R™. An arbitrary vector vy, € R™ thus can be written
as a linear combination of the basis vectors, i.e.

n (2.8)

Vo = Z a;Xi,

i=1
where x; are the eigen vectors of matrix A. Using the definition of eigen
values (2.2), the product Avy can be written as

n (2.9)

A'Uo = Z ai/ll-xi.

i=1
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Using this repeatedly we get the m" iterated vector v,, as

- (2.10)
V= Amvo = Z ailimxi.
i=1
Here we can see, that the influence of the largest eigen value, compared to
the others increases for m — oo. Therefore we can, according to [6], use Von

Mises theorem to evaluate highest eigen value.

Theorem 2.1. (Von Mises theorem) Let us assume that the matrix A has n
linearly independent eigen vectors and eigen value Ay that has the highest
absolute value i.e. |A{| > |A;|,i # 1, then

Tgll_r)rozo /,llimAmvo =a1x1. a;#0 (2.11)
Let’s assume an arbitrary vector y that is not perpendicular to the eigen
vector Xq.

From the Von Mises theorem we get

Y Vs (2.12)

)

A; = lim
' oo yTvm

where the values yTv,,,q,yTAv,, are usually called Schwarz’s constants, see
also [6].

Calculating other eigen values

The above described procedure allows us to calculate only the highest
(dominant) eigen value. In order to compute also the other eigen values, the
concept of a reduced matrix can be used, see [6].

Theorem 2.2. Let A be a matrix which has an eigen value A,. Let x4 be the
eigen vector corresponding to the eigen value Aq. Let us assume an
arbitrary vector v, such that vTx1 = 1. Then the matrix

W1 =A—- /11x1vT (213)
(called the reduced matrix) has the same eigen values as the original matrix
A with the only exception of the eigenvalue A that is replaced by 0.

The above described procedure then is used repeatedly to calculate the
other eigen values of the matrix A.
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2.3. Function spaces

In this section the definition of the vector space is given and its basic
properties are described. For more information see [9] [19].

Vector spaces

Let us recall here that a set V is a real linear vector space, if the operations
addition of two vectors and multiplication of a vector by a real number are
defined on V and satisfy the following relations. For arbitrary vectors
u,v €V and real number aeR hold u+v eV, aueV. Further, for an

arbitrary element v € V there exists an opposite element -v € V for which
holds v + (—v) = 0. For more details see [20].

In order to define convergence, the normed linear spaces are used.

Definition 2.6. (Norm definition) Let V be a vector space. Function
I.lly : v €V = Ris called norm if

llvlly, =0 for all vevV,
llav|ly = |a|llvily for all v €V; a€R,
lv+ully < llvlly + llully for all vev.

Then the space is called normed linear space. If additionally the normed
linear vector space V is complete, then it is called Banach's space. The
definition of the complete space can be found for example in [19] or in [20].

In next section we will often work with linear and bilinear forms.

Definition 2.6. (Linear form) Let V be a Banach’s space. Then a mapping
L:V — R is called a linear form if for arbitrary vectors w,ve V and a real
number a € R holds

Lu+v) =L + L),
L(au) = aL(u),
The linear form L:V — R is called bounded if there exists
¢ € R,c > 0 such that|L(u)| < c||lully, for any u € V

The linear form L:V — R is called bounded if and only if it is continuous,
i.e. holds

L(u,) — L(uw) for arbitrary convergent sequence u, - u.
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Definition 2.7. (Bilinear forms) Let V be a Banach’s space. Then a
mapping a:V XV —- R is called a bilinear form if for arbitrary vectors
u,v,weV, and for arbitriary real number a € R holds

a(u+v,w) =alu,w)+a(v,w),
alw,u+v) = alw,u) + a(w,v),
a(au,v) = aa(u,v),
a(u, av) = aa(u,v),
Similarly, the bilinear form a:V — R is called bounded if there exists
¢ € R,c > 0 such that|a(u,v)| < c||lullyllv|ly, for any u,v €V
The bilinear form is bounded if and only if it is continuous.

For the application of FEM the special function spaces called the
Lebesgue’s spaces are used, see e.g. [20].

Lebesgue’s spaces

The space of all functions such that fﬂlulp dx < 40,1 <p < o0 is called the

Lebesgue’s space L'(Q). Here 2 is a bounded domain with the Lipschitz's
continuous boundary, see [20] for the definition of the Lipschitz's
continuous boundary. This space is Banach's space with the norm defined

1
by ||u||0'p'9=(fnlu|pdx) /p. Let us mention that the concept of the

Lebesgue’s space is complicated, e.g. the involved integral is so called
Lebesgue’s integral, see [9].

We shall also work with Sobolev’s spaces, which are another example of
Banach's spaces, for more information see [9].

Sobolev’s spaces
The Sobolev’s space is defined by the relation
Wwkr(Q) ={veLP(R): D*v € LP(Q) for |a| < k},
where 1<p <o, a=(ay,..q,) is the multi-index, D*v are the partial

alaly

0x1....0Xn

derivatives D%v = and 1) is a bounded domain with the Lipschitz's

continuous boundary. The space W*P(Q) is the Banach's space with norm

defined by
1/p
IVllkpa = IVIyke@ = ( IID“VIIE’,,,,Q> :

|a|<k
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The semi-norm of the space W*P(Q) is defined by

1/p
|v|k,p,.(2 = |v|Wk,p,(ﬂ) = (2|a|=k”Dav”3p‘g) .

The Sobolev’s space WX™() with the special choice p =2 are at the same
time Hilbert’s spaces, see [9]. We use the notation W*?(Q) = H*(1).

2.4. Important theorems for finite element method

In order to introduce a weak formulation of a boundary value problems, the
Green's Theorem is usually applied.

Theorem 2.3. (Green’s theorem)

Let 2 € R% be a bounded domain with the Lipschitz’s continuous boundary,
then for arbitrary functions u,v € H*(Q) holds

0 0 2.14
j—uvdx=f uvnidS—j—vudx ( )
_ani 20 _ani

where n = (nq,n, ....ny) is the outward unit normal to the boundary of (.

Further, for the finite element method the concept of the reference element
is used, where the integration needs to be transformed on the reference
element using the substitution theorem.

Theorem 2.4. (Substitution theorem)

Let F:0Q - 0 be a continuously differentiable mapping of the domain Q to
the domain Q. Let f be a function f € L*(12), then holds

| rwax= [ rr@)F@l e 2.15)
) n

where |F'(%)| is the absolute value of the determinant of the Jacobi’s matrix

of the mapping F.

In order to show some important properties as V-ellipticity, the generalized
Poincare’s inequality can be used.

Theorem 2.5. (Generalized Poincare’s inequality)

Let 2 € R* be a bounded domain with the Lipschitz’s continuous boundary
00. Let I' € 02 be a part of the boundary of 2 that has positive (d —1)
dimensional measure. Then there exists a constant Cp, > 0 such that

llly 20 < Cp (Il 20 + |fpudS|2) holds for all u € H*(@).  (2:16)

Very important theorem for showing existence and uniqueness of the
solution of the linear elasticity problem is Lax-Milgram theorem.
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Theorem 2.6. (Lax-Milgram theorem) Let V be a Banachs space, L be a
linear form on V and a be a symmetric bilinear form on V. Let M,m,C be
such positive constants that for arbitrary w,v € V holds

la(uw,v)| < Mlullyllvlly,
a(u,u) = mllu?lly,
IL)| < Clivlly.
Then there exists exactly one u* € V such, that for any v € V holds
a(u*,v) = L(v).
Moreover the norm of w* is bounded by

(o
* < =
lwlly =

For Lax-Milgram theorem and its proof, see [9].
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3. Mathematical description and numerical

approximation

This part deals with the deformation of an elastic body. In order to
mathematically model its behavior, the continuum assumption is made. Then
the mathematical model describing the static and the dynamic problems of
elasticity is presented. Continuum assumption means that we neglect the
molecular interactions in material and assume a continuous behavior, more
details can be found in [2]. Further we shall use the assumptions that the
deformation is small and also that the behavior of the material is linear, see
also [2].

3.1. Static problem of linear elasticity.

First, we start with a formulation of the static problem of linear elasticity,
assuming that only steady state solution is sought.

3.1.1. Hooke's law, tensors of deformation, Lamé-Navier's equation

Elasticity can be considered as the ability of material to reversibly deform
itself in response to the action of external forces. If the deformation is
completely reversible and time independent, then we speak about ideal
elasticity. If the relationship between the force and the deformation is
linear, we speak about linear elasticity. This is usually true if the
deformation is small. Under these assumptions the basic equations of linear
elasticity describing the elastic structure deformation can be written, see

[2].

In order to describe a deformation of an elastic body, we start with the
definition of a displacement vector.

Displacement vector

Let us consider an arbitrary point P(x) of the undeformed body represented
by a bounded domain Q c R? in the cartesian coordinate system (xq, X, X3) =
x. By acting of external forces the point P(x) is shifted to a point P'(y),
where y = (y1,¥2,V3) denotes the coordinates of the point P'(y). The
displacement vector u = (uq, u,, u3) at the point P(x) is then given by

ui(x) = y; — x;. (3.1)
Tensor of finite deformation

Deformation of the body () means a change of its shape, due to the action of
the external forces. The external forces change the mutual position of the
different particles of the body. In case that after removal of the external
forces the body returns to its original shape, we speak about reversible
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(elastic) deformation, otherwise we speak about irreversible deformation
[2]. The deformation of the body, according to [2] can be characterized by
the tensor of the finite deformation € given by

1 [0 0 ou;\ [ 0u; 3.2
e = & Qe O (0% (O )| (3:2)
2 axl axk axl axk

In the case of small deformation the derivatives of the displacement vector
ou

oy %) (24) is negligi oy
u are small |6xl| « 1. Then the term (axl o) 1S negligible compared to o

In such a case, the deformation can be described using only (simplified)
linear tensor of small deformation see [2].

Tensor of small deformation
The tensor of small deformation is given by

1 auk aul (33)

& == |— .

tk 2 aul auk
In this diploma thesis the components of the tensor of the finite deformation
are denoted by €;; and the components of the tensor of small deformation is

denoted by ¢g;;.
The inner body forces are described by stress.
The stress tensor

The stress tensor represents the density of the inner forces in the body
acting between two parts of this body at the point x;. The stress at point x; is
fully determined by 9 components written as.

011 012 033 (3.4)
0o = |021 022 0323,

031 032 033
see e.g. [21] . These components form a second order tensor @, which is
called the stress tensor, see [19] or [4].

The three diagonal components of the stress tensor correspond to the
stresses in the normal directions, 6 remaining components then represent the
shear stresses. It can be shown (see [2]), that for the non-diagonal
components of the stress tensor following relationships hold

012 = 021, 013 = 031, 032 = 023,
i.e. the stress tensor is symmetric and has only 6 independent components.

Under the assumption of small deformations, a linear relation between the
stress tensor and the deformation tensor given by extended Hooke's law can

be used, see [2].
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Extended Hooke's Law

Under the assumption of the linear behavior of the material, the stress
tensor ¢ modelled by the linear relation

o=C,k¢, (3.5)

_ T _ T
where 0 =[0y 0y 033 013 013 03],  €=1[¢11 &2 €33 €12 €13 23 ] and
C,, € R%%® is the matrix of a material model, i.e.

Ci111 Ciiz2 Ciizz Cii1z Ciizz Ciiz (3.6)
Ca211 C2222 Ca233 Ca223 (o231 Coziz
C. — C3311  C3322 C3333 C3323 (3331 (3312

m=

|C2311 C2322 C2333 C2323 C2331 C2312 |’

|C3111 C3122 C3133 C3123 C3131 C3112 |
Clle C1222 C1233 C1223 C1231 (:1212

where Cjj; are components of the 4" order tensor again denoted by C,,,
which is symmetric, with the respect to the first and the second pair of
indices, which means Cjj; = Cyyj for all i,j,k, [, see [2].

In the most general case there are 21 independent coefficients Cjj; of the
extended Hook's Law [2]. However this is only the case of materials, that
have different behavior in every direction, for example some composites or
material with the trigeminal crystal lattice. In what follows, we shall restrict
ourselves to the case of an isotropic material.

The extended Hooke's Law for the isotropic material we shall write as

o=CL, (3.7)
Equation (3.7) can be also written for the components of the tensor o =

(O'ij), 1.e.

oi;(w) = Cijri&xr- (3.83)
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3.1.2. Hooke's law for isotropic material

For an isotropic material only two independent coefficients of the extended
Hooke's Law exists. These two coefficients are called Lame's constants and
are denoted by A and u. The matrix of the isotropic material model C; can be

written as
A+ 2u A A 0 0 07
A A+2u A 0 0 O
C. = A A A+2u 0 0 O
=1 o0 0 0 u 0 O0Ff
0 0 0 0 u O
0 0 0 0 0 u
or for the components
O'ij(u) = ASijgkk + Z,UEU (39)

Behavior of the isotropic materials is often described by another set of
constants Ey,op. Constant Ey is called tensile modulus or Young’s modulus,
op 1s called Poisson’s constant. The constant A is also often called shear
modulus and marked as G. The following relations between Ey, op, 4, u can
be found for example see [2], i.e.

— #rBA+2u) 3.10
EY(/L.H) - [+ 5 ( )
__4 3.11
Gp(l,ﬂ) - 2(H+}L)' ( )
_ Eyop
Aop, Ey) = rom) 1207 (3.12)
E
u(op, EBy) = 570 (3.13)

Lame-Navier's equation

The elastic body is in steady state solution (or in equilibrium) if each
infinitesimal element within it is in equilibrium. The equilibrium of the
structure represented by Q is described by Lame-Navier's equation, i.e. at
every point x € Q holds
aaij+bi=0, (3.14)
ox;
where b; = b;(x) denotes the volume forces acting at the point x.
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By combining the Lame-Navier's equation (3.14), the Hooke's law (3.5) and
the relation for the tensor of small deformation (3.3) we get Lame's equation

d aui d aui 0 aui _ (315)
a_xk (,u axk> * 0xy, (,u axl-> * 0xy, (}\ axl-> +bi =0,
where A and u are Lame’s constants.
This equation can be written in the vector form
uAu + (A + p)grad(divu) + b = 0. (3.16)

3.1.2. Static linear elasticity - problem description

We assume a solid body represented by bounded domain () that is loaded by
volume and surface external forces at boundary d€. In order to describe the
steady state of the structure (), we assume that the deformation is small and
we use the isotropic material model.

For the description of the steady state of the structure Q we have the
following equations: the Lame-Navier's equations (3.14), extended Hooke's
law for isotropic material (3.5) and equation for tensor of small deformation
(3.3). In order to enclose the model, the boundary conditions on 0 needs to
be specified.

The boundary 9Q is divided into two parts Q0 = Iy U Ih. On [} the boundary
condition for the displacement u is used. On Iy the external surface forces
are applied.

Dirichlet boundary condition

This kind of boundary condition prescribes the value of the displacements u
on the Dirichlet part of boundary I} i.e.

u(x) =up(x), Vx = (xq,x3x3) € Ip, (3.17)
where x = (xq, x5, x3). Particularly, the condition up(x) =0 is being used to
suppress any deformation on this part of the boundary.

Neumann boundary condition

The Neumann type of boundary conditions is used to describe the action of
external surface forces.

on=f,(x) Vxe Iy, (3.18)
where n = (nq,n,,n3) is the vector of the unit outer normal to the dQ at the
point x € Iy and f are the surface forces.
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Static elasticity problem

We seek a vector function u: Q — R3;u € €2(Q) n C1(Q) such that satisfies
equation (3.14) in Q and the boundary conditions (3.17), (3.18).

3.1.3. Weak formulation of the static problem of linear elasticity

The partial differential equation (3.14) has one disadvantage, its solution
with continuous 2™ order partial derivatives are not guaranteed to exists,
even in the case that the formulation of the problem is correct and the
"physical" solution exists. However it is possible to define the problem
more generally with the aid of the so-called weak formulation, see [9].

We start with the definition of the space of test functions Vy={ve

[HY(Q) ]*:v = 0o0onT,}. Further we multiply the i*" equation of (3.14) by the

it" component of a test function v € Vy and integrate over (. We get

dojj(u)
fo= v d = [ byv; g,

where the components o;;(u) are given by (3.8).

Further we apply Green's theorem (2.14) on the left hand-side of equation
and get

v;
fan(—aij(u)nj )Ul' s + fQO'U(u)a—z] dQ = fQ bivi dqQ.

Now, we use that the function v = 0 on I}, and the boundary condition (3.18)
on [;. We get

ov;
fﬂaij(u)a—)’; dQ = [, biv; dQ+ [, fi,v; dS.

Now we rewrite the first term using the symmetry of the tensor o and tensor
of small deformations &

oy () 617;_ (U(u) ) (au(u) avl): (U(u) ) (a,l(u) av;) —
2 (o0 32) +3 (o 3 = a3 (32 + 7).

vk %)

where we denote &;(v) = (av 5 )
l k
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By substituting back into equation we get the final relation

.fO'ij (u)SU(v)dQ:f biv;dQ+ | fivi dS, (3.19)
Q qQ Iy

which holds for an arbitrary v € V¢. Equation (3.19) is a weak formulation
of the static problem of linear elasticity.

Denoting

a(u,”) = fﬂo—ij (u )Eij(v) d.Q., (320)
and
L(v) = fQ bividﬂ + fFN [gividS, (321)

equation (3.19) then can be written as

a(u,v) = L(v). (3.22)
Nonzero Dirichlet boundary condition

Generally the Dirichlet condition can be nonzero up # 0 on 9. In such
case, we assume the function uy is the trace of a function i, € [H1(Q)]3. The
solution of the weak static problem of linear elasticity is sought in the form
u = up + Uy, where ugy € V¢ is an unknown function, which satisfies

a(ug +up,v) = L(v)
for all v € Vy.

Using the linearity of the form a we get the formulation: Find u, € V¢, such
that

a(ug,v) = L(v) — a(up,v) (3.23)
holds for all v € Vy.

We can see that the problem with the nonzero Dirichlet boundary condition
can be reformulated as a problem with the zero Dirichlet boundary condition
and a modified right-hand side. Further in this diploma thesis only the zero
Dirichlet boundary condition shall be considered.

Static weak problem formulation

We seek function u € [H*(Q)]? such that for arbitrary function v; v € Vj:
satisfies equation [, 0 (w)e;(v) dQ = [ by, dQ + fFN fs,vi dS, where oy (u)

is given by (3.8) and u = up at I[.
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3.1.4. Discretized weak problem of static linear elasticity

We would like to approximate continuous problem of the linear elasticity by
discrete problem. Let us consider a finite dimensional subspace V, c Vg,

with dimV, =n <oo. Let functions @q,¢@,..¢@, €V, form basis of the
function space Vj. An arbitrary function vy € Vi, then can be written as a
linear combination of the base functions of the function space V. We call
function u, the solution of the discrete problem of linear elasticity if

a(up,vy) = L(vy) holds for all v, € Vy, (3.24)

where a(uy, vy) and L(vy) are given by
a(up, vy) = [, 05 (up)e;(vy) dQ, (3.25)
L(vh) = f_Q bividﬂ + frc fsividS. (326)

As the function v, € Vj, is a linear combination of the base functions @geVy,
the discrete weak problem of static linear elasticity can be formulated for
the basis functions instead of for vy. In such a case the discrete problem
reads

a(up, @i) = L(@y). (3.27)

Stiffness matrix, right-hand side vector

In order to find a solution of the discrete problem (3.24), we write uy
written as a linear combination of the basis functions i.e.

up = Y= Q) (3.28)
By substituting relation (3.28) into equation (3.27) and using the linearity
of the form a we get

Yi=1 0 a(@y, @) = L(@y).

or in the matrix notation

Ka =F, (3.29)
Where K is the stiffness matrix given by
(@1, ¢1) alPz,@1) - a(Pn P1)
Kk = | 4@u2) alp2,p2) - al@n @2)
(@1, Pn) a(P2,@Pn) - A(Pn Pn)

And F is the load vector given by

F = [L(g1) L(@y) .. L(@n)]".
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The vector of unknowns reads
_ T
a=[aa,..a,]".

We can see, that the solution of the discrete problem of the static linear
elasticity (3.24) is equivalent to the solution of the system of linear
equations (3.29).

By solving this linear system we get the coefficients ;. The solution uy of
the discrete problem (3.24) is given by relation (3.28), see [9], [5].

It can be shown that, under the considered boundary conditions, the matrix
K is symmetric and positive definite. See [5].

Equation (3.19) holds for an arbitrary set of base functions. In order to
obtain matrix K which is sparse, the base function with small supports are
usually selected. The support of the function is a part of the domain of the
function, where this function is nonzero. Such a choice leads to a(@y, @;) =
0 for most of the indices k,l k # [. Obtaining sparse matrix saves computer
memory, simplifies matrix multiplication and allows us to use iterative
method for solution of the system of equations.

3.2. Dynamic problem of linear elasticity

Similarly to the static problem of linear elasticity we assume a solid body
represented by bounded domain Q that is loaded by volume and surface
external forces. Now, the considered forces can be time dependent.
Moreover for the dynamic problem initial conditions need to be specified.

In order to describe the dynamic problem of linear elasticity, see [2], we
include the inertia forces into equation (3.14) for static equilibrium.

do;j 0%u;
_a_xz;_l_ ?;Zbi, (3.30)
where p = p(x) represents the density of the material in the point x. In this
diploma thesis we assume that density is piecewise constant and positive
p(x) > 0. In the dynamic problem stress, the displacement and the external
force load are also functions of x and ¢, i.e.0;; = 0;;(x,t), w; = w;(x,t),b; =

bi(x, t)

By combining equation (3.30), the Hooke's law (3.9) and the tensor of small
deformation (3.3) we can obtain Lame's equation for dynamic problem that
contains only u; as a variable

axk

axk

axk

d ( c’)ui) d ( (’)ui> 0 ()\aui)+b 0%y (3.31)
Mc’)xk #E)xi d0x; i=F
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where A = A(x),u = u(x) are the Lamé's coefficients of the material at the
point x. Again A and u are assumed to be piecewise constants constant.

Boundary conditions

Similarly to the static case we consider only the Dirichlet or Neumann
boundary conditions, which now can be time dependent.

Dirichlet boundary condition

This kind of boundary condition prescribes the value of the displacements u
on the Dirichlet part of boundary [}, i.e.

u(x,t) =up(x,t), Vx e I,. (3.32)

Similarly to the static case ug is the trace of a function i, € [H1(Q)]3 X
[ 1=(0,T).

Neumann boundary condition

The Neumann type of boundary conditions is used to describe the action of
external surface forces and is given by

olx,t) n=f,(x,t)Vx € Iy, (3.33)

where n is the vector of the unit outer normal to the 9 at point x € [; and
fs are the surface forces.

Initial conditions

In order to enclose the dynamic model of the linear elasticity it is necessary
to add a state of the structure at time t = 0 on the whole domain  i.e. initial
conditions

u(x,0) = ul(x), Vxe€E Q (3.34)

ou(x,0)
a
Dynamic elasticity problem formulation

ul(x), Vxe Q. (3.35)

We seek a function u: Qr > R3 Qr= Q xI; 1 =(0,T) such that satisfies
equation (3.30) for any [x,t] € Qp, initial conditions (3.34), (3.35) and
boundary conditions (3.32), (3.33).
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3.2.1. Weak problem formulation

Similarly to the static problem we start with the weak formulation of the
dynamic problem. Again we denote the space of test functions Vy={v e

[H'(Q)]3:v = 0onT,} and multiply the i*" equation (3.11.) at arbitrary time
t € Iby the i*" component of a test function v € V; and integrate over . We
get

aai]-
Q ax]-

62;:1- Uid.Q = fQ bl"l?l'd.Q. (336)

Uid.Q + fﬂp 3

Further we apply Green's theorem (2.4.4.), boundary conditions, use the
symmetry of the tensor o and we get

azui (337)
f Gl](u)su(v)dﬂ+f pﬁ.vi = ] bi vid.Q + fsividS,
Q Q Q Ty
where b; = b;(x,t) and f;, = f;,(x, t).
Let us denote
a(u,v) = [0 (w)e;(v) dQ, (3.38)
L(w;t) = f bi(©vdQ+ | f,(DvidS (3.39)
Q Ty
and
o%u; 0%y 3.40
m(a;,v,-)=f9p 6; Vi (3:40)
Then the problem (3.36) can be written as
(3.41)

2
m (%,vi) + a(u,v) = L(v; t).
Weak dynamic problem formulation

We seek a function u=u(xt), which for any ¢t satisfy u(-,t) €EVy=
azu,-

[H'@)]3, =
any test function v € Vy. Further, u is assumed to satisfy the boundary

€ [L?>(2)]® such that for any t € I equation (3.41) holds for

condition u = up at [, and the initial conditions (3.34), (3.35).
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3.2.2. Semi-discrete weak dynamic problem

Similarly to the static problem, we consider finite dimensional function sub-
space Vpc Vs, dimVy, =n <. Basis function of V, are denoted by
@1, Q2 ..., and arbitrary function v, €V, can be written as a linear
combination of base functions. We seek at every t €1 for a solution u, =
u,(-,t) €Vy in the form up(x, t) = XL, a;(t)p;(x). By substituting this form
into equation (3.41) we get the following relation

" t (3.42)
Z am(y, ¢1) + z ara(Pr 1) = L(@x;t)
=1 =1
where & denotes the second (time) derivative of the coefficient ay, i.e. &) =
dt?”

The right-hand side form L and the coefficients «; are functions of time t.
Problem is now semi-discretized i.e. discrete in space and continuous in
time.

Equation (3.42) can be written in the matrix notation as

Ma + Ka = F, (3.43)
where the mass matrix M is given by
m(@1,91) m(Pz,@1) - M(Pn P1)
M= | ™MPLP2) M(@2,92) - M(Pn @2)
m(@1, ¢n) M(P2,Pn) - M(Pn Pn)

And K is the stiffness matrix already defined by

a(@1,@1) al@z,@1) - al@n @1)
k= | ¥PLp2) ale292) - al@n@2) |
a(@1,@n) a(@z,9n) - al(@n Pn)

The load vector F reads

F=F@) =[L(@py;t) L(@g;t) ... L(@n;D)]”
and the vector of @ unknowns is given by

a=a() =[aa, .. a,]".
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3.2.3. Damping of the system

Damping is an influence within or upon an oscillating system that has the
effect of reducing oscillations over time. In the physical processes it usually
represents the dissipation of energy stored in the considered system. For the
FEM simulations usually a linear model of damping is used. This model is
represented by including the velocity dependent term Cé into equation
(3.43). Here, the damping matrix C is considered as a linear combination of
stiffness and mass matrix [5], i.e.

C=¢eM+ 5K, (3.44)
where €;,&, € R,&q,&, > 0. Such a damping is called proportion damping, see
[5] [7]. The coefficients &, &, are usually chosen to be small.

Including the damping matrix into equation (3.43) we get equation for the
damped dynamic system excited by external forces, i.e.

Mé + Ca + Ka = F. (3.45)

3.2.4. Free vibration analysis

In order to find the solution of equation (3.25.) let us start with a simplified
problem without damping and external forces. Such problem is usually
called free vibration analysis. In this case the so called eigen frequencies
and the so called normal eigen modes of the structure can be determined.
The simplified equation reads

Ma + Ka = 0. (3.46)
Solution of equation (3.46) is expected to be periodic. The system of
equations (3.46) is linear, general solution is linear combination of the
functions of the fundamental system [22]. The fundamental system is
formed from functions

a =V [cos(wt) + i sin(wt)] = Ve'®t, (3.47)

where w € RandV € C™.

Now, by taking a given by (3.47) and substituting it into equation (3.46),
we get

—MVw?e'®t + KVel®t =,
which is equivalent to equation

(K —Mw?)V = 0.
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This equation represents a generalized eigen value problem described in
section 2.1.5. It can be shown that there exist n eigen values representing
the eigen frequencies w; j=1,2..n. For each eigen frequency w; there

exists a corresponding eigen vector V; representing a normal mode of the

system. Usually the normalized vectors V are used, according to [5], i.e.

V/'MV,=1 for j=12..n (3.48)
We call 171 the unit normal eigen mode corresponding to the eigen frequency
w;. In the following text we shall denote the unit normal eigen modes by V;
(without ™).

3.2.5. Damped free vibration analysis

Furthermore a damped system given by equation (3.45) is considered,
without external forces (i.e. zero right-hand side). The system reads

Ma+Ca+ Ka = 0. (3.49)
In order to solve the problem (3.49) the transformation of this second order
system to the first order system can be used, see [5].

Let us denote f = a, we get

MB +CB+Ka=0, (3.50)
which is equivalent to equation
ﬁ] C K ,8 0 (3.51)
ol [+ ol =Gl
Similarly to the non- damped case we consider a solution in form
a =V [cos(wt) + isin(wt)] = Vel®t, (3.52)
B = V [cos(wt) + isin(wt)] = Ve'®t,

Now substituting relations (3.52) into equation (3.37) we get

(ol Sl +la oD [v] =l 0

Equation (3.53) is again the general eigen value problem, but now the

[I(l)l —M] and [1‘3 Ig] are unsymmetric and not positive definite,

Under the assumption that the damping is the described with the aid of the
damping matrix given by equation (3.44) the situation is much simpler.

matrices
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3.2.6. Eigen frequencies of damped system

Let us consider equation (3.49) with the damping matrix € given by (3.44),
i.e.

Ma+ Ca+Ka=0 (3.54)
According to [5], a solution of equation (3.49) is expected to be in the form

a = Ve(P+HDt — yezt, (3.55)

Now substitute relation (3.55) into equation (3.49), which gives relation for
z € C and vector V.

(z2MV + zCV + KV)e? = 0. (3.56)

Furthermore using matrix C given by (3.44) leads to
(ZZ + €1Z)MV + (1 + £2Z)KV = O,

or equivalently after rearrangement

z2 + &2z (3.57)
— MV + KV = 0.
1+ ¢,z
Denoting
Z2 +€1Z _ 2 (358)
1+ ¢,z

in equation (3.57) we get again the generalized eigen values problem
described in section 2.1.5.

—0’MV + KV =0 (3.59)
Here w represents the eigen frequency of the non-damped system.

Now let us decide under which assumptions are eigen values z of equation
(3.59) real, complex or purely complex.

Rearranging (3.58) we get

22+ (g, + &,0%)z + 0?2 =0, (3.60)
which is a quadratic equation with the discriminant given by

D = (g + 5,w?)? — 4w?
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In case &,¢&, are small enough, such that D <0, the roots z;, of equation
(3.60) are complex numbers, the solution is a goniometric function and
system vibrates. On the other hand, if D > 0, then the roots z;, of equation
(3.60) are real, solutions are exponential functions and no vibrations occur.
In the case that D =0, i.e. (& + £0%)? = 402, we speak about the critical
damping.

Let us focus on the of low damped vibration case, i.e. D < 0. In this case the
roots of equation (3.60) are

Zl,Z = 4 == lIJ i lQ,

—& —&w? +VD  —& —5w? (&1 + £,02)2
2 =T Eijets B

_ (e+ew?)?

" Here, ¥ is a damping

—&1— &y w2
where V¥ =% and Q= [w?

coefficient and () is the eigen frequency of the damped system (a modified
eigen frequency of the undamped system w).

Now, the fundamental system of solutions is formed from functions
VieWrtiit =y, e¥t{cos(Qt + i sin(Q,t)],
VieWrtiit =y, e¥t{cos(Qt — i sin(Qt)],

where k = 1,2..n and Vj is the real eigen vector corresponding to the eigen
frequency wy.

The real fundamental system reads
VieVkt cos(Qt),
VieVkt sin(Q,t).

Any solution of equation (3.49) can be written as a linear combination of
functions from the fundamental system, i.e.

- (3.61)

a= Z VieVrkt [Ay cos(Qit) + Bysin(Qit)]
k=1

We have shown that the real positive solution of the problem given by
equation (3.49) exists in case that the structure of damping matrix is given
by equation (3.44). Solving system (3.49) we can get n eigen frequencies
and n unit eigen vectors V, corresponding to these eigen frequencies. Eigen
vectors V represent unit normal eigen modes of damped system.
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3.2.7. Frequency response analysis and modal participation factors

Now the full discrete problem of dynamic linear elasticity given by equation
(3.45) is considered. The damping matrix C is given by relation (3.44) and a
special choice of the right-hand side term (described further) is taken into
account. We seek the solution of the problem as a linear combination of the
unit eigen modes with time dependent coefficients. This procedure,
described for example in [5], is called the decomposition to the modal basis.
The complex coefficients used in this linear combination are then called the
modal participation factors. Decomposing to the modal basis using the
modal participation factors is a widely used way to evaluate any kind of
vibrations [5].

Let us consider the solution, according to [5], of equation (3.45) as a linear
combination of the unit normal eigen modes, i.e.

a(t) =X Viyi(0), (3.62)
where y;(t) are unknown functions and where V; denote the unit normal
eigen modes of the system represented by equation (3.45), see section 3.2.5.

Now by differentiating of a(t) given by equation (3.62) and substituting the

result into equation (3.45) we get

ML Viy) + C(ZTrViy, () + K(Z!Viyi(D) + F = 0. (3.63)

Further, multiplying equation (3.63) by V]-T from the left we get

VIM(ZI, Vi 5) + VIC(ZIV:5.(0) + VIK (S} Viyi(0) + VIF =0, (3.64)

System (3.64) is a second order system of n linear differential equations
with n unknown functions y;(t). System (3.64) is simplified by using
relations, see [5]

ViMV;=0; VjCV;=0; V[KV;=0 fori#j, (3.65)

and
VIMV,=m; =1, VICV,=c;; VIKV,=k;. (3.606)

System (3.64) now leads to n second order linear ordinary differential
equations for unknown functions y; = y;(t), see [5]

mijil + Cl'yl + ki)’i = fl i=1,2... .n, (367)

where VTF = f,.
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We can see that each equation of system (3.67) can be now solved
separately. Any general solution of such second order ordinary differential
equation can be written as a sum of a particular y;, and the general solution

of the homogenous equation y;, i.e.
Yi=Yipt Yin
The general solution of the homogenous equation reads (see section 3.2.6)

Vin = cire Vit cos(Q;t) + cipe Yit sin(Q;t), (3.68)

Where W; is the damping coefficient and Q; is the eigen frequency, see
section 3.2.6.

We can see, that solution (3.68) contains the exponential function e™f,
where W < 0, this part of the solution approaches zero with increasing time.
As we are interested in long term solution, we shall focus more on the other
part of solution.

In order to calculate the particular solution y, the linearity of the system

(3.67) is used. The i*" right-hand side term of (3.67) can be decomposed to
x,y,z direction. See the derivation of the right-hand side term in section
3.2.1. and 3.2.2.

fizfix‘l'fiy‘l'fiz (369)

In the practical part of this thesis the right-hand side term in equation (3.67)
represents the excitation from the revolving of the crankshaft, which is
periodical and almost sinusoidal. Therefore we consider that right-hand side
term of equation (3.67) can be approximated with the aid of the discrete
Fourier transformation. Applying the discrete Fourier transformation to f;
we get

fi = Z}’;l[ri,j'x sin(njwt) + Sijx cos(njwt)] + [ri,j,y sin(njwt) + (3.70)

sijy cos(njwt)] + [r;j . sin(njwt) + s; j ,cos(njwt))],

where m € N is the number of orders, 7;;,5;; € R are coefficients of the

Fourier transform and @ is the excitation force frequency, i.e. engine
frequency. Using 3 orders for modeling excitation from crankshaft revolving
was found to be sufficient for the considered case.

Now using linearity of the system (3.67) we can solve the i*" equation of the
system (3.67) separately for each direction and each order, which means
that we consider the f; in form

fi = r; cos( nwt) + sin( nwt). (3.71)
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Using this decomposition originally one equation was decomposed into 3m
equations. In what follows, solution of equation for one order and one
direction is shown, the process is similar for other directions and orders.
Particular solution is sought, according to [5], in the shape

Yip = 0; sin(nwt) + ¥;cos(nwt), (3.72)

where 6;,9; € R are unknown constants and @ € R is frequency, obtained
from decomposing excitation force using Fourier transform, see equation
(3.70).

Now, let us once and twice derivate equation (3.72). Substituting the result
into equation (3.67) we get

—mn*w?[0; sin(nwt) + 9;cos(nwt)] + (3.73)
c;nw|6; cos(nwt) — Y;sin(nwt)] + k;[0; sin(nwt) + Y;cos(nwt)] =
1; sin(nwt) + s;cos(nwt).
From this equation we can get conditions for 6;,9;.
1, = —mn*w? — 9;c;nw + ik, (3.74)
S;i = —ﬁiminzwz + QiCinfD' + 191k (375)
Finally, solving this system of equations we get the result

cnws; + r;(k; — min*w?) (3.76)

L (cnw)? + k;? — 2k;min?w? + (mm2w?)?’

—cnwr; + s;(k; — min?w?) (3.77)

f (cnw)? + k2 — 2k;mmn?w? + (mn2w?)?’

The i*" solution of equation (3.67) for f; given by (3.71)(i.e. for one order
and one direction) then reads

yi = cire Tt cos(Qt) + cjpett sin(Qt) + 0; sin(nwt) + (3.78)

Y;cos(nwt).
Considering only the solution without the transient component given by
relation (3.68) we get
y; = 0; sin(nwt) + Y;cos(nwt). (3.79)
or

y; = 0; sin(nwt) + Y; cos(nwt) = A; sin(nwt + ¢;), (3.80)
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where 4; = ’91-2 +9;% and ¢; = atan%. The coefficients A4;, ¢; are the modal

4

participation factor for the considered order n, the considered direction and
the given excitation frequency w@. Substituting relation (3.80) into the

considered solution shape (3.62) we get the steady state solution of equation
(3.67).

a(t) = X'V A; sin(nwt + ¢;) (3.81)

3.2.8. Modal participation of points of interest

Relation (3.81) represents solution at all points of the discretized structure,
particularly is possible to obtain solution for a specific point by multiplying
relation (3.81) by a vector representation of the point of interest qpyy, 1.€.

apor(t) = qpor a(t) = X1 qpor Vi yi(t),
where @po[(t) = gpos- Denoting q; = qpor Vi and a@por(t) = qpoy a(t) we get
apor(t) = X1 q; yi(t). (3.82)

Now, expecting excitation force F decomposed, we can use the relation
(3.80) to get equation

apor(t) = X1 q; 0; sin(nwt) + q;9; cos(nwt) (3.83)
or
apo(t) = X1 q; A; sin(nwt + ¢;). (3.84)
Substituting 4, = q;4; we get
apor(t) = X1 A, sin(nwt + @), (3.85)

—_—

where coefficients A; ¢, represent modal participation factors of one point
of interest of the model. Here, the excitation forces decomposed into the
orders and directions is considered (see equation (3.70)), therefore this
solution is valid only for one order and one direction. In praxis we are
interested in solution for all direction and all orders combined with many
different excitation frequencies. How to work with the modal participation
factors in this situation is described in practical part.

3.3. Conclusion of theoretical part

In theoretical part we have derived equations needed for the computation of
the unit eigen modes, modal participation factors and frequency response of
a structure to external excitation. Now let us move on to the practical part,

where the theoretical knowledge will be used for solving practical problems.
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4. Practical realization

In this part of the diploma thesis, created in cooperation with Andreas
STIHL AG & Co. KG is described the practical realization of the modal
decomposition and usage of the modal participation factors in the problem
of computing vibration. Main goal, assigned by STIHL, was to improve the
STIHL standard methodology for the vibration computation on the chainsaw
handles. This vibration occurs as a response to the excitation from the
crankshaft revolving. For the computations commerce software called
PERMAS is standardly used by STIHL. PERMAS is an internationally
established FE analysis system developed by INTES GmbH. PERMAS
enables us to perform comprehensive analyses and simulations in many
fields of applications like stiffness and stress analysis, contact analysis,
vibration computations, acoustic simulations or electromagnetic fields
simulations. The data management and the built-in solution algorithm in
PERMAS are suitable for the calculation of very large models. Standardly
project with well over 20 000 000 unknown degrees of freedom can be
solved. PERMAS also supports more than 50 element types for static and
dynamic calculations including linear and non-linear elements. For this
diploma thesis only the modules for linear static and dynamic computations
are used. Information about PERMAS can be found on the INTES website
[13]or in PERMAS user manual [12].

Description of the standard method used by STIHL

Machines marked as “professional tools” i.e. machines predetermined to be
used during 8-hours work shift have a maximal level of vibration on handles
established by ISO norm [1]. To check if the demands of this ISO norm are
fulfilled, STIHL has a standard methodology for vibration computation.
This methodology is based on the modal vibration calculations with the aid
of PERMAS, which computes a vibration curve at a selected point, for the
whole range of the engine speeds. In PERMAS this computation is called
Frequency response analysis (FRA), see [12]. The vibration curve obtained
from FRA is then compared with the allowed value to assess if the limits for
vibrations are fulfilled or not. The standard STIHL methodology does not
give any answers, what measures to take, in case that the limits given by
ISO norm are not fulfilled. That is the concern of the newly developed
methodology.

Description of the newly developed method

The main idea of the newly developed method is to analyze the influence of
the individual eigen modes to the total result and then approximately
reconstruct vibration curve, using only the modes with high influence. Such
approach is called reduced order modelling (ROM), see [5] or [11]. Using
only the high influence modes for vibration curve reconstruction allows to
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identify the sources of the maximal vibration, i.e. find the dominant unit
eigen modes which cause the highest vibration. Identifying of the dominant
unit eigen modes provides an important information, which should help
engineers responsible for the structure design to take measures exactly
aimed to the reducing those vibrations.

The newly developed method uses PERMAS to calculate the modal basis
and the modal participation factors and then it reconstructs the vibration
curve as a linear combination of the modal basis vectors. For theoretical
derivation of this procedure see section 3.2. For the postprocessing of the
results, an existing tool, Participation Magic, was thoroughly revised and
reprogramed. Original Participation Magic was designed only for
visualization of the modal participation factor amplitudes. New, redesigned
Participation Magic allows us to reconstruct the vibration curve from the
modal participation factors and analyze influence of the individual eigen
modes to the total result in a user friendly graphic interface.

Before we start to describe how the curve reconstruction in Participation
Magic works, let us describe the used FEM model and other inputs required
by PERMAS for computations.

4.1. Model description and preprocessing

STIHL develops and manufactures many different chainsaws and other
tools. The newly developed method was tested on a FEM model of the
chainsaw MS661, see [23]. CAD model of this chainsaw is in Figure 4.1.
All computation results presented in this thesis were performed on this
model. In next sections the test model and other inputs to the simulation
including the load forces, material data and bonds between the parts are
described. PERMAS typically uses two kinds of inputs - binary input file
(BIF) that contains the meshed structure model and text files containing
information about the material and loading.

4.1.1. Structure model and finite element mesh realization

The used CAD model is owned by Andreas STIHL AG & Co. KG. Model
was preprocessed according to the internal standards of STIHL. For the
meshing and other preprocessing procedures like rigid body elements (RBE)
creating and bonds creating, the commerce software MEDINA was used. For
more information about MEDINA see [14] or [15]. Small parts with
negligible impact to the total stiffness of the structure were replaced by
mass points connected to the structure by rigid body elements (RBE). The
smallest parts, with mass less than 1 gram, were neglected. Used type of
elements 1s, according to the inner STIHL standards, mainly quadratic
tetrahedron elements (in PERMAS terminology called TET10). For some
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parts (like the guiderail) linear hexahedral and prismatic elements were used
(in PERMAS terminology called penta or hexa elements). Preprocessed
model is shown in the Figure 4.2. The number of nodes and elements of the
used mesh is shown in Table 4.1.

Figure 4.1 CAD model

Figure 4.2 Preprocessed model
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Table 4.1 Mesh quantities

Number

Nodes 3167518
Tetra 10 elements 1774738

Hexa Elements
Penta Elements
RBE 2
RBE 3

4.1.2. Points of interest

Our concern is to calculate the vibration on the handles, while the chainsaw
is being used, i.e. is held by user and the engine is running. Simulation
should be in accordance with the reality, therefore we simulate the holding
of the machine by adding an additional RBE bonds. On the tops of these
RBE bonds are sets of springs and masses which simulate hand, forearm and
arm. The configuration is typically in accordance with DIN45677 [24].
Experience shows, that such simulated holding of the machine is in good
accordance with reality. ISO norm [1] specifies points on the handles which
have to satisfy vibration limits - we would called them points of interest.
These points are on the handles next to the spots used for holding of the
machine. Therefore we add another RBE bonds next to the spots used for
holding. On their tops are points evaluated in the vibration analysis- points
of interest. Positions of the RBE bonds are shown in Figure 4.3.

Figure 4.3 Points for vibration evaluating

Grip simulation
Point of interest ==

Point of
interest

Grip simulatio
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4.1.3. Input text files

In addition to the preprocessed model stored in binary input files, PERMAS
requires additional text files. These text files contain material data and
information about loading.

Material data text file was created in accordance with PERMAS
nomenclature and contains material data for every part of the model.
Loading due to the crankshaft revolving is stored in another text file. This
loading was calculated externally. STIHL intern software called PANAMA
[25] was used for this calculation. This software uses crankshaft geometry
and gas pressure in combustion chamber as inputs and analytically
calculates loading on the crankshaft bearings. These bearings are simulated
by the RBE bonds and their positions are shown in Figure 4.4. Loading
calculated by PANAMA 1is decomposed to the x,y,z directions and
decomposed to orders with the aid of a discrete Fourier transformation.
Such decomposition is required for the modal participation factors
calculation, see section 3.2.8. Part of the loading text file calculated by
PANAMA and text file with material data are included in the appendix.

Figure 4.4 Loading points

Loading
points
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4.2. Computing in PERMAS

In the previous section, all inputs required by PERMAS for the vibration
computation were described. In this section analyses performed by
PERMAS and their results are described. Both methods- standard STIHL
and newly developed method, uses PERMAS for vibration computations.
The newly developed method additionally auses a program called
Participation Magic programed in Matlab. Analyses required (by standard or
new method) are — Frequency response analysis (FRA), Modal participation
factor analysis and Eigen frequencies and eigen modes analysis (EFEMA).
More detailed description of the individual analyses follows. Scheme of
PERMAS inputs and outputs is shown in Figure 4.5

Figure 4.5 Inputs and outputs scheme of computing performed by
PERMAS

Loading from revolving of

engine _ Eigen frequencies and

Text file eigen modes analysis
Binary output file

y

Bounds between parts

Text file
PERMAS
A1

r

Frequency response

- analysis

Text file

Preprocessed Fem model
Binary input file

A
Modal participation
Material characteritics _ factors analysis
Text file ' Text files

4.2.1. Eigen frequencies and eigen modes analysis

Eigen frequencies and eigen modes analysis performed in PERMAS solves
the free vibrations problem, which was theoretically described in section
3.2.6. Results of the free vibration analysis are eigen frequencies and
normal unit eigen modes, that are stored in the binary output file. These
results are readable by post processing software, where they can be
animated. As was derived in theoretical section (see 3.2.6. and 3.2.7.), the
number of eigen frequencies depends on the size of the stiffness matrix and
the mass matrix. For an approximation of the machines dynamic behaviour
it is not necessary to compute all the eigen frequencies, therefore a
frequency limit for the calculation has to be chosen. Usually, an upper limit
for eigen frequencies is prescribed. Upper limit means that PERMAS
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calculates only the eigen modes with eigen frequency lower then this limit.
INTES recommend the use the following relation for calculating frequency
limit [13]

fiim = fetim X NTorq X 2,5,

where f,is frequency limit for eigen frequencies, fg;, is engine frequency
limit and Nr,.,; means number of orders used in discrete Fourier
transformation to decompose the excitation forces (see section 3.2.4. or
section 4.1.3.).

For the test model, the frequency limit has been set to
fum = 270 X 3 x 2,5 = 2025Hz.

For the test model 254 eigen frequencies have been found in this frequency
limit. Further 254 normal unit eigen modes belonging to the computed eigen
frequencies were calculated. In Figure 4.6 a few illustration pictures of the
computed normal eigen modes computed is shown. The visualisation of
these modes was done in postprocessing program MEDINA [14], [15] .

Note: Normal unit eigen modes have no size. They show only the ratio of
the deformation in the model, i.e. colours in Figure 4.6 are only for better
visualisation and no scale is included.

4.2.2. Frequency response analysis (FRA)

FRA performed by PERMAS computes maximal acceleration, which occurs
as a response to the external excitation in one selected point for the whole
range of engine speeds. The result of this analysis is a vibration curve
stored in a text file. Calculating frequency response was theoretically
derived in section 3.2.7. The Figure 4.7 shows the vibration curve
calculated for the test model.
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Figure 4.6 Normal eigen modes examples

Normal eigen mode 47 Hz
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Figure 4.7 Frequency response curve
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Note: The scale of vertical axis in Figure 4.7. has been deleted due to the
protection of data owned by Andreas STIHL AG & Co. KG
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Curve in Figure 4.7 shows the absolute values of the vibration calculated by
PERMAS on the test model. It is known that different frequencies of the
vibration are perceived by the human body with different intensity. Usually
the low frequencies between 5SHz and 30Hz are the most uncomfortable for
human body, whereas people are not so sensitive to higher frequencies. For
assessing of the vibration intensity, according to ISO norm [1], it is usual to
apply a rescale function on the absolute vibration curve. Using the scaling
function we obtain so called human sensitivity value curve (HSV).

Vibration curve recalculated to HSV

Norm ISO 5349-1 [1] specifies the conversion from absolute values to HSV
values. HSV scale function in logarithmic coordinates is displayed in
Figure 4.8. The graph shows that scale-value is always less than 1. Result
vibration recalculated according the ISO 5349-1 is therefore always lower
than absolute values. Figure Figure 4.9 shows the frequency response curve
for the test model recalculated to the HSV scale. For more information
about recalculating to HSV see [1].

Figure 4.8 AHYV curve

HSV curve
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Figure 4.9 Frequency response curve, rescaled into AHV
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Note: Due to data protection, owned by Andreas STIHL AG & Co. KG, was
deleted scale of vertical axis in Figure 4.9.

4.2.3. Modal participation factors analysis (MPFA)

MPFA performed by PERMAS calculates modal participation factors within
the frequency limit (see section 4.2.1.) for the whole range of engine speed.
MPFA uses modal decomposition, which was theoretically described in
section 3.2.7. Output from the MPFA is a set of text files containing modal
participation factors for the individual eigen frequencies. Modal
participation factors are written in output text file as complex numbers (see
section 3.2.7.).

Output file contains one modal participation factor (one complex number,
which represents one sine curve) for every combination of eigen frequency,
order, direction, point of interest and engine frequency. The total number of
modal participation factors is

Nrypr = N7gir X NTorg X NTpoi X NTpgs X NTef,

where Nrypr means number of modals participation factors, N7y, means
number of, directions, N7,.; means number of orders, N7,, means number

of points of interest, N7, means number of engine speed steps and N7,y
means number of eigen frequencies calculated in the chosen frequency limit.
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Number of calculated modal participation factors for the test model was
Nrypr =3 X 3 X 2 X256 X265= 814 080.

In the newly developed method, all these modal participation factors have to
be analysed to approximately reconstruct the vibration curve using reduced
order modelling. It is obvious, that such a number may not be analysed
manually. It is difficult to even open the output files with a text editor. For
this task, new software called Participation Magic was created. Before we
start with the reduced order modelling description, let us describe how to
reconstruct a vibration curve from all calculated eigen modes. For a better
understanding of how the vibration curve reconstruction works, it is good to
recalculate modal participation factor from the complex numbers to sine
curves.

Recalculation from modal participation factor to sin curve

As already mentioned, every modal participation factor calculated by
PERMAS is a complex number, which can be represented by a vector in
complex plane or a sine curve. For some applications it is better to have the
modal participation factors represented by vectors, for some application it is
better to work with sine curves. Description of the recalculation from vector
shape to sine curve follows.

Shape of a modal participation factor obtained from PERMAS is
z=pi+gq, (4.1)
where p,q € R.
General sine curve is described by equation
y=Asin (ft + @), (4.2)

where f represents excitation frequency, i.e. engine frequency in the actual
situation and coefficients A4, ¢ can be calluclated from modal participation
factors

A= p?+ ¢, (4.3)

Q= atan(g). (4.4)

Relations (4.3) and (4.4) are obvious from Figure 4.10.
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Figure 4.10 Recalculation of the MPF from vector in complex plane to
sine curve

Complex axis [i]

>

q Real axis [1]

Vibration curve reconstruction from modal participation factors

In this section it is described how to reconstruct vibration curve from modal
participation factors, using all of them. As already mentioned, PERMAS
calculated one modal participation factor for every combination of eigen
frequency, order, direction, point of interest and engine frequency. Now let
us select a fixed engine speed, direction, point and order- we will call this a
situation. For every situation we get a number of modal participation factors
equal the number of calculated eigen frequencies.

When we add up all the modal participation factors in one situation and
recalculate the result into a sine curve, we get one sine curve that represents
a waveform of acceleration over one revolution of crankshaft in the
respective situation.

z - Asin( ft + ¢) (4.6)
Our concern now is to obtain a curve of maximal acceleration for the whole
range of engine speed for one order and one direction. Therefore, in the next
step we take maximal value from each of the previously computed sine
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curves and plot it into the engine frequency/ acceleration graph. Result is a
frequency response curve for one order and one direction. Described
procedure is shown in Figure 4.11.

Figure 4.11 Summation of the MPF in one situation
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Note: Due to data protection, owned by Andreas STIHL Ag & Co. Kg, was
deleted scale of vertical axis in Figure 4.11

We can compute the frequency response curve, as described above, for
every direction. Sum of these curves represents the acceleration in all
directions. For the summation the vector summation rule was used,
according to [1]. This is also in accordance with the way in which the

experiments are evaluated. Again scheme of the summation is shown in
Figure 4.12.
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Figure 4.12 Summation frequency response curves over directions

Acceleration, order 1, X direction Acceleration, order 1, Y direction Acceleration, order 1, Z direction
g g T
E E E
5 5 H
i £ £
< E <
o 50 100 150 200 250 300 o 50 100 150 200 250 300 0 50 100 150 200 250
Engine spedd [Hz] Engine spedd [Hz] Engine spedd [Hz]

300

)’ [ | '4

sum; = /x;% +y;2 + z;%;

i € (engine speed min ; engine speed max )

!

Acceleration, order 1, All directions

/

/

Acceleration [m/s]

/

AN

N

Engine spedd [Hz]

0 50 100 150 200 250

300

Note: Due to data protection, owned by Andreas STIHL AG & Co. KG, was

deleted scale of vertical axis in Figure 4.12.

Same summation rule can be used for the orders to get the complete
frequency response curve over all orders and directions. For summation the
vector summation rule was used again, according to [1] Scheme of the

summation is shown in Figure 4.13.
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Figure 4.13 Summation frequency response curves over orders
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4.2.4. Reduce order modelling

The procedure described in the section 4.2.3. allows the calculation of the

frequency response curve, which is exactly the same as the frequency

response curve obtained from the FRA (see section 4.2.2.). Our concern now
is to find the dominant eigen modes and approximately reconstruct the

frequency response curve using only these dominant

eigen modes.
Reconstruction of the frequency response curve using only the modes with
very high amplitudes proved to be a wrong way. Frequency response curve
created only from the modes with a high amplitude was totally different

54




than the frequency response curve calculated from all modes. Reason of this
high inaccuracy is simple, the modal participation factors contain two
pieces of information- the amplitude and the phase shift. This means, that
two similar modes with a very high amplitude and a phase shifted by 180
degrees may almost completely cancel each other out. When added together
the influence of such modes on the vibration curve is negligible. Experience
shows, that these cases are very common and eigen modes with the highest
amplitudes are rarely impacting the result the most. Therefore, in the newly
developed method, another approach to the reduce order modelling was
chosen. In the first step, the frequency response curve is calculated using all
eigen modes. Then the frequency response curve is computed again, but
some eigen modes are neglected. The difference between these two curves is
calculated and converted to a percentage format and displayed in a plot.
Using this process repeatedly, we can obtain a plot that contains information
about the impact of different eigen modes to the total result.

The total number of combinations for such procedure is unbearably high.
For example, the test model has 254 eigen modes within the given frequency
limit. This means that the total number of combination is

254

254! (4.7)
Nteom = ) o ~ 10°0%,
(254 — n)!

n=1
This is of course incredibly high number and therefore some simplifications
are needed. The finding of high impact modes is in the newly developed
method performed by Participation Magic. The description of used

simplification is described in the section 4.3.

4.3. Participation Magic

Participation Magic is a tool, programed in Matlab GUI interface, developed
for the postprocessor analysis of the modal participation factors. It allows
us to plot the modal participation factors, reconstruct the frequency
response curve from the modal participation factors and most importantly
can be used to analyse the influence of the modal participation factors and
the corresponding eigen frequencies to the reconstructed vibration curve.
Identifying of the dominant unit eigen modes provides an important
information, which can help the engineer responsible for the structure
design to take measures exactly aimed to the damping of those vibrations.
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4.3.1. Participation Magic interface

The Participation Magic interface is designed to be user friendly. It consist
of two user controls panels Figure 4.14-(1) and Figure 4.14-(4) and four
plots- Amplitude plot Figure 4.14-(2), Frequency Response plot Figure
4.14-(3), Vector plot Figure 4.14-(4) and frequency impact plot Figure
4.14-(5). Full Participation Magic documentation is in the appendix, here
only the main functions of the program, plot description and basic interface
description are shown.

Figure 4.14 Participation magic interface
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4.3.6. Participation Magic user control panels

Main function of the Participation Magic is to postprocess and display the
modal participation factors obtained from PERMAS. User controls allows us
to read PERMAS data files - Figure 4.15-(1) and configure plots Figure
4.15-(2-9). Participation Magic strictly requests PERMAS data format.
Panels with plot settings, Figure 4.15-(2-9), are used for selecting data
displayed in plots and for their graphics customization. For closer
description of the control panels see Participation Magic documentation in
the appendix.
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Figure 4.15 Participation Magic- user control Panels
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4.3.2. Amplitudes of the modal participation factors plot

Amplitude plot is a tool that gives the user a general overview of the
influence of the different eigen modes to the total result (i.e. influence to
vibration curve). It displays amplitudes of the modal participation factors,
defined by equation (4.3), as a function of the engine frequency and the
eigen frequency. The vertical axis represents the number of the given eigen
mode, the horizontal axis represents the engine frequency. Amplitude values
are represented by colours. Every point in the graph represents one
amplitude of one modal participation factor. From this plot we can easily
see, which amplitudes are the highest. However, the eigen modes with high
amplitudes are actually rarely impacting result the most. Experience shows
that there is only a low number of the eigen modes that significantly affect
the final result. Other tools in Participation Magic are aimed to finding
these dominant eigen modes. Amplitude graph for the test model is in the
Figure 4.16.
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Figure 4.16 Amplitude plot in Participation Magic

Arnplitude Plot
11474_h03_stds_0416_mpffre03
acceleration data [mfsZ] at node #12300004
arder; 1; DOF: x

250

200

150

Eigenmode #

100

a0

50 100 150 200 250

4.3.3. Frequency response plot

The newly developed methodology is based on the vibration curve
reconstruction from the modal participation factors. Therefore obviously,
one of the basic functions of the Participation Magic is to compute and
display the vibration curve from the modal participation factors. Example of
the vibration curve calculated in Participation Magic is in the Figure 4.17.
Participation Magic uses the procedure described in the section 4.2.3. to
calculate the frequency response curve from the modal participation factors.
This allows us to compute frequency response curve for any direction, any
order or any combination- for example it is possible to calculate a vibration
curve for the first and second order in z direction. Participation Magic also
allows us to recalculate the vibration curve from absolute values into HSV
values (see section 4.2.2.). Another advantage of this tool is that it allows
us to compute the frequency response curve only from a certain section of
the eigen modes and compare it with the curve computed from all modal
participation factors. This function allows a much deeper insight into the
inner behaviour of the structure. Example of a comparison of two curves
performed in Participation Magic is in the Figure 4.15 Switching between
directions allows us to find for example dominant direction or order of
vibration (if such exists).
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Figure 4.17 Frequency response plot in Participation Magic
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In the Figure 4.18 two frequency response curves calculated for the test
model are compared. The blue curve is computed using a full spectrum of
eigen frequencies and corresponding eigen modes, the red one neglect all
eigen frequencies higher than 1500Hz. Is it obvious that impact of the
neglected eigen frequencies is negligible, especially in the area of the low
frequencies that are most important (see the chapter about AHV 4.2.2.).
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4.3.4. Frequency impact analysis plot

Frequency impact analysis is a tool of Participation Magic, which helps the
user to find the dominant eigen modes. The dominant eigen modes are such
modes, that create major part of the vibration curve, i.e. our concern is to
find a low number of eigen modes and approximately reconstruct the
vibration curve using only these modes. As already mentioned in section
4.2.4. a vibration curve reconstruction using only the modes with the
highest amplitudes proved to be a wrong way. Therefore, Participation
Magic uses another approach to find the dominant eigen modes. First, the
vibration curve is calculated using all eigen modes. Then the vibration curve
is computed again, but some eigen modes are neglected. The difference
between these two curves is calculated and converted to the percentage
format and displayed in a plot. Using this process repeatedly we can obtain
a plot that contains information about the impact of the different eigen
modes to the total result. Due to the incredibly high number of
combinations, it is impossible to calculate all of them. Therefore,
Participation Magic uses the following simplification.

First, the vibration curve is calculated using all eigen modes. Then is
vibration curve calculated again but the first eigen frequency is neglect. In
the next step, the difference between these two curves is calculated,
converted to percentage format and displayed in Figure 4.19-(1) as one
vertical line. In the next loop, the first and the second eigen frequencies are
neglected and so on. Result of this calculation for the test models is in the
Figure 4.19-(1).

The same procedure is then applied in the opposite direction, i.e. in the first
loop the last eigen frequency is neglected. In second loop the last frequency
and the last but one eigen frequencies are neglected and so on. The result is
again converted to the percentage format and displayed in plot. Result of
this calculation for the test models is in the Figure 4.19-(2).

The frequency impact analysis plots help the user to make the correct eigen
modes restrictions for the vibration curve reconstruction. For example in the
test case displayed in Figure 4.19-(1-2) we can see that the frequency limit
(see 4.2.1.) used for the calculation of eigen modes is unnecessarily high
(large green area in the Figure 4.19-(2)). Neglecting the eigen modes above
eigen mode #45 has almost zero influence on the total result. We can also
see (green strip in the Figure 4.19-(1), that neglecting the modes lower than
#25 also has only very small influence on the total result. This means that,
in the test case, we can approximately reconstruct the vibration curve using
only eigen modes #25-45.
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Figure 4.19 Frequency impact analysis plot in Participation Magic
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In the Figure 4.20 the scheme of creating frequency impact analysis plot in
Participation Magic is once again shown.

Figure 4.20 Frequency impact analysis computation scheme
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4.3.5. Vector plot

Every modal participation factor consists of two pieces of information-
amplitude and phase shift. Therefore, it is not possible to display both of
these information for the whole range of the engine speed and for all eigen
frequencies in one plot (4 dimensional plot would be needed- eigen
frequency/engine frequency/ amplitude/ phase shift). However, if a fixed
engine frequency 1is selected, it is possible to display the modal
participation factors as vectors in a complex plane, i.e. for the selected
engine speed the vector plot allows us to display both parts of modal
participation factor- amplitude and phase shift. This is very useful, because
it allows us to display relations between the eigen modes and allows to
assess their impact on the final result. It is recommended to use this tool
after using the Frequency impact analysis (see section 4.3.4.) to decreasing
the number of the considered eigen modes. This plot can be displayed for
any engine speed. The example of vector plot for the test model is in the
Figure 4.21.

Figure 4.21 Vector plot in Participation Magic

“Wector Plot
11474_h03_stds_0416_mpffre03
acceleration data [més2] at node #12900004
order: 1; DOF: x

—— 17 (285 Hz)
80 ——— 15 29.6 Hz)
—— {08 Hz)
———4(25Hz)
—— 20426 Hz)
— LG

60 |

40

20k

RO F

B0

4.3.5. Participation Magic license

The development of Participation magic was financed by Andreas STIHL
AG & Co. KG and is intended for STIHL internal use only. For this reason,
it was not possible to include the compiled program in the appendix.

62



5. Conclusion

The main goal of this diploma thesis, defined by the client - Andreas STIHL
AG & Co. KG, was to improve the methodology standardly used by STIHL
for calculation of vibration on the chainsaw handles that occurs as a
response to the excitation from the crankshaft revolving. The standard
methodology is based on the direct calculations with aid of the commerce
finite element method solver called PERMAS. The result of this STIHL
standard methodology is the vibration curve for the whole range of engine
speed. This curve is used, according to ISO norm [1], to assess whether the
calculated machine fulfills the vibration limits or not.

Within this thesis a new methodology was developed for vibration
calculations. The newly developed methodology uses the reduced order
modeling approach to approximately reconstruct the vibration curve from
the modal participation factors and the unit normal eigen modes. During the
creating of this new methodology, a complete theoretical background was
derived. All relations needed for the calculation of the modal participation
factors and unit eigen modes were described from the spatially discretized
equations of the linear elasticity. For the space discretization, the finite
element method was used. In praxis, the unit normal eigen modes and the
modal participation factors were calculated by PERMAS (see [12], [13]).
Further, the thesis contains the description of vibration curve reconstruction
procedure from the modal participation factors and the unit normal eigen
modes. The reconstruction of the vibration curve is performed by newly
implemented software called Participation Magic. This software uses the
unit normal eigen modes and the modal participation factors calculated in
PERMAS as an input to reconstruct the vibration curve. Participation Magic
also allows us to evaluate the influence of the individual modes and
approximately reconstruct the vibration curve with only the dominant
modes, using the so called reduced order model. An easy identification of
the dominant unit eigen modes is the biggest advantage of the newly
developed method because it provides an important information, which
helps engineers responsible for the structure design to take measures exactly
aimed at reducing those vibrations.

Within this thesis, the newly developed method was tested on a model of the
chainsaw MS661, see [23]. Realization of the test computations also
required the solving of technical issues during the model preprocessing in
accordance with the internal STIHL standards (see section 4.1) or assessing
the results in accordance with the ISO norm [1].

The main output of this diploma thesis is the complete methodology, which
uses PERMAS and Participation Magic, for computing vibrations on the
chainsaw handles. The method is universal and can be used for any hand
held power equipment. Thanks to the user friendly graphic interface and
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high level of automation in Participation Magic, it can be used without
deeper understanding of the concepts of the reduced order modeling and
modal decomposition. This should allow a quick and easy use by any
customer. Currently (June 2015), the newly developed method and
Participation Magic are being tested in simulations performed for STIHL.
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6. Used marking overview

A;- Amplitude of the modal participation
factor

C- Damping matrix

C,, - Matrix of material model

C - Isotropic material model matrix
C - Set of complex numbers

D- Discriminant

D; - Main minors

E - Identity matrix

f s~ Surface forces

F - Load vector

i - Complex unit

H* - Hilbert’s space

K - Stiffness matrix

M - Mass matrix

n - Outer normal vector

N - Set of natural numbers

R - Set of real numbers

t-Time

u - Displacement vector

uy, - Discretized displacement vector
up - Dirichlet boundary condition
uy - Neumann boundary condition
Ug — Zero Dirichlet boundary condition

v- Continues test function

v}, - Discrete test function

V¢ - Space of continues test functions
V, - Space of continues test functions
V - Eigen vector

WP - Sobolev's space

X — Spatial coordinates

z - Complex number

['; - Domain with Dirichlet boundary
condition

[y - Domain with Neumann boundary
condition

& - Tensor of small deformation

&1, &~ Coefficient of the damping model
€ - Tensor of finite deformation

U - Lame constant

A —Lame constant

A - Matrix of eigenvalues

p - Density

O - stress tensor

@ - Phase shift of the modal participation

factor

@; - Base functions

w - Eigen frequency of non-damped system

w - Excitation frequency

Q - Eigen frequencies of damped system
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8. List of attachements
Enclosed CD contains following files

e Electronic version of the diploma Thesis (pdf)

Participation Magic documentation (ppt)
e Example of the loading file used for computations in PERMAS (datl)
e Example of the file with the model bonds (datl)

e Part of the file containing modal participation factors computed by
PERMAS (txt)
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