Insert here your thesis’ task.

CZzECH TECHNICAL UNIVERSITY IN PRAGUE

FacuLTy OF INFORMATION TECHNOLOGY /

DEPARTMENT OF SOFTWARE ENGINEERING

Bachelor’s thesis

Design and implementation of a
distributed platform for data mining of big
astronomical spectra archives

Jakub Koza

Supervisor: RNDr. Petr Skoda, CSc.

12th May 2015

Acknowledgements

I would like to thank my supervisor, RNDr. Petr Skoda, CSc., for his help and
for giving me this opportunity, and to Lumir Mrkva, the author of the original
VO-CLOUD system, for support in the beginning of my implementation. We
also acknowledge support of grant GACR 13-08195S

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on 12th May 2015 .

Czech Technical University in Prague

Faculty of Information Technology

© 2015 Jakub Koza. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Koza, Jakub. Design and implementation of a distributed platform for data
mining of big astronomical spectra archives. Bachelor’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2015.

Abstrakt

Cilem této bakalarské prace je rozsifit stavajici distribuovany systém VO-
CLOUD, ktery poskytuje uzivatelim prostor a vykon pro vytvafreni vypocetné
narocnych astronomickych experimentt skrze rozhrani webového prostiedi.
Vysledny systém je schopny ziskavat vstupni data piimo z astronomickych
archivili pomoci specidlnich astronomickych protokolu SSAP a DataLink. Déle
je schopny delegovat vypocty na distribuovany vypocetni stroj a je schopny
vizualizovat vysledky vypoctu uzivateli ptimo ve webovém prostiedi.

Klicova slova Virtudlni Observator, SSAP, DataLink, UWS, Java EE, as-
troinformatika

Abstract

The aim of this bachelor’s thesis is to extend current distributed system VO-
CLOUD capable of providing users with a storage and computability to con-
duct astronomical experiments in a web based environment. The resulting sys-
tem is capable of downloading input data directly from astronomical archives
by using special astronomical protocols SSAP and Datalink. The system is
able to delegate computations on a distributed computational machine and it

X

is able to visualise computational results directly in the web based environ-
ment.

Keywords Virtual Observatory, SSAP, DataLink, UWS, Java EE, astroin-
formatics

Introductionl

(1

Analysis of the current solution|

Requirements analysis|

2.1 New concepts]
[2.2 Functional requirements|
[2.3 Non-tunctional requirements|.

B Worl Tsation

4.4 Preprocessing|
4.5 Workers management|
4.6 Jobs load balancing|.

B

Future development)|

IConclusion

xi

Contents

15

.............. 15
.............. 17
.............. 21

23

.............. 23
.............. 26
.............. 27
.............. 29

31

.............. 31
.............. 32
.............. 32
.............. 34
.............. 34
.............. 36

37

39

|Bibliography|

|A Acronyms|

[B_Contents of enclosed DV

|C Universal worker XML configuration file schemal

D Master server README file

lE Universal worker README filef

xii

41

43

45

47

49

53

List of Figures

1.1 Deployment diagram ot the current solution| 4
[1.2 Example of Singleton EJB using timer servicel. 9
1.3 Relations of UWS objects| 11
[1.4 State machine of UWS job’s execution phase| 13
[3.1 Universal worker configuration file| 25
[3.2 Configuration JSON file| 27
3.3 JSON describing VO-CLOUD storage directory| 28
4.1 Page with a directory listing|. 33
4.2 Class diagram of JPA Entity classes| 35

xiii

List of Tables

(1.1 Often used actions on UWS REST binding] 12

XV

Introduction

The research of the night sky have drastically changed in the last few years
thanks to modernization of information technologies. Whereas in the past
an astronomer had to wait even a couple months to access the telescope,
today he has almost immediate access to data thanks to system called Virtual
Observatory (VO), in which the vast astronomical archives and databases
around the world, together with analysis tools and computational services,
are linked together into an integrated facility [1].

VO-CLOUD (originally called VO-KOREL which was extended by vari-
ous data mining capabilities) is the system implementing basic principles and
concepts of Virtual Observatory, where astronomers can conduct their exper-
iments with computationally intensive data mining algorithms and visualize
them in familiar and friendly graphical interface [2]. The significant disadvant-
age of this particular distributed system is the fact that data that usually may
be quite big for the upcoming experiment have to be prepared in advance in
the local storage of the experimenter and uploaded to the VO-CLOUD server
each time during the experiment creation.

The aim of this work is to analyse workflow as well as implementation
of contemporary VO-CLOUD server and its distributed workers (execution
units of experiments), and perform design and implementation of the new
version of VO-CLOUD server that will be capable of directly downloading
data from remote resources using protocols like HTTP, FTP as well as IVOA
specific protocol such as SSAP, DataLink. Downloaded data will be available
for submission within experiment to the assigned workers for computation and
then the results will be automatically downloaded back to VO-CLOUD server
for possible visualization.

CHAPTER 1

Analysis of the current solution

In this section I would like to briefly describe the state of currently implemen-
ted state of VO-CLOUD and the technologies involved.

1.1 Architecture

VO-CLOUD is distributed system which means that it is consisted of hardware
or software components located at networked computers that communicate
and coordinate their actions only by passing messages to achieve their task
[3]. In the case of the VO-CLOUD system is composed of the following parts:

e One master server capable of communication with the experimenting
user

e Several distributed nodes called workers that contain:

— Binary files describing the long time running computational process

— Simple application with the ability to communicate with the master
server and to start computational process and to dispatch required
data to it

The master server is the most important component of VO-CLOUD server.
Its main purpose is to provide web interface for communication with an ex-
perimenting user and to delegate requested experiment computations to the
chosen worker. Master server stores the information about all experiments in
a database and periodically checks the state of experiments to see if their ex-
ecution is already finished. In the positive case, results are downloaded from
worker back to the master server and deleted on the worker side.

Workers in the current solution are distinguished by the type of the ex-
periment computation they can execute. For example one type of worker
could execute the process performing Random Decision Forests method used

3

1. ANALYSIS OF THE CURRENT SOLUTION

deployment Original VO-CLOUD /

«device» «device»
DB Server Master system
«executionEnvironment»
«executionEnvironment» Application Server
PostgreSQL DB

saL VO-CLOUD master app B

«schema» D
vocloud-schema

uws

«device»
Worker System i

«device»
«device» User Client System
Application Server

«device»

ROF Vorler 3] SOM Worker [3] Web Brow sy

!
/ |
T

!
|, executes \\/ executes
RDF binaries [SOM binaries [

Figure 1.1: Deployment diagram of the current solution

to data mine information from passed astronomical spectrum data [4]. Gener-
ally, every worker consists of binary files which are executed over data as the
new long time running process, and the lightweight application which manages
the queue of executing jobs and starts the long running computational pro-
cess. Although the technology of the computational process is not restricted,
usually a program written in Python is used on workers.

VO-CLOUD deployment example is described by the deployment diagram
in Figure In this example there is only one worker machine (one Java
Application Server) where two different applications are deployed. The first
can dispatch computations to Random Decision Forests method binaries, the
second one can dispatch to Self-organizing map method binaries. Communica-
tion between workers and master server is maintained via specialized Universal
Worker Service protocol (UWS) which is described in the further section of
this chapter.

1.2 Technologies

Both master server and applications starting computational process on work-
ers are implemented in Java EE Programming Language Platform.

4

1.2. Technologies

”The aim of the Java EE platform is to provide developers with
a powerful set of APIs while shortening development time, redu-
cing application complexity, and improving application perform-
ance.” [5]

Master server itself uses significant amount of technologies specified in the
Java EE platform specification.

1.2.1 Java Persistence API

There is numerous information on master server that is required to be stored
in the database such as user accounts, list of available workers, history of
experiments executions and many more. Java EE provides API called Java
Persistence API which allows to automatically map Java objects to the rela-
tional database such as MySQL or PostgreSQL.

"The Java Persistence API (JPA) is a Java standards—based solu-
tion for persistence. Persistence uses an object/relational mapping
approach to bridge the gap between an object-oriented model and
a relational database.” [5]

Java objects that should be mapped into the relational database are in the
context of Java Persistence API called Entity classes. These Entity classes
are mapped into tables in the database and instance variables are mapped as
columns of these tables. Whole Entity class and its instance variables can be
annotated by special JPA annotations to achieve demanded behaviour of the
object /relational mapping, e.g., changing name of the columns, adding data-
base constraints and so on. It is also possible to put settings to configuration
file instead of annotating Java objects but the annotation way seems to be
more intuitive.

1.2.2 JavaServer Faces

JavaServer Faces is the main technology used on the master server to commu-
nicate with a user through the web interface. It is a server-side component
framework for building Java technology—based web applications [5].

”One of the greatest advantages of JavaServer Faces technology is
that it offers a clean separation between behaviour and presenta-
tion for web applications.” [5]

Source code of the presentation tier in JavaServer Faces technology is divided
to XHTML pages and Managed Beans. Each XHTML file represents visual
side of one page in the standardized format XML [6]. There are many tags
that can be used inside these files. Whereas standard HTML tags are directly
used as output for a user, the file is mostly composed of special JSF tags with

5

1. ANALYSIS OF THE CURRENT SOLUTION

special meaning. These tags add functionality beyond static HIML pages
and they allow to bind data changes, actions and events of the page to Java
methods specified in Managed Beans using a special syntax called Expression
Language.

Managed Bean is the special type of Java class. By the JSF specifica-
tion [5] Java classes used as Managed Bean must have defined non-parametric
constructor to be able to dynamically instantiate them through the Java Re-
flection API [7]. Classes must also have specified name that will be used for
identification of the Managed Bean in the Expression Language in XHTML
files. Also, classes require to have defined scope. ”Scope defines how applic-
ation data persists and is shared.” [5] The most commonly used scopes in
JavaServer Faces applications are Request and Session scopes. Request scope
stores data only during a single HT'TP request, whereas Session scope stores
across multiple HTTP requests and it is always bound to the specific user [5].
Both Expression Language name mapping and scope could be specified either
with Java annotations or in JavaServer Faces configuration XML file. While
JSF XHTML files describe mostly visual side of the page rendered to the
user, Managed Java Beans define properties and functions for Ul components
described by the XHTML pages.

1.2.3 Java Servlet Technology

Java Servlet Technology is defined in the Java EE platform specification and
it is used on both master server and workers. The Java EE specification says:

7 A servlet is a Java programming language class used to extend
the capabilities of servers that host applications accessed by means
of a request-response programming model. Although servlets can
respond to any type of request, they are commonly used to extend
the applications hosted by web servers. For such applications, Java
Servlet technology defines HTTP-specific servlet classes.” [5]

In the implementation of VO-CLOUD system only HTTP servlets are used.
To implement such a servlet it is necessary to extend Java class HttpServlet
placed in javax.servlet.http package. Every HI'TP request aiming the ser-
vlet is dispatched to one of the servlet’s inherited method depending on the
HTTP method used in the client’s request. For example HT'TP POST method
is dispatched to doPost servlet method, HTTP GET to doGet method and
so on. These servlet methods can be simply overridden in the HttpServlet
subclass to achieve desired functionality. List of all possible HT'TP version 1.1
methods and their explanation is described in RFC 2616 [8]. Finally, the ser-
vlet must be registered to the demanded context path of the resulting web ap-
plication. E.g., if the servlet was mapped to the path /files/image. jpg and
the web application was deployed on the path http://localhost/vocloud,
HTTP request with method GET to URL address http://localhost/

6

1.2. Technologies

vocloud/files/image. jpg would be dispatched to the servlet’s method doGet.
Registration can be done either with Java annotation or in XML configuration
file.

1.2.4 Enterprise Java Beans

Enterprise Java Bean (EJB) is a powerful technology and it is part of the
specification of Java EE platform. EJB is a server-side component that en-
capsulates the business logic of the application, i.e., it contains the code that
fulfils the purpose of the application [5]. There are many benefits to using
EJB in the application, such as automatic transaction management, concur-
rency management and security authorization. Moreover, EJB technology
provides API for asynchronous method invocation and possibility to schedule
server-side activities in desired times.

Enterprise Beans run in the EJB container, a runtime environment within
a compliant application server. Master server uses the EJB technology and
therefore it is necessary to deploy the master server application to an applic-
ation server supporting EJB such as GlassFish ServeIE] or WildFly Servelﬂ
Worker application can be deployed on these servers too, nevertheless, thanks
to the fact that it does not use EJB technology but only Java Servlet Tech-
nology, it can be deployed to application servers without the EJB container
such as Apache Tomcatf}]

Enterprise Beans can be divided to two main following types:

e Session Beans
e Message-driven Beans

Session bean’s main task is to encapsulate business logic that can be invoked
programmatically by calling its methods [5]. These tasks dispatched to session
bean by client are then executed on the server side inside the EJB container
and so client is shielded from complexity of the business methods. There
are many ways how a client can invoke EJB method of a session bean. For
example, methods can be invoked remotely by using Java Remote Method
Invocation technology.

"The Java Remote Method Invocation (RMI) system allows an
object running in one Java virtual machine to invoke methods on
an object running in another Java virtual machine. RMI provides
for remote communication between programs written in the Java
programming language.” [9]

"https://glassfish.java.net/
“http://wildfly.org/
3http://tomcat.apache.org/

https://glassfish.java.net/
http://wildfly.org/
http://tomcat.apache.org/

1. ANALYSIS OF THE CURRENT SOLUTION

This way of invocation could be used if the graphical user interface would

be implemented as a Java desktop application and not a web application.

In the master server methods of EJB session beans are invoked locally from

Managed Beans of the JavaServer Faces framework. Managed JSF Beans use

dependency injection technique to acquire instances of EJB Session Beans.
There are three types of Enterprise Session Beans.

o Stateful Session Beans are very similar to Session scope defined in JSF
specification. Instance variables of stateful session bean are always
bounded to a unique client that is using them. Nevertheless, in the case
of the master server application, the Managed JSF Bean, into which the
stateful session bean is injected, is considered as the client. Lifetime of
such a stateful bean is determined by the scope of Managed Bean that
the stateful bean is injected into. Stateful session beans are not much
useful in the web applications since JSF provides possibility to keep
information about users’ sessions in Session scope annotated Managed
Beans.

e Stateless Session Beans are not bound to a specific client. EJB con-
tainer creates a pool of a few stateless bean objects and when a client
needs to invoke method, one stateless bean object is pulled out of a pool
and offered to the client. When message invocation ends the stateless
bean object is returned back to the container’s pool. For the subsequent
method call the container can offer different instance of stateless bean
and so it is not guaranteed that instance variables will be kept. ”Except
during method invocation, all instances of a stateless bean are equival-
ent, allowing the EJB container to assign an instance to any client.” [5]
Without any configuration every EJB method invocation is automatic-
ally wrapped in transaction and so a stateless session bean is often used
for storing data to a database through Java Persistence API.

o Singleton Session Beans were introduced in the EJB specification version
3.1. They are instantiated only once per application and exists for the
whole lifecycle of the application. [5] They are used in situations where
it is necessary to share the same information among multiple clients.
Also, they are often used in conjunction with timer service interface
to compel EJB container to invoke a singleton’s method in requested
time point. Figure shows simple example of singleton session bean
with method doSomeWork that is invoked by EJB container every thirty
seconds. Practically, the master server uses singleton timer service to
periodically check experiments running on workers to see if they are
already completed.

Message-driven Beans are special kind of enterprise beans that allow Java
EE application to process messages asynchronously. They use Java Message

8

1.2. Technologies

import javax.ejb.Singleton;
import javax.ejb.Schedule;
import javax.ejb.Startup;

@Startup @Singleton
public class SchedulerBean {

@Schedule (second = ”%/30”, minute = ”%” | hour = "%” |
persistent = false)
public void doSomeWork () {
//called every 30 seconds
}

}

Figure 1.2: Example of Singleton EJB using timer service

Service API (JMS), a Java API that allows applications to create, send, re-
ceive, and read messages using reliable, asynchronous, loosely coupled commu-
nication [5]. Message-driven bean simply acts as a JMS message listener where
the source of messages can be any application capable of creating and sending
JMS message to a message queue created by an application server. Never-
theless, the master server does not use message-driven beans. Asynchronous
method invocation in the master server is performed in session beans by using
special method annotation @Asynchronous introduced in EJB 3.1. EJB con-
tainer automatically calls them in the separated thread instead of using main
invocation thread.

1.2.5 Universal Worker Service

The Universal Worker Service (UWS) is IVOA recommendation that defines
how to manage asynchronous execution of jobs on a service [10]. The Interna-
tional Virtual Observatory Alliance (IVOA) is an organisation that focuses on
the development of standards and recommendations that are needed to make
Virtual Observatory system possible.

Simple web services are synchronous and stateless. Synchronous means
that client waits for the end of execution of the request. If the client discon-
nects during execution from the service provider there is no reason to continue
in the execution and the activity is abandoned. Stateless service means that
service does not remember results of a previous activity [10]. Synchronous
stateless services work well when following two criteria apply.

1. The service activity duration is short enough for client to maintain the
connection with the service.

1. ANALYSIS OF THE CURRENT SOLUTION

2. Size of parameters passed to the service and size of service results are
small enough to be sent via data channel in reasonable time.

In astroinformatics these two criteria are often not fulfilled. In these cases it
is necessary to use a service which is asynchronous and stateful.

Asynchronous service means that client can make many separated request
to the service in the course of one activity. Activity on the side of service
provider can last even for days. Services that are asynchronous are almost
always stateful because naturally the service with a long running activity have
to remember information about it and the service often provides interface to
query the information out.

”The Universal Worker Service (UWS) pattern defines how to build asyn-
chronous, stateful, job-oriented services.” [10] Job in the context of UWS is
representing work that should be executed on the side of a service provider.
Job-oriented service means that the state is always peculiar to one specific job
and the job is always owned by one client.

A UWS is consisted of a set of objects that can be read and written to in
order to control jobs [10].

e Job List — the outermost object; contains all the other objects
e Job — object containing state of one job

e Phase — object describing execution phase of the job

e RunID — identifier of a job in the job list that should be unique
e Quwner — object representing identifier of a creator of the job

e FEzxecution Duration — the duration for which a job shall run in seconds;
if exceeded, job is aborted

e Destruction Time — absolute time when the job shall be destroyed

e Quote —a UWS service prediction when the job is likely to complete
e Error — human-readable error message if the underlying job failed

e Result List — list of Result objects produced by the service

e Parameter List — list of parameters passed by the client to the service

The relations between individual UWS objects are described in Figure [1.3

In order to create a usable service the objects must be exposed in a particular
interface which can be addressed over a particular transport mechanism — this
combination is known as a ”binding”. [10] The most often used style binding
for this purpose is REST binding. Representational State Transfer (REST) is
a software architecture style consisting of guidelines for creating scalable web

10

1.2. Technologies

class UWS objects /

Quote

JobList

runiD

Ow ner

1

DestructionTime

Job

ExecutionDuration

Phase

1

Error

ResultList

0..

1

ParameterList

Parameter

Figure 1.3: Relations of UWS objects

services built on the HTTP protocol. [11] Each of the UWS objects is mapped
to a specific URI and for each URI the HT'TP method GET can be used to
fetch representation of that resource either in XML format (if the object is a
container for other objects) or in a textual representation. UWS actions uses
the same binding, nevertheless usually the HTTP method POST is used. A
few useful examples of a UWS binding can be seen in Table

It is also necessary to briefly explain the important property of a job —

Execution Phase. ”The job is treated as a state machine with the Execution
Phase naming the state.” [10] The most important phases are explained below

e PENDING — It is the first state of a job when it is created. This phase
means that the job is accepted by the service but not yet started by the

client.

e QUEUED — The job is started but the service has not yet assigned it to

a Processor.

e EXECUTING — The job has been assigned to a processor and it is now
being executed.

11

1. ANALYSIS OF THE CURRENT SOLUTION

Table 1.1: Often used actions on UWS REST binding

’ Method ‘ URI ‘ Description

GET /{jobList} listing of all Jobs

GET /{jobList}/{id} summary of specified Job

GET /{jobList}/{id}/phase phase of the specified Job

GET /{jobList}/{id}/results results of the specified Job

POST /{jobList} creates new Job

POST /{jobList}YPHASE=RUN | creates new Job and puts it

into execution queue

POST /{jobList}/{id}/phase puts already created Job
?PHASE=RUN into execution queue

POST /{jobList}/{id}/phase aborts specified Job
?PHASE=ABORT

DELETE | /{jobList}/{id} deletes specified Job

e COMPLETED - The job was successfully completed and its results may

be collected.

e ERROR — The job failed to complete.

e ABORTED — The job has been manually aborted by the client.

Transitions between individual execution phases of a job are described in the

state machine in Figure |1.4

1.3 Workflow

This section briefly describes usual steps necessary to be performed by a user

to create new experiment computation.

1. User prepares data on the local storage of his computer.

2. User creates configuration file that is peculiar to computational method

chosen in one of the next steps.

3. User packages prepared data together with the configuration file in ZIP

archive file.

4. User logs into the VO-CLOUD system through its web user interface

with his credentials.

5. User selects Create new job option and he chooses the requested com-

putational method.

12

1.3. Workflow

Initial

PENDING

PHASE=ABORT

ABORTED

PHASE=ABORT

PHASE=RUN

PHASE=ABORT

ERROR

COMPLETED

Final

Figure 1.4: State machine of UWS job’s execution phase

6. User describes the new experiment and he uploads prepared ZIP archive
file with data and configuration file.

7. Optionally, user can edit archived configuration file through the web
interface.

8. User sends new experiment to the execution queue for computation.

When the new job is enqueued master server chooses a suitable worker that is
capable of computation the specified experiment type. Steps of the commu-
nication between the master server and the dedicated worker is following.

1. Master server publishes received ZIP archive file through HTTP URI
that is reachable by the dedicated worker.

2. Master server sends ”create new job” UWS request to the UWS service
running on the worker. In case the user initiating experiment wants to
run job immediately, master server sends PHASE=RUN UWS request
to the worker. Address of the ZIP archive published through HTTP
URI is passed as parameter in the UWS request.

13

1.

ANALYSIS OF THE CURRENT SOLUTION

. Worker puts newly created job to its execution queue. If job was dis-

patched from master server with parameter PHASE=RUN, the execu-
tion phase of the job is set to QUEUED. Otherwise the execution phase
of the job is PENDING. Execution phases of jobs are explained in sec-
tion

. If the job is in phase QUEUED and the worker has free computational

slot the job is started and its phase is changed to EXECUTING.

. During the EXECUTING phase the ZIP file is downloaded from the

master server first. Then enclosed files are unpacked from the archive.
Finally a computational process is started by executing application pe-
culiar for the type of the worker.

. When the execution successfully finishes, the job execution phase is

changed to COMPLETED. If execution fails the phase is set to ER-
ROR. Worker packs the results and possibly other information about
executed job, such as a process exit status and an error process output,
into ZIP archive and publishes it through HTTP URI accessible to the
master server. This HT'TP URI is then set as a result of the job that is
passed through UWS service.

. Meanwhile, the master server periodically checks the phase of the job

through UWS service. If the job is in one of the finished phase (COM-
PLETED, ERROR, ABORTED), the master server reads HT'TP URI
of the resulting ZIP file. ZIP file is then downloaded and unzipped to
the folder dedicated for the particular job.

. When the result ZIP file is successfully downloaded, the master server

initiates UWS destroy request to free resources on the executing worker.

The user can now view results of the job through a web interface in the job
details window.

Anytime during the job execution user can initiate abort operation on the

job. In this case the master server sends UWS request with the parameter
PHASE=ABORT. Even in this case results of the partially executed job are
downloaded from the worker (if any). If the user did not set the option to start
job instantly as soon as possible after creation (the PHASE=RUN parameter)
and the job is still waiting on the worker with the phase PENDING, the user
can initiate the start of the job at any time later through the web interface.

14

CHAPTER 2

Requirements analysis

In this section I would like to describe all functional and non-functional re-
quirements on the new version of the VO-CLOUD distributed system. Never-
theless, at first it is necessary to explain three new concepts that are involved
in the new version of VO-CLOUD.

2.1 New concepts

2.1.1 VOTable

The VOTable format is an core XML standard created by IVOA organisa-
tion. It is designed for the interchange of data represented as a set of tables.
”"Wherever tabular data is transferred between Virtual Observatory compon-
ents, VOTable provides the preferred serialization format.” [12]

VOTable format has very complicated data model. Every VOTable con-
sists of hierarchy of Metadata and associated TableData. Moreover, VOT-
able can optionally contain additional information that can be used to extend
functionality of astronomical protocols using VOTable format. Metadata can
contain numerous information about data contained TableData section, about
source of the data, about service that have created the VOTable, about data
types used in TableData section and so on. For example Fields are very im-
portant part of Metadata used to describe columns in the TableData section.
TableData section is simply stream of Rows divided to Cells.

2.1.2 SSAP

The Simple Spectral Access Protocol (SSAP) is IVOA recommendation that
defines a uniform interface to remotely discover and access one-dimensional
spectra [I3]. SSAP can be used from VO applications to access the associated
spectra resources in VO archives. SSAP interface uses an HTTP GET-based
interface to submit parametrized requests. The most frequent way to use

15

2. REQUIREMENTS ANALYSIS

SSA protocol is with the HTTP parameter REQUEST=queryData — this repres-
ents operation that returns a table in VOTable format describing candidate
datasets which can be retrieved, including standard metadata describing each
dataset, and an access reference which can be used to retrieve the data [13].

http://vos2.asu.cas.cz/ccd700/q/ssa/ssap.xml
?REQUEST=queryData&P0S=2.67,56.89&SIZE=2

returns structured document in VOTable format describing astronomical spec-
tra found in CCD700 VO archive with a ”cone search” defined by a position
(POS parameter) and a radius (SIZE parameter).

It is important to note that SSAP queryData method does not return the
spectral data by itself but only discovers the spectra matched by a combination
of SSAP parameters and returns metadata and information about how to
obtain them. There are usually two methods to obtain particular spectrum
defined in VOTable returned by SSAP query.

e Access Reference — It is mandatory column in VOTable returned by
SSAP query containing URL address where the required dataset can be
directly downloaded.

e DatalLink — It is the specialized protocol that is explained in the next
section.

2.1.3 DataLink

The DataLink is the IVOA recommendation for protocol that is in close rela-
tionship with the SSA protocol.

”Its specifity is to provide a binding mechanism and metadata
structure necessary to describe connected datasets or secondary
data for independant datasets discovered in previous VO opera-
tions.” [14]

DataLink provides a suitable alternative for obtaining datasets of spectra dis-
covered by the SSAP query, however it provides possibility to define additional
parameters that can adjust data received from the service. Parameters can
for example influence the result format of dataset or they can invoke prepro-
cessing action like, e.g., spectrum normalization or cut of selected spectral
lines. The way of an invocation of the DataLink protocol is very similar to
SSAP — it uses HTTP GET-based interface to submit parametrized request
on the DatalLink resource URL.

To obtain desired dataset it is necessary to identify it first. The identifier
for a DataLink protocol is a column in a VOTable returned by a SSAP called
PublisherDID. Thereafter it is necessary to find out the DataLink’s resource
URL and parameters that DataLink supports and their supported values. This

16

2.2. Functional requirements

information can be found at the end of VOTable returned by the SSAP query
in case that a DatalLink protocol is supported by a particular VO archive.
However, nowadays there are only a few VO archives supporting DatalLink
protocols. In the rest of them there is no other option than to use direct
download method with Access Reference to obtain datasets from VOTables
acquired through SSAP query.

2.2 Functional requirements

Functional Requirement of the VO-CLOUD system can be divided to numer-
ous sections.

2.2.1 General functional requirements

FR 1 Client must be able to communicate with the application through
a web browser supporting HTML and JavaScript technologies.

FR 2 Communication between the application and the client is mediated
by the HTTP protocol.

FR 3 HTTPS — extension of HT'TP protocol for encrypted communication
— it is not supported in this version of VO-CLOUD.

FR 4 Every client using VO-CLOUD must have a possibility to create his
user account and log into it.

FR 5 The information about registered users must be stored in the data-

base. For security reasons user’s passwords must be hashed with
SHA-256 hashing algorithm.

FR 6 Application must offer functionality to reset forgotten user’s pass-
word and send the new one to his e-mail address.

FR 7 Logged user must have ability to change his password.
FR 8 User accounts must be divided to three different groups

¢ USER
¢ MANAGER
e ADMIN
FR 9 User logged as ADMIN must have possibility to administer all re-

gistered user accounts and he must be able to change the group of
user’s account and other user properties.

FR 10 User logged as ADMIN must have possibility to administer available
workers and computation types, set their attributes and disable them
if necessary.

17

2. REQUIREMENTS ANALYSIS

2.2.2 VO-CLOUD storage functional requirements

New version of the VO-CLOUD system must provide storage where the data
for upcoming experiments can be prepared instead of uploading them during
the new job creation. Management of the storage is reserved for clients logged
in with user group MANAGER or ADMIN. Standard user accounts with group
USER have read-only access to this storage and they are not allowed to modify
files saved in the storage by any way.

The User in the context of following functional requirements is considered
as the client logged in with any user group (USER, MANAGER, ADMIN).

FR 11 User must be able to list all directories and files that are stored in
the VO-CLOUD storage. Mandatory attributes that user must be
able to see are names of files and directories, size of files and last
modification time of files.

FR 12 User must be able to navigate through the directory structure to see
files and directories that are nested inside directories.

FR 13 User must be able to download any chosen file to its local computer
storage.

The Manager in the context of following functional requirements is con-
sidered as the client logged in with the user group MANAGER or ADMIN.

FR 14 Manager must be able to create new directory with specified name
in the chosen directory.

FR 15 Manager must be able to rename a directory or a file.
FR 16 Manager must be able to delete a file or a directory recursively.

FR 17 Manager must have possibility to directly upload files from his local
computer storage to the target directory.

FR 18 Manager must be able to initiate download from remote resource.
As remote resource is considered following:

e a HTTP URL address of directly downloadable file

e a HTTP URL address of a remote folder that is to be recurs-
ively downloaded through HTTP protocol (In order to work this
feature correctly the HTTP method GET called to the resource
address must return list of links to its subdirectories and files.
This is the standard feature of majority of HT'TP servers called
directory index listing.)

e a FTP URL address of directly downloadable file

18

2.2. Functional requirements

e a FTP URL address of a folder that is to be recursively down-
loaded

FR 19 Manager must be able to initiate download of spectra from VO
archive. Steps describing the use case of this feature is described
in the following steps:

1. Manager directly uploads VOTable file with the desired spectra
metadata or he specifies SSAP URL address, where the deman-
ded VOTable can be queried.

2. VOTable is parsed by the server application and information
about query status and spectra count are displayed to manager.

3. If the DataLink protocol is supported by the VO archive, in-
formation about its parameters and possible values are parsed
from the VOTable and dynamically visualised to the manager.

4. Manager can decide whether the download method will be ex-
ecuted through direct Access Reference value or the DatalLink
protocol (if supported). If the DataLink is chosen manager can
set dynamically visualised query parameters.

5. Finally manager submits request and the download task is ini-
tiated.

FR 20 Manager must be able to view history of remote downloads and SSAP
downloads. The history must contain the following properties:

e State — current status of the download task (possible states are
CREATED, RUNNING, COMPLETED, FAILED)

o (Creation time
o Finish time

e Target directory — the directory in the VO-CLOUD storage
where downloaded files shall be saved

e Download URL — address of the downloadable resource

e Download log — the log mostly containing information about
download errors

FR 21 The HTTP, FTP and SSAP downloading service will not support
resources requiring authorization in this version.

2.2.3 Job management functional requirements

FR 22 Every logged user must be able to create new experiment computa-
tion (in this context called job). System must dynamically generate
list of all job types that are available for the logged user, i.e., the

19

2. REQUIREMENTS ANALYSIS

FR 23

FR 24

FR 25

FR 26

FR 27

20

user must not have option to create new job of the computation type
that has no available workers.

Job types must be divided to two main sections.

e Standard job types — jobs available for all logged users

o Restricted job types — jobs available only for managers, i.e., cli-
ents logged with user group MANAGER or ADMIN

Restricted job types must be invisible for non-managers. Adminis-
trator users must have possibility to set the job type restriction in
the job administration page.

After the user chooses desired job type a job creation window must
be displayed. The window must have possibility to set the following
information.

e Project label — label of the newly created job
e Description — optional description of the job

o Email results — option to send results to the user’s email address
after job completion

o Configuration JSON file — Configuration file in the JSON format
that is to be used as input for worker. Configuration can be
uploaded and edited in a text editor of the page. Configuration
JSON file also contains information about the files that must be
downloaded from the VO-CLOUD master server to worker and
that are used as the source of a computation.

The job creation page must provide two options for job saving. The
first one only saves the job and sends it to the dedicated worker.
The second option does the same but moreover sends PHASE=RUN
parameter to the worker to set the job into QUEUED phase.

If a user is logged in as a manager (user group MANAGER or AD-
MIN) the user must optionally be able to specify a folder in the
VO-CLOUD storage where the results of the newly created job shall
be copied if the job successfully finishes in phase COMPLETE.

The information about created jobs must be able to be shown in the
specialized page. Every user with the exception of administrators
must be able to see only his own created jobs. Administrator users
must moreover have possibility to see jobs of all users. The job list
page must have the following information about jobs.

o Job type

2.3. Non-functional requirements

Identifier — unique identifier of the job and its owning user

Job label — project label property of the job

Creation time

e Duration — duration of the job’s execution

e Phase — execution phase of the job

The job list page must also provide interface to invoke following job
operations.

e start a job in phase PENDING
e abort a running job
e completely delete a job with possible results from VO-CLOUD

e show new page with additional job details

FR 28 The page showing details about a job must contain the same inform-
ation that are present in the job list page. Moreover it must contain
a button Run again which navigates to the create job page where
input fields are pre-filled with the information from the source job.

FR 29 The job details page must visually represent a directory structure of
downloaded job’s results. Any file in this structure must be down-
loadable. Any textual file must be viewable directly on the page.

FR 30 If job results contains images (PNG, JPG or GIF) in the root folder or
in the folder result or results the images must be directly rendered
on the job details page.

FR 31 If job results contains HTML pages (HTM or HTML extension) in
the root folder or in the folder result or results the pages must be
shown directly on the job details page as the HTML pages nested in
iframe HTML element.

FR 32 If a user is logged in as a manager (user group MANAGER or AD-
MIN) and the job is in phase COMPLETED the user must have

possibility on the job details page to copy job’s results to the spe-
cified folder in the VO-CLOUD storage.

2.3 Non-functional requirements

NFR 1 The worker application must be redesigned to allow quick deploy-
ment package creation and deployment.

NFR 2 The system must be able to recover when one of its worker is dis-
connected or when the connection between the server and a remote
server is lost during files downloading.

21

2. REQUIREMENTS ANALYSIS

NFR 3

NFR 4

NFR 5

NFR 6

NFR 7

22

The master server’s client for SSAP and Datalink protocols must
be able to communicate with different types of VO archive servers.

The master server and its workers must be able to run on one single
application server as well as distributed on several application serv-
ers on different machines.

Source codes of the VO-CLOUD system must be published under
the Open Source license and publicly available on a public reposit-
ory.

Applications must be compatible with all application server types
supporting necessary technologies and deployable on different plat-
forms.

Users must be shielded from each other. One user must not be able
too get input data and results of job of another user by any way
(with the exception of administrator).

CHAPTER 3

Worker realisation

There are a few changes that had to be done in the worker design and imple-
mentation in order to preserve same functionality of VO-CLOUD system and
to make a worker deployment easier. These changes are in detail explained in
the following sections of this chapter.

3.1 Universal worker concept

As explained before the worker computing node consists of executable bin-
ary files and the servlet based application deployed on some Java application
server (see Section . The problem is that for every new computational
method, i.e., new executable computational application, it is necessary to cre-
ate new servlet based application where the steps of an executable application
invocation are defined in a source code. Moreover every computing node where
the worker is deployed could have different parameters for example the path
to executable computational application could differ. These parameters are
specified in the resource configuration file which has to be built together with
compiled source codes. Imagine example where there are two different com-
putational applications on three computing nodes. In this case it would be
necessary to create two different implementations of servlet based application
and together to build six packages that have to be deployed on the correct
application server.

A universal worker is a new type of the servlet based application that is
used instead of all other worker application types. The idea is to deploy only
one instance of universal worker application on one computer worker node
where multiple computational executable applications are supported. This
method has many benefits:

e The deployment on the application servers is easier.

e An application server uses less resources.

23

3. WORKER REALISATION

e Constraints on the execution queue such as maximum concurrent run-
ning jobs are now applied on the whole computing node and not only
on computational application. This is more logical solution because a
computing node is usually limited as the whole part.

e The capabilities of UWS protocol are fully utilized. The original solution
used only one job list resource per application.

e Addressing of the UWS resources are more intuitive. For example com-
pare two addresses of the original solution

http://localhost/rdf/uws/
http://localhost/som/uws/

with the new solution

http://localhost/universal/uws/rdf/
http://localhost/universal/uws/som/

The master server application can now hold information about avail-
able computing nodes and for every node list of possible computational
methods that the node is capable of doing. A URL address of the UWS
resource can be constructed of a URL address of the computing node
and the computational method name.

Universal worker is configured through the XML document matching XSD
schema specially created for this purpose. Figure shows example of such
XML configuration file where the computational method RDF is involved. Of
course there can be many more <ns:worker> tags inside <ns:workers> tags in
order to describe more computational methods. Tags <ns:exec-command> and
<ns:command> are used to describe the way how to start the computational
process.

The configuration file is in the new version of VO-CLOUD server packed
in a deployment archive as a resource file. For each computing node it is then
necessary to build its own deployment application with the right configuration
file. However, the universal worker is designed to be able to download con-
figuration file from dedicated remote repository for example from the master
server. In this case it would be only necessary to deploy the same universal
worker application on each computing node’s application server and to put all
configuration files into one place in the master server. Every universal worker
would during its initialization download its configuration file from the master
server through specialized interface and it would not be necessary for admin-
istrator to configure workers on the master server because it already knows
the information. This feature is going to be implemented in the next version

of VO-CLOUD system.

24

3.1. Universal worker concept

<?7xml version="1.0" encoding="utf-8"7>
<ns:uws-settings
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:ns=’http://vocloud.rk.cz/schema’
xsi:schemalocation="http://vocloud.rk.cz/schema configSchema.
xsd’>
<ns:vocloud-server-address>http://localhost/vocloud2</ns:
vocloud-server-address>
<ns:local-address>http://localhost/universal/uws</ns:local-
address>
<ns:max-jobs>2</ns:max-jobs>
<ns:description>Universal UWS worker</ns:description>
<ns:workers>
<ns:worker>
<ns:identifier>rdf</ns:identifier>
<ns:description>RDF</ns:description>
<ns:restricted>false</ns:restricted>
<ns:binaries-location>/home/voadmin/RDF</ns:binaries-
location>
<ns:exec-command>
<ns:command>python3</ns: command>
<ns:command>
${binaries-location}/runRF.py
</ns:command>
<ns:command>${config-file}</ns:command>
</ns:exec-command>
</ns:worker>
</ns:workers>
</ns:uws-settings>

Figure 3.1: Universal worker configuration file

25

3. WORKER REALISATION

3.2 Universal worker workflow

A universal worker workflow was slightly changed to meet the new functional
requirements. This section describes the new workflow of a communication
between a universal worker and the master server. In the previous version of
VO-CLOUD the master server had to send to worker the ZIP archive con-
taining data and configuration file (In fact the worker got URL address where
the master server published the ZIP archive. Worker then had to download
it.). In the new version of VO-CLOUD only configuration file is sent to the
worker where addresses of necessary files are described and worker have to
download them during a job execution. Consider the following example where
the user have created a new job with parameter to start it as soon as possible

(PHASE=RUN).

1. The master server chooses a worker capable of doing desired computa-
tional method.

2. The master server creates a new job on the selected worker by using
HTTP method POST on the worker’s UWS service (see Section [L.2.5).
The configuration file is sent directly in this request as a HT'TP para-
meter specified inside a request body with the Content-Type HTTP
header set to application/x-www-form-urlencoded (configuration file
content must be properly encoded by the master server).

3. The worker creates a new job in the queue and assigns it the decoded
configuration file. The job’s execution phase is set to QUEUED.

4. When there are free resources on the worker the execution phase is
changed to EXECUTING.

5. Worker parses passed configuration file and it downloads required files
specified in the configuration.

6. Worker executes computational application from the directory where
required files have been downloaded.

7. When the process ends the worker deletes files that had to be downloaded
and it packs the produced results with additional information (process
error output, standard output and so on) into ZIP archive file.

8. The ZIP file is published to be visible for the master server and the URL
address is added as a job result.

9. Job’s execution phase is changed to COMPLETED.

10. The master server downloads the ZIP file from the worker and unpacks
it in its job results directory.

26

3.3. Files downloading feature

"download _files”: |

{
}oA

"urls”: [”vocloud://preparedData/datal” |

"urls”: [”vocloud://test/mh160020. fit ",
”vocloud://test /datalink /tj180031 "],
"folder”: ”/folderl”

}
I

"normalize”: true,
”binning”: true,
"remove_duplicates”: true,
”decompose”: {
“iterations”: 300,
"kind”: "PCA”,
”components”: 30

Figure 3.2: Configuration JSON file

11. The UWS command destroy is called to the worker after the download
to the master server is finished.

12. Produced results can now be viewed by the user.

3.3 Files downloading feature

A universal worker implements feature that allows to specify which files should
be downloaded. This configuration is done by adding new key-value pair inside
the configuration JSON file where the key is "download files".

Example of such a configuration JSON file can be seen in Figure In
this example it is possible to see "download files" key and other keys that are
used for configuration of computational method. A value of "download files"
key is an array of elements where each element specifies one target folder in
the worker working directory. Multiple files can be downloaded to one target
directory simply by using more URL addresses in the "urls" key definition.
If the "folder" element specifying the target directory is not present the
whole worker working directory is considered as the target. As can be seen in
the example the protocol in the URL address can be set to vocloud instead
of standard http (which is of course supported too). This means that the

27

3. WORKER REALISATION

"folders ”:|
?datalnfo”
74270—-45237
74753 -5005"
e
7files 7]
7 spec —55893—F9302_spl10 —146. fits”,
7 spec —55893—F9302_sp10 —220. fits "7,
7 spec —55893—F9302_sp06 —157. fits”,
7 spec —55893—F9302_sp03 —248. fits”,
7 spec —55921—-GAC_089N28_B3_sp04 —078. fits ",
7 spec —55921—GAC_089N28_ B3 spl4 —141.fits”,
7 spec —55876—GAC_089N28_B3_spl3 —231.fits”

Figure 3.3: JSON describing VO-CLOUD storage directory

address is automatically substituted to the address where the VO-CLOUD
master server provides interface to download files from its storage. Moreover
whole directories can be recursively downloaded from the master server. This
is made possible by the master server’s service for downloading files.

The master server’s service for the downloading is realized by the simple

Java servlet class FilesystemDownloadServlet. This servlet is registered to
URI

/files/

and files from this service can be directly downloaded by appending the VO-
CLOUD storage path of the file to the service resource. For instance if the
desired file is named text.jpg and it is saved in the VO-CLOUD storage in
a folder named images file can be downloaded from URI

/files/images/text. jpg

If the URI does not point to the file but the directory service returns JSON
where the list of files and directories is specified. This feature can be used for
recursive downloading of whole directories. Example of such a JSON can be
seen in Figure 3.3

28

3.4. Visualisation

3.4 Visualisation

It is important to note that the visualisation itself is not created on the master
server from the downloaded results but on the workers where some visualisa-
tion is expected. For instance worker using a computational method of self-
organizing maps (SOM) must create images or HTML pages that are packed
as the part of its results and then directly viewable by the master server. Res-
ults in the form of HTML pages can moreover contain JavaScript source codes
that allows to do dynamic visualisation and possible navigation and filtering
in the set of computed results.

29

CHAPTER 4

Master server realisation

This chapter describes changes that had to be done in the master server in
order to comply with functional and non-functional requirements.

4.1 VO-CLOUD storage

VO-CLOUD storage is the main reason why the whole VO-CLOUD system
had to be redesigned and reimplemented. It serves as the storage where man-
agers can prepare data that every user may involve in his experiment. The
only thing the user have to prepare is the configuration JSON file specific to
the computational method.

For all users and workers the VO-CLOUD storage simply serves as the
service that provides interface to download files, to list files and directories
and for authorized users to manage files and directories that are saved in the
storage. In principle there are many places where the files and their directory
structure could be physically saved. It is only necessary to map the operations
of VO-CLOUD storage to the physical storage properly.

Master server VO-CLOUD is a standalone application which means that
it is deployed on only one application server and operating system. VO-
CLOUD storage could then by mapped directly on some specific directory
in the master server’s operating system. It is solution that is very simple,
intuitive and moreover the storage could be easily managed directly from the
operating system or with the help of protocols such as SSH or FTP.

For the purposes of the direct mapping of the storage to some specific
folder the new specialized Stateless EJB bean name FilesystemManipulator
was created. This bean provides business methods that can be used to retrieve
information about the mapped directory and its subdirectories, to download
a specied file, to create a new file from the passed data stream and to ma-
nipulate with the file or directory (remove, rename). All classes that require
access to the VO-CLOUD storage must use the FilesysteManipulator EJB
bean as the mediator for their operations. The great advantage is that the

31

4. MASTER SERVER REALISATION

FilesystemManipulator bean can have defined security constraints on its
methods. For instance the method deleteFileRecursively that is capable
of recursive deletion of a whole directory can be annotated with the secur-
ity constraint to be available only for managers and administrators and not
for common users. The authorization checking is then not only done in the
presentation tier of the application but moreover in the business tier and the
application is then potentially more secure.

4.2 Remote download feature

Administrator and managers have possibility to create a new task that will
download desired files from the remote resource (HTTP or FTP server).
This task is in the context of the VO-CLOUD application called download
job. Two specialized EJB Stateless beans were implemented for this feature
DownloadManager and DownloadProcessor. The DownloadManager provides
method enqueueNewURLDownload for creating a new download job. This
method stores information about the download job to the database and it
asynchronously invokes a method from the DownloadProcessor bean where
the download itself is initiated. Therefore, the DownloadManager bean only
prepares the download job for asynchronous execution in DownloadProcessor
bean.

The great advantage of the remote download feature is that it supports
recursive downloads of whole directories. In the FTP protocol this is relat-
ively easy. FTP provides command to list directories and files in the current
working directory. The problem is with directories downloading in the HT'TP
protocol. Targeted HTTP server where the URL address represents a direct-
ory to be downloaded must have allowed feature called index directory listing,
i.e., HT'TP server must return list of URL links pointing to directory’s files
and subdirectories. Example of such a page can be seen in Figure This
directory listing page can be parsed by the DownloadProcessor bean and used
for crawling through the directory tree structure to download whole targeted
directory recursively.

4.3 SSAP and DataLink client

The master server provides possibility for managers and administrators to
download data directly from the VO archives by using SSAP and Datalink
protocols. At first it is necessary to get the VOTable representing the list
of spectra to be downloaded. It is simple to get the VOTable. User either
directly uploads the VOTable to the master server or he specifies the URL
address of SSAP resource where the VOTable can be downloaded. Now the
VOTable must be parsed. Originally I wanted to use Java Architecture for
XML Binding technology (JAXB) in the implementation to directly convert

32

4.3. SSAP and DataLink client

Index of /v458val/NEW/6255-6767

Name Last modified Size Description

: Parent Directory -
@ qil30014.fit 14-Sep-2007 14:41 20K
@ qil130015.fit 14-Sep-2007 14:41 20K
E] qil50018.fit 18-Sep-2007 01:03 20K
@ qi150020.fit 18-Sep-2007 01:03 20K
@ qil60018.fit 19-Sep-2007 02:22 20K
@ qi160020.fit 19-Sep-2007 02:22 20K
E] qi010012.fit 03-Oct-2007 21:53 20K
@ qi010013 fit 03-Oct-2007 21:53 20K
@ qi150019.fit 16-Oc¢t-2007 05:15 20K
@ qi150020.fit 16-Oct-2007 05:15 20K

Figure 4.1: Page with a directory listing

VOTable structure into the set of Java mapped objects. However, the problem
is that there are different versions of VOTable XML document and it would
be complicated to create a new set of Java objects for each version of the
VOTable schema. Finally, the Simple API for XML (SAX) principle of XML
parsing was involved in the VOTable processing. The SAX parser simply
goes gradually through the VOTable file and it calls method when one of the
following events happen:

e an XML opening element was found
e an XML closing element was found
e characters between XML elements were found

SAX parsing method is potentially many times faster than JAXB because it
does not have to convert all elements to their Java objects counterparts but
instead it runs once through the XML file and it remembers only things that
are necessary for further processing.

33

4. MASTER SERVER REALISATION

The important thing is that the parser must be able to recognize from a
VOTable if the DataLink protocol is available. If so the parser must collect
information about its possible parameters. The VOTable parser is available
through the interface of the class VotableParser. Its method returns an in-
stance of class IndexedSSAPVotable which consists of information that are
necessary for downloading spectra through Access Reference column or pos-
sibly through the Datalink protocol (if supported).

The user can now choose if he wants to process downloading with the
usage of Access Reference column or with the usage of Datalink protocol.
If he chooses the DataLink protocol he can now specify parameters that the
DataLink protocol supports. The web page where the user can specify the
DataLink parameters is dynamically created according to the DataLink pro-
tocol information that are provided in the parsed VOTable.

After submitting the download task the new download job is created
for each spectrum specified in the VOTable in the DownloadManager State-
less bean. The whole list of spectra is then asynchronously dispatched to
DownloadProcessor bean where the download job is being processed.

4.4 Preprocessing

Usually for some data types and especially for data determined for a data
mining it is necessary to do preprocessing on them (for instance to do normal-
ization, rebinning and so on). Preprocessing is defined as an operation that
takes selected spectra as an input and produces a file or files that must be
saved to the VO-CLOUD storage to be available for common users.

The idea is to consider the preprocessing as a computational method that
can be executed on workers. The preprocessing would be then defined as a
method restricted only to managers and administrators. It is also necessary
to implement feature to move the results of a job’s computation into specified
target folder in the VO-CLOUD storage. This feature is of course available
only for managers and administrators because a common user does not have
permission to save files into the VO-CLOUD storage.

In order to do preprocessing over downloaded data the storage manager
must create a new preprocessing job and in the new job creation page he must
set the targeted folder in the VO-CLOUD storage. After job completion the
master server automatically copies result files to the targeted VO-CLOUD
storage directory and the data can now be used by any common user for a
new experiment computation.

4.5 Workers management

It is absolutely necessary for the master server to be informed what possible
types of computation are available and which workers supports it in order to

34

4.5. Workers management

class JPA Entity Model /

Serializable Serializable

Worker UWSType
id :Integer - id :Integer
resourceUrl :String - stringldentifier :String
shortDescription :String - shortDescription :String
description :String - description :String
maxJobs :Integer - documentationUrl :String

restricted :Boolean

1 1
0.* 0..*
Serializable
uws
id :Integer

enabled :Boolean

Figure 4.2: Class diagram of JPA Entity classes

effectively dispatch a job computation to them. In this version of VO-CLOUD
the information about the possible computational types and workers must be
set manually by the administrator through a specialized web page. However
in the future versions of the VO-CLOUD it is expected that the information
would be passed automatically by the registration of some newly deployed
worker.

JPA Entity classes used for object/relational mapping to a database had
to be redesigned in order to allow the future extendibility, to allow better
load balancing method for computation dispatching and to make possible the
dynamic rendering of possible job computational types in the web user inter-
face. Moreover the new redesigned model is more logical in the context of a
newly created concept Universal worker (see Section [3.1)). Class diagram of
the redesigned JPA Entity classes can be seen in Figure

Class Worker represents a computational worker. Every computational
worker must have defined resource URL address where the UWS service is
available, short description of worker to be able to recognize, maximum num-
ber of jobs that can be started parallelly on the worker and optionally long
description of the worker.

Class UWSType represents a computational method. The computational
method must have defined string identifier which is used to name a job list

35

4. MASTER SERVER REALISATION

queue in workers, a short description that is used as the name of the compu-
tational method in a web user interface, a restricted flag that signalizes if the
computational method is restricted only for managers and administrators and
finally optional parameters long description and an URL address where the
computational method is documented.

Class UWS is a mediator of the M:N relationship between a computational
worker and a computational method. Moreover this class contains parameter
enabled that allows administrator to disable usage of a specified computa-
tional method on some specified worker.

All three classes also contain parameter id that is mandatory by the JPA
specification and it is used as a primary key in a relational database.

4.6 Jobs load balancing

In order to maximize throughput of the whole distributed VO-CLOUD system
it was necessary to design an algorithm that would assign the newly created
computational job to the least loaded worker. The algorithm follows these
steps:

1. Find all computational workers that are able to execute desired compu-
tational method.

2. Choose the first computational worker.

3. Find out how many jobs assigned to this worker are in the execution
phase EXECUTING.

4. Find out how many jobs can be run parallelly on this worker.

5. Count the difference count of maximum parallelly running jobs minus
count of jobs in the phase EXECUTING.

6. Remember the difference and continue from the step 3. with a next
computational worker if there is such.

7. Find out the worker with the greatest difference. If there are more
workers with the same greatest difference choose randomly one.

8. Assign the new job to this chosen computational worker.

36

CHAPTER 5

Future development

There are many ways how to improve the VO-CLOUD distributed system.
The most important thing is to make the deployment of the master server and
of distributed workers easier. The following improvements in deployment are
planned to be done in the future versions:

e Move the worker XML configuration file to one place where configura-
tions could be downloadable by newly deployed workers.

e Add possibility for workers to register themselves to the master server
through the specialized web service. It would not be than necessary for
administrators to configure every worker manually on the master server.

e Simplify the installation of application servers and executable computa-
tional files by using a virtualization tool such as Dockerﬁ

The VO-CLOUD storage is planned to be improved too.

e Allow manager to select multiple files or directories and to delete them
together.

e Allow operations move and copy.

e Introduce Simple Application Messaging Protocol (SAMP) [15] that
would allow users to send spectra from the VO-CLOUD storage directly
to the visualisation tool running on their computer such as SPLAT-VO.

e Add to the manager ability to stop currently running download job and
to delete items from a download job history.

“https://www.docker.com/

37

https://www.docker.com/

Conclusion

The goal of this thesis has been met. The fundamental concepts and the work-
flow of the original VO-CLOUD system have been analysed and the master
server and the universal worker parts of the distributed VO-CLOUD system
have been successfully implemented. The VO-CLOUD system is now able to
download astronomical spectra from VO archives by using astronomical pro-
tocols SSAP and DataLink, to run preprocessing on them, to feed them to the
computational workers and to visually display the results of the computations
to the users.

The concept of many different types of computational workers have been
redesigned to one universal worker and therefore the process of deployment
on the computation nodes is simplified.

I have gained a valuable experience during the process of designing and the
implementation of the new version of VO-CLOUD system and I have acquired
knowledge about the fundamental concepts of VO technologies and about the
astronomy in its entirety.

39

Bibliography

Hanisch, R.; Quinn, P. International Virtual Observatory Alliance

[online]. The IVOA, [cit. 2015-05-04]. Available from: http://
www.ivoa.net/about/TheIVOA.pdf

Mrkva, L. VO-KOREL, server for astronomical cloud computing. Bach-
elor’s thesis, Czech Technical University in Prague, Faculty of Information
Technology, Prague, 2012.

Coulouris, G.; Dollimore, J.; Kindberg, T.; et al. Distributed Systems:
Concepts and Design (5th Edition). Pearson, 2011, ISBN 0132143011.

Palicka, A. Application of Random Decision Forests in Astroinformat-
ics. Bachelor’s thesis, Czech Technical University in Prague, Faculty of
Information Technology, Prague, 2014.

Oracle. Java Platform, FEnterprise FEdition; The Java EE Tutorial;
Release 7 [online]. September 2014, [cit. 2014-05-05]. Available from:
https://docs.oracle.com/javaee/7/JEETT.pdf

WWW Consorcium. Ezxtensible Markup Language (XML) 1.0 (Fifth Edi-
tion) [online]. November 2008, [cit. 2015-05-05]. Available from: http:
//www.w3.org/TR/REC-xml/REC-xm1-20081126-review.html

Oracle. Trail: The Reflection API [online]. [cit. 2015-05-06].
Available from: http://docs.oracle.com/javase/tutorial/reflect/
index.html

The Internet Society. Hypertext Transfer Protocol -- HTTP/1.1 [online].
1999, [cit. 2015-05-07]. Available from: http://tools.ietf.org/pdf/
rfc2616.pdf

Oracle. Trail: RMI [online]. [cit. 2015-05-08]. Available from: https:
//docs.oracle.com/javase/tutorial/rmi/

41

http://www.ivoa.net/about/TheIVOA.pdf
http://www.ivoa.net/about/TheIVOA.pdf
https://docs.oracle.com/javaee/7/JEETT.pdf
http://www.w3.org/TR/REC-xml/REC-xml-20081126-review.html
http://www.w3.org/TR/REC-xml/REC-xml-20081126-review.html
http://docs.oracle.com/javase/tutorial/reflect/index.html
http://docs.oracle.com/javase/tutorial/reflect/index.html
http://tools.ietf.org/pdf/rfc2616.pdf
http://tools.ietf.org/pdf/rfc2616.pdf
https://docs.oracle.com/javase/tutorial/rmi/
https://docs.oracle.com/javase/tutorial/rmi/

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

42

Harrison, P.; Rixon, G. IVOA Recommendation: Universal Worker Ser-
vice Pattern Version 1.0. ArXiv e-prints, 2011,/1110.0510. Available from:
http://adsabs.harvard.edu/abs/2011arXiv1110.0510H

Fielding, R. T.; Taylor, R. N. Principled Design of the Modern Web
Architecture. ACM Trans. Internet Technol., May 2002: pp. 115-150,
ISSN 1533-5399, doi:10.1145/514183.514185. Available from: http://
doi.acm.org/10.1145/514183.514185

Ochsenbein, F.; Williams, R.; Davenhall, C.; et al. IVOA Recom-
mendation: VOTable Format Definition Version 1.2. ArXiv e-prints,
Oct. 2011, 1110.0524. Available from: http://adsabs.harvard.edu/
abs/2011arXiv1110.05240

Tody, D.; Dolensky, M.; McDowell, J.; et al. IVOA Recommend-
ation: Simple Spectral Access Protocol Version 1.1. ArXiv e-prints,
2012, 1203.5725. Available from: http://adsabs.harvard.edu/abs/
2012arXiv1203.5725T

Laurent, M.; Bonnarel, F.; Louys, M. IVOA Recommendation: DataLink
Protocol Version 1.0 [online]. The IVOA, May 2013, [cit. 2015-05-10].
Available from: http://www.ivoa.net/documents/Notes/Datalink/
20130502/N0TE-DatalLinkProposal-1.0-20130502.pdf

Taylor, M.; Boch, T.; Fitzpatrick, M.; et al. IVOA Recommendation:
SAMP - Simple Application Messaging Protocol Version 1.3. ArXiv e-
prints, 2011, [1110.0528. Available from: http://adsabs.harvard.edu/
abs/2011arXiv1110.0528T

1110.0510
http://adsabs.harvard.edu/abs/2011arXiv1110.0510H
http://doi.acm.org/10.1145/514183.514185
http://doi.acm.org/10.1145/514183.514185
1110.0524
http://adsabs.harvard.edu/abs/2011arXiv1110.0524O
http://adsabs.harvard.edu/abs/2011arXiv1110.0524O
1203.5725
http://adsabs.harvard.edu/abs/2012arXiv1203.5725T
http://adsabs.harvard.edu/abs/2012arXiv1203.5725T
http://www.ivoa.net/documents/Notes/DataLink/20130502/NOTE-DataLinkProposal-1.0-20130502.pdf
http://www.ivoa.net/documents/Notes/DataLink/20130502/NOTE-DataLinkProposal-1.0-20130502.pdf
1110.0528
http://adsabs.harvard.edu/abs/2011arXiv1110.0528T
http://adsabs.harvard.edu/abs/2011arXiv1110.0528T

APPENDIX A

Acronyms

API Application Programming Interface

EE Enterprise edition

EJB Enterprise Java Bean

FTP File Transfer Protocol

GIF Graphics Interchange Format

GUI Graphical user interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IVOA International Virtual Observatory Alliance
JAXB Java Architecture for XML Binding technology
JMS Java message service

JPA Java Persistence API

JSF JavaServer Faces

JSON JavaScript Object Notation

PNG Portable Network Graphics

RDF Random Decision Forest

REST Representational State Transfer

RMI Remote method invocation

SAMP Simple Application Messaging Protocol

43

A. ACRONYMS

SAX Simple API for XML

SOM Self-organizing map

SQL Structured Query Language
SSAP Simple Spectral Access Protocol
SSH Secure Shell

UI User Interface

URI Uniform Resource Identifier
URL Uniform Resource Locator
UWS Universal Worker Service

VO Virtual Observatory

XHTML Extensible HyperText Markup Language

XML Extensible markup language

44

APPENDIX B

Contents of enclosed DVD

readme.tXb..oovviin .. the file with DVD contents description
= S the directory with deployable packages
= o o P the directory of source codes
WhACI .o v et e e e implementation sources
thesis.....ccovvnnn. the directory of IATEX source codes of the thesis

I 1 PP the thesis text directory
tthesis.pdf the thesis text in PDF format
ZZP.EXE .o the thesis’ task in a plain text format

45

© 00 g O Ot W N~

= =
N = O

13
14
15
16
17
18
19

20
21
22
23
24
25

APPENDIX C

Universal worker XML
configuration file schema

<?xml version="1.0" encoding="utf-8"7>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://vocloud.rk.cz/schema"
xmlns:tns="http://vocloud.rk.cz/schema"
elementFormDefault="qualified">

<xsd:complexType name="worker">
<xsd:sequence>
<xsd:element name="identifier" type="xsd:token"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="restricted" type="xsd:boolean" default=
"false"/>
<xsd:element name="binaries-location" type="xsd:string"/>
<xsd:element name="exec-command" type="tns:command-list"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="command-list">
<xsd:sequence>
<xsd:element name="command" type="xsd:string" maxOccurs="
unbounded" />
</xsd:sequence>
</xsd:complexType>
<xsd:element name="uws-settings">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="vocloud-server-address" type="xsd:

47

26
27

28
29

30

31

32

33
34
35
36

37
38
39
40
41
42
43

C.

UNIVERSAL WORKER XML CONFIGURATION FILE SCHEMA

anyURI"/>
<xsd:element name="local-address" type="xsd:anyURI"/>
<xsd:element name="max-jobs" type="xsd:positiveIlnteger"
default="4"/>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="default-destruction-interval" type="
xsd:positivelnteger" minOccurs="0"/>
<xsd:element name="max-destruction-interval" minOccurs="
0" type="xsd:positiveIlnteger"/>
<xsd:element name="default-execution-duration" default="
3600" minOccurs="0" type="xsd:positiveInteger"/>
<xsd:element name="max-execution-duration" default="3600
" minOccurs="0" type="xsd:positivelnteger"/>
<xsd:element name="workers">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="worker" maxOccurs="unbounded"
minOccurs="0" type="tns:worker"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

48

APPENDIX D

Master server README file

Requirements

- JDK 7+

- Application server supporting Java EE 7 with EJB container
support (Wildfly, Glassfish, ...)

- Database (PostgreSQL, MySQL, ...)

Production install guide

For instance I will use Debian amd64 with Wildfly 8.2
application server, JDK 8 and PostgreSQL 8.4

1. Install JDK 8

Download JDK from
http://www.oracle.com/technetwork/java/javase/downloads/
index.html
in zip file form, for example jdk-8u4b-linux-x64.tar.gz
Extract archive to /usr/lib/jvm
Setup enviroment variables for java
add these lines to the end of /etc/profile
export JAVA_HOME=/usr/lib/jvm/jdk1.8.45
export PATH=$JAVA_HOME/bin

2. Install Wildfly 8.2.0
Download zip from http://wildfly.org/downloads/
Extract archive to the /usr/local

In the newly extracted wildfly directory execute bin/add-user

49

D.

MASTER SERVER README FILE

3.

20

.sh and setup new wildfly administering user.
Start Wildfly by executing bin/standalone.sh

Server should successfully start.

If everything went OK:

Server is running on http://localhost:8080/
Admin console on http://localhost:9990/

Install and configure PostgreSQL database server

apt-get install postgresql

login as postgres "su - postgres" and run client "psql
templatel"

then type following commands to setup database for vocloud,
CREATE USER vocloud WITH PASSWORD ’vocloud’;
CREATE DATABASE vocloud;
GRANT ALL PRIVILEGES ON DATABASE vocloud TO vocloud;

Note: You should really not use the same password as username
. Do not forget to change it!

. Configure database resource in Wildfly

Log into Wildfly admin console: http://localhost:9990/
Type in credentials of administrating user

Download JDBC for PostgreSQL https://jdbc.postgresql.org/
In the admin console navigate to Deployments

Click Add, select downloaded JDBC .jar file and click 0Ok
Enable newly uploaded JDBC driver

Navigate to Configuration tab

Select Datasources

Click Add

Name: VocloudDS

JNDI Name: java:jboss/datasources/vocloud

Click Next

Select postgresql jdbc driver

Click Next

Connection URL: "jdbc:postgresql://localhost:5432/vocloud" (
without quotes)

Username: vocloud

Password: vocloud

Click Done
Enable VocloudDS

Datasource can be tested in section Connection > Test
connection
Ping should be successful

. Configure e-mail resource in Wildfly

It is necessary to have an email address which will serve as
the source of emails. For instance I will use address
vocloud@vocloud.org where SMTP is running on port 465 and
the host address of the SMTP server is smtp.vocloud.org.

Navigate to Configuration section
Select Socket Binding

Click View on standard-sockets
Select Outbound Remote section
Click Add

Name: vocloud-smtp

Host: smtp.vocloud.org

Port: 465

Click Save

Navigate to Mail subsystem section

Click Add

JNDI Name: "java:jboss/mail/vocloud-mail" (without quotes)
Click View on the newly created mail session
Click Add

Socket binding: vocloud-smtp

Type: smtp

Username: username to the email server
Password: password to the email server

Check use SSL (if the port is 465)

Click Save

7. Configure security in WildFly

Navigate to Security Domains in Configuration section
Click Add

Name: VocloudSecurityDomain

Click Save

Click View on the newly created security domain

Click Add

51

D.

MASTER SERVER README FILE

Code: Database
Flag: required
Click Save
Now click on the newly created Login module
Click on Module Options
Add the following key=value pairs
dsJndiName = java:jboss/datasources/vocloud
principalsQuery = select pass from useraccount where
username="?
rolesQuery = select groupName, ’Roles’ from useraccount
where username=7
hashAlgorithm = SHA-256
hashEncoding = hex

8. Deploy vocloud.war to the Wildfly server

Navigate to section Deployments
Click Add

Select vocloud.war file

Submit

Enable the vocloud.war

VO-CLOUD should now run on http://localhost:8080/vocloud

9. Create admin account

02

Using http://localhost:8080/vocloud/register.xhtml
Register a new account with username admin

This account have now administrator privileges.

APPENDIX E

Universal worker README file

Requirements

- JDK 7+

- Java application server supporting Java servlet technology (
tomcat, wildfly, ...)

- Maven tool (if building is necessary)
Executable computational application for each desired
computational type

Install guide

For instance I will use Debian amd64 with Wildfly 8.2
application server, JDK 8 and Maven 3.1

1. Install JDK 8

Download JDK from
http://www.oracle.com/technetwork/java/javase/downloads/
index.html
in zip file form, for example jdk-8u4b5-linux-x64.tar.gz
Extract archive to /usr/lib/jvm
Setup enviroment variables for java
add these lines to the end of /etc/profile
export JAVA_HOME=/usr/lib/jvm/jdk1.8.45
export PATH=$JAVA_HOME/bin

2. Install Wildfly 8.2.0

93

E. UNIVERSAL WORKER README FILE

Download zip from http://wildfly.org/downloads/

Extract archive to the /usr/local

In the newly extracted wildfly directory execute bin/add-
user.sh and setup new wildfly administering user.

3. Start Wildfly by executing bin/standalone.sh

Server should successfully start.

If everything went OK:

Server is running on http://localhost:8080/
Admin console on http://localhost:9990/

4. Configure universal-worker configuration file (optional step

if you want another configuration that it is in prebuilt
archive)

Download sources of universal-worker

Go to src/main/resources/

Adjust uws-config.xml file

Go back to sources root

Execute command "mvn package"

Worker is compiled and the deployable archive is created in
target/universal-worker.war

5. Deploy universal worker to Wildfly

Open Wildfly admin console on http://localhost:9990/
Login with the credentials of administrating user
Navigate to Deployments section

Click Add

Select deployable universal-worker.war archive

Click OK

Enable the newly deployed application

UWS service should now run on
http://localhost:8080/universal-worker/uws

Note: This is only description of universal-worker application

o4

which serves as the mediator between the master server and
executable computational application. In order to make a
worker fully functional you have to set the configuration
file of the universal-worker to point to the valid locations

of the executable computational applications. For more
information see the documentation of the specific executable
computational application.

95

	Introduction
	Analysis of the current solution
	Architecture
	Technologies
	Workflow

	Requirements analysis
	New concepts
	Functional requirements
	Non-functional requirements

	Worker realisation
	Universal worker concept
	Universal worker workflow
	Files downloading feature
	Visualisation

	Master server realisation
	VO-CLOUD storage
	Remote download feature
	SSAP and DataLink client
	Preprocessing
	Workers management
	Jobs load balancing

	Future development
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed DVD
	Universal worker XML configuration file schema
	Master server README file
	Universal worker README file

