
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Theoretical Computer Science

Bachelor’s thesis

Vehicle routing problem, its variants and

solving methods

Michal Poĺıvka

Supervisor: RNDr. Tomáš Valla, Ph.D.

10th May 2015

Acknowledgements

I would like to thank my supervisor Tomáš Valla for the time, support and
thoughts throughout the thesis. I would also like to thank my family and
friends for all their support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 10th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Michal Poĺıvka. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Poĺıvka, Michal. Vehicle routing problem, its variants and solving methods.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2015.

Abstrakt

Tato práce studuje Vehicle Routing Problem (VRP) a jeho varianty. Pro
kapacitńı verzi problému (CVRP) implementujeme varianty použ́ıvaných al-
goritmů a jako naše řešeńı navrhneme a implementujeme modifikaci dvou local
search metod, které ještě nebyli na tento problém nikým použity. Na třech
sadách instanćı provedeme měřeńı a porovnáńı těchto algoritmů s nejlepš́ımi
známými výsledky a free/open-source programy.

Kĺıčová slova optimalizace, lokálńı prohledáváńı, routovańı vozidel, CVRP,
VRP

Abstract

This thesis studies Vehicle Routing Problem (VRP) and its variants. We
also implement local search based algorithms for a capacitated version of the
problem (CVRP). We propose and implement two algorithms, which are based
on recently presented local search methods, that have not yet been applied
to CVRP. On three sets of benchmark instances, we test our algorithms and
compare them against best-known solutions and other solvers.

Keywords vehicle routing, optimization, local search, CVRP, VRP

ix

Contents

1 Introduction 1
1.1 Motivation and objectives . 1
1.2 Definition . 2
1.3 VRP variants . 3
1.4 Free/Open-source solvers . 4

2 Capacitated Vehicle Routing Problem 7
2.1 Introduction . 7
2.2 Literature . 8
2.3 Benchmarks . 8
2.4 Example . 10
2.5 Algorithms and strategies . 10
2.6 Implementation . 14
2.7 Computational results . 23
2.8 Conclusion . 31

3 Other versions and further directions 33
3.1 Cumulative Capacitated Vehicle Routing Problem 33
3.2 Further directions . 34

Bibliography 35

A Testing manual 39

B Acronyms 41

C Contents of enclosed CD 43

xi

List of Figures

2.1 CMT1 optimal solution . 10
2.2 CMT14 solution . 11
2.3 Uchoa-X-n1001-k43 solution . 11
2.4 Before and after the procedure Swap(4,5) 15
2.5 Before and after the procedure ReverseEdge(4,5) 16
2.6 Before and after the procedure DeleteAndInsert(5) 16
2.7 Savings concept . 17
2.8 Comparison of our algorithms on CMT instances 25
2.9 Dependency of SA on the number of customers on CMT instances 25
2.10 Comparison of our algorithms on Li et al instances 26
2.11 Dependency of SCHC on the number of customers on Li et al

instances . 27
2.12 Comparison of our algorithms on Uchoa et al instances 27
2.13 Dependency of SCHC on the number of customers on Uchoa et al

instances . 28
2.14 Dependency of solvers on the number of customers on CMT instances 29
2.15 Comparison with other solvers on CMT instances 29
2.16 Comparison with other solvers on Uchoa et al instances 30
2.17 Comparison with state-of-the-art algorithms 30

xiii

Chapter 1

Introduction

In this thesis we focus on vehicle routing problem, its variants, free/open-
source solvers and various solution methods and algorithms.

This first chapter gives an introduction to Vehicle Routing Problem (VRP).
We describe a motivation and objectives of this thesis. We also outline basic
definition and notation of the problem. After that we introduce the variants of
the problem and in the last section we mention and review available free/open-
source solvers.

In the second chapter we focus on Capacitated Vehicle Routing Problem
(CVRP), which we first introduce together with a literature review and com-
monly used algorithms. In the next section we acquaint the reader with our
implemented algorithms and strategies. We present three sets of benchmark
instances, which are then used to compare the strength of our algorithms
against the best known results and free/open-source solvers. Apart from com-
monly used algorithms we propose and implement two algorithms, which are
based on recently presented local search methods, that have not yet been
applied to CVRP.

1.1 Motivation and objectives

Vehicle routing problem has been extensively studied since 1959 (Dantzig and
Ramser [16]), when it was defined under the name Truck Dispatching Problem.
The problem appears in many forms in real life and solution to the problem
can save companies a lot of money. It is an important problem in the fields of
transportation, distribution, and logistics.

The problem can be simply describe as having a fleet of vehicles, number of
customers and depot, each vehicle starts from a depot, visits some customers
and returns back to the depot. At the end all customers should be served ex-
actly once, the objective function should be minimal and the solution should
be feasible with regard to the constraints. As it is classified as a combinat-
orial optimization and integer programming problem, the goal is to minimize

1

1. Introduction

an objective function. This function can vary according to the exact problem
specification, but mostly it is minimizing the sum of route lengths. The prob-
lem belongs to the class of NP-hard problems, therefore for large real-world
problems with many customers the exact solutions are not applicable. Some
part of the research is still developing new exact algorithms, which are able to
solve larger problems, but other part is studying heuristic and meta-heuristic
algorithms, which show excellent results in reasonable time. We study some
of these heuristic and meta-heuristic algorithms and we apply them to a spe-
cific variant of the problem known as Capacitated Vehicle Routing Problem
(CVRP). We have implemented some of the known algorithms and developed
their variants.

We have also applied variants of two new algorithms (LAHC, SCHC),
which are based on local search and have not been yet applied to CVRP. On
random benchmark instances, we have obtained with these two algorithms an
average gap A (Definition 1) equaled to 1.19 and 1.62 percent from best-known
solutions. We have shown, that these algorithms perform better, than widely
used SA, whose average gap is 2.61. We compare our algorithms with other
free/open-source solvers obtaining the minimal average gap.

1.2 Definition

The definitions of the problem vary depending on the constraints, graph and
objective function. The general problem is usually defined the same way as
the CVRP variant. It is defined on a complete undirected graph G = (V,E),
where V is a set {0, . . . , N} of vertices. Each vertex i excluding vertex 0
represents a customer and its demand di. There are N − 1 customers. Vertex
0, where every route Ri = {v0, v1, . . . , v`i+1}), vi ∈ V , and `i is the length of
the route Ri, starts and ends is called depot (v0 = v`i+1 = 0). Union of all Ri

is equal to V and the intersection is equal to v0, v`i+1. E is a set of edges ei,j ,
for i, j ∈ V and every edge ei,j has assigned a cost ci,j . The cost of the edge is
symmetrical. A fleet of m vehicles, all of them having the same capacity K is
dispatched from the depot. The input is G, N , K and we have to determine the
output m, R, which satisfies all constraints. Specifically, we have to determine
a number of vehicles m and their routes Ri, i ∈ {0, . . . ,m− 1}, such that the
solution is feasible with respect to Constraint 1–4.

• The basic constraint is on capacity, where the total demand of route
does not exceed the vehicle capacity (Constraint 1)

Constraint 1 ∑
v∈Ri

dv < K

2

1.3. VRP variants

• Each customer is visited only once by exactly one vehicle (Constraint
2–3)

Constraint 2 ⋃
i=0,...,m−1

Ri = V

Constraint 3

Ri ∩Rj = {0}, for{i = 0, . . . ,m− 1}, {j = 0, . . . ,m− 1}, i 6= j

The solution consists of a set of m cycles sharing the depot. In many variants
of the problem a common objective function is to minimize the total cost
C(S) of the solution S (Constraint 4). However the objective function can
vary according to the problem specification.

Constraint 4

C(S) =

m∑
i=0

C(Ri),whereC(Ri) =

li∑
k=0

ck,k+1

1.3 VRP variants

Over the period of more than 50 years of research there has been described
many variants of the previously defined problem. We mention few of them
to show how wide and complex the problem is. For further information we
advise the reader to read a book about VRP (Golden, Raghavan, and Wasil
[21], Toth and Vigo [35]).

The oldest and most studied variants are:

Capacitated Vehicle Routing Problem (CVRP)
The problem has been defined in previous section and we can find it in
real-life problems, where shipment of products is involved. We study
this problem in the next chapter.

Vehicle Routing Problem with Time Windows (VRPTW)
VRPTW (Solomon [33]) is a variant, where the objective is to serve
the demands of customers in predefined time windows. There has been
variants with soft windows allowed (we can deliver in different time with
some penalty).

Vehicle Routing Problem with Pick-Up and Delivery (VRPPD)
VRPPD (Solomon and Desrosiers [34]) is similar to CVRP, but we have
two types of items. One, which we need to deliver from the depot to
customers and the other to deliver from customers to the depot.

3

1. Introduction

Other studied variants include some of these features:

• Dynamic: some customers are not known in advance and are added in
real-time.
• Heterogenous: there exist different types of vehicles with different capa-

cities.
• Multiple depots: there exist M depots, which can or does not need to

have assigned vehicles and we solve the problem as in CVRP case. There
can be a variant, that a vehicle have to return back to the same depot
from which started the route.
• Periodic: we have a list of customers to serve and times, when we can

operate and we need to cut and solve the problem in D days.
• Split delivery: we can split the delivery from customer into more cars,

so that one customer can be visited by more than one car.
• Stochastic: one or more components are random (customer i presented

with probability pi, random demands, random cost cij ,...). First solution
is generated before knowing the values and second solution corrects that
solution after knowing the random variables.
• With backhauls: similar to VRPPD, but with a restriction, that all

demands on route ri has to be completed before any pick-ups are made
on that route.
• With satellite facilities: these can replenish a vehicle on a route, so that

the vehicle can continue to serve customers until specified.

Because of the complex structure of real-life problems, there exists numerous
combinations of these and other variants.

1.4 Free/Open-source solvers

There has been few free/open-source solvers, which can solve different types
of VRP with different number of customers. For CVRP, we present at the end
of this chapter results obtained on benchmark instances from some of these
algorithms compared with our implemented algorithms.

We present a summary of the solvers, which implement some more complic-
ated and promising algorithms (we have excluded some, which implement only
basic heuristics) and their brief description obtained from the cited sources in
addition with some extra findings.

Jsprit [31] Jsprit is a java based, open-source toolkit for solving rich trav-
eling salesman (TSP) and vehicle routing problems (VRP). It is core
meta-heuristic algorithm uses ruin-and-recreate principle (it destroys
part of the solution and recreates it in another way). For more in-
formation about the algorithm visit the cited source. The development
of the library is active and it is used by ODL Studio [3] software.

4

1.4. Free/Open-source solvers

Open-VRP [6] Open-VRP is a framework to model and solve VRP-like
problems for students, academics, businesses and hobbyist alike. It in-
cludes implementation of greedy heuristics and tabu search. It is written
in LISP and there has not been any activity in development for more
than 3 years.

OptaPlanner [32] OptaPlanner is a constraint satisfaction solver written in
Java. It supports many different problems and includes their examples.
It is still very active, but during our tests it has not proved very effective
in solving CVRP. However, due to the fact that it is a general solver it
gave quiet good results.

SYMPHONY [1] SYMPHONY is an open-source solver for mixed-integer
linear programs (MILPs) written in C and hosted by COIN-OR website.
It also supports a parallel execution.

VRP Spreadsheet Solver [17] The Microsoft Excel workbook VRP Spread-
sheet Solver is presented as an open source unified platform for represent-
ing, solving, and visualising the results of VRP. It unifies Excel, public
GIS and meta-heuristics. It is said, that it can solve VRP with up to 200
customers. However, it is available only to VeRoLog members, which we
could obtain only by registering and attending some VeRoLog workshop
or conference.

VRPH [22] VRPH is an open source library of heuristics for the capacit-
ated Vehicle Routing Problem (VRP). It includes several example ap-
plications that can be used to quickly generate good solutions to VRP
instances containing thousands of customer locations. It has been de-
veloped as part of Chris Groer is dissertation while at the University of
Maryland with advisor Bruce Golden. It is currently hosted on COIN-
OR website, but there is not any new version since the first release in
2009.

Vroom [30] Vroom contains different libraries and frameworks especially for
solving a dynamic VRP. It has been implemented as a part of Ph.D.
dissertation and there is not any sign of development going on.

5

Chapter 2

Capacitated Vehicle Routing
Problem

2.1 Introduction

Capacitated Vehicle Routing Problem (CVRP) is one of the most studied vari-
ants of VRP. It is known to be NP-hard problem, which generalizes Travelling
Salesman Problem (TSP).

The general VRP problem definition uses the definition of CVRP, which
we have defined in chapter 1. The objective is to minimize the sum of the
route lengths (Definition 4). Here we present a minimal version of a general
integer programming formulation that has been described in Bodin, Golden,
Assad, and Ball [8].

Input constants

• m = number of vehicles

• n = number of customers, indexed 1 to N , 0 is depot

• K = capacity of vehicle

• di = demand of customer i

• cij = cost of traversing edge (i,j)

Variables

• xkij = 1, if vehicle k travels directly from customer i to customer j; 0,
otherwise

7

2. Capacitated Vehicle Routing Problem

Integer Linear Program for CVRP:

min

m∑
k=1

n∑
i=1

n∑
j=1

cij · xkij (2.1)

Subject to:

m∑
k=1

n∑
i=1

xkij = 1, for j ∈ {1, . . . , n} (2.2)

n∑
i=1

xkit −
n∑

j=1

xktj = 0, for k ∈ {1, . . . ,m}, t ∈ {1, . . . , n} (2.3)

n∑
i=1

di ·
n∑

j=1

xkij ≤ K, for j ∈ {1, . . . ,m} (2.4)

Condition 2.1 signifies, that the total distance is to be minimized. With
condition 2.2 we ensure, that each customer is served by exactly one vehicle.
Condition 2.3 represents route continuity. If a vehicle node visits customer, it
must also leave him. The capacity constraint is satisfied by condition 2.4.

2.2 Literature

The CVRP literature is very rich. It is very difficult to sort all the published
articles and it would take plenty of pages to touch only the surface (google
scholar shows around 548 000 articles on VRP and 16 100 results covering
CVRP). We summarize the most important algorithms and we forward the
reader to other sources for more details.

There is a book published on VRP problem (Golden, Raghavan, and Wasil
[21]), which also includes chapters on CVRP. It focuses on the last advances,
new VRP variants and approaches. It provides a unified presentation of re-
search results from the year 2000 till 2008.

In 2014, the first book has been replaced by a second edition (Toth and
Vigo [35]), whose text is either completely new or significantly revised. We
have not been able to obtain and study this book and we only mention it,
because from it is abstract it seems like a complete state-of-the-art coverage
of VRP, which is very rare or impossible to find otherwise.

2.3 Benchmarks

There are many benchmark instances for the problem, most of them having
up to 200 customers. For the purpose of testing we have chosen 3 different
benchmark sets. The summary and other benchmark sets can be found in
Uchoa, Pecin, Pessoa, Poggi, Subramanian, and Vidal [36].

8

2.3. Benchmarks

Christofides, Mingozzi and Toth (CMT) (1979) [13]
This set contains 14 instances with a range of customers between 50
and 199. They have random structure and in instances 11 to 14 the
customers are clustered in groups. Some of the instances also have a
constraint on maximum length of a route. All the instances in this set
has been solved to optimum by very sophisticated solvers and most of
modern meta-heuristic approaches can solve most of them to optimal
value. We have chosen this set, because it has quite small number of
customers and some of open-source solvers have been tested on it too.
With a little playing with the arguments of our algorithms we were able
to solve all instances to optimum.

Li et al. (2005) [27]
This set contains 12 instances with a range of customers between 560
and 1200. It includes 3 largest instances ever published in research
papers: 1040, 1120 and 1200 customers. This set has been very popular,
because of its size. However the set is extremely artificial and all the
customers are located in concentric circles around the depot. The routes
in best known solutions have almost identical shapes, or the solution is
somehow symmetrical. The optimum has not been proved in any of
them yet. From all 3 benchmark sets our algorithms had most problems
with this one and has on average differ less than 6% from the best known
value. We think that the big gap from the best known solution is mainly
because of the artificial structure and positioning of the customers. Our
algorithms are based on local improvements, which are difficult to make
if all neighbours of a customer have similar distances to that customer.

Uchoa et al. (2014) [36]
This is a recently published set, which consists of 100 instances with
a range of customers between 100 and 1000. All the customers are
generated in random clusters. This new set was designed in order to
provide a more comprehensive and balanced experimental setting and
is intended to be primarily used in the next years. If we compare our
algorithm to the state-of-the-art algorithms compared in Uchoa, Pecin,
Pessoa, Poggi, Subramanian, and Vidal [36], it appears, that in some
instances we can compete with them and with bigger problem size our
running time is much less. More closely we will look on this in the
comparison section.

The VRP community tends to compete in providing the best-known solu-
tion for each instance. CVRPLIB [5] is a good resource, which have the input
data for all popular benchmarks from the literature accompanied with their
best-known solutions. They also organize a challenge for exact methods of-
fering 300–500 US dollars as a prize. There exists many research groups and
time from time there is a new challenge, for example [5].

9

2. Capacitated Vehicle Routing Problem

2.4 Example

Input is specified in input file with TSPLIB extension ([4]). Customers are
points allocated in a 2-D coordination system.

Output is both graphical and textual. Textual output contains a route
number and a permutation of costumers, which are in that route in the order
of traversing the route. At the end is specified total cost of the solution.

Graphical output of a solution consists of routes, each having a different
colour. Customers are illustrated as points in 2-D coordination system. Fig-
ures 2.1–2.3 show a graphical output for benchmark instances described in
2.3. Figure 2.1 shows an optimal solution consisting of 5 routes to a problem
with 50 customers.

Figure 2.1: CMT1 optimal solution

Figure 2.2 shows a best-known solution consisting of 11 routes to a problem
with 100 customers, which are being clustered. In this problem, there was also
a restriction on a maximum route duration. The optimality of this solution
has not been proved.

Figure 2.3 shows a complex solution consisting of 43 routes to a problem
with 1000 customers. The gap between this and the best known solution is
only 1,63%.

2.5 Algorithms and strategies

In the beginning of algorithm development for CVRP, researchers started with
exact algorithms and some basic heuristics, however later it showed, that for

10

2.5. Algorithms and strategies

Figure 2.2: CMT14 solution

Figure 2.3: Uchoa-X-n1001-k43 solution

11

2. Capacitated Vehicle Routing Problem

the real-life problems the exact algorithms are usually slow and the basic
heuristic do not give a very good solution. So the research went in direction
of meta-heuristics. Firstly it concentrated on local search kind of strategies,
but recently more and more research is in population search algorithms. There
has also been some improvement in exact approaches, but they still can not
and will not be able to cope in near future with large data-sets. We provide a
brief information about all the methods used for solving CVRP and later an
in-depth description of methods and strategies we have used in the thesis.

2.5.1 Exact algorithms

Because of the NP-hard nature of the problem (Lenstra and Kan [26]), exact
algorithms can not solve large instances. They can solve instances from the
literature with up to 135 customers (Fukasawa, Longo, Lysgaard, de Aragão,
Reis, Uchoa, and Werneck [18]). They are very complex and solved with
specialized solvers using mixed-integer linear model formulation. We have not
implemented these methods, but we mention them for completeness. The two
common strategies are:

• Branch and bound: state-space search. Let set of solutions form a tree.
The algorithm explores this tree and in every branch checks the lower
and upper estimated bounds. If it is not satisfied, the solution is dis-
carded.

• Branch and cut: generalization of branch and bound where, after solving
the LP relaxation, and having not been successful in pruning the node
on the basis of the LP solution, we try to find a violated cut. If one or
more violated cuts are found, they are added to the formulation and the
LP is solved again. If none are found, we branch.

To our acquired knowledge from Uchoa, Pecin, Pessoa, Poggi, Subramanian,
and Vidal [36], there has been recently published a Branch-Cut-and-Price al-
gorithm (BCP) (Pecin, Pessoa, Poggi, and Uchoa [29]), which is very complex
and can solve most instances up to 275 customers. The number of customers,
that can solve also depends on Q and the length of the routes. The computa-
tional time can vary from minutes to hours.

2.5.2 Heuristics

These include classical heuristic methods which have been developed the earli-
est and which are recently used as a basic solutions for other algorithms. They
search a limited search space, but their advantage is speed and in most cases
simplicity. The typically produce good quality solutions, but not such good as
meta-heuristics, because they easily get stuck in local minima. There exists
two kinds – constructive and improvement heuristics. Constructive methods
perform well in constructing a basic solution.

12

2.5. Algorithms and strategies

• Clarke and Wright saving algorithm: the most commonly used algorithm,
which is very fast and performs quite well on CVRP. Full description and
pseudo-code can be found in implemented strategies and algorithms sec-
tion.

• Route first, cluster second: we first construct a giant Travelling Salesman
Problem (TSP) tour and then we cut the tour into feasible vehicle routes.
The cutting phase if performed by solving a shortest path problem on an
acyclic graph. Having a graph consisting from the TSP path and adding
feasible edges, feasible edges, where edge (i, j) is the cost of having in
that route nodes in between.

• Cluster first, route second: we first cluster the customers so that they are
close to each other and their weights does not exceed car is capacity. This
is obtained by solving a Generalized Assignment Problem (GAP). Then
each cluster is one route, so we solve it by TSP. There are more ways
how to form clusters and an interesting one is called Sweep Algorithm,
which forms the clusters by rotating a ray centered at the depot by
using smallest angle from previous customer, till they exceed capacity
of a vehicle.

Improvement heuristics use exchange and relocation operators in local search.
They are also so-called neighbourhoods.

• Local search – Iteratively and locally improves objective function. It will
be described more in the implemented algorithms and strategies section.

• Neighbourhoods – Neighbourhood is a solution, which can be obtained
from the current solution applying a local operator (exchange, swap,
etc,. . .). There exists numerous local operators and we later in the text
provide a description and reasons, which we have used and why.

2.5.3 Meta-heuristics

The key-point of meta-heuristics is to explore deeper promising regions of a
search space. They include mechanisms, which make sure, that they do not
get stuck in local optima and if they do, they have a chance to get out of
it. The quality of solutions is very high in a relatively short time, but they
are more sensible to parameters setting. There has recently been plenty of
new meta-heuristics and we name just few of them and will later provide an
in-depth description of those we have implemented.

• Genetic algorithms: today they are receiving plenty of attention and
their performance is comparable or better than local search based ones.
They make a simultaneous multiple way search. Our focus was not on
these and the reader can read more about these in Goldberg [20].

13

2. Capacitated Vehicle Routing Problem

• Local search based: these include local search variants, which are able
to get out of local minima and search intensively around promising solu-
tions. We provide our implementation and comparison of some of these.

2.5.4 Choosing strategies

Strategies used in local search based algorithms to decide which neighbour-
hood should be picked as a new solution.

• First fit: picks the first neighbouring solution, that satisfies the con-
straints. The advantage is, that it usually finds a solution quickly. How-
ever, if there are not many feasible solutions it can end up searching
through all of them. The disadvantage is, that it picks always the same
neighbour.

• Best fit: tries all the possible neighbouring solutions and picks the best
one. The advantage is, that it always picks the best neighbourhood. The
disadvantage is, that it always picks the same neighbourhood and has to
search all neighbourhoods, which in G costs at least O(N2) operations,
where N is the number of customers.

• Random fit: randomly chooses the neighbourhood solution, that satisfies
the constraints. The advantage is, that it adds randomization to the
algorithm and so we have a bigger chance not to end up in the same
local minimum. However, if we have little feasible neighbourhoods left,
it can take more time to find the feasible one.

2.6 Implementation

We have implemented various heuristics and meta-heuristics algorithms. We
tested them on many benchmark instances from which we choose three most
distinct ones. We have also compared our implementation to free and open-
source solvers. Two of our implemented algorithms (Late Acceptance Hill-
Climbing algorithm and Step Counting Hill-Climbing algorithm) have been
developed very recently and we have not found any articles relating them to
the CVRP problem. We show that they have a big potential in solving VRP
problems and obtaining a very good solution in a reasonable time.

2.6.1 Neighbourhood operations

Neighbourhood is a solution, which we can obtain by applying an operation
to the current solution. We have implemented 4 neighbourhood operations,
which are used in some of the following algorithms to improve the solution.
With each neighbourhood operation we provide a description and a reason
why do we choose it. We first define a predecessor and successor of a node

14

2.6. Implementation

in a route, before applying a neighbouring operation. Let i be a node from
{1,. . . ,N}. Having a route, which contains i and which permutation of nodes
symbolizes the order of traversing these nodes from left to right, let the pre-
decessor ip be a node just before i and the successor is be a node just after i
in that permutation.

• Swap procedure (Figure 2.4) takes two different nodes i, j from {1,. . . ,N}
and swaps these nodes. Having a sub-route (ip, i, is) and sub-route
(jp, j, js), we swap the nodes i, j, so that we get sub-routes (ip, j, is)
and (jp, i, js). This operation is the easiest and it is used in many prob-
lems, which are solved using local search. In CVRP it allows us to get
rid of between-route x-crossings as we can see in figure below. It is both
in and between-route operation.

Depot

1

2

3

4

5 6

7 Depot

1

2

3

4

5 6

7

Figure 2.4: Before and after the procedure Swap(4,5)

• Reverse edge procedure (Figure 2.5) takes two different nodes i, j from
{1, . . . , N}, which have a common route and reverses the sub-route from
i to j including both i and j. Having a sub-route (ip, i, is, . . . jp, j, js)
we reverse the sub-route and obtain (ip, j, jp, . . . is, i, js) (if the number
of nodes in the sub-route are ≤ 3, we apply the swap procedure with
parameters i, j). In heuristic solutions we usually see x-crossings, which
can be fixed by applying this operation without violating capacity con-
straints. It is an in-route operation.

• Delete and insert procedure (Figure 2.6) takes a node i from {1, . . . , N},
deletes it and inserts it in the best possible place among the routes. Let
C(S) be the cost of the solution after deleting node i (sub-route (ip, i, is)
changes to sub-route (ip, is)). Let cost C(S∗) be the cost after inserting
i between nodes j, js, for j ∈ 0, . . . , N . We insert i between j, js, so
that C(S∗) is minimal. It allows us to change the number of customers

15

2. Capacitated Vehicle Routing Problem

Depot

1

2

3

45

6 7

8 Depot

1

2

3

45

6 7

8

Figure 2.5: Before and after the procedure ReverseEdge(4,5)

in routes and decrease the number of routes. It is both in-route and
between-route operation.

Depot

1

2

3

5

4

6

7 Depot

1

2

3

5

4

6

7

Figure 2.6: Before and after the procedure DeleteAndInsert(5)

• Double delete and double insert procedure takes two different nodes i, j
from {1, . . . , N}, which are then deleted at once and then reinserted at
the best place in the opposite routes (the same way as in the “Delete and
insert procedure”). This operation is useful if we have very tight capacity
constraints and can not use single delete and insert operation. It seems
very similar to swap operation, but it allows us to both restructure the
number of customers in routes and to swap and insert at best possible
place in one operation. Let C(S) be the cost of current solution and
let C(Sn) be the cost of the solution Sn after applying this operation.
We can also get to solution Sn through solutions S0, . . . , Sn by applying

16

2.6. Implementation

swap operations. However, it can happen, that Si, for i ∈ {0, . . . , n},
will end up in local minima and we will not be able to reach Sn.

2.6.2 Closest search

Closest search is an important, but not well studied strategy used in local
search algorithms. It searches candidates for possible neighbourhood opera-
tions only in predefined closest distance. In our tests we have used a predefined
value 20 · log(n). We have also tested our algorithms by picking the neighbour
using the closest search in 50, 75 and 99 percent cases. In the result section,
we show, that using the closest search in 99 percent cases is the best choice.

2.6.3 Savings algorithm

Savings algorithm published in 1964 (Clarke and Wright [14]) is found in
many algorithms as a way to compute basic solution. There has also been few
parameterized variants, which are summarized in Corominas, Garcıa-Villoria,
and Pastor [15]. We have implemented a version with lambda parameter
(d[i][j] on line 5 of Algorithm 1 would change into lambda · d[i][j], where
lambda is a random real number in from the interval (0,2)), but it has not
shown any improvement our meta-heuristic algorithms. It only helps to obtain
different basic solutions. However, as most of our meta-heuristics have a
random element build-in, we do not need to obtain for them a random basic
solution.

We first illustrate the basic savings concept (Figure 2.7), that we can
obtain saving if we connect two routes R1, R2 into one route R3. Let C(R1)
be the cost of R1 and C(R2) be the cost of R2. The cost of R3 is calculated
as follows: R1 + R2 − ci,0 − c0,j + ci,j , where ca,b is the cost of traversing ea,b.
The saving cost is only the difference between the current solution and the
solution after applying the operation. It is calculated on line 5. After we have

Depot

12

Depot

12

Figure 2.7: Savings concept

calculated all possible combinations of savings Vi,j , for i, j ∈ {1, . . . ,K}, we
sort them in descending order and starting from the beginning we always get
one Vi,j with two customers i, j. If they are not in the same route, we decide if

17

2. Capacitated Vehicle Routing Problem

Algorithm 1 Savings algorithm

1: procedure algorithmSavings
2: Initialize each customer in his own route
3: for i = 1, . . . ,K do
4: for j = 1, . . . ,K do
5: s[it].cost← d[i][0] + d[0][j]− d[i][j]
6: s[it].i← i
7: s[it].j ← j
8: it← it + 1

9: Sort s in descending order
10: for all x in s do
11: a← x.i
12: b← x.j
13: if ConstraintsViolated (a,b) then
14: continue
15: if a.next = depot AND b.next = depot then
16: reverseRoute (b)

17: if a.next = depot AND b.prev = depot then
18: connectRoutes (a,b)

we can connect them or not and how to connect them. We can connect them
only if they are at the beginning or end of a route ((ip = 0 or is = 0) and
(jp = 0 or js = 0)). There can only be two situations. Either both of them are
at the end of the route (ip = 0 and jp = 0) or one of them is at the beginning
and one at the end ((ip = 0 and js = 0) or (jp = 0 and is = 0)). Because
on lines 3–4 we have allowed savings Vi,j and Vj,i, we now work only with one
saving, where jp = 0 and is = 0 (Algorithm 1, line 17). If js = 0 and is = 0,
we first apply the reverse route procedure on the whole route, which contains
node j. Finally if jp = 0 and is = 0, we connect the routes by deleting e0,j

and ei,0, and by introducing ei,j .
The algorithm proceeds with other pairs of nodes and is cutting number of

routes, which are contained in final solution. In general, the number of routes
in final solution is minimal, or very close to the minimum possible.

2.6.4 Hill-Climbing algorithm

We first describe general local search algorithm (LS) and then changes made
to it. Every LS needs a basic solution Sb, which becomes current solution S.
It then iteratively performs specified operation O and obtains a new solution
S′. We use the neighbouring operations described earlier. We decide if the
new solution is feasible and should be used or not (if yes, we replace S with
S′) and repeats the whole process. Every iteration we try to make a local
change O to S.

18

2.6. Implementation

The solution function have at least one global minimum and many local
minima. Because of the nature of LS, we can not prove optimality of the result.
LS can converge and stop in local minima. Hill-Climbing (HC) is a basic

Algorithm 2 Hill-Climbing algorithm

1: procedure algorithmHillClimb
2: S ← feasible solution
3: C(S)← cost(S)
4: while 1 do
5: S′ ← BestFeasibleNeighbourOf(S)
6: C(S′)← cost(S′)
7: if C(S′) < C(S) then
8: S ← S′

9: C(S)← C(S′)
10: else
11: break

algorithm based on local search. It always chooses feasible neighbourhood
solution (based on choosing strategy – best, first or random fit) that improves
the objective function and if it can not find one, it exits. Generally, we get a
slight improvement of Sb, but as HC quickly converges to local minima and
has no way to get out, the improvement is negligible to the improvement of
following algorithms.

2.6.5 Late Acceptance Hill-Climbing algorithm

The Late Acceptance Hill-Climbing (LAHC) (Bykov [10], Burke and Bykov
[9]) is a new meta-heuristic invented and presented by Yuri Bykov in 2008.
HC accepts a new solution if it is better than the current one. LAHC accepts a
new solution if it is not worse than a solution, which was current n iterations
backward. The advantage of LAHC is, that it has only one initialization
parameter pL, which we have to set-up based on the input data.

In the time of writing this thesis google scholar has not showed any results
of applying LAHC on CVRP and showed only 118 results on applying LAHC
to other problems. Just to compare, HC shows 66 100 results. The important
element and only parameter is the length pL of the lastCosts array. It con-
tains last pL accepted solution values C(Si), for i ∈ {0, . . . , pL}. When we
find a random feasible solution, which is not worse than C(Sc), where c = n
mod pL, we make it a current solution and insert it into lastCosts at position
n mod pL. In our implementation we have chosen a time-stopping criteria of
five-minutes and after specified number of iterations without improving solu-
tion we restart the algorithm by increasing all values in the array (parameters
used in testing are specified in the result section).

19

2. Capacitated Vehicle Routing Problem

Algorithm 3 Late Acceptance Hill-Climbing algorithm

1: procedure algorithmLAHC
2: S ← feasible solution
3: C(S)← cost (S)
4: lastCosts[]← C(S)
5: n← 0
6: while Stopping criteria not met do
7: S′ ← FeasibleNeighbourOf (S)
8: C(S′)← cost (S′)
9: if C(S′) ≤ C(S) or C(S′) ≤ lastCosts[n mod pL] then

10: S ← S′

11: C(S)← C(S′)

12: lastCosts[n mod pL]← C(S)
13: n← n + 1

LAHC can also accept worsening solutions, so it does not get stuck in local
minima so often and when it does, the combination of the accepting criteria
and restarts lets us most of the time escape the local minima and explore
other regions of the search space.

The performance depends on pL of lastCosts. If pL = 1, LAHC degrades
to HC. With bigger pL LAHC explores more of the search space, takes more
time, has a better chance finding a better solution (bigger chance not to get
stuck in local minima, but converges slower).

2.6.6 Step Counting Hill-Climbing algorithm

Meta-heuristic presented in 2013 (Bykov [11]), which is simpler than LAHC.
Our implemented variant outperformed LAHC and it seems to be very reliable
on different data-sets. Since year 2013, when it was presented, it has been
applied only to few problems and we show, how good results in reasonable
time it can give for CVRP. Google scholar mentions this algorithm only 18
times in total and never in relation with any variant of VRP. The algorithm
has a parameter pL, which signifies how many iterations we allow a solution
to be accepted according to an old solution cost, which is stored in B. In
other words, a new neighbouring solution is accepted, if its cost is in a closed
interval [0, B], where B changes every n accepted iterations. This means, that
we can accept a solution, that is worse than the actual solution, but it will
never be worse than a solution, which was best before n iterations.

On lines 9–12, Algorithm 4 accepts random neighbouring solution, which
is better or equal to the current solution, or it is better than the upper-bound
B. If we reach the maximum of iterations allowed (line 13), we update B with
the actual cost. So we allow the algorithm to search neighbouring solutions

20

2.6. Implementation

Algorithm 4 Step Counting Hill-Climbing algorithm

1: procedure algorithmSCHC
2: S ← feasible solution
3: C(S)← cost (S)
4: B ← C(S)
5: n← 0
6: while Stopping criteria not met do
7: S′ ← FeasibleNeighbourOf (S)
8: C(S′)← cost (S′)
9: if C(S′) ≤ C(S) or C(S′) < B then

10: S ← S′

11: C(S)← C(S′)
12: n← n + 1

13: if pL ≤ n then
14: B ← C(S)
15: n← 0

in an interval, which is every pL steps more and more bounded by B, slowly
converging to global minimum with a chance of escaping local minima.

Furthermore, we can improve the speed of the algorithm by dynamically
updating the parameter pL. If pL = 1, SCHC becomes a HC algorithm as in
the case of LAHC. We want this feature, when we have many possible neigh-
bourhood solutions, which can quickly improve the cost function. However,
when we get closer to global minimum, we have less feasible neighbourhood
solutions, that improve the cost function and we could get into local minima,
so we accept solutions, which are worse, than current one. This can speed-up
the process, but it is difficult to decide, how to update pL.

We have also implemented restarts. It means, that if we get stuck at the
same cost for a specified number of iterations, we add a value to B (number
of restarts times a random number, which is modulated by an actual cost).
See result section for more information on testing.

2.6.7 Simulated Annealing

Simulated annealing (SA) (Harmanani, Azar, Helal, and Keirouz [23]) is in
optimization world a well-known method used to generate approximate solu-
tions to large combinatorial problems and was first introduced by Kirkpatrick,
Gelatt, and Vecchi [25].

SA begins with a basic solution and using the local search accepts the
neighbourhood solutions if they are better than the current solution, otherwise

it is accepted with a probability p = e
−∆C
T , where ∆C is a difference between

actual and the neighbouring solution cost and T is a temperature. T is being

21

2. Capacitated Vehicle Routing Problem

decreased by fT with each iteration and so does the p. Eventually T stops by
reaching the temperature eT .

The algorithm is based on the idea, that if we set T high enough, we allow
more room for searching the neighbouring solutions and as we converge to
global minimum, the algorithm accepts more and more only the improving
moves. If T is very low, the algorithm behaves as HC.

It is a very effective algorithm, if we set-up all three arguments (T , fT , eT)
well. However, it is very difficult and not very efficient to always manually set-
up and prune the parameters in solving real problems. We also implement a
random inner-iteration loop, which tries to improve the solution for a specified
number of iterations at the same temperature level (see the implementation
for more details.

Algorithm 5 Simulated Annealing algorithm

1: procedure algorithmSimulatedAnnealing
2: S ← feasible solution
3: C(S)← cost (S)
4: while eT ≤ T do
5: S′ ← FeasibleNeighbourOf (S)
6: C(S′)← cost (S′)
7: if C(S′) ≤ C(S) OR random (0,1) ≤ exp ((C(S)−C(S′))/T) then
8: S ← S′

9: C(S)← C(S′)

10: T ← T · fT

2.6.8 Tabu Search

Tabu Search (TS) (Gendreau, Hertz, and Laporte [19]) is a well-known local
search algorithm implementing a tabu list tabuList of length n. TabuList
records last n neighbourhood operations, that we can not use for a number
of iterations T . We use three neighbourhood operations (swap, delete and
insert, double-delete and double-insert). Let an operation converting C(S)
to C(S′) be X. We implement the tabu list by having two tables tabuListi ,j ,
tabuListRi ,j , for i, j ∈ {0, . . . , N}. TabuListi ,j signifies a forbidden operation
of manipulating with node i and route j. TabuListRi ,j signifies a forbidden
operation of manipulating with both node i and j. We keep a global time
TabuTime, which we increase every iteration. If we update a time in the tabu
lists (Algorithm 6, line 8), we insert a sum of TabuTime and T . With this
improvement we do not have to update all values every iteration, but we check
if a move is tabu or not (line 5), we ask tabuList [X] ≤ TabuTime. Please see
the source code for a detailed implementation of this improvement.

22

2.7. Computational results

Algorithm 6 Tabu Search algorithm

1: procedure algorithmTabuSearch
2: while Stopping criteria not met do
3: S′ ← BestFeasibleNeighbourOf(S)
4: C(S′)← cost(S′)
5: if C(S′) < C(S) AND tabuList [X] ≤ 0 then
6: S ← S′

7: C(S)← C(S′)
8: tabuList [X]← T + 1

9: decrease all values of tabuList

2.7 Computational results

2.7.1 Computational model

We run the tests on Intel(R) Core(TM)2 Quad CPU Q6600 2.40GHz with
6GB RAM and Windows 7 Ultimate 64-bit operating system. Every instance
is run 5 times for 5 minutes and for one benchmark set, we always run 4
separate programs in parallel. We run them in parallel, because otherwise it
would take us around 850 hours of computational time. The results obtained
by our algorithms can only be worse. Each of the programs is solving a quarter
of all the instances on separate core. All algorithms were implemented in C++
language and compiled as a C++ project in Dev-C++ 4.9.9.2 by g++.

We measure the performance of algorithms by calculating the average gap
A (Definition 1) from best-known solutions found in [2] and calculating the
average of these A for the whole benchmark set B (Average performance
=

∑n
i=0 Ai, where n is the number of instances in B).

Definition 1 Let S be our average solution from 5 runs, S∗ the best-known
solution and C(S), C(S∗) the cost of these solutions respectively. Then the
average gap A is calculated as follows:

A =
C(S)− C(S∗)

C(S∗)
· 100

2.7.2 Comparison of implemented algorithms

We show the performance of our algorithms on the three previously described
benchmark sets. Algorithms SA, LAHC, SCHC and TS have one or more
parameters, which have to be set manually. The algorithms show best per-
formance, if we experiment with the parameters. However, this is not possible
for real-world applications and so for the purpose of testing, we use the same
parameters for each benchmark set. We experimented with the parameters
and you can find the ones used in testing in the testing file “tests.cpp” on the
accompanying CD (functions FinalChrist ,FinalLi ,FinalUchoa).

23

2. Capacitated Vehicle Routing Problem

We have allowed a maximum time of 5 minutes for one instance, but in
many cases the algorithms finish in a matter of seconds. Generally with more
customers, the running time is bigger. We have also excluded results for HC,
because these are 10 or more times worse, than results of the other algorithms.
With algorithms SA, LAHC, SCHC we also test 4 different versions. The
versions differ by the percentage chance of using closest search strategy per
each iteration (0%, 50%, 75%, 99%) instead of a random selection of customers
in a neighbourhood.

In instances with many customers (N > 500), the results are not as close to
the best known value as in the smaller instances. This is caused by stopping
the algorithm due to the time-limit, before it finishes. We decided for the
time-limit, because totally we have tested the algorithms on 136 instances
and if we run each one 5 times for five minutes by each algorithm (we have
totally 15 versions of our algorithms), it takes us at most 12 750 minutes (by
running four programs in parallel).

By comparing the default version of algorithms and the versions of using
closest search strategy, we show that the ones with closest search strategy
perform better and that by using the strategy in 99% we get the best results.
The results are shown in tables in accompanied resultsv2.xlsx file. Due to this
fact, in the following graphs we only show results for the version of algorithms
with the 99% chance of using closest search strategy.

We have also implemented only basic variation of TS, which gives us a
comparison of how efficient are our algorithms.

We now summarize the performance of algorithms on the three bench-
marks.

Christofides, Mingozzi and Toth (CMT) (1979) [13]
All of the implemented algorithms get good results on this set with an
average gap less than 1%, but SA perform more than 0.1% better than
the others due to low number of customers in this set (Figure 2.8). Both
algorithms LAHC and SCHC converge quickly and does not allow much
time for exploring the state space. This can be adjusted by different
setting of parameters. By experimenting with the parameters SCHC
performed the best in finding most best-known solutions (SCHC found
7/14, SA found 4/14).

We show, that due to the similar positioning of customers in the in-
stances, A gets bigger with bigger N (Figure 2.9). We show this only
for SA, but for the other algorithms the result is similar (see the xlsx
file).

We conclude, that CMT set is not very good for measuring the overall
performance of CVRP algorithms, because it includes only two kinds of
customer positioning and these instances differ only by the number of
customers. We use CMT only because it is widely used in literature.

24

2.7. Computational results

Figure 2.8: Comparison of our algorithms on CMT instances

LA
H
C

SC
H
C SA T

S

0.4

0.6

0.8

1

1.2

1.4

0.57
0.63

0.45

1.4
A

ve
ra

g
e

p
er

fo
rm

a
n

ce

Figure 2.9: Dependency of SA on the number of customers on CMT instances

40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Customers

A
ve

ra
ge

ga
p

25

2. Capacitated Vehicle Routing Problem

Li et al. (2005) [27]
Artificial large scale set of instances. All of our algorithms had a big
gap (Figure 2.10), which is due to the artificial positioning. We see that
in the even larger set of Uchoa et al, where is not such a big gap. Best
results computed SCHC with the Averageperformance of 5.83.

Figure 2.10: Comparison of our algorithms on Li et al instances

LA
H
C

SC
H
C SA T

S

6

7

8

9

10

7.56

5.83

8.95

10.17

A
ve

ra
ge

p
er

fo
rm

an
ce

In Figure 2.11 we see similar behaviour as in Figure 2.9. This is due to
the artificiality of this benchmark set.

Uchoa et al. (2014) [36]

We believe that this set will be mostly used in future research, because
it simulates real-life and random positioning of customers.

SCHC has obtained the best results (Figure 2.12) and proved to be very
competitive to the commonly used SA.

We also show, that with a random positioning of customers, there is no
more the dependency of A on N (Figure 2.13).

2.7.3 Comparison with other solvers

It is very complicated to compare with other solvers, because they do not
have any benchmark tests or they show only best results. In all cases we were
not able to set-up the solver’s parameters in a way that would give us these
results. For the purpose of comparison we run the solvers with default setting
on CMT and Uchoa et al instances. We use CMT, so that reader can easily
compare to other research papers, but our main focus is on the new set.

26

2.7. Computational results

Figure 2.11: Dependency of SCHC on the number of customers on Li et al
instances

500 600 700 800 900 1,000 1,100 1,200
2

3

4

5

6

7

8

9

10

11

Customers

A
ve

ra
ge

ga
p

Figure 2.12: Comparison of our algorithms on Uchoa et al instances

LA
H
C

SC
H
C SA T

S

1

1.5

2

2.5

3

1.62

1.19

2.61

2.92

A
ve

ra
g
e

p
er

fo
rm

a
n

ce

27

2. Capacitated Vehicle Routing Problem

Figure 2.13: Dependency of SCHC on the number of customers on Uchoa et
al instances

100 200 300 400 500 600 700 800 900 1,000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Customers

A
ve

ra
g
e

ga
p

In Figure 2.14, we show the best results we were able to obtain from some
of these solvers and compare them to our best results of SCHC for CMT
bechmark. 2.14

In Figure 2.15, we show that our implementation for CVRP problem gives
better results in average case, than best obtained result from the other solvers.

In Figure 2.16, we also compare the average results to the results obtained
from the best scoring solver VRPH on Uchoa et al benchmark instances and
show that even in this case of real-life problem our algorithm performs better.
LAHC − best and SCHC − best show an Averageperformance computed from
gaps between a best-known solution and the best found solution in 5 runs.

We also compare SCHC with state-of-the-art algorithms presented in Uchoa,
Pecin, Pessoa, Poggi, Subramanian, and Vidal [36]. These algorithms (ILS-
SP, UHGS) are extremely complicated and their average running time per
instance is 71.71 and 98.79 minutes respectively. Our average results differ
less than 1% 2.17 from these two algorithms and we are able to compute each
instance in less than 5 minutes.

28

2.7. Computational results

Figure 2.14: Dependency of solvers on the number of customers on CMT
instances

40 60 80 100 120 140 160 180 200

0

1

2

3

4

5

6

7

8

Customers

ga
p

SCHC
Jsprit

VRPH-RTR
VRPH-SA

Opta-planner

Figure 2.15: Comparison with other solvers on CMT instances

LA
H
C

SC
H
C

Js
pr

it

V
R
PH

-R
T
R

V
R
PH

-S
A

O
pt

a-
pl

an
ne

r

1

2

3

1.62

0.63

2.55

0.77
0.65

3.3

A
ve

ra
ge

p
er

fo
rm

an
ce

29

2. Capacitated Vehicle Routing Problem

Figure 2.16: Comparison with other solvers on Uchoa et al instances

LA
H
C

LA
H
C
-b

es
t

SC
H
C

SC
H
C
-b

es
t

V
R
PH

0.8

1

1.2

1.4

1.6
1.62

1.26
1.19

0.85

1.51

A
ve

ra
ge

p
er

fo
rm

an
ce

Figure 2.17: Comparison with state-of-the-art algorithms

SC
H
C

IL
S-

SP

U
H
G
S

0.2

0.4

0.6

0.8

1

1.2
1.19

0.52

0.19

A
ve

ra
ge

p
er

fo
rm

a
n

ce

30

2.8. Conclusion

2.8 Conclusion

We have shown, that both LAHC and SCHC perform well compared to other
algorithms. We provide results for the first application of these algorithms
to CVRP and compare these with other meta-heuristic algorithms, solvers
and with state-of-the-art algorithms. We have shown the best performance
between the solvers and a small average gap from the state-of-the-art al-
gorithms.

31

Chapter 3

Other versions and further
directions

During the process of researching and implementing algorithms for CVRP, we
came across other very interesting variants of VRP. One of these is Cumulative
Capacitated Vehicle Routing Problem (CCVRP). We provide a review of this
problem and present few ideas for further research.

3.1 Cumulative Capacitated Vehicle Routing
Problem

3.1.1 Introduction

The Cumulative Capacitated Vehicle Routing Problem (CCVRP) is a recently
formulated problem, which is defined as CVRP with two differences. The first
difference is, that in CCVRP the number of vehicles m is contained in the
input and is set to a fixed value. The second difference involves the objective
function. In CCVRP we want to determine a set of routes with the minimum
of the sum of arrival times at customers. Let tki be the arrival time of vehicle
k at customer i. Then the objective function of CCVRP can be formulated
as follows:

min

m∑
k=1

n∑
i=1

tki

If the number of customers N ≤ m, then the optimal solution is to have
N − 1 routes, each starting at depot 0 and visiting exactly one customer.

The CCVRP generalizes the Traveling Repairman Problem (TRP) studied
in Afrati, Cosmadakis, Papadimitriou, Papageorgiou, and Papakonstantinou
[7], by adding capacity constraints and a homogeneous vehicle fleet. The most
important application in real-life is a disaster scenario, where we want to get

33

3. Other versions and further directions

to the customers in smallest total time possible, while having limited number
of vehicles.

3.1.2 Literature

There has been published only few research papers on this problem. The
problem was first formulated in Ngueveu, Prins, and Calvo [28] and the au-
thors provide us with a memetic algorithm (genetic algorithm). They also
illustrate necessary pre-computations details, when applying neighbourhood
operations. An iterated local search algorithm was developed by Chen, Dong,
and Niu [12], which obtains some new best-known solutions. A two-phase
meta-heuristic is proposed in Ke and Feng [24] with a summary results of
different algorithms.

3.2 Further directions

• Apply the newly presented algorithms (LAHC, SCHC) to other VRP
variants and especially to CCVRP, which has not been extensively stud-
ied.

• Implementation of function, that will automatically adjust the para-
meters of LAHC and SCHC based on previous computations and their
results.

• Measure, whether an implementation of tabu list would help these two
algorithms in their performance.

34

Bibliography

[1] Symphony. URL https://projects.coin-or.org/SYMPHONY.

[2] Cvrp library. URL http://vrp.atd-lab.inf.puc-rio.br/index.php/
en/.

[3] Odl studio. URL http://www.opendoorlogistics.com/.

[4] Tsplib. URL http://neo.lcc.uma.es/vrp/wp-content/data/Doc.ps.

[5] Cvrplib. URL http://vrp.atd-lab.inf.puc-rio.br/index.php/en/.

[6] Open-vrp. URL https://github.com/mck-/Open-VRP.

[7] F. Afrati, S. Cosmadakis, C. H. Papadimitriou, G. Papageorgiou, and
N. Papakonstantinou. The complexity of the traveling repairman prob-
lem. Journal of Information Technology Theory and Application, 20(1):
79–87, 1986.

[8] L. Bodin, B. Golden, A. Assad, and M. Ball. Routing and scheduling
of vehicles and crews: The state of the art. Computers & Operations
Research, 10(2):96–98, 1983.

[9] E. K. Burke and Y. Bykov. A late acceptance strategy in hill-climbing
for exam timetabling problems. In 7th International Conference on the
Practice and Theory of Automated Timetabling(PATAT2008), 2008.

[10] Yuri Bykov. Late acceptance hill-climbing algorithm (lahc), . URL http:

//www.cs.nott.ac.uk/~yxb/LAHC/.

[11] Yuri Bykov. Step counting hill-climbing algorithm (schc), . URL http:

//www.cs.nott.ac.uk/~yxb/SCHC/.

[12] Ping Chen, Xingye Dong, and Yanchao Niu. An iterated local search
algorithm for the cumulative capacitated vehicle routing problem. AISC,
136:575–581, 2012.

35

https://projects.coin-or.org/SYMPHONY
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
http://www.opendoorlogistics.com/
http://neo.lcc.uma.es/vrp/wp-content/data/Doc.ps
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
https://github.com/mck-/Open-VRP
http://www.cs.nott.ac.uk/~yxb/LAHC/
http://www.cs.nott.ac.uk/~yxb/LAHC/
http://www.cs.nott.ac.uk/~yxb/SCHC/
http://www.cs.nott.ac.uk/~yxb/SCHC/

Bibliography

[13] N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem.
Combinatorial Optimization, 1:315–338, 1979.

[14] G. Clarke and J. Wright. Scheduling of vehicles from a central depot to
a number of delivery points. Operations research, 12(4):568–581, 1964.

[15] Albert Corominas, Alberto Garcıa-Villoria, and Rafael Pastor. Improving
parametric clarke and wright algorithms by means of iterative empirically
adjusted greedy heuristics. Statistics and Operations Research Transac-
tions, 38(1):3–12, 2014.

[16] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Man-
agement Science, 6(1):80–91, 1959.

[17] Güneş Erdoğan. Vrp spreadsheet solver, 2013. URL http://

verolog.deis.unibo.it/vrp-spreadsheet-solver.

[18] Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi
de Aragão, Marcelo Reis, Eduardo Uchoa, and Renato F. Werneck. Ro-
bust branch-and-cut-and-price for the capacitated vehicle routing prob-
lem. Mathematical Programming, 106(3):491–511, 2005.

[19] Michel Gendreau, Alain Hertz, and Gilbert Laporte. A tabu search heur-
istic for the vehicle routing problem. Management Science, 40(10):276–
1290, 1994.

[20] D. Goldberg. Genetic algorithms in search, optimization, and machine
learning. 1989.

[21] L. Bruce Golden, S. Raghavan, and A. Edward Wasil, editors. The Vehicle
Routing Problem: Latest Advances and New Challenges. Springer, 2008.

[22] Chris Groer. Vrph. URL http://www.coin-or.org/projects/VRPH.xml.

[23] H. Harmanani, D. Azar, N. Helal, and W. Keirouz. A simulated anneal-
ing algorithm for the capacitated vehicle routing problem. Proceedings
of the ISCA 26th International Conference on Computers and Their Ap-
plications, 2011.

[24] Liangjun Ke and Zuren Feng. A two-phase metaheuristic for the cu-
mulative capacitated vehicle routing problem. Computers & Operations
Research, 40:633–638, 2013.

[25] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671–680, 1983.

[26] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of vehicle routing
and scheduling problems. Networks, 11:221–227, 1981.

36

http://verolog.deis.unibo.it/vrp-spreadsheet-solver
http://verolog.deis.unibo.it/vrp-spreadsheet-solver
http://www.coin-or.org/projects/VRPH.xml

Bibliography

[27] F. Li, B. Golden, and E. Wasil. ery large-scale vehicle routing: new test
problems, algorithms, and results. Computers & Operations Research, 32
(5):1165–1179, 2005.

[28] Sandra Ulrich Ngueveu, Christian Prins, and Roberto Wolfler Calvo. An
effective memetic algorithm for the cumulative capacitated vehicle rout-
ing problem. Computers & Operations Research, 37:1877–1885, 2010.

[29] D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa. Improved branch-cut-
and-price for capacitated vehicle routing. In Integer Programming and
Combinatorial Optimization, pages 393–403. Springer, 2014.

[30] Victor Pillac. Vroom. URL http://victorpillac.com/vroom/.

[31] Stefan Schröder. jsprit. URL http://jsprit.github.io/.

[32] Geoffrey De Smet. Optaplanner. URL http://www.optaplanner.org/.

[33] M. M. Solomon. Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints. Operations Research, 35(2):254–265,
1987.

[34] M. M. Solomon and J. Desrosiers. Time window constrained routing and
scheduling problems. Transportation Science, 22(2):1–13, 1988.

[35] Paolo Toth and Daniele Vigo, editors. Vehicle Routing: Problems, Meth-
ods, and Applications, Second Edition. 2014.

[36] Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Anand Sub-
ramanian, and Thibaut Vidal. New benchmark instances for the capacit-
ated vehicle routing problem. 2014.

37

http://victorpillac.com/vroom/
http://jsprit.github.io/
http://www.optaplanner.org/

Appendix A

Testing manual

Instructions to repeat the testing process with our algorithms:

• The Dev-C++ project is contained in BP directory.

• For graphical output please change the directory of gnuplot on line 7 of
file plot.cpp.

• Compile and run the project with changes in main.cpp:

TEST(number of runs, from instance, to instance)

• Complete test of each benchmark:

FinalChrist(5, 0, 14); for all instances of CMT

FinalLi(5, 0, 12); for all instances of Li et al

FinalUchoa(5, 0, 100); for all instances of Uchoa et al

• During the testing of CMT we compiled 4 programs and run them in
parallel:

FinalChrist(5, 0, 3);

FinalChrist(5, 3, 6);

FinalChrist(5, 6, 10);

FinalChrist(5, 10, 14);

• During the testing of Li et al we compiled 4 programs and run them in
parallel:

FinalLi(5, 0, 3);

FinalLi(5, 3, 6);

FinalLi(5, 6, 9);

FinalLi(5, 9, 12);

39

A. Testing manual

• During the testing of Uchoa et al we compiled 4 programs and run them
in parallel:

FinalUchoa(5, 0, 25);

FinalUchoa(5, 25, 50);

FinalUchoa(5, 50, 75);

FinalUchoa(5, 75, 100);

• The output is summarized in a table, where at the top is the name of
algorithm and each instance has 3 rows (best, average, worst result) and
a column for each algorithm (including those with 0%, 50%, 75% and
99% of using closest search).

40

Appendix B

Acronyms

VRP Vehicle routing problem

CVRP Capacitated vehicle routing problem

VRPTW Vehicle routing problem with time windows

CCVRP Cummulative capacitated vehicle routing problem

LAHC Late Acceptance Hill-Climbing algorithm

SCHC Step Counting Hill-Climbing algorithm

SA Simulated Annealing

TS Tabu Search

41

Appendix C

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes
BP...the Dev-C++ project
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis.tex...........................the thesis text in TEX format

results .. the results directory
resultsv2.xlsx...............................the excel result sheet

Benchmarks..................................the benchmarks directory
Uchoa.....................................the Uchoa et al instances
Li.. the Li et al instances
ChristofidesEilon.............................the CMT instances

43

	Introduction
	Motivation and objectives
	Definition
	VRP variants
	Free/Open-source solvers

	Capacitated Vehicle Routing Problem
	Introduction
	Literature
	Benchmarks
	Example
	Algorithms and strategies
	Implementation
	Computational results
	Conclusion

	Other versions and further directions
	Cumulative Capacitated Vehicle Routing Problem
	Further directions

	Bibliography
	Testing manual
	Acronyms
	Contents of enclosed CD

