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Anotace: 

Práce se zabývá porovnáním metod pro výpočet ohybu kompozitních nosníků. 

Srovnáváme výsledky výpočtů provedených pomocí Bernoulliho metody, metody 

výpočtu matice ABD a modelů MKP řešených pomocí klasické a objemové 

skořepiny i pomocí objemového modelu. Výsledkem celé práce je porovnání 

použitých metod a vznik programů pro výpočet ohybu v MATLABu a MKP 

modelů. 

 

Abstract: 

The work presents a comparison of methods for calculating the composite beams 

bending. We compare the results of calculations performed using the Bernoulli’s 

method, method of calculation using ABD matrix and FEM models base on the 

conventional shell, the continuum shell and on the volume model. The results of 

the thesis is the comparison of the used methods and programs for calculating 

the beam deflection designed in MATLAB® and the FEM models.   
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Introduction 

This thesis presents a comparison of methods for calculating the deflection 

of composite beams. The task of this thesis is to compare several methods 

of calculation of deflection composite beams. The objective is to compare of 

analytical methods with calculations made by using FEM. It compares the results 

of calculations performed using the Bernoulli’s method, a method of calculation 

using ABD matrix and FEM models based on the conventional shell, the 

continuum shell and the volume models. The results will be used to determine 

the appropriate method to analyze a deformation of composite beams. 

The work is created to facilitate the design of composite beams. It compares the 

known methods of the analysis of the deflection of composite beams for the 

different composition of the composite material. It is proved that the use of 

different calculation methods for the same composite material composition and 

the same geometry leads to different results. The objective of this work is to 

specify, which methods lead to comparable results with the experiment. 

In this work, two programs designed in MATLAB® to calculate the deflection of 

any composite beams were created. Several models designed to calculate the 

deflection by FEM were created too. The comparison of all the mentioned 

methods yielded interesting results, which are presented in this thesis.  
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1 Mathematical Description of Fibre Composite Material 

1.1 Description of Anisotropic Material 

For anisotropic material, with general anisotropy (there is not a single plane of 

symmetry of elastic properties), both the stiffness matrix   and the compliance 

matrix    has 21 independent elements. Matrices are based on Hooke’s law. 

[1],[6] In system             the Hooke’s law is expressed as follows 

 

 
 
 
 
 
 
  
  

  
  

  

   
 
 
 
 
 

 

 
 
 
 
 
 
         

         

         

         

         

         

         

         

         

         

         

          
 
 
 
 
 

 

 
 
 
 
 
 
  
  

  
  

  

   
 
 
 
 
 

     

(1.1)  

where   is a symmetric matrix. The formula can be rewritten as 

           (1.2)  

The equation can be expressed also in the inverse form  

           (1.3)  

Matrix   is also symmetric and it has a form 

 

  

 
 
 
 
 
 
         

         

         

         

         

         

         

         

         

         

         

          
 
 
 
 
 

     

(1.4)  

From comparison of relations (1.2) and (1.3) follows  

            (1.5)  

But this work will deal mainly with orthotropic or transversely isotropic 

materials; in those cases the numbers of independent variables are significantly 

reduced.  

1.1.1 Orthotropic Material 

Orthotropic material has three mutually perpendicular planes of symmetry of 

elastic properties. The stiffness matrix   (and also the compliance matrix  ) of 

orthotropic material contains only 9 independent elements.  
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(1.6)  

When elastic modules are used and substituted to the compliance matrix  , we 

obtain the relation 

 

 
 
 
 
 
 
  
  

  
  

  

   
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
  

 
    

  
 

    
  

 

    
  

  
  

 
    

  
 

    
  

 
    

  
  

  
 

   
   
   

   
   
   

 
   

   

  
   

  

   
   

  
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
  
  

  
  

  

   
 
 
 
 
 

     

(1.7)  

           (1.8)  

where            are modules of elasticity in the main directions of anisotropy;  

             are shear modules in the planes parallel with the respective plane of 

symmetry of the elastic properties                ; 

            are Poisson’s ratio, where the first index corresponds to the direction 

of the normal stress and the second direction which results in a corresponding 

deformation in the transverse direction. 

Because the matrix S and C are symmetric matrices, these are the equalities 

between certain elements of the matrix 

  
   

  
  

   

  
   

   

  
  

   

  
   

   

  
  

   

  
  (1.9)  

From Hooke’s law it is clear, that components of normal deformations are 

dependent only on components of normal stress and shear deformations are 

dependent only on shear components of stress. In this material, therefore, these 

shear and normal components are not tied. [6] 



18 

 

 

Figure 1.1: Orthotropic material [1] 

1.1.2 Transversely Isotropic Material 

It is a material, which has a plane of symmetry of the elastic properties. This 

plane is the same as a plane of isotropy, because the elastic properties in this 

plane in all directions are the same. [1] If we substitute material constants into 

compliance matrix  , we get 

 

  

 
 
 
 
 
 
 
 
 
 

 
  

 
    

  
 

    
  

 

    
  

  
  

 
    

  
 

    
  

 
    

  
  

  
 

   
   
   

   
   
   

 
   

   

  
   

  

   
   

  
 
 
 
 
 
 
 
 
 

  

(1.10)  

Whereas the  

   is the modulus of elasticity in a direction perpendicular to the plane of 

isotropy; 

      are modules of elasticity in the plane of isotropy; 

        are shear modules in direction perpendicular to the plane of isotropy; 

        are shear modules in the plane of isotropy; 

        are Poisson’s ratios expressing the ratio shortening (elongation) in the 

plane of isotropy to elongation (shortening) in the main direction of anisotropy; 

        are Poisson’s ratios in the plane of isotropy; 

the matrix   can be written in a form 
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(1.11)  

From the notation of matrix   it is obvious that this matrix has only five 

independent elements (                   ), therefore the number of independent 

material constants is also five (                 ). [1] 

From the Hooke’s law implies that the transversely isotropic material has no 

relation between the normal and shear components of stress and strain. [1]  

 

Figure 1.3: Schematic of deformation [5] 

 

 

Figure 1.2: Transversely isotropic material [1] 
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1.2 Modules of Elasticity 

1.2.1 Longitudinal Modulus 

 

Figure 1.4: RVE subject to longitudinal uniform strain [4] 

The assumption of the mathematical description of the composite material is that 

the two materials are bonded together. More concretely: matrix   and fiber   

have the same longitudinal strain value noted   . The main assumption in this 

formulation is that the strains in the direction of fibers are the same in the 

matrix and the fiber. This implies that the fiber-matrix bond is perfect. When the 

material is stretched along the fiber direction, the matrix   and the fibers   will 

elongate the same way as it is shown in the figure 1.4. This basic assumption is 

needed to be able to replace the heterogeneous material in the representative 

volume element (RVE) by a homogenous one. [4] The following derivation is 

based on this assumption. 

By the definition of strains according to the figure 1.4 

    
  

 
     (1.12)  

Both fiber and matrix are isotropic and elastic, the Hooke’s law has a form for 

fibre   

          (1.13)  

and for matrix    

              (1.14)  
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The stress   can be expressed as the loading force   divided by the area where it 

acts 

   
 

 
      (1.15)  

So the average stress    in the composite material acts in the entire cross section 

of the RVE with area 

             (1.16)  

where    is the area of the cross section of the fibre and    is the area of the 

cross section of the matrix. 

The applied total load is  

                     (1.17)  

Then 

                       (1.18)  

where 

                            (1.19)  

For the equivalent homogeneous material the stress is expressed as 

             (1.20)  

Then, comparing (1.18) with (1.20), it gives the result 

                   (1.21)  

In the most cases, the modulus of the fibers is much larger than the modulus of 

the matrix, so the contribution of the matrix to the composite longitudinal 

modulus is negligible. This indicates that the longitudinal modulus    is a fiber-

dominated property. 
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1.2.2 Transverse Modulus 

 

Figure 1.5: RVE subject to transverse uniform stress [4] 

In the determination of the modulus in the direction transverse to the fibers, the 

main assumption is that the stress is the same in the fiber and the matrix. This 

assumption is needed to maintain equilibrium in the transverse direction. Once 

again, the assumption implies that the fiber-matrix bond is perfect. [4] The 

loaded RVE is in the figure 1.5. 

The cylindrical fiber has been replaced by a rectangular one (fig. 1.5), this is for 

simplicity. Even micromechanics formulations do not represent the actual 

geometry of the fiber at all. Both the matrix and the fiber are assumed to be 

isotropic materials. 

According to the situation in the figure 1.5, the stress in the matrix   and in the 

fiber   is the same 

              (1.22)  

so the strain is according to the Hooke’s law for the fiber 

    
  

  
   (1.23)  

and for the matrix 

    
  

  
     (1.24)  

These strains act over a portion of RVE;    over    , and    over    , while the 

average strain    acts over the entire width  . [4] The total elongation is  

                       (1.25)  
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Cancelling   and again using Hooke’s law for the constituents the relation is 

obtained 

   

  
 

  

  
    

  

  
        (1.26)  

Using the equation (1.22) it is obtained the relation for the transversal 

modulus    

  

  
 

   

  
 

   

  
     

(1.27)  

It is evident from the figure 1.5 that the fibers do not contribute appreciably to 

the stiffness in the transverse direction, therefore it is said that    is a matrix-

dominated property. This is a simple equation and it can be used for qualitative 

evaluation of different candidate materials but not for design calculations. [4] 

1.3 Stress and Deformation of Composite Material 

Fiber reinforced composite is one of the most frequently used composite 

materials. Great use is mainly due to the variability of this material. The 

laminates usually consist of several layers of one-dimensional composite, wherein 

each layer is composed of fibers and matrix. 

Stiffness of unidirectional composites is expressed by the same relationships, 

which are used for conventional materials (e.g. steel). The number of material 

constants is only increased. From the point of view of micromechanics it is 

possible to monitor tension only in the fiber or in the matrix. In this case, we 

compute in terms of macromechanics so we will consider tension across the whole 

layer of the laminate. This is called an intermediate stress in the layer. 

 

Figure 1.6: An example of the unidirectional composite material [1] 
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Such a composite material can be regarded as the orthotropic respectively 

transversely isotropic material. One-dimensional composite is represented in the 

coordinate system            . Fibres are oriented in the direction of the axis   . 

The axis    is perpendicular to the fibres. Often the coordinate system           

is often used, where   means the longitudinal direction,   is the transverse 

direction and    is the direction perpendicular to the lamina plane. Because the 

thickness of one lamina is much smaller than its width and length, it is possible 

to express the dependence between the stress and the deformation as in the case 

of the plane stress. This greatly simplifies the task and the results are close to 

reality. [1],[6] 

 

Figure 1.7: An example of the unidirectional composite in the coordinate system           [1] 

The relation between stress and deformation is derived from assuming that the 

lamina is a linearly elastic material. Consider orthotropic lamina is loaded by 

tension    in the fiber direction. Deformations are 

     
 

  
           

   

  
                (1.28)  

where    is the longitudinal tensile modulus and     is a Poisson’s ratio defined 

here. 

In case of transversal tension the expressions are similar 

     
 

  
           

   

  
                (1.29)  

where    is the transversal tensile modulus and     is the transversal Poisson’s 

ratio. 

For shear deformation we have 

      
 

   
          (1.30)  



25 

 

where     is shear modulus in the plane   . 

The superposition principle can be used. Then the stress components have the 

form 

     
 

  
    

   

  
           

   

  
    

 

  
            

 

   
         (1.31)  

Component of deformation in the direction    is for the case of the plane stress 

      
    

  
    

    

  
        (1.32)  

where           are transversal Poisson’s ratios. 

The above relations can be summarized into a matrix equation 

 

 
 
 
 
 
 

  
  

   

 
 

    
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
  

 
    

  
 

     
   

 

    
  

  
  

 
     

   
 

     
  

 
     

  
  

   
 

   
   
   

   
   
   

 
    

   

  
    

  

   
   

  
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

  
  

 
 
 

    
 
 
 
 
 

     

(1.33)  

The compliance matrix   for orthotropic material then has a form 

 

  

 
 
 
 
 
 
         

         

         

   
   
   

   
   
   

     
     
      

 
 
 
 
 

     

(1.34)  

Because the matrix   is symmetric, the following relations hold. 

    

  
 

   

  
    

    

   
 

    

  
    

    

   
 

    

  
    

                                

(1.35)  

As it is written in the introduction to this chapter, this is a case of the plane 

stress. The tension vector has only three non-zero components. Expression (1.33) 

can be rewritten as  

 
 

  

  

   

   

       
       

     

   

  

  

   

     

            

(1.36)  

For the inverse of equation (1.36) one writes 

 
 

  

  

   

   

       
       

     

   

  

  

   

     
(1.37)  



26 

 

            

where 

            (1.38)  

The elements specified stiffness matrix can be expressed by material constants 

              and    . From these expressions it follows that for computation of 

stress only four independent constants               are needed. 

     
  

         
 

  

  
  
  

    
 

     

    
  

         
 

  

  
  
  

    
 

 
  

  
         

        
      

         
             

        

(1.39)  

The specific property of unidirectional composites is their change of strength and 

stiffness depending on the direction in the plane     . It is necessary to transform 

stiffness quantities in different directions. 

 

Figure 1.8: Unidirectional composite material in the two coordinate systems [1] 

Figure 1.8 shows the unidirectional composite and two coordinate systems. The 

system           is rotated with respect to the system             by an angle   

around the axis    . The formula for calculation of stress in the system 

          is  

                (1.40)  

where    is a transformation matrix for the stress vector and   is the stress 

vector in the coordinate system            . 

In 2D case the equation can be expressed in the form 
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(1.41)  

A similar relation of course is applied for the transformation of strain 

                (1.42)  

where    is the transformation matrix for the strain vector. In components we get 

 
 

  

  

   

   
                   
                  

                              

   

  

  

   

      
(1.43)  

In the previous paragraph it has been shown that the magnitude of stress and 

strain are dependent on the direction in which they are examined. It is seen that 

the stiffness matrix   and the compliance matrix   are not only dependent on 

materials constants, but also on the position of the selected coordinate system. 

We are looking for formulas of the stiffness matrix and the compliance matrix for 

system            , which is rotated relatively to the system           by an 

angle –  . This is illustrated in the figure 1.8. The stiffness matrix and the 

compliance matrix in the system             are given by relations 

      
               (1.44)  

      
              (1.45)  

The Hooke’s law for this rotated system can be expressed in a matrix form 

 

 
 
 
 
 
 

   

   

 
 
 

    
 
 
 
 
 

 

 
 
 
 
 
 
            

            

            

      

      

      

   
   

            

         
         

       
 
 
 
 
 

 

 
 
 
 
 
 

   

   

   

 
 

    
 
 
 
 
 

     

(1.46)  

Similarly, it is possible to form the relation for the deformation 

 

 
 
 
 
 
 

   

   

   

 
 

    
 
 
 
 
 

 

 
 
 
 
 
 
            

            

            

      

      

      

   
   

            

         
         

       
 
 
 
 
 

 

 
 
 
 
 
 

   

   

 
 
 

    
 
 
 
 
 

     

(1.47)  

The assumption that the width and length of the laminates are considerably 

greater than its thickness is still valid. In this case it is still possible to consider 

the plane stress. The three components of the stress can be expressed using the 

three components of the deformation. For example, for the first component of the 

tension vector     the following relation is valid  
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(1.48)  

In analogy the both the stress component     and     are obtained. These 

relations can be written in the matrix form 

 
 

   

   

   

   

         

         

         

   

  

  

   

      

            

(1.49)  

For reduced stiffness matrix elements     the following holds 

 
         

        

    
                                        

(1.50)  

By comparing the equations (1.37) and (1.49) the difference between the stiffness 

matrix   and the reduced stiffness matrix   is apparent. The matrix   has 

generally all elements nonzero. That is, in Hooke's law (1.49) for off-axis 

components of stress and deformation, the normal components of stress (with 

indices      ) are dependent also on the shear component (index   ), inverse is 

also true. 

1.3.1 The Theory of the Laminate Deflection 

 

Figure 1.9: A part of laminate in the plane    [1] 

In the figure 1.9 there is a part of the laminate in the plane   . The side   , 

which is in undeformed condition straight and perpendicular to the middle 

surface of the laminate, remains even after deformation straight and 

perpendicular to the middle surface. Due to the deformation arising at mid-plane 

at point   displacements          are corresponding to the directions of axes 
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     . Taking the derivatives of displacements we get the deformation field. This 

can be written in the matrix form 

 
    

   

   

   

   

    

    

    

    

  

  

   

      
(1.51)  

where the deformation of midplane and the curvature stands for 

 

     

    

    

    

  

 
 
 
 
 
 
 

   

  
   

  
   

  
 

   

   
 
 
 
 
 
 

    

  

  

   

   

 
 
 
 
 
 
 

    

   

    

   

 
    

     
 
 
 
 
 
 

     

(1.52)  

Tension in k-th layer of the laminate can be expressed by equation for off-axis 

strained layer of composite (1.49) 

             (1.53)  

where   is a reduced stiffness matrix.  

Using equations (1.51) and (1.53) we obtain an expression for tension in the k-th 

layer of the laminate 

 
 

   

   

   

 

 

  

         

         

         

  

    

    

    

    

         

         

         

  

  

  

   

      
(1.54)  

Since the tension in the laminate thickness varies discontinuously, resulting 

forces and moments acting in cross-laminate are to be solved as a sum of the 

effects of all the   layers. For forces it is therefore possible to write 

 
   

  

  

   

     

   

   

   

   
  

    

 

   

 
(1.55)  

and for the moments 

 
   

  

  

   

     

   

   

   

     
  

    

 

   

     
(1.56)  

In these relations (1.55) and (1.56) the resultants of the forces           have a 

dimension [     ] i.e. the force per unit length and           have a 

dimension [ ] i.e. the moment per unit length, because these are resultant forces 

and moments acting on the cross section of the k-th layer of the composite 

material. [1] 
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On the basis of these relations a constitutive relation of the dependence of forces 

and moments on deformations and curvatures can be formulated. Substituting 

equations (1.55) and (1.56) into the equation (1.54) and using the expressions for 

the deformation of the middle surface and the curvature of the plate (1.52). The 

following equations are obtained 

 

  

  

   

      

         

         

         

  

    

    

    

      

         

         

         

  

  

  

   

     
  

    

  

    

 

 

   

     
(1.57)  

 

 

  

  

   

      

         

         

         

  

    

    

    

        

         

         

         

  

  

  

   

      
  

    

  

    

  

 

   

 
(1.58)  

It is obvious that multiplying the integral with elements of the reduced stiffness 

matrix    of the individual laminas and integrating over the entire thickness of 

the composite we obtain following expressions 

 

  

  

   

   

         

         

         

  

    

    

    

   

         

         

         

  

  

  

   

      
(1.59)  

 

 
 

  

  

   

   

         

         

         

  

    

    

    

   

         

         

         

  

  

  

   

      
(1.60)  

where elements of the individual matrices are determined by relations 

 
          

 

 

   

              

    
 

 
      

 

 

   

   
      

       

    
 

 
      

 

 

   

   
      

       

(1.61)  

These relations can be expressed in a single equation 

 

 
 
 
 
 
 
 

  

  

   

  

  

    
 
 
 
 
 
 

 

 
 
 
 
 
 
         

         

         

         

         

         

         

         

         

         

         

          
 
 
 
 
 

 
 
 
 
 
 
 

    

    

    

  

  

    
 
 
 
 
 
 

     

(1.62)  

or 
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(1.63)  

where   is the extensional stiffness matrix,   is the bending-extension coupling 

stiffness matrix and   is the bending stiffness matrix. 

Constitutive equation of the laminate plate expresses forces and moments 

depending on the curvature and on the mid-plane deformations. This matrix is 

called the global stiffness matrix. For its notation, it is obvious that the matrix   

binds force components in the median plane. The bending-extension coupling 

stiffness matrix   binds moment components and components of deformation in 

the mid-plane and also components of vector of internal forces with components 

of the curvature of the plate.   matrix expresses the relation between the 

components of moments and the curvature. This means that normal and shear 

forces acting in the median plane not only cause the strain in the median plane, 

but also the bending and the twisting of the middle area. Also components of the 

bending moment cause strain in the median plane. [1],[4] 

The relation (1.63) is used to calculate forces and moments in the laminate. In 

practice most often stress and strain caused by external load are determined. A 

form, which we want to achieve, is actually the inverse equation 

 
 

   

 
 

   
     

   
     

  
 
 
 

      
(1.64)  

where 

                                

                            

                              

 

(1.65)  

Matrices        and    are called tensile, coupling and bending compliance 

matrices. [1] 

Ties between bend and tension or torsion and tension, and also between the 

normal forces of the middle layer of the laminate and shear deformations are not 

desirable in most cases. This phenomenon should be avoided during the 

production of laminate’s appropriate order orientation of the layers. 
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1.4 Common Laminate Types 

The notation used to describe laminates has its roots in the description used to 

specify the lay-up sequence for the hand lay-up using prepreg1. Therefore, the 

laminae are numbered starting at the bottom and the angles are given from 

bottom up. For example, a two-lamina laminate may be [30/-30], a three-lamina 

one [-45/45/0], etc. [4] 

If the laminate is symmetric, like [30/0/0/30], an abbreviated notation is used 

where only a half of the stacking sequence is given and subscript (S) is added to 

specify symmetry. The last example becomes [30/0]S. If the thicknesses of the 

laminae are different, they are specified for each lamina. For example: [   
    

 . If 

the different thicknesses are multiples of a single thickness  , the notation 

simplifies to [      , which indicates one lamina of thickness   and two laminae 

of the same thickness   at an angle  . Angle-ply combinations like        can be 

denoted as     . If all laminae have the same thickness, the laminate is called 

regular. [4] 

1.4.1 Symmetric Laminate 

A laminate is symmetric if laminae of the same material, thickness, and 

orientation are symmetrically located with respect to the middle surface of the 

laminate. For example: [30/0/0/30] is symmetric but not balanced, while 

                is symmetric and balanced. [4] 

In terms of the stress it is highly advisable to remove the coupling between the 

bending and the extension and between the traction and the torsion. This 

situation is obtained if the coupling stiffness matrix   is equal to zero. That is, 

with respect to equations (1.61) and (1.62), must be true 

 
    

 

 
      

 

 

   

   
      

         
(1.66)  

Each element of matrix   is equal to zero, if to the each contribution of the 

lamina above the middle surface exist the contribution from the lamina of the 

                                            
1 Prepreg is a preimpregnated fiber-reinforced material where the resin is partially cured or 

thickened. [4] 
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same properties and orientation in the same distance below the middle surface 

(see figure 1.10). 

 

Figure 1.10: Symmetric laminate [1] 

It must be true 

      
 

      
 

                                   (1.67)  

If each layer above the middle surface will correspond to the identical layer under 

the middle surface, it is the symmetrical laminate. The global stiffness matrix 

from equation (1.63) will be in the form 

 

 
 
 
 
 
 
         

         

         

   
   
   

   
   
   

         

         

          
 
 
 
 
 

     

(1.68)  

A binding between tensions and the bending, which constitutes the matrix    is a 

result of a sequence of the layers. It does not follow from the anisotropy or the 

orthotropic layers. It is the result of a sequence of layers. This relation also exists 

in the composites made of two different metal isotropic materials (bimetal). Due 

to changes in temperature the bending of the composite is visible. 

1.4.2 Antisymmetric Laminate 

An antisymmetric laminate consists of an even number of layers (see figure 1.11). 

It has a pairs of laminae of opposite orientation but of the same material and 

thickness symmetrically located with respect to the middle surface of the 

laminate. For example: [30/-30/30/-30] is an antisymmetric angle-ply laminate 

and [0/90/0/90] is an antisymmetric cross-ply. [4] 
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Therefore, for each two plies of the same material properties is true 

                                                (1.69)  

From this two conditions follows that both plies have the same thicknesses and 

they are at the same distance from the middle surface.  

 

Figure 1.11: Antisymmetric laminate [1] 

The global stiffness matrix from equation (1.63) of the antisymmetric laminates 

has a form 

 

 
 
 
 
 
 
       
       

     

     

     

       
     

     

       

       
       

      
 
 
 
 
 

     

(1.70)  

Antisymmetric laminates have elements equal to zero 

                                       (1.71)  

but they are not particularly useful nor they are easier to analyze than general 

laminates because the bending extension coefficients         and         are 

not zero for these laminates. [4] 

1.4.3 Quasi-isotropic Laminate 

Quasi-isotropic laminates are constructed to create a composite, which behaves 

as an isotropic material. The in-plane behaviour of quasi-isotropic laminates is 

similar to that of isotropic plates but the bending behaviour of quasi-isotropic 

laminates is quite different than the bending behaviour of isotropic plates. [4]  

In a quasi-isotropic laminate, each lamina has an orientation given by 
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(1.72)  

where   is the lamina number,   is the number of laminae (at least three), and    

is an arbitrary indicial angle. The laminate can be ordered in any order like 

[        ] or [        ] and the laminate is still quasi-isotropic. 

Quasi-isotropic laminates are not symmetric, but they can be made symmetric by 

doubling the number of laminae in a mirror (symmetric) fashion. For e.g. the 

[        ] can be made into a [                 ], which is still quasi-

isotropic. The advantage of the symmetric quasi-isotropic laminates is that they 

have the coupling stiffness matrix    . [4] 

The tensile stiffness matrix   and the bending stiffness matrix   of isotropic 

plates can be written in terms of the thickness   of the plate and only two 

material properties, the modulus of elasticity   and the Poisson’s ratio   as 

 

  
  

    
 

   
   

  
   

 

  

(1.73)  

and 

 

  
   

        
 

   
   

  
   

 

      

(1.74)  

Quasi-isotropic laminates have, like isotropic plates,        , but they have 

              and      , which makes quasi-isotropic laminates quite 

different from the isotropic materials as it is seen below 

 
   

       
       

     

  
(1.75)  

and 

 
   

         

         

         

      
(1.76)  

Therefore, formulas for the bending, the buckling and vibrations of isotropic 

plates can be used for quasi-isotropic laminates only as an approximation. The 

formulas for isotropic plates provide a reasonable approximation only if the 

laminate is designed trying to approach the characteristics of isotropic plates 



36 

 

with         and          . This can be achieved for symmetric quasi-

isotropic laminates, which are balanced and have a large number of plies.  
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2 The Theory of the Deflection 

The deflection is a kind of stress, in which a straight beam is curved to a plane or 

a three-dimensional curve. The beam is called a straight rod that it is loaded 

mainly to the bending. The beam bending is one of the most common types of 

stresses at all (e.g. all shafts are beams). The properties of the beam are 

substantially dependent on the type of its support. [2] 

This work deals with the encastre composite beams loaded by concentrated 

force   at the end of its length. (Figure2.8) The bending of the beam will be solved 

by determination of the deformation energy due to the bending moment and the 

shear force. The deformation of the beam is determined using Bernoulli’s method. 

Every cross-section of the bended beam transfers the bending moment    and 

the shear force  . The shear forces and the bending moments are caused by one 

common cause, namely the external loading. A relation between them is shown in 

the figure 2.1. 

 

Figure 2.1: Loaded beam and out of joint element with force effects [2] 

In the right side of the figure 2.1 there is an element of the beam with the force 

effects acting on it. The element of the beam has to be in equilibrium. The 

equilibrium equations of this element are known as the Schwedler theorem. [2] 

For the shear force we have 

      

  
       

(2.1)  

and for the bending moment 

       

  
         

(2.2)  
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As a result of those effects of the shear force   and the bending moment    there 

is some tension. For simplicity, one considers only the case of load by bending 

momentum. This case is called a pure bending. For a pure bending is proved the 

validity of the Bernoulli hypothesis. This hypothesis says that the planar cuts, 

which were perpendicular to the longitudinal axis of the beam before the 

deformation, remain plane after deformation and are perpendicular to the 

deformed longitudinal axis of the beam. [2] This is shown in the figure 2.2 and 

1.9. 

 

Figure 2.2: Deformation of the beam according the Bernoulli hypothesis [2] 

From the figure 2.2 it is evident that an elongation     and a relative elongation 

  of the beam 

          (2.3)  
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are proportional to the distance   from the neutral axis   . As the Hooke’s law is 

valid 

           (2.4)  

one can express as 

 
   

  

  
      2 

(2.5)  

where   is stress,    is the bending moment,    is the moment of inertia to the 

axis   and   is the distance from the neutral axis    to the top or the bottom of 

the section, as it is shown in the figure 2.2.  

If one substitutes the relation (2.5) to the Hooke’s law (2.4), one gets 

 
   

  

    
       (2.6)  

where    is the relative elongation in a direction of the  -axis. 

The important characteristic of the deformation curve of the beam is its 

curvature  . From the figure 2.3 one can express the elongation as 

                  (2.7)  

The curvature of the beam is possible to express as 

                                            
2 The whole derivation is in the literature [2]. 

 

Figure 2.3: The part of the beam with marked extension [2] 
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(2.8)  

From the equation (2.8) one derivates the differential equation of the deflection 

line, if one substitutes the known relation of the analytical geometry, which 

express the curvature   of the planar curve     , to the equation of the curvature 

of the beam. 

 
  

 

 
  

      

               
 

(2.9)  

To the deflection referred in the figure 2.3 corresponds the sign minus        

(        ). For the small values      one can neglect the term         . So the 

simplified relation is obtained 

  

 
         

     

       
     

(2.10)  

The differential equation of the elastic deflection line 

 
        

     

       
 

(2.11)  

presented the Swiss mathematician J. Bernoulli in 1694. [2] 

2.1 The Moment of Inertia 

If the coordinate system is defined as in the figure 2.4, the cross section lies in 

the plane    . 

 

Figure 2.4: The beam placed in coordinate system and the plane of the cross section [2] 

According to the figure 2.4 one removes the element         from the cross 

section    which has the coordinates   and   relative to the axes   and  . [2] 
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The moment of inertia to the axis   is expressed by the relation 

 

            

   

 

(2.12)  

Analogically the moment of inertia to the axis   can be defined  

 

        

   

     

(2.13)  

For the beams with a circular cross section it is appropriate to establish the polar 

coordinates as it is shown in the figure 2.5. 

 

Figure 2.5: The cross section of the circular beam with the cylindrical coordinates [2] 

Generally the relation  

 

                       
   

  
 

  

 

 
 

 

    

(2.14)  

is valid. 

To solve the moment of inertia on the wound fibreglass pipe the additivity of the 

moment of inertia is utilized. The moment of the whole pipe is computed as a 

sum of the moments of individual layers 

 
    

   
 

  
 

   
    

                
(2.15)  

where    is the external diameter of the each layer,    is the internal diameter of 

the each layer and   is the number of layers. 

We will use this property to computation of the bending stiffness in chapter 3. 



42 

 

2.2 The Determination of the Deformation Energy 

2.2.1 The Deformation Energy from the Pure Bending 

The pure bending is the uniaxial stress; therefore, the derivation of the 

deformation energy is based on the equation for density of the deformation 

energy 

 
  

  

   
     

(2.16)  

The magnitude of the stress   is a function of a position. The relation is based on 

the form of the element (figure 2.6), where the stress is regarded as a constant. 

The energy of this element is determined, and then the value of the deformation 

energy in the entire beam by integration is determined. [2], [6] 

 

Figure 2.6: Cross section of the general beam [2] 

The selected element has a volume 

              (2.17)  

where    is an element of the area and    is an element of the distance in the 

direction of  - axis. In this element the energy    is accumulated 

 
   

  

  
   

  

  
          

(2.18)  

For the bending stress the relation is valid 

 
        

     

  
      

(2.19)  

After the substitution of the equation (2.19) to the (2.18) one gets 
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(2.20)  

The total energy accumulated in the beam one can express by the integration 

with respect to   and   

 

     

   

   
 

  
   

     

  
 

 

      

      

     

(2.21)  

after editing 

 

    
  

    

     
 

       

   

    

   

     

(2.22)  

Because the relation for the moment of inertia is valid 

 

      

   

        

(2.23)  

the relation for the deformation energy of the beam is 

 

   
  

    

    
   

       

(2.24)  

In case, that the relation             - the beam has a constant cross-section, 

one can write 

 

  
 

    
      

       

   

    

(2.25)  

2.2.2 The Deformation Energy by the Shear Force 

In case of the deformation energy caused by the shear stress   the relation is 

generally valid 

 
   

  

  
         

(2.26)  

where    is an elementary deformation energy,   is a shear modulus and    is 

an elementary volume. [2] 

The shear stress from the shear force depends on the shape of the cross-section. 

The determination of the expression of the energy from the shear force we 

perform on the beam with the rectangular cross-section. In this case it is valid 

the expression 
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(2.27)  

and 

                 (2.28)  

where   is the shear force according to the Schwedler’s theorem (2.1),    is the 

moment of inertia with respect to the neutral axis       is a static moment of the 

area (       
   

),         is magnitude of shear stress which should be created 

if it was spread evenly over the entire cross-section and   is the width of the 

rectangular cross-section; if one used the designation from the figure 2.7. 

 

Figure 2.7: The cross section of the rectangular beam loaded with shear [2] 

If the beam has a length  , then the following relation is valid 

 

   

 
 
 
 
 

 
 

  
        

 
 
 

 
 
  

 
 
 
 

   

 

 

 

(2.29)  

and after substitution 

 

   

 
 
 

 
 

 

  
 

 

 
        

      
   

 
 

 

 

 
 

 
 

 
 
 

   

 
 
 

 
 

   

 

 

 

(2.30)  

Because the centre shear stress is             the deformation energy is 

 

   

 
 
 

 
 

  

  
 

  

  
      

   

 
 

 

 

 
 

 
 

 
 
 

   

 
 
 

 
 

   

 

 

 

(2.31)  

After integration and editing one obtains 
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(2.32)  

As it is apparent from the expression of the deformation energy from the 

influence of the shear force, at the beam with a rectangular cross-section due to 

the nonlinear distribution of shear stresses the coefficient has been added. The 

same result one obtains for beams with other shapes of the cross-section, but 

with another coefficient  . [2] The general relation for the deformation energy 

from shear force is 

 

     
  

   
   

 

 

     
(2.33)  

The coefficient   depends on the shape of the cross-section 

 

  
 

  
 

  
  

     
   

    

(2.34)  

For the rectangular cross-section we obtain   
 

 
, for circular cross-section is 

  
  

  
 and for eg. I-beams is          . [2] 

2.3 The Deflection of the Beam 

The deflection of a composite beam has two components, bending and shear 

             (2.35)  

where   is the total deflection,    is the bending deflection and    is the shear 

deflection. The bending deflection    is controlled by the bending stiffness (   ) 

and the shear deflection    by the shear stiffness (   ). [4] 

Shear deformations are neglected for metallic beams because the shear modulus 

is high (       ), but shear deformations are important for composites because 

 

Figure 2.8: The model of the beam used for analysis 
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the shear modulus is low (about      or less). The significance of the shear 

deflection    with respect to the bending deflection varies with the span, the 

larger the span the lesser the influence of the shear (compared to bending). [4] 

Calculation of the beam bending is made to a cantilever beam (figure 2.8), which 

is used for the analysis of the following methods for calculating the deflection. 

First, we determine the diagram of the shear force   and the diagram of the 

bending moment   . It is illustrated in the figure 2.9. 

 

Figure 2.9: The loaded beam with the course of shear force 

and of the bending moment [3] 

                              (2.36)  

The deformation energy   is determined as a sum of the bending deformation 

energy and the shear deformation energy. The equation (2.25) and (2.33) is used. 

 

     
     

  
    

         
  

 

 

  
       

        
  

 

 

 
(2.37)  

Because the cross section   of the beam is constant, the moment of inertia    is 

constant too, so we can factor them out. For the respective deformation energies 

we have 

 

   
 

 

    
         

 

 

  
 

    
 

    

 
 

 

 

 
 

    
 

    

 
 

(2.38)  

and 

 

   
 

   
      

 

 

  
 

   
 

   

 
 

 

 

 
 

   
         

(2.39)  

The expression for the total energy is therefore 

 
     

    
    

    
 

    

   
     

(2.40)  
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For the calculation of the deflection at the end of the beam under the force   we 

use the Castigliano’s theorem3 

 
   

  

  
 

 

  
 

    

    
 

    

   
  

   

    
 

   

  
 

(2.41)  

The same result we get if we use the Mohr’s Integral, which follows from the 

Castigliano’s theorem.  

 

      
     

      
 

     

  
  

 

 

  
     

     
 

     

  

 

 

   
(2.42)  

 

      
 

   

           

 

 

 
 

  
      

 

 

   

(2.43)  

The relation for the deflection at the end of the beam will have a form 

 
      

 

   

 
   

 
 

 

 

 
 

  
 

  

 
 

 

 

 
   

    

 
   

  
     

(2.44)  

 

1.         

  

                                            
3 The detailed derivation of the Castigliano’s theorem can be found in the literature [2]. 
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3 The Methods Used for the Analysis 

3.1 The Used Model of the Beam 

 

Figure 3.1: The model of the beam used for the analysis 

All computations for the analysis of the composite beam bending are designed for 

the cantilever beam that is loaded with concentrated force at the end of its 

length. The beam is a wound composite pipe with a circular cross section. All 

data used for computations are presented in the table 3.1 below. 

3.2 The Calculation of the Beam Bending by Bernoulli’s 

Method 

For the calculation of the bending by this method the Castigliano’s method is 

used, which is the same method as the calculation of the bending of the isotropic 

material, with an extension for shear. The validity of the Bernoulli’s hypothesis is 

still assumed as it is written in the previous chapter 2.  

Input data 

Geometry 

length  L = 1 m 
inner diameter d = [2, 4, 6, 8, 10] mm 
thickness of each composite 

layer 

t = 1 mm 

thickness of the wound pipe tp = 3 mm 
Load  

concentrated force F = 100 N 
Material 

density ρ     7  kg m3 
longitudinal modulus of 

elasticity 

EL = 156.05 GPa 

transversal modulus of 

elasticity 

ET = 6.045 GPa 

shear modules GLT = 4.431 GPa 
 GLT’ = 4.431 GPa 
 GTT’ = 4.431 GPa 
Poisson’s ratio νLT = 0.328 
layup of composite material       α  -α  
angle of fiber α                                          7              
Table 3.1:  Input data used for analysis  
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(3.1)  

The Castigliano’s method (3.1) is adjusted to the form (2.42) that is called Mohr’s 

Integral. 

 

      
     

        

     

  
  

 

 

  
     

        

     

  

 

 

   
(3.2)  

Shear effects cannot be ignored, because in the bending of the composite beam it 

has a larger share of the total bending than in the isotropic material.  

The composite theory enters this computation in the calculation of the modulus of 

elasticity  . It is known, that the effect in each layer may be different so this 

problem must be included in the computation. A modulus of elasticity of each 

layer is calculated using the stiffness matrix    in the main coordinate system 

          of the composite material. 

 

     

 
 
 
 
 

  

        

     

        
 

     

        

  

        
 

      
 
 
 
 

 

            

(3.3)  

   ,    are tensile modules in the direction   and  ;     and     are Poisson’s 

ratios;     is a shear modulus;   is index of each layer;   is a number of layers. 

The stiffness matrix must be transformed to the coordinate system          of 

the whole beam by the transformation matrix    . 

 

     
 

  
                   
                  

                              

 

 

     
(3.4)  

where   is a rotation angle around the  - axis. (Angle   may be different for each 

layer.) 

Then, we can do the transformation.  

              
  (3.5)  

To express the modulus of elasticity in main coordinate system          the 

compliance matrix     is needed. The compliance matrix is the inverse matrix to 

the stiffness matrix    . 

      
  

  
 (3.6)  
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From this matrix we choose the following elements to determine the modulus of 

elasticity    and the shear modulus     for each layer. 

      
 

  
 (3.7)  

      
  

  
 (3.8)  

The resultant bending stiffness        is obtained by adding the product of the 

modulus of elasticity    and an appropriate quadratic moment of the cross section 

   for each layer 

 
   

 
   

  
    

 

 
 

 

                
(3.9)  

 
           

    

 

   

     
(3.10)  

where   is the external diameter of each layer,   is the internal diameter of each 

layer,   is the index of each layer and   is the number of layers. To obtain the 

resultant equivalent shear stiffness        we proceed similarly 

    
 

 
                      (3.11)  

 
            

   

 

   

      
(3.12)  

Again,   is the external diameter of each layer,   is the internal diameter of each 

layer,   is the index of a layer and   is the number of layers. 

The deflection is calculated from the equation (3.2). The determination of the 

diagram of the shear force   and the bending moment    is the same in the 

section 2.3 

                                    (3.13)  

and the bending moment by a dummy force is 

                             (3.14)  

as it is illustrated in the figure 3.2. 
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Figure 3.2: The beam loaded by the unit force with the course of the shear force 

and of the bending moment [3] 

Then, the Mohr’s integral is computed according to the equation (2.42) 

 

      
 

    
                 

 

 

 
 

    
    

 

 

       
(3.15)  

After the integration that is 

 
   

 

    
       

     

 
 

   

 
 

 

 

   
       

    
 

 

 

    
(3.16)  

where   is the force load,   is the length of the beam,   is the distance on the        

 -axis,   is the coefficient characterizing the unequal distribution of the shear 

stress. The coefficient   depends on the geometry of the cross section 

(section 2.2.2) and   is the sectional area of the beam. 

After substituting     we obtain the deflection in the place under the force  . 

 
   

    

     
 

     

     
 

(3.17)  

This computation of the bending is based on the compliance matrix  . The 

resultant deflection thus represents the upper limit of the safety. The deflection 

provides greater or equal values in the comparison with other methods of the 

deflection. If we use the stiffness matrix   for the calculation of the deflection, we 

will obtain another limit value, this time the lower limit of the beam deflection. 

These values correspond to the application of the longitudinal modulus of 

elasticity (the lower value of the deflection) and transversal modulus of elasticity 

(the upper value of the deflection) to the computation of bending. This fully 

agrees with the theory of composite materials. 

For this method of the computation bending a program DP_Trubka.m in 

MATLAB® was created. Program calculates the bending of the beam of the 
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circular cross section for any number of layers. The structure of composite 

material may also be arbitrary. With this program the data to the summary 

graphs (4.1-5) of the dependence of the bending of a beam on the angle of the 

direction of the fibres in the composite material have been calculated. The overall 

listing of the program is presented in Annex [1.1].  

3.3 The Calculation of the Bending of the Composite Beam 

Using ABD Matrices 

For the calculation of the beam bending with a circular cross section (figure 3.1) 

by this method the equation (1.63)  

described in the chapter 1 is used. 

First, we determine all input values. These are geometrical dimensions and 

material constants for all layers described in the table 3.1 in the section 3.1. 

Then, we can put together the stiffness matrix in the principal coordinate system 

 

   
       
       

     

      
(3.19)  

Its elements are determined by these relations (1.39) in the section 1.3 

 
    

  

         
 

  

  
  

  
    

 
     

    
  

         
 

  

  
  

  
    

 
 

  

  
         

        
      

         
             

        

(3.20)  

The transformation into the global coordinate system of the beam is necessary. 

This is realized according to the formula (1.44)  

      
               (3.21)  

In a completely general case one needs a reduced stiffness matrix   to compute, 

but this is a planar case, so the off-axis stiffness matrix is equal to the stiffness 

matrix    transformed to the global coordinate system.  

 
 

 
 
 

   
   
   
   

  
   

 
 

  
(3.18)  
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      (3.22)  

Now we can compute the elements of stiffness matrices    ,     and     according 

to the formulas (1.61)  

 
          

 

 

   

              

    
 

 
      

 

 

   

   
      

       

    
 

 
      

 

 

   

   
      

       

(3.23)  

In our case we use the matrix   to compute the equivalent modulus of elasticity 

    of our beam. The strain is planar and the matrix   is zero so the equation has 

a form 

 
 

  

 
 

   

         

         

         

   

   

   

   

      
(3.24)  

Then we can divide the matrix notation to the two equations 

                      
   

   
  (3.25)  

and 

  
 
 

   
   

   
       

      

      
   

   

   
      (3.26)  

From the second equation (3.25) we obtain a relation of deformation to the middle 

area in directions   and    

 
 
   

   
    

      

      
 

  

 
   

   
          

(3.27)  

This relation we substitute to the first equation (3.24)  

 
                  

      

      
 

  

  
   

   
           

(3.28)  

As it is written in the section 1.3 the resultant of the force    has a dimension 

[     ], so this is not an expression of a stress. The stress of the composite 

material we can express using the Hooke’s law (2.4). To obtain an expression of 

the stress from this relation (3.28), it is necessary to divide the entire expression 

by the total thickness of the composite material. From the relation (3.28) it is 

evident, that the modulus of elasticity corresponds to the expression in brackets 

divided by the total thickness of the laminate  .  
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(3.29)  

The equivalent modulus of elasticity     for this case one can express by the 

formula 

 
                   

      

      
 

  

  
   

   
   

 

 
      

(3.30)  

where     are the elements of the extensional stiffness matrix and   is the 

thickness of the composite material. 

The equivalent shear modulus     is obtained the same way from the equation 

(3.18). The assumptions are similar as in the previous case. The matrix   is zero 

and the pure shear stress    is considered. The equation has a form 

 
 

 
 

  

   

         

         

         

   

   

   

   

      
(3.31)  

Again we can divide the matrix notation to the two equations  

  
 
 

   
      

      
   

   

   
    

   

   
      (3.32)  

and 

              
   

   
              (3.33)  

From the first equation (3.32) we obtain a relation of the deformation to the 

middle area in directions   and   

 
 
   

   
    

      

      
 

  

 
   

   
          

(3.34)  

This relation we substitute to the second equation (3.33)  

 
                  

      

      
 

  

  
   

   
           

(3.35)  

Once again the shear force    has a dimension [     ], so this is not an 

expression of the shear stress. The shear loading we can express using the 

generalized Hooke’s law 

           (3.36)  

To obtain an expression of the shear from the relation (3.18), the entire 

expression (3.35) is necessary to divide by the total thickness of the composite 

material. From this relation (3.35) it is evident, that the shear modulus 

corresponds to the expression in brackets divided by the total thickness of 

laminate  .  



55 

 

 
   

  

 
 

 

 
               

      

      
 

  

  
   

   
           

(3.37)  

The equivalent shear modulus     for this case one can express by the formula 

 
                   

      

      
 

  

  
   

   
   

 

 
      

(3.38)  

where     are elements of the extensional stiffness matrix and   is the thickness 

of composite material. 

The following is a substitution of     and     into the formula for the calculation 

of bending (2.44), which is  

 
   

    

      
 

     

     
      

(3.39)  

This method is only approximate, because it includes several inaccuracies. First, 

to calculate modulus of elasticity we assume the plane stress and the pure shear. 

We count with the unwound circular cross-section of the beam. Second, we 

assume that the bending-extension coupling stiffness matrix   is zero. This 

precondition is fulfilled only for specific compositions of the composite material as 

is the symmetric laminate (section 1.4.1). This greatly reduces the possibility of 

either using the method or we will admit the neglect of certain bonds in the 

material. [1] Although this method is approximate, it shows that it gives 

significant results. These assumptions do not bring a considerable mistake into 

the calculation. 

For this method of the computation of the bending a program 

DP_ABD_Trubka.m in MATLAB® was created. (Annex [1.2]) The program 

calculates the beam bending of the circular cross section for any number of 

layers. The structure of the composite material may also be arbitrary. The output 

data are summarized into graphs of the dependence of the beam deflection on the 

angle of the direction of the fibres in the composite material. 

3.4 The Calculation of the Beam Bending by the Finite 

Elements Method 

In this work all FEM models are created with Abaqus CAE. There are three 

options that can be used for the modelling of the composite beam by the finite 

elements method: 
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 conventional shell 

 continuum shell 

 volume model 

The specifics of each method are presented in the following sections. This is not a 

tutorial to get started with the modelling in Abaqus, but there are captured 

substantial differences of individual models and there are information to 

reconstruct the models of the composite beam. 

For each model was created a CAE file, where was specified geometry, materials, 

loads and constraints. Then, it was generated a script in Python (the 

programming language for Abaqus) of this CAE file. In this script variables were 

edited (the cross-sectional size and the angle of the direction of the fibres) to 

obtain particular data for each combination of the diameter and the angle of 

fibres. The script is shown in Annexes [1.3-5]. Values of calculated deflections are 

shown in table 4.1. For every model the same input data have been used. This is 

written in the table 3.1. 

3.4.1 The Calculation by Using Conventional shell 

The whole geometry is represented at a reference surface. The reference surface 

of the shell is defined by the shell element’s nodes and normal direction. 

Thickness is defined by section property. The input data was chosen according 

the table 3.1. The following is a description of the operations in Abaqus CAE to 

obtain a script in Python. 

The following is a description of the operations in the particular modules of CAE: 

Sketch 

For the modelling of the geometry of the pipe as a conventional shell one used the 

Part manager →Create Part →Shell, Extrusion. Then, a sketch is made as is 

shown in the figure 3.3. 
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Figure 3.3: The sketch for the model of the pipe 

Property 

The material has to be determined. One used the Material manager → Create 

and set the density of the chosen material ant its constants. For the modelling of 

a composite material the type Lamina is used. The details are shown in a figure 

(3.4) below. In Abaqus we have to specify the shear modules in all three 

dimensions. For our task was chosen the same value in all dimensions as it is 

written in the table of input values (3.1). 

 

Figure 3.4: The window for editing the material 

When the material is determined, the composite layup can be defined using 

Composite Layup Manager → Create →Conventional Shell. One sets the 
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coordinate system for the used geometry, the normal direction, the number of 

plies and their properties. The thickness of plies, the material, the rotation angle 

and the coordinate system for all plies are specified (figure 3.5). There is also 

specified the geometry area for each ply. 

Assembly 

If the properties of material and geometry are determined one can set the 

assembly. In this case the assembly contains one part – the shell of the pipe. As 

we can see in the figure (3.6) the assembly includes two coordinate systems. It is 

caused by our specification of the coordinate system for the direction of fibers. 

The coordinate system, which is used for the computation, has the x-axis 

identical to the longitudinal axis of the pipe (in the figure (3.6) it is on the left 

side). The second one is automatically generated for the assembly (it is on the 

right side in the figure (3.6)). 

 

Figure 3.5: The window for editing the composite layup 

Now the partition of the shell into two parts is made. It is for the better 

identification of the direction of the composite material and also for the better 

meshing of a part. The partition is made by the order Partition Cell: Use 

Datum Plane. First one has to create the datum plane by using the order 

Create Datum Plane: 3 Points. 
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Step 

In the mode Step the procedure type Static, General is defined, because we are 

computing the static case of the beam bending. The point of our interest is a size 

of the bending at the end of the beam, so the only calculation of the translation is 

needed. This we specify in the Field Output Request Manager → Cerate → 

Continue → Edit Field Output Request, where we choose the possibilities as it 

is shown in the figure (3.7 b). 

a) b)  

Figure 3.7: a) The window to specify the calculating step 

 b) The window for choosing the outputs 

Interaction 

The beam is loaded by a concentrated force, therefore it is appropriate to place 

the force into the centre of the circular cross-section at the end of the beam. The 

 

Figure 3.6: The assembly of the beam 
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centre of the cross-section has to be connected with a cross-section at the end of 

the beam. This we can define by the Constraint Manager → Create → 

Coupling →Edit Constraint. Before that we determine the reference point 

(RP-1 in the figure (3.8 a)) for a coupling by the order Create Reference Point 

in the centre of the cross-section at the end of the beam. 

a) 

 

b) 

   

Figure 3.8: a) The pipe with the shown coupling properties 

 b) The window for editing the coupling properties 

Than we set a coordinate system for the coupling, we choose the same one we 

have used for the determination of the composite material specification (the red 

one in the figure (3.8 a)). 

Load 

In this module the size of the concentrated force and its location is specified as 

well as fixation of the beam. The concentrated force is defined in Load Manager 

→ Create → Concentrated Force → Edit Load. We define a coordinate system 

that we used (the red one in the figure (3.9 b) and a force in the direction of the 

  -axis as it is shown in the figure (3.9 a).  

The fixation of the beam is specified in Boundary Condition Manager → 

Create → Symmetry/Antisymmetry/Encastre → Encastre (         

             ). Again the coordinate system has to be defined. 

 



61 

 

a) 

 

b) 

 

Figure 3.9: a) The window for editing the load 

b) The pipe with the shown load and the fixation 

 

 

Figure 3.10: The window for editing the boundary conditions 

Mesh 

The element type S4R has been used for the meshing of the pipe. S4R is a robust, 

general-purpose element that is suitable for a wide range of applications. The 

size of elements has been chosen 0,005 x 0,001. It is not an optimal choice of a 

size for this type of elements, because the aspect ratio should be less than three. 

But we do not review some local effects on the geometry, for calculating the 

deflection of the whole beam this selection of the size of elements does not distort 

the calculation. 
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Figure 3.11: The meshed beam 

Job 

The calculation was carried out without errors. Details can be seen in the figure 

(3.12). 

 

Figure 3.12: The listing of the calculation 

Visualization 

The deformation of the beam was most reflected as it has been expected in the 

direction of the concentrated force. It is evident from the figure (3.13 a). 
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a) 

 

b) 

 

Figure 3.13: a) The deformed beam shown in the    plane 

b) The deformed beam in a general perspective with the scale 

The value of the deflection  is different in individual nodes in the cross-section. 

This is shown in the figure (3.14). So the numerical size of the bending was 

calculated as the average of values of the deformation in the direction of the  -

axis of individual nodes at the end of the beam. 

 

Figure 3.14: The detail of the end of the deformed beam with the values of the deflection 
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3.4.2 The Calculation by Using the Continuum Shell 

For the calculation using the continuum shell the full 3-D geometry is specified. 

The element thickness is defined by the nodal geometry. Continuum shell 

captures more accurately the through-thickness response for composite laminate 

structures. It has a high aspect ratio between in-plane dimensions and the 

thickness. The input data were chosen according the table 3.1. The following is a 

description of the operations in Abaqus CAE to obtain a script in Python.  

The following is a description of the operations in the particular modules of CAE: 

Sketch 

For modelling the geometry of the pipe as a continuum shell one used the Part 

manager → Create Part →Solid, Extrusion. Then a sketch is made by two 

circles as it is shown in the figure (3.15). 

 

Figure 3.15: The sketch for model of the pipe 

Property 

In the module Property the material has to be determined. One used the 

Material manager → Create and set the density of the chosen material and its 

constants. For the modelling of a composite material the type Lamina is used. 

The details are shown in the figure (3.16) below. This part is the same as in the 

section 3.4.1 (modelling of the conventional shell). 

When the material is determined, the composite layup can be defined using 

Composite Layup Manager → Create → Continuum Shell as it is shown in 

the figure (3.17). One sets the coordinate system for the used geometry, the 

normal direction, the number of plies and their properties. The thickness of plies, 

the material, the rotation angle and the coordinate system for all plies are 

specified. There is also specified the geometry area for properties of each ply. The 
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properties specification of the model is the same as in the previous case in the 

section 3.4.1. 

 

Figure 3.16: The window for editing the material 

 

a)  b)  

 

Figure 3.17: a) The window for creating the composite layup; 

  b) The window for editing the composite layup 

Assembly 

The part has to be put into the assembly. In this case the assembly contains one 

part –the body of the pipe. The coordinate system of the pipe is determinated as 
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we can see in the figure (3.18). It is the coordinate system, which is used for the 

determination of the direction of fibres. The coordinate system that is used for 

the computation has the  -axis identical to the longitudinal axis of the pipe. 

 

Figure 3.18: The assembly of the beam 

Now the partition of the geometry into two parts is made. It is for the better 

identification of the direction of the composite material and also for the better 

meshing of the part. The partition is made by order Partition Cell: Use Datum 

Plane. First, one has to create the datum plane by using order Create Datum 

Plane: 3 Points. 

 

Figure 3.19: The window for choosing the outputs 



67 

 

Step 

As it is written in the section 3.4.1, the procedure type Static, General is 

defined. The outputs are set as in the previous case, where we choose the 

possibilities of the displacement as is shown in the figure (3.19). 

Interaction 

Again the one end of the beam is prepared for the loading using Constraint 

Manager → Create → Coupling →Edit Constraint. The reference point    

(RP-1 in the figure (3.20 a)) is set. According to our model the beam is loaded by 

a concentrated force, which is placed into the centre of the circular cross-section 

at the end of the beam. The centre of the cross-section has to be connected with a 

cross-section at the end of the beam by constraint. The coordinate system is 

selected as in the previous case according to the specification of the composite 

material.  

Load 

Further, the concentrated force and the fixation of the beam are determined. The 

concentrated force is defined in Load Manager →Create →Concentrated 

Force →Edit Load. We define a coordinate system that we have used before (the 

red one in the figure (3.21 a)) and a concentrated force in the direction of the        

 -axis as it is shown in the figure (3.21 b).  

a) b) 

 

Figure 3.20: a) The pipe with the shown coupling properties 

 b) The window for editing the coupling properties 
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The support of the beam is specified in Boundary Condition Manager → 

Create → Symmetry/Antisymmetry/Encastre → Encastre (         

             ). The coordinate system has to be defined. The fixation is 

accomplished in the same way as in the previous section 3.4.1. 

Mesh 

Continuum shell elements are 3-D stress/displacement elements for the use in 

the modelling of structures that are generally slender, with a shell-like response 

but the continuum element topology. They capture more accurately the through-

thickness response for composite laminate structures. The element type SC8R  

(8-node hexahedron for a general purpose) has been used for the meshing the 

geometry. The thickness direction can be ambiguous for the SC8R element. Any 

of the 6-faces could be a bottom face, therefore it is important to define the 

bottom side of the elements and assign the stack direction. This can be 

determined by order Assign Stack Direction as it is shown in the figure (3.22). 

The size of elements has been chosen 0,005m along the  -axis and the quantity 

40 elements along the perimeter. 

a)

 

b)

 

Figure 3.21: a) The pipe with the shown load and the fixation 

 b) The window for editing the load  
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Figure 3.22: The meshed beam with the layup orientation 

Job 

The calculation was carried out without errors. Details can be seen in the figure 

(3.23). 

 

Figure 3.23: The listing of the calculation 

Visualization 

Deformation of the beam was most reflected as it has been expected in the 

direction of the concentrated force. It is evident from the figure (3.24 a).  

The value of the deflection is the same in individual nodes in the whole cross-

section. This is shown in the figure (3.25). So the numerical size of the deflection 

was taken as the value of the deformation in one node at the end of the beam. 
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a) 

 

b) 

 

Figure 3.24: a) The deformed beam shown in the    plane 

b) The deformed beam in a general perspective with the scale 

 

Figure 3.25: The detail of the end of the deformed beam with the values of the deflection 
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3.4.3 The Calculation Using the Volume Model 

For the calculation using the volume model the full 3-D geometry is specified and 

each ply is created separately as a separate body. The input data were chosen 

according to the table 3.1 of the input data. The following is a description of the 

operations in Abaqus CAE to obtain a script in Python. 

The following is a description of the operations in the particular modules of CAE: 

Sketch 

For modelling the geometry of a pipe as a volume model one used the Part 

manager →Create Part →Solid, Extrusion as by the modelling of the 

continuum shell. Then, a sketch is made by two circles for each ply as it is shown 

in the figure (3.26). 

 

Figure 3.26: The sketch of the one layer for model of the pipe 

Property 

In this module the material and its orientation has to be determined. One used 

the Material manager → Create and set the density of a chosen material and 

its constants. For modeling a composite material the type Engineering 

Constants is used. Poisson’s ratio in all three dimensions has to be determined 

as well as the module of elasticity and the shear module. Poison’s ratio was 

defined the same in all directions 
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The modules of elasticity    and    in the direction of  -axis and  -axis were 

defined equal as the transversal modulus of elasticity    

                      
The shear modules ware defined as in previous models of composite beams 

according to the table of input values 3.1. The details are shown in the figure 

(3.27) below. 

 

Figure 3.27: The window for editing the material 

When the material is determined, the composite layup can be defined. For 

modelling the composite beam using the volume model each ply must be 

determinated separately, because we have a part for each ply. The material of 

each ply we determine using Section Manager → Create → Solid, Composite, 

and then one can set the material of the ply, the rotation angle and the element 

relative thickness as it is shown in the figure (3.28 a). This operation is repeated 

with each layer.  

The material orientation is defined by Assign Material Orientation. It is 

important for the determination of the direction of fibres in the composite 

material. The direction is defined with respect to the coordinate system that has 

the  -axis coincident with the longitudinal axis of the pipe (the purple one in the 

figure (3.29)).  
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a)  

b)  

c)  

Figure 3.28: a) The window for creating the composite type of section 

b) The window for choosing the section for editing its properties 

c) The window for editing the composite layup 

 

 

Figure 3.29: The window for specify the orientation of the material 

Assembly 

Parts have to be put into the assembly. In this case the assembly contains three 

parts – one part for each ply of the pipe. The coordinate system of the pipe is 

determinated as we can see in the figure (3.30). It is the coordinate system, which 
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is used for the determination of the direction of fibres. Three parts are put 

together to make a model of the wound composite pipe as one can see in the 

figure (3.30). 

 

Figure 3.30: The assembly of the beam 

Now the partition of the geometry into two parts of each ply is made. It is for 

better identification of the direction of the composite material and also for the 

better meshing of the parts. The partition is made by the order Partition Cell: 

Use Datum Plane. First, one has to create the datum plane by using the order 

Create Datum Plane: 3 Points. 

Step 

As it is written in previous sections 3.4.2, the procedure type Static, General is 

defined. The outputs are set the same way as in the previous case, where we 

choose the possibilities of displacement as it is shown in the figure (3.31). 

Interaction 

The end of the beam is prepared for the loading using Constraint Manager → 

Create → Coupling → Edit Constraint. The reference point (RP-1 in the 

figure (3.32 a)) is set in the centre of the cross section as it is made in previous 

models. The coordinate system is selected according to the specification of the 

composite material. In this case all three parts have to be connected with the 

constraint as it is shown in the figure (3.32). 



75 

 

 

Figure 3.31: The window for choosing the outputs 

 

a) 

  

b) 

  

Figure 3.32: a) The pipe with the shown coupling properties 

 b) The window for editing the coupling properties 

Load 

The concentrated force is defined in Load Manager → Create → Concentrated 

Force → Edit Load. We define a coordinate system that we used before (the red 

one in the figure (3.33 a)) and a concentrated force in the direction of the  -axis. 

This is shown in the figure (3.33 b). 
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a) 

 

b) 

  

Figure 3.33: a) The pipe with the shown load and the fixation 

 b) The window for editing the load  

The support of the beam is once again specified in Boundary Condition 

Manager → Create → Symmetry/Antisymmetry/Encastre → Encastre (   

                   ). The coordinate system has to be defined. The 

fixation is accomplished in the same way as in previous sections, but there have 

to be fixed all three parts. This is illustrated in the figure (3.34 a). 

a) 

 

b) 

 

Figure 3.34: a) The beam with shown the fixation 

b)The window for editing the boundary condition 

Mesh 

The element type C3D8R (three-dimensional hexahedral element) has been used 

for meshing the pipe. These elements are linear, reduced-integration elements. A 

good mesh of C3D8R elements usually provides a solution of accuracy at less cost. 

Quadrilateral and brick elements are preferred when such meshing is 
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reasonable. The size of elements has been chosen 0,005m along the  -axis, 

quantity 40 elements along the perimeter as in the continuum shell model and 

five elements across each layer. It is not an optimal choice of size for this type of 

elements, because the aspect ratio should be less than three. But we do not 

review some local effects on the geometry, for calculating the deflection of the 

whole beam this selection of size of elements does not distort the calculation in 

the general scale. 

 

Figure 3.35: The meshed beam 

Job 

The calculation was carried out without errors. Details can be seen in the figure 

(3.36). 

 

Figure 3.36: The listing of the calculation 
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Visualization 

Deformation of the beam was most reflected as it had been expected in the 

direction of the concentrated force. It is evident from the figure (3.37 a). 

The value of the deflection is different in individual nodes in the whole cross-

section. This is shown in the figure (3.38). So the numerical size of the bending 

was calculated as the average of values of the deformation in the direction of the 

 -axis of individual nodes at the end of the beam. 

a) 

 

b) 

 

Figure 3.37: a) The deformed beam shown in the    plane 

b) The deformed beam in a general perspective with the scale 
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Figure 3.38: The detail of the end of the deformed beam with the values of the deflection 

 

 

  



80 

 

4 Results 

The beam bending has been calculated by methods mentioned in the previous 

chapter. For all analyzed methods was used the same model of the beam and the 

same properties of a material, which they are specified in the table of Input data 

3.1. All obtained values of the deflection are listed in the table 4.1 below. 

 

 

Table 4.1: The numerical results of the analysis of the methods for calculation the deflection 

For both analytical methods (Bernoulli’s method and the method using ABD 

matrix) the deflection was computed with the shear effect as it is written in the 

Deflection (m)

d (mm) 0 5 15 25 35 45 55 65 75 85 90

2 1,13096 1,40923 3,53913 7,32757 12,00693 16,76582 20,95840 24,20021 26,34762 27,40277 27,53341

1,13048 1,40875 3,53867 7,32714 12,00653 16,76543 20,95800 24,19978 26,34716 27,40230 27,53293

3,25266 3,31299 3,69472 4,29963 5,10820 6,15034 7,51986 9,46172 12,94770 20,79490 22,20870

1,46525 1,51444 1,86764 2,65495 4,28955 7,44343 12,89239 20,64141 28,39480 32,72279 33,20780

1,14427 1,34350 2,90620 5,96703 10,29213 15,28243 20,06958 23,90649 26,45070 27,68670 27,83870

1,56441 1,58724 1,79391 2,35681 3,68736 6,67597 12,49878 20,26116 25,64641 27,38751 27,53341

1,56393 1,58676 1,79343 2,35633 3,68688 6,67549 12,49830 20,26068 25,64593 27,38703 27,53293

4 0,49799 0,62015 1,55082 3,18738 5,17623 7,16287 8,88379 10,19605 11,05663 11,47698 11,52891

0,49765 0,61981 1,55049 3,18707 5,17594 7,16259 8,88350 10,19574 11,05630 11,47664 11,52857

0,87850 0,89110 0,97658 1,11916 1,31141 1,55444 1,86219 2,27442 2,95759 4,28350 4,49091

0,52150 0,61073 0,72800 1,00380 1,57880 2,71441 4,76785 7,82428 10,93090 12,61133 12,79300

0,50392 0,58797 1,25272 2,55538 4,38779 6,48629 8,47878 10,05701 11,09211 11,59113 11,65230

0,65519 0,66475 0,75129 0,98698 1,54411 2,79550 5,23362 8,48388 10,73878 11,46782 11,52891

0,65485 0,66441 0,75094 0,98664 1,54377 2,79516 5,23328 8,48354 10,73844 11,46748 11,52857

6 0,26008 0,32371 0,80656 1,64748 2,65569 3,64805 4,49602 5,13549 5,55155 5,75384 5,77878

0,25982 0,32345 0,80630 1,64724 2,65546 3,64783 4,49579 5,13525 5,55130 5,75357 5,77852

0,36338 0,36733 0,39642 0,44870 0,52163 0,61385 0,72847 0,87695 1,11126 1,53335 1,59487

0,29824 0,30421 0,35502 0,47876 0,73609 1,24947 2,20933 3,70184 5,25468 6,07535 6,16102

0,26329 0,30615 0,64649 1,31198 2,24176 3,29670 4,28747 5,06371 5,56819 5,80997 5,83954

0,32850 0,33329 0,37666 0,49480 0,77406 1,40129 2,62337 4,25251 5,38274 5,74816 5,77878

0,32823 0,33302 0,37640 0,49454 0,77379 1,40103 2,62310 4,25224 5,38248 5,74790 5,77852

8 0,15213 0,18927 0,47015 0,95559 1,53139 2,09165 2,56538 2,91960 3,14870 3,25969 3,27336

0,15192 0,18905 0,46994 0,95539 1,53121 2,09147 2,56519 2,91941 3,14849 3,25948 3,27315

0,18496 0,18653 0,19888 0,22281 0,25752 0,30181 0,35645 0,42580 0,53167 0,71419 0,73967

0,16994 0,17288 0,19891 0,26393 0,39897 0,66936 1,18597 2,01830 2,90580 3,36802 3,41484

0,15411 0,17880 0,37532 0,75858 1,29067 1,88934 2,44636 2,87889 3,15801 3,29119 3,30745

0,18614 0,18885 0,21342 0,28034 0,43852 0,79381 1,48603 2,40883 3,04903 3,25602 3,27336

0,18592 0,18864 0,21320 0,28012 0,43830 0,79359 1,48581 2,40861 3,04882 3,25580 3,27315

10 0,09642 0,11991 0,29713 0,60153 0,95954 1,30475 1,59425 1,80932 1,94778 2,01468 2,02291

0,09624 0,11973 0,29695 0,60136 0,95938 1,30459 1,59409 1,80916 1,94760 2,01450 2,02273

0,10686 0,10759 0,11371 0,12634 0,14530 0,16976 0,19990 0,23770 0,29409 0,38860 0,40141

0,10585 0,10750 0,12245 0,16051 0,23960 0,39822 0,70552 1,21414 1,76855 2,05482 2,08116

0,09775 0,11324 0,23664 0,47675 0,80829 1,17870 1,52069 1,78437 1,95359 2,03406 2,04387

0,11508 0,11676 0,13194 0,17329 0,27104 0,49060 0,91838 1,48865 1,88428 2,01220 2,02291

0,11490 0,11657 0,13176 0,17311 0,27086 0,49042 0,91820 1,48847 1,88410 2,01201 2,02273

Angles of fibers (°)

Bernoulli's method

Bernoulli's method without the shear

conventional shell

continuum shell

volume model

ABD matrix

ABD matrix without the shear
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chapter 2 and the bending without considering the shear effect. The values 

without consideration of the shear effect are in both cases lower but still very 

close to the values, where the shear is included. In the graphical results only the 

cases that they include the shear effect are mentioned. 

All obtained data are put into the graphs in figures (4.1-5) to compare the 

individual methods of the deflection calculation. In the figures are compared the 

methods that are presented in this thesis with other existing methods used for 

calculation of the deflection.  

The curves vC ( ) and vE ( ) are computed using the longitudinal 

modulus of elasticity    (for vE) and the transversal modulus of elasticity   (for 

vC) of composite material.[7] They operate with the highest and the lowest 

possible values of the modulus of elasticity so these methods give the upper and 

the lower bounds of the deflection in all cases. The assumption is that all other 

methods should give the results, which values will be between the mentioned 

curves. This assumption is the most fulfilled as is seen in the figures (4.1-5). The 

curves vSE ( ) and vK ( ) are computed in programs according the 

methods described in literature [7]. These are other methods to calculation of the 

deflection to comparison.  

The results from the Bernoulli’s method ( ) are very close to the calculations 

using the transversal modulus of elasticity   . This corresponds to the use of 

compliance matrix   to obtain the equivalent modulus of elasticity     as it is 

written in the section 3.2. The results from calculation of bending using ABD 

matrix ( ) are fully consistent with the control calculation using the same 

method. Generally, this method is closer to the model with the higher values of 

equivalent modulus of elasticity, which corresponds to a lower deflection.  

From the models using FEM gives the best results the classical volume model      

( ). It gives in all cases the results that are close to the Bernoulli’s method 

and the vC curve. The model of the continuum shell ( ) seems to approximate 

the calculation using ABD matrix; but this method, when it used the higher angle 

of direction of fibres, gives much greater values than all other methods. This is 

shown mainly in the cases with the smaller inner diameter. With the increasing 

inner diameter of the pipe this variation is narrowing. This is seen from the 
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comparing of the figures below. The deflection obtained using the conventional 

shell model ( ) gives the data, which can be considered unlikely. In the case of 

the pipe with 2mm inner diameter the data of the deflection are approximate to 

the other methods but in other cases this method gives much lower values of the 

deflection than the other methods. The cause of such unsatisfactory results 

should be subjected to the further research. But at present we do not believe that 

the reason is in the wrong compilation of the model. 

 

Figure 4.1: The graph of the deflection of the pipe with 2mm inner diameter 
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Figure 4.2: The graph of the deflection of the pipe with 4mm inner diameter 

 

Figure 4.3: The graph of the deflection of the pipe with 6mm inner diameter 
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Figure 4.4: The graph of the deflection of the pipe with 8mm inner diameter 

 

Figure 4.5: The graph of the deflection of the pipe with 10mm inner diameter 
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5 Conclusion 

The aim of this study was to compare the analytical methods of calculation of the 

deflection of the beam with the results of the modelling of the same by using 

FEM. In this thesis were compared the Bernoulli’s methods with the calculation 

using ABD matrix and with the FEM models of the conventional shell, the 

continuum shell and the volume model. The analytical models were performed in 

MATLAB® and the FEM models were implemented in Abaqus®.  

All discussed methods were applied to several beams of a circular cross section 

with a different diameter and with the various layup of the composite material. 

The analytical methods give the results that were expected and show a material 

behaviour predicted by other theories. The FEM models give more interesting 

results. Results calculated using a volume model are the closest to the results of 

analytical methods. The continuum shell model gives the comparable results, but 

in some cases considerably deviates from the solution calculated by analytical 

methods. The conventional shell model provides the completely different 

outcomes from the other methods. It is recommended for a further research.  

All results were presented both graphically and in the tabular form. The 

calculation methods with specific comments on the creation of individual 

programs and FEM models are described in detail in this thesis. The codes in 

MATLAB® and scripts of the models, which are created in Abaqus®, including 

the input files are attached in the annexes. 

The analysis made in this thesis does not include all the existing methods for the 

calculation of the deflection of the composite materials; it would be appropriate 

the extension by another methods and the concrete comparison with an 

experiment would be appropriate. 
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1.1 Program designed in MATLAB® using Bernoulli’s method: 

DP_Trubka.m 

clear all 
close all 
clc 
%Vektor uhlu vlaken 
Alfa=[0  5  15  25  35  45  55  65  75  85  90]; 
  
%Vektor prumeru 
D=(1:20)*1e-3;  
  
%Pocet promennych 
K=size(D); 
K=K(2); 
  
Q=size(Alfa); 
Q=Q(2); 
  
%Pole pro vysledky 
V_vysledky=zeros(K,Q); 
W_vysledky=zeros(K,Q); 
  
for k=1:K 
    for q=1:Q 
         
         
%VSTUPY 
%sila F [N] 
F=100; 
  
%GEOMETRIE 
%delka l [m] 
l=1; 
%polomery -  vnitrni, vnejsi [m] 
r1=D(k)/2; 
%r2=(30e-3)/2; 
  
%EL, Et, Glt, vlt, alfa, t[m] v tabulce/  matici - poradi je zavazne  
V=[156.05e9  6.045e9  4.431e9  0.328  90  1e-3; 
    156.05e9  6.045e9  4.431e9  0.328  Alfa(q)  1e-3; 
    156.05e9  6.045e9  4.431e9  0.328  -Alfa(q)  1e-3;]; %- V jako vstupy 
  
%N- pocet vrstev 
N=size(V,1); 
%soucinitel beta 
beta= 1 ; 
   



89 

 

%pole pro ulozeni dat pro jdn. vrstvy - mozna nadbytecne 
E=zeros(3,3,N); 
T=zeros(3,3,N); 
%J=zeros(N,1); 
%Ex=zeros(N,1); 
Cxy=zeros(3,3,N); 
Gxy=zeros(N,1); 
A=zeros(N,1); 
  
%vsechny potrebne prumery 
d=zeros(N+1,1); 
d(1)=2*r1; 
  
for i=1:N 
     
    %sestaveni Ci 
    e11=V(i,1)/(1-(V(i,2)/V(i,1))*V(i,4)^2); 
    e22=e11*(V(i,2)/V(i,1)); 
    e12=V(i,4)*e22; 
    e21=e12; 
    e66=V(i,3); 
     
    E(:,:,i)=[e11 e12 0; 
                  e21 e22 0; 
                  0      0    e66]; 
               
    %sestaveni Ti 
    alfa=V(i,5)/180*pi; 
     
    T(:,:,i)=[ (cos(alfa))^2                 (sin(alfa))^2               -2*sin(alfa)*cos(alfa); 
          (sin(alfa))^2                  (cos(alfa))^2                2*sin(alfa)*cos(alfa); 
          sin(alfa)*cos(alfa)    -sin(alfa)*cos(alfa)   (cos(alfa))^2-(sin(alfa))^2];   
  
       
    %sestaveni Ji 
    d(i+1)=d(i)+2*V(i,6); 
    J(i)=(pi*(d(i+1)^4/64))*(1-(d(i)/d(i+1))^4); 
     
    %transformace Ei do systemu xy 
    Exy(:,:,i)=T(:,:,i)*E(:,:,i)*T(:,:,i)'; 
  
    %Matice poddajnosti 
    Cxy(:,:,i)=inv(Exy(:,:,i)); 
   
    %Vektor hodnot modulu pruznosti v tahu Exi =[Ex1 Ex2 ....ExN] 
    exi=1/Cxy(1,1,i); 
    Ex(i)=exi; 
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     %plocha pro Gxy*A 
    A(i)=(pi()/4)*(d(i+1)^2-d(i)^2); 
     
    %modul pruznosti ve smyku 
    gxyi=1/Cxy(3,3,i); 
    Gxy(i)=gxyi; 
     
    end 
     
      %Ohybova tuhost 
      EJ=Ex*J' ;%vychazim z toho, ze fce zeros generuje radkove vektory(?) 
     
      %Soucin Gxy*A 
      GxyA=Gxy'*A; 
 
      %beta/Gxy*A 
      betaGA=beta./GxyA; 
       
      %PRUHYB 
      x=0:l/10:l; 
           
      %vypocet Mohr. integral 
      v=(1/EJ)*((F*l^2*x)-(F*l*x.^2)-(F*x.^3)/3); 
       
      %vypocet se zahrnutim smyku   
      w=(1/EJ)*((F*l^2*x)-(F*l*x.^2)-(F*x.^3)/3)+betaGA*F*x; 
       
      %Tabulky vysledku - matice 
      
      V_vysledky(k,q)=v(1); 
      W_vysledky(k,q)=w(1); 
    end  
end 
%save ('DP_Trubka_uhly_prumery', 'V_vysledky', 'W_vysledky'  )  
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1.2 Program designed in MATLAB® using ABD matrices: 
DP_ABD_Trubka.m 
clc  
clear all  
close all 
%% Vstupy 
 %Vektor uhlu vlaken 
Alfa=[0  5  15  25  35  45  55  65  75  85  90]; 
  
%Vektor prumeru 
P=(1:10)*1e-3;  
  
%Pocet promennych 
K=size(P); 
K=K(2); 
  
U=size(Alfa); 
U=U(2); 
  
%Pole pro vysledky 
V_vysledky=zeros(K,U); 
W_vysledky=zeros(K,U); 
  
for s=1:K 
    for t=1:U 
         
%VSTUPZ   
%Sila 
F=100; 
  
%GEOMETRIE 
%delka l [m] 
l=1; 
%polomery -  vnitrni, vnejsi [m] 
r1=P(s)/2; 
%r2=(30e-3)/2; 
  
% Matice vstupu pro jdntl. vrstvy 
%    1     2      3       4         5             6  
%   EL   ET   GLT   vLT   alfa(°)     t(m) 
V=[156.05e9  6.045e9  4.431e9  0.328   90  1e-3; 
      156.05e9  6.045e9  4.431e9  0.328  Alfa(t)   1e-3; 
      156.05e9  6.045e9  4.431e9  0.328  -Alfa(t)  1e-3;]; %- V jako vstupy 
  
%pocet vrstev k 
xx=size(V); 
k=xx(1); 
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%pole pro ukladani mezivypoctu 
Tvx=zeros(6,6,k); 
c=zeros(6,6,k); 
C=zeros(3,3,k); 
Cxy=zeros(3,3,k); 
Q=zeros(3,3,k); 
q=zeros(6,6,k); 
A=zeros(3,3); 
B=zeros(3,3); 
D=zeros(3,3); 
  
%% Matice tuhosti 
for i=1:k 
  
c(1,1,i)=V(i,1)/(1-((V(i,2)/V(i,1))*V(i,4)^2)); 
c(2,2,i)=V(i,2)/V(i,1)*c(1,1,i); 
c(1,2,i)=V(i,4)*c(2,2,i); 
c(2,1,i)=c(1,2,i); 
c(6,6,i)=V(i,3); 
  
C(:,:,i)=[c(1,1,i) c(1,2,i) 0; 
             c(2,1,i) c(2,2,i) 0; 
             0        0    c(6,6,i);]; 
  
%% Transformace matice tuhosti 
  
% Transformacni matice ze systemu LTt do systemu xyz 
    alfa=V(i,5)/180*pi; 
     
    Ts(:,:,i)=[ (cos(alfa))^2                 (sin(alfa))^2               2*sin(alfa)*cos(alfa); 
          (sin(alfa))^2                  (cos(alfa))^2                -2*sin(alfa)*cos(alfa); 
          -sin(alfa)*cos(alfa)    sin(alfa)*cos(alfa)   (cos(alfa))^2-(sin(alfa))^2];   
       
   Te(:,:,i)=[ (cos(alfa))^2                 (sin(alfa))^2               sin(alfa)*cos(alfa); 
          (sin(alfa))^2                  (cos(alfa))^2                    -sin(alfa)*cos(alfa); 
          -2*sin(alfa)*cos(alfa)    2*sin(alfa)*cos(alfa)   (cos(alfa))^2-(sin(alfa))^2];   
Cxy(:,:,i)=inv(Ts(:,:,i))*C(:,:,i)*Te(:,:,i);%(Tvx)^-1*C*Tvx' ????? \Tvx !!!!!=Q pro 
rovinnou napjatost 
  
end 
  
%% Matice ABD 
  h(1)=-sum(V(:,6))/2;%h0 
   
for n=1:k; 
        for m=1:k; 
           for i=1:k; 
                
               %Vsechna h 
                  h(i+1)=(h(1)+sum(V(1:i,6))); 
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               a(i)=(Cxy(n,m,i)*(h(i+1)-h(i))); 
               b(i)=((1/2)*Cxy(n,m,i)*(h(i+1)^2-h(i)^2)); 
               d(i)=((1/3)*Cxy(n,m,i)*(h(i+1)^3-h(i)^3)); 
           end 
            
A(n,m)=sum(a); 
B(n,m)=sum(b); 
D(n,m)=sum(d); 
        end 
end 
  
%Modul pruznosti v tahu 
E=(A(1,1)-A(1,2:3)*(A(2:3,2:3)^(-1)*A(2:3,1)))/sum(V(:,6)); 
  
%Modul pruznosti ve smyku 
G=(A(3,3)-A(3,1:2)*(A(1:2,1:2)^(-1)*A(1:2,3)))/sum(V(:,6)); 
  
%vsechny potrebne prumery 
dd=zeros(k+1,1); 
dd(1)=2*r1; 
  
%sestaveni Ji a GA 
  for i=1:k 
    dd(i+1)=dd(i)+2*V(i,6); 
    j(i)=(pi*(dd(i+1)^4/64))*(1-(dd(i)/dd(i+1))^4);   
     
    %plocha pro G*A 
        S(i)=(pi/4)*(dd(i+1)^2-dd(i)^2); 
         
    %modul pruznosti ve smyku 
%     gxyi=1/Cxy(6,6,i); 
%     Gxy(i)=gxyi; 
         
  end 
   
  J=sum(j); 
 S_celk=sum(S); 
   
  %PRUHYB 
      x=0:l/10:l; 
           
      %vypocet Mohr. integral 
      v=(1/(E*J))*((F*l^3)/3-(F*l^2*x)/2-(F*x.^3)/3+(F*x.^3)/2); 
       
     %vypocet se zahrnutim smyku   
       
      %soucinitel beta 
       beta= 1 ; 
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        %Soucin Gxy*A 
      GxyA=G*S_celk;       
 
      %beta/Gxy*A 
      betaGA=beta/GxyA; 
  
  w=(1/(E*J))*((F*l^3)/3-(F*l^2*x)/2-(F*x.^3)/3+(F*x.^3)/2)+betaGA*F*(l-x); 
          
      %Tabulky vysledku - matice 
      V_vysledky_G(s,t)=v(1); 
      W_vysledky_G(s,t)=w(1); 
 
    end  
end 
  
save('DP_ABD_Trubka_uhly_prumery', 'V_vysledky_G', 'W_vysledky_G')      
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1.3 Script for FEM model using conventional shell 

#prumer 

d=0.008 

x=d*0.1 

r=d/2 

#uhel 

a=0 

 

# -*- coding: mbcs -*- 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from optimization import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

 

mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=2.0) 

mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 

    0.0, 0.0), point1=(-0.1, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 

    mdb.models['Model-1'].sketches['__profile__'].geometry[2], radius=0.005,  

    textPoint=(0.0, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].delete(objectList=( 

    mdb.models['Model-1'].sketches['__profile__'].dimensions[0], )) 

mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 

    mdb.models['Model-1'].sketches['__profile__'].geometry[2], radius=r,  

    textPoint=(0.0, 0.0)) 

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-1', type= 

    DEFORMABLE_BODY) 

mdb.models['Model-1'].parts['Part-1'].BaseShellExtrude(depth=1.0, sketch= 

    mdb.models['Model-1'].sketches['__profile__']) 

del mdb.models['Model-1'].sketches['__profile__'] 

mdb.models['Model-1'].parts['Part-1'].DatumCsysByThreePoints(coordSysType= 

    CARTESIAN, name='Datum csys-1', origin= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[0], CENTER), point1= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[1], CENTER), point2= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[0], MIDDLE)) 
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mdb.models['Model-1'].Material(name='Material-1') 

mdb.models['Model-1'].materials['Material-1'].Density(table=((1474.0, ), )) 

mdb.models['Model-1'].materials['Material-1'].Elastic(table=((156050000000.0,  

    6045000000.0, 0.328, 4431000000.0, 4431000000.0, 4431000000.0), ), type= 

    LAMINA) 

mdb.models['Model-1'].parts['Part-1'].DatumPlaneByThreePoints(point1= 

    mdb.models['Model-1'].parts['Part-1'].vertices[0], point2= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[0], MIDDLE), point3= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[1], MIDDLE)) 

mdb.models['Model-1'].parts['Part-1'].PartitionFaceByDatumPlane(datumPlane= 

    mdb.models['Model-1'].parts['Part-1'].datums[3], faces= 

    mdb.models['Model-1'].parts['Part-1'].faces.getSequenceFromMask(('[#1 ]',     ), 

)) 

mdb.models['Model-1'].parts['Part-1'].CompositeLayup(description='',  

    elementType=SHELL, name='CompositeLayup-1', 

offsetType=BOTTOM_SURFACE,  

    symmetric=False, thicknessAssignment=FROM_SECTION) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].Section( 

    integrationRule=SIMPSON, poissonDefinition=DEFAULT, preIntegrate=OFF,  

    temperature=GRADIENT, thicknessType=UNIFORM, useDensity=OFF) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].ReferenceOrientation( 

    additionalRotationField='', additionalRotationType=ROTATION_NONE, 

angle=0.0 

    , axis=AXIS_2, fieldName='', localCsys= 

    mdb.models['Model-1'].parts['Part-1'].datums[2], orientationType=SYSTEM) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].CompositePly( 

    additionalRotationField='', additionalRotationType=ROTATION_ANGLE, 

angle= 

    90.0, axis=AXIS_2, material='Material-1', numIntPoints=3, orientation= 

    mdb.models['Model-1'].parts['Part-1'].datums[2], orientationType=CSYS,  

    plyName='Ply-1', region=Region( 

    faces=mdb.models['Model-1'].parts['Part-1'].faces.getSequenceFromMask( 

    mask=('[#3 ]', ), )), suppressed=False, thickness=0.001, thicknessType= 

    SPECIFY_THICKNESS) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].CompositePly( 

    additionalRotationField='', additionalRotationType=ROTATION_NONE, 

angle=a 

    , axis=AXIS_2, material='Material-1', numIntPoints=3, orientation= 
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    mdb.models['Model-1'].parts['Part-1'].datums[2], orientationType=CSYS,  

    plyName='Ply-2', region=Region( 

    faces=mdb.models['Model-1'].parts['Part-1'].faces.getSequenceFromMask( 

    mask=('[#3 ]', ), )), suppressed=False, thickness=0.001, thicknessType= 

    SPECIFY_THICKNESS) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].CompositePly( 

    additionalRotationField='', additionalRotationType=ROTATION_NONE, 

angle=-a 

    , axis=AXIS_2, material='Material-1', numIntPoints=3, orientation= 

    mdb.models['Model-1'].parts['Part-1'].datums[2], orientationType=CSYS,  

    plyName='Ply-3', region=Region( 

    faces=mdb.models['Model-1'].parts['Part-1'].faces.getSequenceFromMask( 

    mask=('[#3 ]', ), )), suppressed=False, thickness=0.001, thicknessType= 

    SPECIFY_THICKNESS) 

mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN) 

mdb.models['Model-1'].rootAssembly.Instance(dependent=OFF, name='Part-1-1',  

    part=mdb.models['Model-1'].parts['Part-1']) 

mdb.models['Model-1'].StaticStep(name='Step-1', previous='Initial') 

mdb.models['Model-1'].rootAssembly.ReferencePoint(point= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].InterestingPoint( 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].edges[3], CENTER)) 

mdb.models['Model-1'].rootAssembly.Set(name='m_Set-1', referencePoints=( 

    mdb.models['Model-1'].rootAssembly.referencePoints[4], )) 

mdb.models['Model-1'].rootAssembly.Set(edges= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].edges.getSequenceFromMask( 

    ('[#18 ]', ), ), name='s_Set-1') 

mdb.models['Model-1'].Coupling(controlPoint= 

    mdb.models['Model-1'].rootAssembly.sets['m_Set-1'], 

couplingType=KINEMATIC,  

    influenceRadius=WHOLE_SURFACE, localCsys= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].datums[2], name= 

    'Constraint-1', surface=mdb.models['Model-1'].rootAssembly.sets['s_Set-1'],  

    u1=ON, u2=ON, u3=ON, ur1=ON, ur2=ON, ur3=ON) 

mdb.models['Model-1'].fieldOutputRequests['F-Output-1'].setValues(variables=( 

    'U', 'UT', 'UR')) 

mdb.models['Model-1'].rootAssembly.Set(name='Set-3', referencePoints=( 

    mdb.models['Model-1'].rootAssembly.referencePoints[4], )) 

mdb.models['Model-1'].ConcentratedForce(cf3=100.0, createStepName='Step-1',  

    distributionType=UNIFORM, field='', localCsys= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].datums[2], name= 

    'Load-1', region=mdb.models['Model-1'].rootAssembly.sets['Set-3']) 

mdb.models['Model-1'].rootAssembly.Set(edges= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].edges.getSequenceFromMask( 

    ('[#22 ]', ), ), name='Set-4') 

mdb.models['Model-1'].EncastreBC(createStepName='Step-1', localCsys= 
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    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].datums[2], name= 

    'BC-1', region=mdb.models['Model-1'].rootAssembly.sets['Set-4']) 

mdb.models['Model-1'].rootAssembly.setElementType(elemTypes=(ElemType( 

    elemCode=S4R, elemLibrary=STANDARD, secondOrderAccuracy=OFF,  

    hourglassControl=DEFAULT), ElemType(elemCode=S3, 

elemLibrary=STANDARD)),  

    regions=( 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].faces.getSequenceFromMask( 

    ('[#3 ]', ), ), )) 

mdb.models['Model-1'].rootAssembly.setMeshControls(regions= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].faces.getSequenceFromMask( 

    ('[#3 ]', ), ), technique=STRUCTURED) 

mdb.models['Model-1'].rootAssembly.seedPartInstance(deviationFactor=0.1,  

    minSizeFactor=0.1, regions=( 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'], ), size=0.005) 

mdb.models['Model-1'].rootAssembly.seedEdgeBySize(constraint=FINER,  

    deviationFactor=0.1, edges= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].edges.getSequenceFromMask( 

    ('[#3a ]', ), ), minSizeFactor=0.1, size=x) 

mdb.models['Model-1'].rootAssembly.generateMesh(regions=( 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'], )) 

mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,  

    explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,  

    memory=50, memoryUnits=PERCENTAGE, model='Model-1', 

modelPrint=OFF,  

    multiprocessingMode=DEFAULT, name='Job-0', 

nodalOutputPrecision=SINGLE,  

    numCpus=1, numGPUs=0, queue=None, scratch='', type=ANALYSIS,  

    userSubroutine='', waitHours=0, waitMinutes=0) 

mdb.jobs['Job-0'].submit(consistencyChecking=OFF) 

mdb.jobs['Job-0']._Message(STARTED, {'phase': BATCHPRE_PHASE,  

    'clientHost': 'ntb-HPPB4310s', 'handle': 0, 'jobName': 'Job-0'}) 

mdb.jobs['Job-0']._Message(WARNING, {'phase': BATCHPRE_PHASE,  

    'message': 'WHENEVER A TRANSLATION (ROTATION) DOF AT A NODE IS 

CONSTRAINED BY A KINEMATIC COUPLING DEFINITION THE 

TRANSLATION (ROTATION) DOFS FOR THAT NODE CANNOT BE 

INCLUDED IN ANY OTHER CONSTRAINT INCLUDING MPCS, RIGID 

BODIES, ETC.',  

    'jobName': 'Job-0'}) 

mdb.jobs['Job-0']._Message(WARNING, {'phase': BATCHPRE_PHASE,  

    'message': 'MPCS (EXTERNAL or INTERNAL, including those generated from 

rigid body definitions), KINEMATIC COUPLINGS, AND/OR EQUATIONS WILL 

ACTIVATE ADDITIONAL DEGREES OF FREEDOM',  

    'jobName': 'Job-0'}) 
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mdb.jobs['Job-0']._Message(ODB_FILE, {'phase': BATCHPRE_PHASE,  

    'file': 'C:\\Temp\\Job-0.odb', 'jobName': 'Job-0'}) 

mdb.jobs['Job-0']._Message(COMPLETED, {'phase': BATCHPRE_PHASE,  

    'message': 'Analysis phase complete', 'jobName': 'Job-0'}) 

mdb.jobs['Job-0']._Message(STARTED, {'phase': STANDARD_PHASE,  

    'clientHost': 'ntb-HPPB4310s', 'handle': 5316, 'jobName': 'Job-0'}) 

mdb.jobs['Job-0']._Message(STEP, {'phase': STANDARD_PHASE, 'stepId': 1,  

    'jobName': 'Job-0'}) 

mdb.jobs['Job-0']._Message(WARNING, {'phase': STANDARD_PHASE,  

    'message': 'The 3-direction at one or more points in one or more layers in 3200 

elements as defined in *ORIENTATION are in the opposite direction to the 

element normals. Either the 1 or 2 and the 3-direction defined in 

*ORIENTATION will be reversed. The elements have been identified in element 

set WarnElem3DirOppElemNormalStep1Inc1.',  

    'jobName': 'Job-0'}) 

mdb.jobs['Job-0']._Message(ODB_FRAME, {'phase': STANDARD_PHASE, 'step': 

0,  

    'frame': 0, 'jobName': 'Job-0'}) 

mdb.jobs['Job-0']._Message(STATUS, {'totalTime': 0.0, 'attempts': 0,  

    'timeIncrement': 1.0, 'increment': 0, 'stepTime': 0.0, 'step': 1,  

    'jobName': 'Job-0', 'severe': 0, 'iterations': 0, 'phase': STANDARD_PHASE,  

    'equilibrium': 0}) 

mdb.jobs['Job-0']._Message(MEMORY_ESTIMATE, {'phase': 

STANDARD_PHASE,  

    'jobName': 'Job-0', 'memory': 132.121262550354}) 

mdb.jobs['Job-0']._Message(ODB_FRAME, {'phase': STANDARD_PHASE, 'step': 

0,  

    'frame': 1, 'jobName': 'Job-0'}) 

mdb.jobs['Job-0']._Message(STATUS, {'totalTime': 1.0, 'attempts': 1,  

    'timeIncrement': 1.0, 'increment': 1, 'stepTime': 1.0, 'step': 1,  

    'jobName': 'Job-0', 'severe': 0, 'iterations': 2, 'phase': STANDARD_PHASE,  

    'equilibrium': 2}) 

mdb.jobs['Job-0']._Message(END_STEP, {'phase': STANDARD_PHASE, 'stepId': 

1,  

    'jobName': 'Job-0'}) 

mdb.jobs['Job-0']._Message(COMPLETED, {'phase': STANDARD_PHASE,  

    'message': 'Analysis phase complete', 'jobName': 'Job-0'}) 

mdb.jobs['Job-0']._Message(JOB_COMPLETED, {'time': 'Thu Mar 12 16:21:06 

2015',  

    'jobName': 'Job-0'}) 

# Save by user on 2015_03_12-16.23.10; build 6.12-1 2012_03_13-20.44.39 119612 
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1.4 Script for FEM model using continuum shell 

#prumer 

d=0.002 

r=d/2 

k=r+0.003 

#uhel 

a=90 

 

# Save by user on 2015_03_11-14.24.50; build 6.12-1 2012_03_13-20.44.39 119612 

from part import * 

from material import * 

from section import * 

from optimization import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

 

mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=2.0) 

mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 

    0.0, 0.0), point1=(-2.5, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 

    0.0, 0.0), point1=(-1.25, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 

    mdb.models['Model-1'].sketches['__profile__'].geometry[2], radius=r,  

    textPoint=(0.0, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 

    mdb.models['Model-1'].sketches['__profile__'].geometry[3], radius=k,  

    textPoint=(0.0, 0.0)) 

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-1', type= 

    DEFORMABLE_BODY) 

mdb.models['Model-1'].parts['Part-1'].BaseSolidExtrude(depth=1.0, sketch= 

    mdb.models['Model-1'].sketches['__profile__']) 

del mdb.models['Model-1'].sketches['__profile__'] 

mdb.models['Model-1'].Material(name='Material-1') 

mdb.models['Model-1'].materials['Material-1'].Density(table=((1474.0, ), )) 

mdb.models['Model-1'].materials['Material-1'].Elastic(table=((156050000000.0,  

    6045000000.0, 0.328, 4431000000.0, 4431000000.0, 4431000000.0), ), type= 

    LAMINA)   
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mdb.models['Model-1'].parts['Part-1'].DatumPlaneByThreePoints(point1= 

    mdb.models['Model-1'].parts['Part-1'].vertices[2], point2= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[2], MIDDLE), point3= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[3], MIDDLE)) 

mdb.models['Model-1'].parts['Part-1'].PartitionCellByDatumPlane(cells= 

    mdb.models['Model-1'].parts['Part-1'].cells.getSequenceFromMask(('[#1 ]',  

    ), ), datumPlane=mdb.models['Model-1'].parts['Part-1'].datums[2]) 

mdb.models['Model-1'].parts['Part-1'].DatumCsysByThreePoints(coordSysType= 

    CARTESIAN, name='Datum csys-1', origin= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[10], CENTER), point1= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[8], CENTER), point2= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[11], MIDDLE)) 

mdb.models['Model-1'].parts['Part-1'].CompositeLayup(description='',  

    elementType=CONTINUUM_SHELL, name='CompositeLayup-1', 

symmetric=False) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].Section( 

    integrationRule=SIMPSON, poissonDefinition=DEFAULT, preIntegrate=OFF,  

    temperature=GRADIENT, thicknessModulus=None, useDensity=OFF) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].ReferenceOrientation( 

    additionalRotationField='', additionalRotationType=ROTATION_NONE, 

angle=0.0 

    , axis=AXIS_2, fieldName='', localCsys= 

    mdb.models['Model-1'].parts['Part-1'].datums[4], orientationType=SYSTEM,  

    stackDirection=STACK_3) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].CompositePly( 

    additionalRotationField='', additionalRotationType=ROTATION_NONE, 

angle=0.0 

    , axis=AXIS_2, material='Material-1', numIntPoints=3, orientation= 

    mdb.models['Model-1'].parts['Part-1'].datums[4], orientationType=CSYS,  

    plyName='Ply-1', region=Region( 

    cells=mdb.models['Model-1'].parts['Part-1'].cells.getSequenceFromMask( 

    mask=('[#3 ]', ), )), suppressed=False, thickness=0.001, thicknessType= 

    SPECIFY_THICKNESS) 
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mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].CompositePly( 

    additionalRotationField='', additionalRotationType=ROTATION_NONE, 

angle=0.0 

    , axis=AXIS_2, material='Material-1', numIntPoints=3, orientation= 

    mdb.models['Model-1'].parts['Part-1'].datums[4], orientationType=CSYS,  

    plyName='Ply-2', region=Region( 

    cells=mdb.models['Model-1'].parts['Part-1'].cells.getSequenceFromMask( 

    mask=('[#3 ]', ), )), suppressed=False, thickness=0.001, thicknessType= 

    SPECIFY_THICKNESS) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].CompositePly( 

    additionalRotationField='', additionalRotationType=ROTATION_NONE, 

angle=0.0 

    , axis=AXIS_2, material='Material-1', numIntPoints=3, orientation= 

    mdb.models['Model-1'].parts['Part-1'].datums[4], orientationType=CSYS,  

    plyName='Ply-3', region=Region( 

    cells=mdb.models['Model-1'].parts['Part-1'].cells.getSequenceFromMask( 

    mask=('[#3 ]', ), )), suppressed=False, thickness=0.001, thicknessType= 

    SPECIFY_THICKNESS) 

mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN) 

mdb.models['Model-1'].rootAssembly.Instance(dependent=OFF, name='Part-1-1',  

    part=mdb.models['Model-1'].parts['Part-1']) 

mdb.models['Model-1'].StaticStep(name='Step-1', previous='Initial') 

mdb.models['Model-1'].fieldOutputRequests['F-Output-1'].setValues(variables=( 

    'U', 'UT', 'UR', 'RF', 'CF')) 

mdb.models['Model-1'].rootAssembly.ReferencePoint(point= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].InterestingPoint( 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].edges[8], CENTER)) 

mdb.models['Model-1'].rootAssembly.Set(name='m_Set-1', referencePoints=( 

    mdb.models['Model-1'].rootAssembly.referencePoints[4], )) 

mdb.models['Model-1'].rootAssembly.Surface(name='s_Surf-1', side1Faces= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].faces.getSequenceFromMask( 

    ('[#204 ]', ), )) 

mdb.models['Model-1'].Coupling(controlPoint= 

    mdb.models['Model-1'].rootAssembly.sets['m_Set-1'], 

couplingType=KINEMATIC,  

    influenceRadius=WHOLE_SURFACE, localCsys= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].datums[4], name= 

    'Constraint-1', surface= 

    mdb.models['Model-1'].rootAssembly.surfaces['s_Surf-1'], u1=ON, u2=ON, u3= 

    ON, ur1=ON, ur2=ON, ur3=ON) 

mdb.models['Model-1'].rootAssembly.Set(faces= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].faces.getSequenceFromMask( 

    ('[#110 ]', ), ), name='Set-2') 
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mdb.models['Model-1'].EncastreBC(createStepName='Step-1', localCsys= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].datums[4], name= 

    'BC-1', region=mdb.models['Model-1'].rootAssembly.sets['Set-2']) 

mdb.models['Model-1'].rootAssembly.Set(name='Set-3', referencePoints=( 

    mdb.models['Model-1'].rootAssembly.referencePoints[4], )) 

mdb.models['Model-1'].ConcentratedForce(cf2=100.0, createStepName='Step-1',  

    distributionType=UNIFORM, field='', localCsys= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].datums[4], name= 

    'Load-1', region=mdb.models['Model-1'].rootAssembly.sets['Set-3']) 

mdb.models['Model-1'].rootAssembly.setElementType(elemTypes=(ElemType( 

    elemCode=SC8R, elemLibrary=STANDARD, secondOrderAccuracy=OFF,  

    hourglassControl=DEFAULT), ElemType(elemCode=SC6R, 

elemLibrary=STANDARD),  

    ElemType(elemCode=UNKNOWN_TET, elemLibrary=STANDARD)), 

regions=( 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].cells.getSequenceFromMask( 

    ('[#3 ]', ), ), )) 

mdb.models['Model-1'].rootAssembly.seedPartInstance(deviationFactor=0.1,  

    minSizeFactor=0.1, regions=( 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'], ), size=0.05) 

mdb.models['Model-1'].rootAssembly.seedPartInstance(deviationFactor=0.1,  

    minSizeFactor=0.1, regions=( 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'], ), size=0.005) 

mdb.models['Model-1'].rootAssembly.seedEdgeBySize(constraint=FINER,  

    deviationFactor=0.1, edges= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].edges.getSequenceFromMask( 

    ('[#3ff00 ]', ), ), minSizeFactor=0.1, size=0.001) 

mdb.models['Model-1'].rootAssembly.seedEdgeBySize(constraint=FINER,  

    deviationFactor=0.1, edges= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].edges.getSequenceFromMask( 

    ('[#3ff00 ]', ), ), minSizeFactor=0.1, size=0.01) 

mdb.models['Model-1'].rootAssembly.seedEdgeBySize(constraint=FINER,  

    deviationFactor=0.1, edges= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].edges.getSequenceFromMask( 

    ('[#3ff00 ]', ), ), minSizeFactor=0.1, size=0.005) 

mdb.models['Model-1'].rootAssembly.seedEdgeBySize(constraint=FINER,  

    deviationFactor=0.1, edges= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].edges.getSequenceFromMask( 

    ('[#3ff00 ]', ), ), minSizeFactor=0.1, size=0.0005) 

mdb.models['Model-1'].rootAssembly.seedEdgeBySize(constraint=FINER,  

    deviationFactor=0.1, edges= 
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    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].edges.getSequenceFromMask( 

    ('[#3ff00 ]', ), ), minSizeFactor=0.1, size=0.001) 

mdb.models['Model-1'].rootAssembly.generateMesh(regions=( 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'], )) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].deletePlies(    ) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].CompositePly( 

    additionalRotationField='', additionalRotationType=ROTATION_ANGLE, 

angle= 

    90.0, axis=AXIS_2, material='Material-1', numIntPoints=3, orientation= 

    mdb.models['Model-1'].parts['Part-1'].datums[4], orientationType=CSYS,  

    plyName='Ply-1', region=Region( 

    cells=mdb.models['Model-1'].parts['Part-1'].cells.getSequenceFromMask( 

    mask=('[#3 ]', ), )), suppressed=False, thickness=0.001, thicknessType= 

    SPECIFY_THICKNESS) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].CompositePly( 

    additionalRotationField='', additionalRotationType=ROTATION_NONE, 

angle=a 

    , axis=AXIS_2, material='Material-1', numIntPoints=3, orientation= 

    mdb.models['Model-1'].parts['Part-1'].datums[4], orientationType=CSYS,  

    plyName='Ply-2', region=Region( 

    cells=mdb.models['Model-1'].parts['Part-1'].cells.getSequenceFromMask( 

    mask=('[#3 ]', ), )), suppressed=False, thickness=0.001, thicknessType= 

    SPECIFY_THICKNESS) 

mdb.models['Model-1'].parts['Part-1'].compositeLayups['CompositeLayup-

1'].CompositePly( 

    additionalRotationField='', additionalRotationType=ROTATION_NONE, 

angle=-a 

    , axis=AXIS_2, material='Material-1', numIntPoints=3, orientation= 

    mdb.models['Model-1'].parts['Part-1'].datums[4], orientationType=CSYS,  

    plyName='Ply-3', region=Region( 

    cells=mdb.models['Model-1'].parts['Part-1'].cells.getSequenceFromMask( 

    mask=('[#3 ]', ), )), suppressed=False, thickness=0.001, thicknessType= 

    SPECIFY_THICKNESS) 

mdb.models['Model-1'].rootAssembly.regenerate() 

mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,  

    explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,  

    memory=50, memoryUnits=PERCENTAGE, model='Model-1', 

modelPrint=OFF,  

    multiprocessingMode=DEFAULT, name='Job-e', 

nodalOutputPrecision=SINGLE,  

    numCpus=1, numGPUs=0, queue=None, scratch='', type=ANALYSIS,  

    userSubroutine='', waitHours=0, waitMinutes=0) 

mdb.jobs['Job-e'].submit(consistencyChecking=OFF) 

mdb.jobs['Job-e']._Message(STARTED, {'phase': BATCHPRE_PHASE,  
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    'clientHost': 'ntb-HPPB4310s', 'handle': 0, 'jobName': 'Job-e'}) 

mdb.jobs['Job-e']._Message(WARNING, {'phase': BATCHPRE_PHASE,  

    'message': 'WHENEVER A TRANSLATION (ROTATION) DOF AT A NODE IS 

CONSTRAINED BY A KINEMATIC COUPLING DEFINITION THE 

TRANSLATION (ROTATION) DOFS FOR THAT NODE CANNOT BE 

INCLUDED IN ANY OTHER CONSTRAINT INCLUDING MPCS, RIGID 

BODIES, ETC.',  

    'jobName': 'Job-e'}) 

mdb.jobs['Job-e']._Message(WARNING, {'phase': BATCHPRE_PHASE,  

    'message': 'MPCS (EXTERNAL or INTERNAL, including those generated from 

rigid body definitions), KINEMATIC COUPLINGS, AND/OR EQUATIONS WILL 

ACTIVATE ADDITIONAL DEGREES OF FREEDOM',  

    'jobName': 'Job-e'}) 

mdb.jobs['Job-e']._Message(ODB_FILE, {'phase': BATCHPRE_PHASE,  

    'file': 'C:\\Temp\\Job-e.odb', 'jobName': 'Job-e'}) 

mdb.jobs['Job-e']._Message(COMPLETED, {'phase': BATCHPRE_PHASE,  

    'message': 'Analysis phase complete', 'jobName': 'Job-e'}) 

mdb.jobs['Job-e']._Message(STARTED, {'phase': STANDARD_PHASE,  

    'clientHost': 'ntb-HPPB4310s', 'handle': 3840, 'jobName': 'Job-e'}) 

mdb.jobs['Job-e']._Message(STEP, {'phase': STANDARD_PHASE, 'stepId': 1,  

    'jobName': 'Job-e'}) 

mdb.jobs['Job-e']._Message(WARNING, {'phase': STANDARD_PHASE,  

    'message': 'The 3-direction at one or more points in one or more layers in 8200 

elements as defined in *ORIENTATION are in the opposite direction to the 

element normals. Either the 1 or 2 and the 3-direction defined in 

*ORIENTATION will be reversed. The elements have been identified in element 

set WarnElem3DirOppElemNormalStep1Inc1.',  

    'jobName': 'Job-e'}) 

mdb.jobs['Job-e']._Message(ODB_FRAME, {'phase': STANDARD_PHASE, 'step': 

0,  

    'frame': 0, 'jobName': 'Job-e'}) 

mdb.jobs['Job-e']._Message(STATUS, {'totalTime': 0.0, 'attempts': 0,  

    'timeIncrement': 1.0, 'increment': 0, 'stepTime': 0.0, 'step': 1,  

    'jobName': 'Job-e', 'severe': 0, 'iterations': 0, 'phase': STANDARD_PHASE,  

    'equilibrium': 0}) 

mdb.jobs['Job-e']._Message(MEMORY_ESTIMATE, {'phase': 

STANDARD_PHASE,  

    'jobName': 'Job-e', 'memory': 348.168928146362}) 

mdb.jobs['Job-e']._Message(ODB_FRAME, {'phase': STANDARD_PHASE, 'step': 

0,  

    'frame': 1, 'jobName': 'Job-e'}) 

mdb.jobs['Job-e']._Message(STATUS, {'totalTime': 1.0, 'attempts': 1,  

    'timeIncrement': 1.0, 'increment': 1, 'stepTime': 1.0, 'step': 1,  

    'jobName': 'Job-e', 'severe': 0, 'iterations': 1, 'phase': STANDARD_PHASE,  

    'equilibrium': 1}) 

mdb.jobs['Job-e']._Message(END_STEP, {'phase': STANDARD_PHASE, 'stepId': 

1,  

    'jobName': 'Job-e'}) 
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mdb.jobs['Job-e']._Message(COMPLETED, {'phase': STANDARD_PHASE,  

    'message': 'Analysis phase complete', 'jobName': 'Job-e'}) 

mdb.jobs['Job-e']._Message(JOB_COMPLETED, {'time': 'Wed Mar 11 14:48:04 

2015',  

    'jobName': 'Job-e'}) 

# Save by user on 2015_03_11-14.50.17; build 6.12-1 2012_03_13-20.44.39 119612 
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1.5 Script for FEM model using volume model 

#prumer 

d=0.01 

 

#uhel 

a=55 

 

#polomery 

r1=d/2 

r2=r1+0.001 

r3=r2+0.001 

r4=r3+0.001 

 

x1=d*0.1 

 

# -*- coding: mbcs -*- 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from optimization import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

 

mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=0.2) 

mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues( 

    decimalPlaces=3) 

mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 

    0.0, 0.0), point1=(-0.005, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 

    0.0, 0.0), point1=(-0.01, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 

    mdb.models['Model-1'].sketches['__profile__'].geometry[2], radius=r1,  

    textPoint=(0.0, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 

    mdb.models['Model-1'].sketches['__profile__'].geometry[3], radius=r2,  

    textPoint=(0.0, 0.0)) 

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-1', type= 

    DEFORMABLE_BODY) 

mdb.models['Model-1'].parts['Part-1'].BaseSolidExtrude(depth=1.0, sketch= 

    mdb.models['Model-1'].sketches['__profile__']) 
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del mdb.models['Model-1'].sketches['__profile__'] 

mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=0.2) 

mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues( 

    decimalPlaces=3) 

mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 

    0.0, 0.0), point1=(-0.005, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 

    0.0, 0.0), point1=(-0.01, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 

    mdb.models['Model-1'].sketches['__profile__'].geometry[2], radius=r2,  

    textPoint=(0.0, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 

    mdb.models['Model-1'].sketches['__profile__'].geometry[3], radius=r3,  

    textPoint=(0.0, 0.0)) 

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-2', type= 

    DEFORMABLE_BODY) 

mdb.models['Model-1'].parts['Part-2'].BaseSolidExtrude(depth=1.0, sketch= 

    mdb.models['Model-1'].sketches['__profile__']) 

del mdb.models['Model-1'].sketches['__profile__'] 

mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=0.2) 

mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues( 

    decimalPlaces=3) 

mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 

    0.0, 0.0), point1=(-0.005, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 

    0.0, 0.0), point1=(-0.01, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 

    mdb.models['Model-1'].sketches['__profile__'].geometry[2], radius=r3,  

    textPoint=(0.0, 0.0)) 

mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 

    mdb.models['Model-1'].sketches['__profile__'].geometry[3], radius=r4,  

    textPoint=(0.0, 0.0)) 

mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-3', type= 

    DEFORMABLE_BODY) 

mdb.models['Model-1'].parts['Part-3'].BaseSolidExtrude(depth=1.0, sketch= 

    mdb.models['Model-1'].sketches['__profile__']) 

del mdb.models['Model-1'].sketches['__profile__'] 

mdb.models['Model-1'].Material(name='Material-1') 

mdb.models['Model-1'].materials['Material-1'].Density(table=((1474.0, ), )) 

mdb.models['Model-1'].materials['Material-1'].Elastic(table=((156050000000.0,  

    6045000000.0, 6045000000.0, 0.328, 0.328, 0.328, 4431000000.0,  

    4431000000.0, 4431000000.0), ), type=ENGINEERING_CONSTANTS) 

mdb.models['Model-1'].CompositeSolidSection(layup=(SectionLayer( 

    thickness=0.001, orientAngle=90.0, numIntPts=1, material='Material-1',  

    plyName='Ply-1'), ), layupName='', name='Section-1', symmetric=False) 

mdb.models['Model-1'].CompositeSolidSection(layup=(SectionLayer( 

    thickness=0.001, orientAngle=a, numIntPts=1, material='Material-1',  

    plyName='Ply-2'), ), layupName='', name='Section-2', symmetric=False) 



109 

 

mdb.models['Model-1'].CompositeSolidSection(layup=(SectionLayer( 

    thickness=0.001, orientAngle=-a, numIntPts=1, material='Material-1',  

    plyName='Ply-3'), ), layupName='', name='Section-3', symmetric=False) 

mdb.models['Model-1'].parts['Part-1'].DatumCsysByThreePoints(coordSysType= 

    CARTESIAN, name='Datum csys-1', origin= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[0], CENTER), point1= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[1], CENTER), point2= 

    mdb.models['Model-1'].parts['Part-1'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-1'].edges[0], MIDDLE)) 

mdb.models['Model-1'].parts['Part-2'].DatumCsysByThreePoints(coordSysType= 

    CARTESIAN, name='Datum csys-1', origin= 

    mdb.models['Model-1'].parts['Part-2'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-2'].edges[0], CENTER), point1= 

    mdb.models['Model-1'].parts['Part-2'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-2'].edges[1], CENTER), point2= 

    mdb.models['Model-1'].parts['Part-2'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-2'].edges[0], MIDDLE)) 

mdb.models['Model-1'].parts['Part-3'].DatumCsysByThreePoints(coordSysType= 

    CARTESIAN, name='Datum csys-1', origin= 

    mdb.models['Model-1'].parts['Part-3'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-3'].edges[0], CENTER), point1= 

    mdb.models['Model-1'].parts['Part-3'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-3'].edges[1], CENTER), point2= 

    mdb.models['Model-1'].parts['Part-3'].InterestingPoint( 

    mdb.models['Model-1'].parts['Part-3'].edges[0], MIDDLE)) 

mdb.models['Model-1'].parts['Part-1'].MaterialOrientation( 

    additionalRotationField='', additionalRotationType=ROTATION_NONE, 

angle=0.0 

    , axis=AXIS_3, fieldName='', localCsys= 

    mdb.models['Model-1'].parts['Part-1'].datums[2], orientationType=SYSTEM,  

    region=Region( 

    cells=mdb.models['Model-1'].parts['Part-1'].cells.getSequenceFromMask( 

    mask=('[#1 ]', ), )), stackDirection=STACK_3) 

mdb.models['Model-1'].parts['Part-2'].MaterialOrientation( 

    additionalRotationField='', additionalRotationType=ROTATION_NONE, 

angle=0.0 

    , axis=AXIS_3, fieldName='', localCsys= 

    mdb.models['Model-1'].parts['Part-2'].datums[2], orientationType=SYSTEM,  

    region=Region( 

    cells=mdb.models['Model-1'].parts['Part-2'].cells.getSequenceFromMask( 

    mask=('[#1 ]', ), )), stackDirection=STACK_3) 

mdb.models['Model-1'].parts['Part-3'].MaterialOrientation( 

    additionalRotationField='', additionalRotationType=ROTATION_NONE, 

angle=0.0 

    , axis=AXIS_3, fieldName='', localCsys= 
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    mdb.models['Model-1'].parts['Part-3'].datums[2], orientationType=SYSTEM,  

    region=Region( 

    cells=mdb.models['Model-1'].parts['Part-3'].cells.getSequenceFromMask( 

    mask=('[#1 ]', ), )), stackDirection=STACK_3) 

mdb.models['Model-1'].parts['Part-1'].Set(cells= 

    mdb.models['Model-1'].parts['Part-1'].cells.getSequenceFromMask(('[#1 ]',  

    ), ), name='Set-2') 

mdb.models['Model-1'].parts['Part-1'].SectionAssignment(offset=0.0,  

    offsetField='', offsetType=MIDDLE_SURFACE, region= 

    mdb.models['Model-1'].parts['Part-1'].sets['Set-2'], sectionName= 

    'Section-1', thicknessAssignment=FROM_SECTION) 

mdb.models['Model-1'].parts['Part-2'].Set(cells= 

    mdb.models['Model-1'].parts['Part-2'].cells.getSequenceFromMask(('[#1 ]',  

    ), ), name='Set-2') 

mdb.models['Model-1'].parts['Part-2'].SectionAssignment(offset=0.0,  

    offsetField='', offsetType=MIDDLE_SURFACE, region= 

    mdb.models['Model-1'].parts['Part-2'].sets['Set-2'], sectionName= 

    'Section-2', thicknessAssignment=FROM_SECTION) 

mdb.models['Model-1'].parts['Part-3'].Set(cells= 

    mdb.models['Model-1'].parts['Part-3'].cells.getSequenceFromMask(('[#1 ]',  

    ), ), name='Set-2') 

mdb.models['Model-1'].parts['Part-3'].SectionAssignment(offset=0.0,  

    offsetField='', offsetType=MIDDLE_SURFACE, region= 

    mdb.models['Model-1'].parts['Part-3'].sets['Set-2'], sectionName= 

    'Section-3', thicknessAssignment=FROM_SECTION) 

mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN) 

mdb.models['Model-1'].rootAssembly.Instance(dependent=OFF, name='Part-1-1',  

    part=mdb.models['Model-1'].parts['Part-1']) 

mdb.models['Model-1'].rootAssembly.Instance(dependent=OFF, name='Part-2-1',  

    part=mdb.models['Model-1'].parts['Part-2']) 

mdb.models['Model-1'].rootAssembly.Instance(dependent=OFF, name='Part-3-1',  

    part=mdb.models['Model-1'].parts['Part-3']) 

mdb.models['Model-1'].rootAssembly.Coaxial(fixedAxis= 

    mdb.models['Model-1'].rootAssembly.instances['Part-2-1'].faces[1], flip=OFF 

    , movableAxis= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces[1]) 

mdb.models['Model-1'].rootAssembly.Coaxial(fixedAxis= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].faces[1], flip=OFF 

    , movableAxis= 

    mdb.models['Model-1'].rootAssembly.instances['Part-2-1'].faces[1]) 

mdb.models['Model-1'].rootAssembly.Coaxial(fixedAxis= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].faces[0], flip=OFF 

    , movableAxis= 

    mdb.models['Model-1'].rootAssembly.instances['Part-2-1'].faces[1]) 

mdb.models['Model-1'].rootAssembly.ParallelFace(fixedPlane= 

    mdb.models['Model-1'].rootAssembly.instances['Part-2-1'].faces[2], flip=OFF 

    , movablePlane= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].faces[2]) 
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mdb.models['Model-1'].rootAssembly.ParallelFace(fixedPlane= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].faces[2], flip=OFF 

    , movablePlane= 

    mdb.models['Model-1'].rootAssembly.instances['Part-2-1'].faces[2]) 

mdb.models['Model-1'].rootAssembly.DatumPlaneByThreePoints(point1= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].vertices[0],  

    point2= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].InterestingPoint( 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].edges[0], MIDDLE),  

    point3= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].InterestingPoint( 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].edges[1], MIDDLE)) 

mdb.models['Model-1'].rootAssembly.PartitionCellByDatumPlane(cells= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-

1'].cells.getSequenceFromMask( 

    mask=('[#1 ]', ), )+\ 

    mdb.models['Model-1'].rootAssembly.instances['Part-2-

1'].cells.getSequenceFromMask( 

    mask=('[#1 ]', ), )+\ 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].cells.getSequenceFromMask( 

    mask=('[#1 ]', ), ), datumPlane= 

    mdb.models['Model-1'].rootAssembly.datums[13]) 

mdb.models['Model-1'].rootAssembly.DatumCsysByThreePoints(coordSysType= 

    CARTESIAN, name='Datum csys-2', origin= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].InterestingPoint( 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].edges[10], CENTER) 

    , point1= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].InterestingPoint( 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].edges[8], CENTER),  

    point2= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'].vertices[0]) 

mdb.models['Model-1'].StaticStep(name='Step-1', previous='Initial') 

mdb.models['Model-1'].fieldOutputRequests['F-Output-1'].setValues(variables=( 

    'U', )) 

mdb.models['Model-1'].rootAssembly.ReferencePoint(point= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].InterestingPoint( 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].edges[8], CENTER)) 

mdb.models['Model-1'].rootAssembly.Set(name='m_Set-1', referencePoints=( 

    mdb.models['Model-1'].rootAssembly.referencePoints[16], )) 

mdb.models['Model-1'].rootAssembly.Surface(name='s_Surf-1', side1Faces= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].faces.getSequenceFromMask( 

    mask=('[#204 ]', ), )+\ 

    mdb.models['Model-1'].rootAssembly.instances['Part-2-

1'].faces.getSequenceFromMask( 

    mask=('[#204 ]', ), )+\ 
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    mdb.models['Model-1'].rootAssembly.instances['Part-3-

1'].faces.getSequenceFromMask( 

    mask=('[#204 ]', ), )) 

mdb.models['Model-1'].Coupling(controlPoint= 

    mdb.models['Model-1'].rootAssembly.sets['m_Set-1'], 

couplingType=KINEMATIC,  

    influenceRadius=WHOLE_SURFACE, localCsys= 

    mdb.models['Model-1'].rootAssembly.datums[15], name='Constraint-1',  

    surface=mdb.models['Model-1'].rootAssembly.surfaces['s_Surf-1'], u1=ON, u2= 

    ON, u3=ON, ur1=ON, ur2=ON, ur3=ON) 

mdb.models['Model-1'].rootAssembly.Set(name='Set-2', referencePoints=( 

    mdb.models['Model-1'].rootAssembly.referencePoints[16], )) 

mdb.models['Model-1'].ConcentratedForce(cf3=100.0, createStepName='Step-1',  

    distributionType=UNIFORM, field='', localCsys= 

    mdb.models['Model-1'].rootAssembly.datums[15], name='Load-1', region= 

    mdb.models['Model-1'].rootAssembly.sets['Set-2']) 

mdb.models['Model-1'].rootAssembly.Set(faces= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].faces.getSequenceFromMask( 

    mask=('[#110 ]', ), )+\ 

    mdb.models['Model-1'].rootAssembly.instances['Part-2-

1'].faces.getSequenceFromMask( 

    mask=('[#110 ]', ), )+\ 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-

1'].faces.getSequenceFromMask( 

    mask=('[#110 ]', ), ), name='Set-3') 

mdb.models['Model-1'].EncastreBC(createStepName='Initial', localCsys= 

    mdb.models['Model-1'].rootAssembly.datums[15], name='BC-1', region= 

    mdb.models['Model-1'].rootAssembly.sets['Set-3']) 

mdb.models['Model-1'].rootAssembly.seedPartInstance(deviationFactor=0.1,  

    minSizeFactor=0.1, regions=( 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'],  

    mdb.models['Model-1'].rootAssembly.instances['Part-2-1'],  

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1']), size=0.005) 

mdb.models['Model-1'].rootAssembly.seedEdgeBySize(constraint=FINER,  

    deviationFactor=0.1, edges= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-

1'].edges.getSequenceFromMask( 

    mask=('[#aa ]', ), )+\ 

    mdb.models['Model-1'].rootAssembly.instances['Part-2-

1'].edges.getSequenceFromMask( 

    mask=('[#aa ]', ), )+\ 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].edges.getSequenceFromMask( 

    mask=('[#aa ]', ), ), minSizeFactor=0.1, size=0.0002) 
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mdb.models['Model-1'].rootAssembly.seedEdgeByNumber(constraint=FINER, 

edges= 

    mdb.models['Model-1'].rootAssembly.instances['Part-1-

1'].edges.getSequenceFromMask( 

    ('[#a900 ]', ), ), number=20) 

mdb.models['Model-1'].rootAssembly.seedEdgeByNumber(constraint=FINER, 

edges= 

    mdb.models['Model-1'].rootAssembly.instances['Part-2-

1'].edges.getSequenceFromMask( 

    ('[#a900 ]', ), ), number=20) 

mdb.models['Model-1'].rootAssembly.seedEdgeByNumber(constraint=FINER, 

edges= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-

1'].edges.getSequenceFromMask( 

    ('[#a900 ]', ), ), number=20) 

mdb.models['Model-1'].rootAssembly.seedEdgeByNumber(constraint=FINER, 

edges= 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-

1'].edges.getSequenceFromMask( 

    ('[#5600 ]', ), ), number=20) 

mdb.models['Model-1'].rootAssembly.generateMesh(regions=( 

    mdb.models['Model-1'].rootAssembly.instances['Part-3-1'],  

    mdb.models['Model-1'].rootAssembly.instances['Part-2-1'],  

    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'])) 

mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,  

    explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,  

    memory=50, memoryUnits=PERCENTAGE, model='Model-1', 

modelPrint=OFF,  

    multiprocessingMode=DEFAULT, name='Job-55', 

nodalOutputPrecision=SINGLE,  

    numCpus=1, numGPUs=0, queue=None, scratch='', type=ANALYSIS,  

    userSubroutine='', waitHours=0, waitMinutes=0) 

mdb.jobs['Job-55'].submit(consistencyChecking=OFF) 

 

 

 


