
	L.S.

Ing. Tomáš Zahradnický, Ph.D.
Head of the department

prof.Ing. Pavel Tvrdík, CSc.
Dean

Prague February 16, 2015

CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

 Title: Performance Analysis of Linux Operating System with Mandatory Access Control Kernel
Modules

 Student: Jakub Rumančík

 Supervisor: Ing. Jan Žďárek, Ph.D.

 Study Programme: Informatics

 Study Branch: Information Technology

 Department: Department of Computer Systems

 Validity: until the end of winter semester 2016/17

Instructions

Get acquainted with SELinux technology, its architecture and setup in CentOS (Red Hat Enterprise Linux).
Work up tools and techniques of software and operating system performance analysis.
Propose measurements and their evaluation for typical setup and usage variants of a system, e.g., web server,
file server, workstation.
Select and prepare benchmarking environment and draw up performance optimizations of the system with
SELinux for each variant.
Benchmark all variants in three setups: SELinux off, on and on with previously proposed optimizations.
Evaluate the results and discuss conceivable improvements.

References

1. Frank Mayer, Karl MacMillan, David Caplan. SELinux by Example: Using Security Enhanced Linux. 2006
2. Abraham Silberschatz, Peter B. Galvin, Greg Gagne. Operating System Concepts, 8th Edition. 2008
3. the U.S. National Security Agency. Security-Enhanced Linux, URL: http://www.nsa.gov/research/selinux/
4. McAllister, Radvan, Walsh, Grift, Paris, Morris. Security-Enhanced Linux. URL: http://docs.fedoraproject.org/en-
US/Fedora/13/html/Security-Enhanced_Linux/
5. Daniel Walsh, Dan Walsh's Blog, URL: http://danwalsh.livejournal.com/

Czech Technical University in Prague

Faculty of Information Technology

Department of Computer Systems

Bachelor’s thesis

Performance Analysis of Linux Operating

System with Mandatory Access Control

Kernel Modules

Jakub Rumanč́ık

Supervisor: Ing. Jan Žd’́arek, Ph.D.

12th May 2015

Acknowledgements

Foremost, I would like to thank to the supervisor of this thesis Ing. Jan
Žd’́arek Ph.D., for the guidance and valuable advice. I would also like to
thank my family and friends for the support during my study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 12th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Jakub Rumanč́ık. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Rumanč́ık, Jakub. Performance Analysis of Linux Operating System with
Mandatory Access Control Kernel Modules. Bachelor’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2015.

Abstrakt

Táto práca sa venuje analýze výkonnosti operačného systému Linux, ktorý ob-
sahuje rozš́ırenie jadra o modul mandatórneho riadenia pŕıstupu. Zoznamuje
s technológiou SELinux a jej implementáciou v operačnom systéme CentOS.
Navrhuje scenáre nasadenia technológie SELinux v rôznych prostrediach ako
sú webserver, fileserver a pracovná stanica. V práci sú ďalej navrhnuté optim-
alizácie technológie SELinux na zlepšenie výkonnosti. V navrhnutom testova-
com prostred́ı je otestovaná výkonnosť a vyhodnotené výsledky sa nachádzajú
v závere práce.

Kĺıčová slova poč́ıtačová bezpečnosť, mandatórne riadenie pŕıstupu, SELinux,
CentOS, výkonnosť, analýza výkonnosti, benchmark

ix

Abstract

In this thesis we analyse performance of Linux operating system with man-
datory access control modules in the kernel. It acquaints with the SELinux
technology and its implementation in CentOS operating system. It proposes
possible scenarios for using SELinux like webserver, fileserver or a workstation.
Optimizations are drawn up for increasing performance of system that is using
SELinux. Performance is tested in previously designed testing environment
and results are evaluated.

Keywords computer security, mandatory access control, SELinux, CentOS,
performance, performance analysis, benchmark

xi

Contents

Introduction 1

1 State-of-the-art 3

1.1 Importance of security in operating systems 3

1.2 Reference monitor concept . 3

1.3 DAC vs. MAC . 5

1.4 SELinux . 5

1.5 Software and system performance analysis 11

2 Analysis and design 13

2.1 What to look for? . 13

2.2 Monitoring system performance 13

2.3 General design . 14

2.4 Webserver . 15

2.5 Fileserver . 16

2.6 Workstation . 16

2.7 Testing environment . 17

2.8 Data gathering scripts . 19

2.9 Optimizations . 21

3 Realisation 23

3.1 Client . 23

3.2 Webserver . 23

3.3 Fileserver . 45

3.4 Workstation . 51

Conclusion 55

Bibliography 57

xiii

A Acronyms 59

B Contents of enclosed CD 61

xiv

List of Figures

1.1 Reference Monitor Concept . 4
1.2 Position of LSM Hook [1] . 6
1.3 SELinux Architecture [1] . 7
1.4 Example Of Type Enforcement [1] 9

2.1 Simple Network . 18

3.1 CPU load, HTML test, ext2 . 31
3.2 CPU load, HTML test, ext4 . 31
3.3 CPU load, HTML test, XFS . 32
3.4 CPU load, PHP test, ext2 . 33
3.5 CPU load, PHP test, ext4 . 33
3.6 CPU load, PHP test, XFS . 34
3.7 CPU load, MySQL test, ext2 . 35
3.8 CPU load, MySQL test, ext4 . 35
3.9 CPU load, MySQL test, XFS . 36
3.10 CPU load, random 750 test, ext2 37
3.11 CPU load, random 750 test, ext4 37
3.12 CPU load, random 750 test, XFS 38
3.13 CPU load, random 1500 test, ext2 39
3.14 CPU load, random 1500 test, ext4 39
3.15 CPU load, random 1500 test, XFS 40
3.16 CPU load, random 1500 longer test, ext2 41
3.17 CPU load, random 1500 longer test, ext4 41
3.18 CPU load, random 1500 longer test, XFS 42
3.19 CPU load, ftp test, XFS . 49
3.20 Network load, ftp test, ext2 . 49
3.21 CPU load, ftp test, XFS . 51

xv

Introduction

Security is one of the vital parts of performance of the operating system.
There are various approaches of enforcing this security. One of the imple-
mentation of mandatory access control approach, SELinux, is examined in
this thesis. Being default security module in the Linux distributions Cen-
tOS, Fedora or Red Hat Enterprise Linux, SELinux has proven it is a security
feature that has found its way to widely used operating systems.

Goal of this work is to test SELinux in typical system setup like webserver,
fileserver or a workstation. We prepare a testing environment and analyze
the performance of these scenarios, determine the impact of SELinux and find
possible bottlenecks of the systems.

This paper is divided into three chapters. In state-of-the-art we discuss
access control in general, SELinux architecture and setup in CentOS as well
as performance analysis methods. In second chapter testing environment and
setup of the tested systems is proposed. We choose the tools for measuring the
performance and draw up possible optimizations of tested setups. In the last
chapter testing itself is performed and impact on performance is analyzed.

1

Chapter 1

State-of-the-art

1.1 Importance of security in operating systems

The very reason for developing security of computer systems is the inevit-
ability of software failure. According to [2] it is a serious issue:

“Public awareness of the need for security in computing systems is growing
as critical services are becoming increasingly dependent on interconnected
computing systems.”

The need to increase security comes from many sides. Security is the
primary concern of businesses which want to use the Internet for commerce
and maintaining business relationships[3].

Operating systems play crucial role in supporting the security at higher
levels. This is well understood for at least twenty five years[4][5].

“The necessity of operating system security to overall system security is
undeniable; the underlying operating system is responsible for protecting
application-space mechanisms against tampering, bypassing, and spoofing at-
tacks. If it fails to meet this responsibility, system-wide vulnerabilities will
result.”[2]

1.2 Reference monitor concept

Reference monitor concept is a concept that is widely respected as the the-
oretical concept of access control. As the picture shows, it consists of several
separated entities, that each represent particular resource in the operating
system.

3

1. State-of-the-art

1. Subject
Reference

Monitor

3. Authorization
Database

4. Audit
Trail

2. Object

Figure 1.1: Reference Monitor Concept

1. Subject
Entity that represents processes and users. Subject is actively seeking
access to objects and data stored within.

2. Object
Entity that represents files and directories. Objects contains data we
are trying to protect.

3. Authorization database
Set of rules that define access permissions between subjects and objects.

4. Audit trail
Entity that represent system logs. Reports all relevant events and stores
them according to the configuration.

In the middle of all this, there is reference monitor. Entity that enforces
access control. For it to be effective it needs to meet some conditions. Accord-
ing to [1] the fundamental design goals of an implementation of the reference
monitor are that it be:

• Tamper-proof (cannot be maliciously changed or modified)

• Nonbypassable (subjects cannot avoid the access control decisions)

• Verifiable (it is correct and implementation of the security policy can be
demonstrated)

Today, every modern operating system implements some sort of reference
monitor.

4

1.3. DAC vs. MAC

1.3 DAC vs. MAC

DAC (Discretionary Access Control) is a form of access control that is most
common today. Basic principle is that there is an owner for every object, that
decides what access permissions should that object have. Problem with this
principle is, that mostly it is not the user that decides. To enforce access
control with DAC, user uses software, that he did not create, therefore does
not know for sure whether it is working properly. Flawless software can then
easily penetrate given systems’ security.

MAC (Mandatory Access Control) is a security concept that tries to address
and solve the issue with DAC. Access to the object is not decided by owner,
but it is tested against the set of predefined rules. These rules, we can also call
it policy, are aimed to permit access only to the objects that subject needs to
fulfill its task. We will demonstrate this principle later on, when we discuss
SELinux implementation of MAC.

1.4 SELinux

SELinux is a kernel security module that implements MAC on Linux. It is
implemented via Linux Security Module Framework and uses Type Enforce-
ment method to implement MAC concept. Furthermore, it gives administrat-
ors various tools and other opportunities, to work with security policy and
adapt SELinux to the need of particular system.

1.4.1 Architecture

1.4.1.1 LSM Framework

LSM (Linux Security Modules) is a framework that allows integration of
various security modules into Linux kernel. Following the reference monitor
concept it provides a set of hooks that are placed after the standard Linux
DAC permissions but before the access to the actual resource. SELinux is
therefore loaded as an LSM module to the kernel and is consulted and has to
allow every access attempt.

As the picture shows, the consequences of LSM Hook being placed last
before accessing the inode of the resource, are that when DAC check does not
allow access, SELinux is not even consulted for access decision. This should
not hurt realization of SELinux access control, as SELinux policies tend to be
more restrictive than DAC checks.

Important fact that we will use in performance analysis is that all the se-
curity checks are done in kernel space.

5

1. State-of-the-art

User-Mode process

Access Inode

LSM Hook

DAC Checks

Error Checks

Look Up Inode

Open System Call

SELinux LSM
Module

User Space

Kernel Space

Is access
allowed?

Yes or No ?

Figure 1.2: Position of LSM Hook [1]

1.4.1.2 SELinux LSM module

As mentioned before, SELinux is loaded into kernel as a LSM module. Ac-
cording to [1], the SELinux kernel architecture reflects the Flask architecture,
which was designed for microkernel environment. The Flask architecture has
three primary components: security server, object managers, and the access
vector cache.

Security server is in charge of decision making based on the policy. Object
managers enforce decisions of the security server on the resources they manage.
Access vector cache is a memory of previous decisions of the security server.
The aim is performance improvement. The question, whether it is sufficient,
will be attempted to answer further on.

Userspace object managers are not part of the LSM Module. They are
separate from the kernel, although they work in similar way. According to
[1], the main difference is absence of LSM hooks, which is a kernel concept,
in userspace object managers. Userspace object managers have internal in-

6

1.4. SELinux

Selinux Filesystem

Access
Vector
Cache

Security Server
(Policy Rules and
Access Decision

Logic)

Access
Vector
Cache

User-Space
Object Manager

libselinux

LSM Hooks

Various Kernel
Object Managers

User Space

Kernel Space

Policy Management
Interface

Yes or no?

Yes or no?

Allow
access?

Cache Miss

SELinux LSM Module

Figure 1.3: SELinux Architecture [1]

terfaces with its access vector cache inside libselinux instead. This cache
handles misses and queries kernel for the userspace object manager.

1.4.2 Type Enforcement

Type enforcement is the very implementation of access control policy in
SELinux. It uses certain type assigned to all the resources, both subject and
objects and defines rules of interaction between them.

1.4.2.1 Security context

Security context is the piece of information that SELinux adds to resources
in addition to DAC permissions, id of processes and so on. It is usually dis-
played as a triplet in the following format:

user u:role r:type t

7

1. State-of-the-art

Three parts of the string are all defined in security policy. Every valid se-
curity context has these three parts: valid user, valid role and a valid type
defined in the policy.

1.4.2.2 Rules

SELinux requires all of the access to be granted explicitly. Therefore, we
need rules that will define this access permission. Most used SELinux rule is
allow rule. According to [1], allow rule has four elements:

• Source type
Type of a process attempting access

• Target type
Type of an object being accessed by the process

• Object class
Class of an object that the specified access is permitted to

• Permissions
Kind of access that the source type is allowed to the target type for
previously defined object classes.

We will demonstrate how does allow rule work on simple example from [1].
User joe wants to change his password. After login he is granted user t type.
When he tries to invoke passwd program which has type passwd exec t, the
rule

allow user t passwd exec t : file {getattr execute};

grants him execute permission on the file. After running the program, /usr/bin/passwd
file tries to start a new process. Next rule

allow passwd t passwd exec t : file entrypoint;

grants the passwd program to create process by executing the file. Assuming
that there is another rule

allow passwd t shadow t : file write;

we need to change our security context accordingly where the last rule,

allow user t passwd t : process transition;

grants permission for user t to change its security type to passwd t, using as

8

1.4. SELinux

uid: joe
euid: root

passwd_t

uid: joe
euid: joe

user_t

r - s - - x - - x root root

passwd_exec_t

r - - - - - - - - root root

shadow_t

login

fork()

execve()

bash

passwd

/usr/bin/passwd

/etc/shadow

write, create, …
(change password)

allow user_t passwd_exec_t : file { getattr execute};
allow passwd_t passwd_exec_t : file entrypoint;
allow user_t passwd_t : process transition;

Figure 1.4: Example Of Type Enforcement [1]

an entrypoint passwd exec t. Now passwd process is running with passwd t

type instead of user t and is able to write to /etc/shadow file.

allow rule is one of the few rules that are needed to build a sufficient security
policy. However, exploring all the rules and syntax of the policy language is
not the goal of this work, and one can find more information on this matter
on selinuxproject.org.

1.4.3 Booleans

Another important part for system administration of Linux system with
SELinux are SELinux booleans. Most of SELinux aware applications have
defined several booleans that can alter the policy decisions without the need
to change the policy itself. Best way of administering these booleans is us-
ing SELinux utilities getsebool and setsebool. You can list all available
booleans for a certain service by using following command:

9

selinuxproject.org

1. State-of-the-art

getsebool -a | grep <service-name>

We will use these tools further on when configuring test environment.

1.4.4 SELinux setup in CentOS - targeted policy

Default SELinux policy in CentOS is targeted policy. The name for this
policy is derived from ‘targeting’ critical processes in the system that it pro-
tects, while others, not so crucial for the system, are not protected. In this
section we also discuss applications that we are going to use further on in
testing.

1.4.4.1 Confined and unconfined processes

Processes in CentOS, and Red Hat Enterprise Linux are divided into two
main domains: confined and unconfined. The main difference is in the ap-
proach of the policy. Confined services are protected fully, while unconfined
processes, although still protected by SELinux, have rules that allow almost
all access. Therefore security of unconfined processes is mainly dependent on
DAC.

According to [6], almost every service that listens on a network, such as
sshd or httpd, is confined in CentOS. Also, most processes that run as the
root user and perform tasks for users, such as the previously mentioned passwd

utility, are confined. Confined process runs under its own type, such as the
httpd process is using httpd t domain.

If a confined process is compromised, attacker’s access to resources and the
damage they can do is limited.

According to [6], unconfined processes run in unconfined domains, for ex-
ample, system processes started by init run in the unconfined initrc t do-
main, unconfined kernel processes run in the kernel t domain, and unconfined
Linux users run in the unconfined t domain.

1.4.4.2 Apache HTTP server [7] and SELinux

Apache is by default running as a confined service under httpd t type. An-
other kind of files labeled with httpd sys content t type are only readable
by httpd. According to [6] “booleans must be enabled to allow certain be-
havior, such as allowing scripts network access, allowing httpd access to NFS
and CIFS volumes, and httpd being allowed to execute Common Gateway
Interface (CGI) scripts.” Also listening on a port other than 80, 443, 488,
8008, 8009, or 8443 must be allowed by command semanage port.

10

1.5. Software and system performance analysis

1.4.4.3 FTP and SELinux

The FTP daemon that runs confined is vsftpd [8] by default. According to
[6], when an authenticated user logs in via FTP, they cannot read from or write
to files in their home directories: SELinux prevents vsftpd from accessing user
home directories by default. Also, by default, vsftpd does not have access to
NFS or CIFS volumes, and anonymous users do not have write access, even if
such write access is configured in the /etc/vsftpd/vsftpd.conf file. These
permissions can be managed with enabling particular booleans.

1.4.4.4 MariaDB [9] and SELinux

Default MySQL database has changed to MariaDB in latest Fedora [10]
and CentOS releases. MariaDB is drop-in replacement for MySQL and is
a community developed fork of MySQL database project, independent on
Oracle. It is a SELinux-aware application.

MariaDB runs as confined in SELinux by default. Features configurable
by booleans are httpd network connections and ftp daemons access to the
database.

1.5 Software and system performance analysis

1.5.1 Stress testing

Stress testing according to [11], “is a generic term used to describe the
process of putting a system through exertion or stress. . . Stress testing is typ-
ically used to benchmark a systems performance to determine a systems upper
performance limits.”

1.5.2 Load testing

Load testing will be the main part of our performance analysis. According
to [12], “load testing is the process of executing a concurrent user load and/or
a system load onto a system, at incremented concurrency ramp-up rates, to
determine its stability, performance and integrity. During load testing system
components are monitored and correlated with transaction response times.
At a point where a system becomes unstable due to erratic or dramatically
extended response times the system will have reached its benchmark. At this
point an analysis should take place to identify the bottlenecks and the tuning
required to resolve them.”

11

Chapter 2

Analysis and design

2.1 What to look for?

Determining influence of a certain piece of software on the system is a task
of determining what system resources are going to be influenced by this piece
of software, and determining their performance.

In our case (SELinux) we have a kernel module that provides additional
access control. Therefore we will look for changes in load of the CPU, namely
kernel space CPU load.

2.2 Monitoring system performance

During tests we will use a monitoring system to take snapshots of resources
used, mainly CPU, memory and disk. These data will be used to determine
the impact of the SELinux on the performance.

As a monitoring system we will use nmon [13]. nmon is easy-to-use perform-
ance monitor. Simply running the following command:

nmon -fT -s 5 -c 2880 -m $HOME/nmon-data

will start a process that will be monitoring the system while we will gen-
erate traffic to get some useful data. As for explanation of the command:

-f - starts nmon in data-collect mode (instead of interactive)
-T - include top processes in the output
-s 〈seconds〉 - # of seconds between snapshots of the system
-c 〈number〉 - # of snapshots before nmon ends
-m 〈directory〉 - directory that nmon will save file to

13

2. Analysis and design

The -T option is set because it might be interesting to know whether some
processes resource consumption rises more than others, and therefore are more
problematic under SELinux enabled system.

The -c option is not so important, as nmon can be killed using following
command, mentioned in nmon documentation,

kill -USR2 <nmon-pid>

after finishing the traffic generating script and data-collecting (here, nmon

is set to run for four hours).

For visualizing the result we will use nmon-visualizer [14].

2.3 General design

2.3.1 LVM

LVM should be present in our server installation. As [15] says, LVM
includes all of the support for handling read/write operations on physical
volumes (hard disks, RAID-Systems, magneto optical, etc., multiple devices
(MD), see mdadd(8) or even loop devices, see losetup(8)po), creating volume
groups (kind of virtual disks) from one or more physical volumes and creating
one or more logical volumes (kind of logical partitions) in volume groups.

LVM is included in the default installation of CentOS.

2.3.2 Filesystem

For choice of filesystem we chose three different types that will be test.

• ext2
Used as a standard for benchmarking. Unlike other two, it does not
have journal.

• ext4
Most popular filesystem on Linux today.

• xfs
Red Hat recommended and default filesystem for RHEL and CentOS.

2.3.3 OS

For OS CentOS 7 [16] will be used. For server installation ‘Minimal install’
software selection will be used and for workstation ‘GNOME Desktop’ software
selection with additional ‘Development tools’ package will be used.

14

2.4. Webserver

2.4 Webserver

For a first scenario for our performance analysis we will configure and test
a webserver. This webserver should be capable of serving requests for static
.html pages, as well as dynamic PHP content with some possible communic-
ation with database.

2.4.1 Configuration

In configuring our webserver widely known and used open source software
will be used. It is based on so called LAMP Stack. LAMP is an abbreviation of
Linux, Apache, MySQL, PHP. It is an open source Web development platform
that uses Linux as the operating system, Apache as the Web server, MySQL as
the relational database management system and PHP as the object-oriented
scripting language.

For obvious reasons we will use Linux distribution that natively supports
SELinux - CentOS, in minimal installation image, that installs only necessary
packages for functioning server and no GUI.

As a webserver we will use Apache HTTP webserver, which is widely used
open source webserver. To install this webserver we need package httpd.

Default MySQL database has changed to MariaDB in latest Fedora and
CentOS releases. It is a drop-in replacement for MySQL and is a community
developed fork of MySQL database project, independent on Oracle.

To install PHP we use php package. Also, we need additional php-mysql
package to provide functionality for php to use the database.

These packages are essentially all we need for a functioning webserver. For
the webserver to work properly we need to make some configuration changes
in some of the packages that are discussed later in Realisation chapter.

2.4.2 Testing

Our goal is to test every part of the set up configuration. Using ab [17]
tool, we will stress test static content, dynamic content and dynamic content
connecting to the database. After this, using siege [18] tool, we will load test
webserver by accessing all of these pages randomly and adding some false pages
that are not present on the server, expecting ‘404 Page not found’ response.

15

2. Analysis and design

2.4.3 Performance

Webserver in general serves, by far, the most amount of requests (access to
files or resources) out of all the tested scenarios. It is generating new files for
every request asking for dynamic content, and that is why we expect SELinux
to have significant impact on performance.

2.5 Fileserver

Second scenario for testing is a fileserver. The fileserver should be capable
of serving FTP requests even on anonymous basis, and provide secure file
transfer for authenticated users.

2.5.1 Configuration

For a functioning fileserver we need two basic services. Plain FTP used
mainly for anonymous downloads and uploads and secure file transfer.

For plain FTP we will use vsftpd package. For SFTP we will use SSH
server. SSH server offers a lot of funcionalities for administrators, but also
sftp service for secure file transfer.

2.5.2 Testing

Fileserver will be tested for non-crypted FTP transfers and SFTP transfers.
Using wget [19] and wput [20] tools we will test download and upload with plain
FTP. Using scp [21] tool we will test SFTP file transfers.

2.5.3 Performance

Fileserver does not serve as many requests as webserver does. It is used for
transferring mainly larger files, and so access control is used much less than
it is on the webserver. Due to this fact, we expect less performance impact of
SELinux, and it may appear for this impact to be insignificant.

2.6 Workstation

The last scenario for testing is a workstation. We expect workstation to be
used for different tasks than previous two scenarios. In our scenario we expect
workstation to be used for software development and that will determine tasks
to be tested.

16

2.7. Testing environment

2.6.1 Configuration

Workstation should be configured using the standard default ‘GNOME
Desktop’ installation of CentOS. For additional software we choose Devel-
opment Tools. Nothing else should be installed further, as this image has
all the needed packages for functioning workstation, like GUI, file manager,
network support, web browser, basic media support etc.

2.6.2 Testing

To test performance workstation benchmarks will be used for generating traffic.
Selected benchmarks will test workstations’ performance in compiling, com-
pressing and aging the filesystem by simulating some of the disk IO common
operations.

2.6.3 Performance

Out of the three proposed scenarios workstation is the least loaded with re-
quests. We expect for SELinux to have insignificant impact on performance.
Workstation is usually used by one user at a time, who is incapable of gener-
ating enough access control requests for it to have any effect.

2.7 Testing environment

Environment for testing the performance of server using SELinux consists
of two computers directly connected via crossover cable in a private network.
One of the machines is the tested server itself, while other is a client where
the traffic is generated and all the testing is led from.

2.7.1 Server

Here is list of server hardware and software parameters. Note that some
parameters of the server might change due to the nature of the test. Server is
using LVM and filesystems vary through ext2, ext4 and xfs. Also, the mode
of SELinux will change through tests.

2.7.1.1 Hardware

Processor: Intel Core 2 6300 @ 1.86GHz (2 Cores)
Motherboard: LENOVO
Chipset: Intel 82Q963/Q965 + ICH8/R
Memory: 1024MB
Disk: 80GB Western Digital WD800JD-08MS
Graphics: Intel 82Q963/Q965 IGP
Network: Broadcom NetXtreme BCM5755 Gigabit PCI

17

2. Analysis and design

2.7.1.2 OS and additional packages

Linux kernel: 3.10.0-123.20.1.el7.x86 64
OS distribution: CentOS 7 Minimal installation
Additional packages: httpd

php
mariadb
vsftpd

2.7.2 Network

Testing through network can cause defective results, because network speed
tends to be a bottleneck of servers’ performance. The goal for the network is
to be as small and as fast as possible, but trying to preserve equal conditions
for all the tests.

Loopback interface is unsuitable to generate traffic during tests. Loopback
generates traffic on the machine itself, therefore is not slowed by network
architecture, but is influenced by the SELinux mode causing conditions to be
different when testing SELinux on and off.

Figure 2.1: Simple Network

Traffic will be generated using a small private network consisting of two
directly connected computers via Gigabit Ethernet, one of those being the
tested server, other acts as gateway to WAN (this is being disconnected during
testing). All requests (http, ftp) are coming from the gateway machine to
minimize the possibility of network being a bottleneck of the testing.

18

2.8. Data gathering scripts

2.7.3 Client

Here is list of client hardware and software parameters. Unlike server, client
needs to be configured exactly the same way for all the test to ensure equal
conditions during tests.

2.7.3.1 Hardware

Processor: Intel 2140 @ 1.60GHz (2 Cores)
Motherboard: ASUS P5L8L
Chipset: Intel 82945G/GZ/P/PL + ICH7
Memory: 2 x 1024 MB SDRAM-667MHz
Disk: 160GB Seagate ST3160813AS
Graphics: Intel 82945G/GZ IGP
Network: Realtek RTL8111/8168/8411

2.7.3.2 OS and additional packages

Linux kernel: 3.10.0-123.20.1.el7.x86 64
OS distribution: CentOS 7 Minimal installation
Additional packages: httpd-utils

siege
wget
wput

2.8 Data gathering scripts

These scripts are run from client machine and their function is to perform the
whole testing. Main structure is the same in all of the scripts.

• Turn on nmon on the server (using ssh)

• Hit the server with requests

• Turn off nmon on the server

• Save the results

• Parse the data for further use

2.8.1 Web stress test

This script has four modes which it can stress test the webserver. First
is html, requesting static .html website. Second is php, which is sending
requests for dynamic .php page. mysql mode requests dynamic .php page
that works with the database. Finally false mode requests page that is not
on the server, thus expecting failed request. Other configurable parts of the

19

2. Analysis and design

script are concurrency of the requests and number of concurrent request waves
to hit the webserver.

From this test we get time taken for tests, requests per second and transfer
rate for each concurrency level to compare. Also, we get time in which certain
amount of requests is served.

2.8.2 Web random test

This script tests web server under given concurrency of requests for a given
time, hitting webserver with requests for pages listed in /etc/siege/urls.txt

file, choosing randomly which page to request. File contains 4 types of records

• Static .html pages

• Dynamic content in form of .php pages

• .php pages communicating with the database

• False pages not present on the server

This test also gives us transaction performed, transactions per second and
throughput values.

2.8.3 FTP and SFTP tests

These script starts given number of downloads and uploads using wget/wput
programs using FTP, or scp for secure file transfer. Besides nmon file we will
use download/upload time of files and throughput to compare.

2.8.4 Workstation benchmarks

We expect workstation to be used for software development and we need
to choose benchmarks accordingly to this expectation. For testing we will use
phoronix-test-suite [22] benchmarking utility. There will be two bench-
marks we will be performing:

• Timed code compilation

– Build apache

– Build mplayer

– Build php

– Build linux kernel

• Compile bench

20

2.9. Optimizations

The ‘Timed code compilation’ test suite consists of four separate tests that
are compiling various software and measuring time needed. Compile bench, as
[23] says, “tries to age a filesystem by simulating some of the disk IO common
in creating, compiling, patching, stating and reading kernel trees. It indirectly
measures how well filesystems can maintain directory locality as the disk fills
up and directories age.”

2.9 Optimizations

2.9.1 Webserver and Fileserver

Important files for both webserver and fileserver are stored within a par-
ticular directory in the system. For webserver it is /var/www/html and for
fileserver /var/ftp/pub. Repeated access to these directories, that occurs
during testing, may be well cached in AVC (Access Vector Cache).

Optimization we propose is to disable SELinux control over particular files
in the mentioned directories and use SELinux only to control access to the
directory itself. To do this we must change security context type to unconfined
in these files. Decrease in amount of SELinux access control decisions and
therefore better performance are expected.

Drawback of this optimization is leaving content of the files and their se-
curity to traditional DAC without additional SELinux protection.

2.9.2 Workstation

Optimizing a workstation is a different task than optimizing one of the
servers. There is no service that is tested exclusively, like http or ftp. Op-
timization would have to be system-wide and would need to work with the
policy file itself.

Taking in account SELinux is expected to have little or no impact on per-
formance in this scenario, small changes of a few services would not be observ-
able and system-wide optimizations of the whole policy file is beyond the limits
of this work. It is expected that there would be no space left for optimization,
so optimizations for workstation are not proposed.

21

Chapter 3

Realisation

3.1 Client

For testing servers, it is necessary to have a client that will remain the same
during all the tests, and will hit servers with requests.

3.1.1 Configuration

For configuring a client we need to do some necessary steps.

1. Install OS

2. Configure networking

3. Download necessary packages

After installing CentOS ‘GNOME Desktop’ installation, configuration of
network interface is needed. This interface is directly connected to the server
with a static IP (192.168.0.1/24), and is used as a gateway to the server.
We can do this using Network Manager, since we have GUI installed.

Furthermore, we must download httpd-utils package, siege package and
wput package, that we will need for the testing. Packages scp and wget are
already installed within the default OS installation.

3.2 Webserver

3.2.1 Configuration

Before running tests webserver must be configured. Setting up a webserver
can be divided into several steps that are needed to be performed for a properly
running webserver.

23

3. Realisation

1. Install OS

2. Configure networking

3. Download necessary packages

4. Generate websites

5. Enable necessary services

6. Set up database

Now we are going to take a look at these steps closer.

3.2.1.1 Install OS

For OS installation we will use standard CentOS 7 .iso file, downloadable
from CentOS website. It provides Anaconda walkthrough installation. In soft-
ware selection we choose ‘Minimal install’ and automatic partitioning. From
this point installation is automatic.

3.2.1.2 Configure networking

In minimal install software selection the networking is disabled. In order
to get network running we need to make some changes to configuration file
of the network interface. Automatically generated interface configuration file
looks like this:

HWADDR=00:16:41:36:20:24

TYPE=Ethernet

BOOTPROTO=dhcp

DEFROUTE=yes

PEERDNS=yes

PEERROUTES=yes

IPV4_FAILURE_FATAL=no

IPV6INIT=yes

IPV6_AUTOCONF=yes

IPV6_DEFROUTE=yes

IPV6_PEERDNS=yes

IPV6_PEERROUTES=yes

IPV6_FAILURE_FATAL=no

NAME=enp3s0

UUID=0842275e-8a44-431b-9634-a6bd2192e964

ONBOOT=no

24

3.2. Webserver

As we do not have running DHCP server we must change BOOTPROTO option
to ‘static’ and also define IP address, netmask, default gateway and DNS
servers. We also change ONBOOT option to ‘yes’ for interface to be available
and running on boot, and set NM CONTROLLED to ‘no’ to deny NetworkManager
access to this interface. Finally, the configuration file looks like this:

HWADDR=00:16:41:36:20:24

TYPE=Ethernet

BOOTPROTO=static

IPADDR=192.168.0.100

NETMASK=255.255.255.0

GATEWAY=192.168.0.1

NM_CONTROLLED=no

DNS1=8.8.8.8

DNS2=8.8.4.4

DEFROUTE=yes

PEERDNS=yes

PEERROUTES=yes

IPV4_FAILURE_FATAL=no

IPV6INIT=yes

IPV6_AUTOCONF=yes

IPV6_DEFROUTE=yes

IPV6_PEERDNS=yes

IPV6_PEERROUTES=yes

IPV6_FAILURE_FATAL=no

NAME=enp3s0

UUID=0842275e-8a44-431b-9634-a6bd2192e964

ONBOOT=yes

3.2.1.3 Download necessary packages

Now that we have access to the Internet, necessary packages for webserver
can be downloaded.

• httpd

• php

• php-mysql

• mariadb-server

These packages allow us to set up LAMP stack. We also need additional
packages for system administration and performance monitoring.

• policycoreutils-python

25

3. Realisation

• http://pkgs.repoforge.org/rpmforge-release/rpmforge-release-0.5.3-1.e
l7.rf.x86 64.rpm

• nmon

After installing these packages we have downloaded everything we need.

3.2.1.4 Generate websites

We need to generate a large amount of websites, mainly for the Internet
simulation testing. We use simple bash scripts for this task. This is a script
for generating .php pages.

#!/bin/bash

for i in ‘seq 1000‘

do

echo "<html>

<body>

<?php

echo \"<h1>This is a test PHP page $i</h1>\";

echo microtime () ;

?>

</body>

</html>" > testpage${i}.php

done

In similar manner we generate .html pages and .php pages communicating
with database. These scripts are available in directory src/scripts on the
CD.

3.2.1.5 Enable necessary services

When everything is ready we must enable all the services we need and also
adjust firewall for our new services using following commands:

systemctl enable httpd

systemctl enable mariadb-server

firewall-cmd --permanent --add-service=http

After reboot we have a running webserver capable of serving requests during
testing.

3.2.1.6 Set up database

Using CLI tool mysql we set up database. After connecting to the database
as root using mysql -u root -p we invoke following commands:

26

http://pkgs.repoforge.org/rpmforge-release/rpmforge-release-0.5.3-1.el7.rf.x86_64.rpm
http://pkgs.repoforge.org/rpmforge-release/rpmforge-release-0.5.3-1.el7.rf.x86_64.rpm

3.2. Webserver

CREATE USER ’tester_db’@’localhost’ IDENTIFIED BY ’retset’;

CREATE DATABASE IF NOT EXISTS test_db;

We have created an empty database and a user that will be used to connect
the database. Using following simple shell command

mysql test db < db dump.sql

we fill up the database using db dump.sql script and it is ready to use for
testing.

3.2.2 Testing

During webserver testing, mainly its ability to satisfy a number of con-
current requests is being tested. Webserver uses an amount of small files to
generate dynamic content. This might cause a performance decrease when en-
abling SELinux in enforcing mode, because every new file created or changed
has to be permitted access by SELinux in addition to standard UNIX access
control. For testing a webserver performance we will perform four tests.

3.2.2.1 Tests with ab

We will test three various pages with ab tool. Number of concurrent requests
will be rising over time to get data on the various workloads server might be
facing, from very little to near-stress test amount. Example script to test html
static page (scripts for testing php and mysql will be performed in similar
manner. Both are available in src/scripts directory on CD):

#!/bin/bash

for i in 1 2 4 8 16 32 64 128

do

ab -q -c $i -n $((i*50000)) -e html$i.csv $HOSTNAME/testpage.html

done

The -q option suppresses output to stderr, -c sets amount of concurrent
requests, -n number of times requests should be sent and -e option generates
a .csv file with output values of ab.

From the ab output throughput and time that it took to answer to all the
requests can be measured. Furthermore CPU, memory and filesystem I/O
performance can be measured with nmon. This is because the throughput or
time might not change much, but it might take up much more system resources
for the same task.

27

3. Realisation

3.2.2.2 HTML static page

This test hits the following static html page with a number of concurrent
requests.

<html>

<body>

<h1> This is a test HTML page </h1>

</body>

</html>

3.2.2.3 PHP dynamic page

This test is similar to the previous one, except it hits PHP dynamically
generated pages. These will have greater impact on the filesystem, as a large
number of small files are created during testing. Creation and changes made
to these files can take up more time on SELinux enforcing system due to the
need to perform additional access control.

<html>

<body>

<?php

echo "<h1>This is a test PHP page</h1>";

echo microtime();

?>

</body>

</html>

microtime() function is called to prevent as much as possible cached page
optimization, so server needs to generate a new page, and, therefore a new file
for each request.

3.2.2.4 PHP+MySQL dynamic page test

Performing the same test as before, just with a PHP dynamically generated
pages and MySQL queries. It is the most complicated test and should take
up the most time. We just adjust php script in the previous page a little to
communicate with the database each time a request is made.

<html>

<body>

<h1>This a test MySQL page <h1>

<?php

// Connecting, selecting database

$link = mysql_connect(’localhost’, ’tester_db’, ’retset’)

or die(’Error : ’ . mysql_error());

28

3.2. Webserver

echo ’Connected successfully’;

mysql_select_db(’test_db’);

// Performing SQL query

$query = ’SELECT * FROM spell_pet_auras’;

$result = mysql_query($query) or die(’Failed: ’ . mysql_error());

// Printing results

echo "<table>\n";

while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {

echo "\t<tr>\n";

foreach ($line as $col_value) {

echo "\t\t<td>$col_value</td>\n";

}

echo "\t</tr>\n";

}

echo "</table>\n";

// Free result

mysql_free_result($result);

// Closing connection

mysql_close($link);

?>

</body>

</html>

3.2.2.5 Real workload simulation with Siege

This test aims to simulate real workload using Siege tool. This test will be
more random than ab tests before, so for it to have some value we need to run
it long enough to be statistically more accurate.

siege -c 500 -t 2H -d 2 -i

This siege test is hitting webserver with 500 concurrent requests (-c option)
for 12 hours (-t option). Every further concurrent request has random delay
(-d option) from 1 to 2 seconds (aim is to stagger requests in time) and requests
are send to random pages (-i option) included in the /etc/siege/urls.txt

file.

As mentioned earlier, due to this randomness, the test needs to be performed
for a longer period of time, here for two hours. In real traffic data-collection,
time needed to collect data is much longer. It is mainly because of seasonal

29

3. Realisation

peaks of load. In this simulation, we don’t have seasonal peaks, so two hours
should be enough to make a reasonable simulation.

3.2.3 Results

Results of the webserver are divided into four parts. First three are stress
tests of a single page, which differs in content. Last is load test that is simu-
lating real world load of the server. Complete results are available in res/web

directory on the CD. On the graphs enforcing SELinux is in red and orange
lines, while disabled SELinux is in blue and purple lines. As the tests with
increasing concurrencies were run sequentially, graphs contain all the concur-
rencies together.

3.2.3.1 Testing static HTML page

First test that was running was hitting a static page. We chose exponen-
tially rising concurrency from 1 to 128 each concurrency level consisted of 50
000 waves of concurrent requests. Results were following:

Time in s Disabled Enforcing Difference

ext2 2573.02 2500.95 -2.8%

ext4 2482.31 2515.21 1.3%

xfs 2435.77 2452.38 0.7%

As we can see, results of the test are ambiguous. Considering the nature of
the test, this is not entirely unexpected. Test was hitting single static website,
which can be well cached in SELinux’s AVC. When we look at CPU statistics
in figures 3.1, 3.2 and 3.3, CPU load in kernel space was higher in Enforcing
mode, as expected.

On ext2 filesystem we measured 4.5% more CPU load within kernel space
with enforcing SELinux, on ext4 it was 3% and on XFS 1.8%. Even when the
test was ambiguous, the presence of SELinux was observable.

30

3.2. Webserver

Figure 3.1: CPU load, HTML test, ext2

Figure 3.2: CPU load, HTML test, ext4

31

3. Realisation

Figure 3.3: CPU load, HTML test, XFS

3.2.3.2 Testing dynamic PHP page

Second test was hitting a PHP page that generated dynamic content. As
well as the first test, there was exponentially rising concurrency from 1 to
128. Each concurrency level consisted of 50 000 waves of concurrent requests.
Results were following:

Time in s Disabled Enforcing Difference

ext2 4305.27 4449 3.2%

ext4 4319.68 4482.65 3.6%

xfs 4306.81 4400.47 2.1%

This tests’ results were more definite than previous result. In this test
new dynamic page was generated for every request, which resulted in higher
SELinux impact on the results.

CPU load in kernel space did not differ as much as it did in the previous
test. It also decreased 5% in average, which can be explained by disk playing
bigger role in this test. Generating PHP pages takes up more time on disk
(disk was busy at rate around 5%), than it loads the CPU. Still, difference
between enforcing and disabled SELinux was 1.6% on ext2, 1.8% on ext4 and
0.9% on XFS.

32

3.2. Webserver

Figure 3.4: CPU load, PHP test, ext2

Figure 3.5: CPU load, PHP test, ext4

33

3. Realisation

Figure 3.6: CPU load, PHP test, XFS

3.2.3.3 Testing dynamic PHP page with MySQL queries

Third test was hitting a PHP page that queried database. As well as the
first test, there was exponentially rising concurrency from 1 to 128. Each
concurrency level consisted of 50 000 waves of concurrent requests. Results
are presented in the following table:

Time in s Disabled Enforcing Difference

ext2 7411.52 7767.38 4.6%

ext4 7392.53 7828.81 5.6%

xfs 7853.91 8177.09 3.9%

The nature of this test is similar to the previous one, as it requests dynamic
content, but in addition queries database. This was too much to handle for
the server when the concurrency rose above 32, which can be seen on figures
3.7, 3.8 and 3.9. Load of the CPU in kernel space differed again in favor of
disabled SELinux to enforcing by 2.8% on ext2, 2.9% on ext4 and 3.1% on
XFS.

34

3.2. Webserver

Figure 3.7: CPU load, MySQL test, ext2

Figure 3.8: CPU load, MySQL test, ext4

35

3. Realisation

Figure 3.9: CPU load, MySQL test, XFS

3.2.3.4 Random tests

Random tests each ran for two hours. These tests were randomly choosing
from the list located in /etc/siege/urls.txt. This list contained 3000 dif-
ferent pages, evenly distributed between pages using HTML, PHP and PHP
with MySQL queries. In addition, there were 1000 false pages that weren’t
located on the server. Goal of this approach was to simulate real world load of
the webserver. This test was running in two modes that differ in concurrency
of the requests. One was set 750 requests/second and the other one 1500 re-
quests/second.

Concurrency: 750 requests/s
Transaction/s Disabled Enforcing Difference

ext2 747.73 747.87 0.0%

ext4 748.04 748.16 0.0%

xfs 748.33 748.38 0.0%

b However, looking at CPU load in figures 3.10, 3.11 and 3.12, we discover
that kernel space is still more loaded under enforcing SELinux - 0.6% on ext2,
0.8% on ext4 and 0.9% on XFS.

36

3.2. Webserver

Figure 3.10: CPU load, random 750 test, ext2

Figure 3.11: CPU load, random 750 test, ext4

37

3. Realisation

Figure 3.12: CPU load, random 750 test, XFS

Concurrency: 1500 requests/s
Transaction/s Disabled Enforcing Difference

ext2 1295.45 1300.08 -0.3%

ext4 1310.92 1160.09 11.5%

xfs 1305.64 1240.42 5.0%

These results look rather chaotic. Results are very different for each filesys-
tem tested. This may be caused by the randomness of the test.

38

3.2. Webserver

Figure 3.13: CPU load, random 1500 test, ext2

Figure 3.14: CPU load, random 1500 test, ext4

39

3. Realisation

Figure 3.15: CPU load, random 1500 test, XFS

To get better result from this test, it was run again, this time for four
hours. The results were following:

Transaction/s Disabled Enforcing Difference

ext2 1193.26 1195.80 -0.2%

ext4 1231.35 1221.25 0.8%

xfs 1231.55 1232.84 -0.1%

Running tests for longer period of time stabilized the measured values. Under
this load, servers’ ability to serve requests was not considerably influenced
by SELinux. However, CPU load in kernel space was consistently higher in
enforcing SELinux: by 1.3% on ext2, 1.1% on ext4 and 1.9% on XFS.

40

3.2. Webserver

Figure 3.16: CPU load, random 1500 longer test, ext2

Figure 3.17: CPU load, random 1500 longer test, ext4

41

3. Realisation

Figure 3.18: CPU load, random 1500 longer test, XFS

3.2.4 Optimizations

Previously proposed optimizations were tested using same set of tests that
were used for testing disabled and enforcing SELinux.

3.2.4.1 Additional configuration

Additional configuration was needed to prepare the environment. Namely
the security context of the files in /var/www/html had to be changed to uncon-
fined. httpd service, running as confined has special security context for files
that should not be protected by SELinux: httpd unconfined script exec t.
As the name suggests, this security context is supposed to be used for execut-
able scripts, but we will use it also for static .html pages. Using the following
commands:

semanage fcontext -a -t httpd_unconfined_script_exec_t \

"/var/www/html(/.*)?"

cd /var/www/

restorecon -R html/

we change the security context of the files and we can test this setup.

3.2.4.2 Testing static HTML page

CPU kernel load was consistently lower on all filesystems, namely by 0.6%
on ext2, 4.3% on ext4 and 0.9% on xfs. In spite of this fact, the results were

42

3.2. Webserver

following:

Time in s Optimized Not Optimized Difference

ext2 2422.18 2500.95 3.2%

ext4 2684.67 2515.21 -6.7%

xfs 2474.56 2452.38 -0.9%

3.2.4.3 Testing dynamic PHP page

CPU kernel load was consistently lower, by 2.9% on ext2, 1.1% on ext4 and
2% on xfs. In spite of this fact, the results were following:

Time in s Optimized Not Optimized Difference

ext2 4762.57 4449 -7%

ext4 4305.56 4482.65 4.1%

xfs 4789.25 4400.47 -8.8%

3.2.4.4 Testing dynamic PHP page with MySQL queries

In this test, the CPU load in kernel space was lower in optimized version
on ext2 by 1.4% and on xfs by 1.2%. On ext4 the difference was less than 0.1%.

Time in s Optimized Not optimized Difference

ext2 8162.32 7767.38 -5.1%

ext4 7555 7828.81 3.6%

xfs 8464.68 8177.09 -3.5%

3.2.4.5 Additional testing of dynamic content

In three tests above we got consistently lower CPU load in kernel space,
which was expected. However, most of tasks did take more time in optim-
ized version than in the default enforcing mode. For dynamic content results
were as expected on ext4, but different on ext2 and xfs. We tried another
test with various file sizes to determine whether these unexpected results were
caused by filesystem. It was expected for the larger files to increase the dif-
ference between the two versions, while the smaller ones should have reduced
it. However, results in the following table did not confirm this.

43

3. Realisation

Filesystem Mode Not Optimized Optimized Difference

ext2 larger files 23367.2 23413 -1.96%

ext2 original test 7767.38 8162.32 -5.08%

ext2 smaller files 7204.87 7131.59 1.03%

ext4 larger files 23757 23806.6 -1.00%

ext4 original test 7828.81 7555 3.62%

ext4 smaller files 7169.76 7119.61 0.70%

xfs larger files 23022.3 23034.5 -0.05%

xfs original test 8177.09 8464.68 -3.52%

xfs smaller files 7639.36 7732.47 -1.22%

3.2.4.6 Random tests

Results of random test with concurrency level 750 where as following:

Transaction/s Optimized Not optimized Difference

ext2 747.25 747.87 -0.1%

ext4 748.04 748.16 0%

xfs 747.75 748.38 -0.1%

As you can see, there is virtually no difference between the two SELinux
modes in this test. 750 requests per second is too little load to make a reas-
onable difference, as it was the case in the previous test with disabled and
enforcing modes.

Random tests with 1500 concurrency were run for 4 hours, because of the
experience from the previous testing. Results were following:

Transaction/s Optimized Not optimized Difference

ext2 1258.94 1195.80 5.3%

ext4 1232.42 1221.25 0.9%

xfs 1225.05 1232.84 -0.6%

These results shows that on xfs non-optimized version serves more requests
per second. On ext2 and ext4 however, more requests are served in optimized
version.

44

3.3. Fileserver

3.3 Fileserver

3.3.1 Configuration

Setting up a fileserver can be divided into several steps that are needed to be
performed for a properly running fileserver.

1. Install OS

2. Configure networking

3. Download necessary packages

4. Configure vsftpd

5. Configure access rights and SELinux security contexts

6. Configure SELinux booleans

7. Generate files

8. Enable necessary services

Install OS and configure networking steps are same as mentioned in configuring
webserver. Now we are going to take a look at rest of these steps closer.

3.3.1.1 Download necessary packages

Now, that we have access to the Internet, we can download necessary pack-
ages for fileserver. In fact, we need only FTP client (in our case vsftpd),
because we will test SFTP with Open-SSH server that is already part of
minimal installation of CentOS. We also need additional packages for system
administration and performance monitoring.

• policycoreutils-python

• http://pkgs.repoforge.org/rpmforge-release/rpmforge-release-0.5.3-1.e
l7.rf.x86 64.rpm

• nmon

3.3.1.2 Configure vsftpd

In /etc/vsftpd/vsftpd.conf file we have to change upload policy of the
vsftpd. We add following two lines to the config file:

anon_upload_enable=yes

no_anon_password=yes

Now anonymous upload is enabled without prompting for password, although
there are still some changes needed for this feature to function properly.

45

http://pkgs.repoforge.org/rpmforge-release/rpmforge-release-0.5.3-1.el7.rf.x86_64.rpm
http://pkgs.repoforge.org/rpmforge-release/rpmforge-release-0.5.3-1.el7.rf.x86_64.rpm

3. Realisation

3.3.1.3 Configure access rights and SELinux security contexts

During installation of vsftpd, there is a new directory created, /var/ftp.
This is the directory the anonymous FTP user is ‘chrooted’ to when he con-
nects to the server. This directory is not writable (in terms of standard UNIX
access control) and it needs to stay this way (security check of vsftpd will not
let us perform FTP transfer with writable FTP root directory, unless forced
to). There is another directory inside previous one: /var/ftp/pub. We give
full access to all users on this directory, as we want to enable anonymous
download and upload of files, from and to this directory.

This itself is still not enough for anonymous FTP upload to work. By de-
fault, /var/ftp/pub directory has security context public content t. This
security context grants read permissions, but denies any write access to the
directory. We need to change context of this directory and all the files and sub-
directories created within it. Our target security context is public content rw t,
which grants users both read and write permissions. To do so we use following
commands:

semanage fcontext -a -t public_content_rw_t "/var/ftp/pub(/.*)?"

cd /var/ftp/

restorecon -R pub/

After this change the security context of the file changes to public content rw t.

3.3.1.4 Configure SELinux booleans

After all of the previous configuration, FTP upload still exits with an access
error. Last thing to examine when configuring fileserver is SELinux booleans.
The boolean that we need to change is ftpd anon write, that is in the off
state by default. It has to be changed using following command:

setsebool -P ftpd anon write on

Another boolean that would solve our problem is ftpd full access. Al-
though this boolean solves the problem of anonymous upload, it disables
SELinux for FTP completely and therefore our results would be useless.

3.3.1.5 Generate files

For testing we need to generate enough files. We will generate these files
randomly using /dev/urandom and dd tool. Files will have size of 1 GiB.

for i in ‘seq $NumOfFiles‘

do

dd if=/dev/urandom of=/var/ftp/pub/dfile$i bs=4M count=256

46

3.3. Fileserver

done

3.3.1.6 Enable necessary services

When everything is ready we must enable all the services we need and also
adjust firewall for our new services using following commands:

systemctl enable vsftpd

firewall-cmd --permanent --add-service=ftp

After reboot we have a running fileserver capable of serving requests during
testing.

3.3.2 Testing

Testing a fileserver will consist of simultaneously downloading and uploading
larger files, with simple ftp, but also secure sftp using ssh.

3.3.2.1 Testing FTP with wget and wput

wget is a non-interactive network downloader and wput is wget-like FTP
uploader. Using these two programs we will simulate FTP traffic on the
fileserver. As the previous tests on the webserver with ab, this test should also
start with a small load and go up to large number of concurrent downloads
and uploads.

#!/bin/bash

for i in ‘seq $1‘

do

wget -b ftp://$HOSTNAME/file$i

DELAY=$RANDOM

let "DELAY %= $RANGE"

sleep $DELAY

done

This simple script will invoke a number of concurrent downloads (set as an
argument of the script) using wget that is sent to background (-b option).
wget will save output to the log file from which we will parse download time
of each file or can compute average download time. All other important data
will be collected with nmon. Same applies for wput.

Three commands after running wget are computing delay before the next
download is initiated. This is done to scatter the downloads/uploads in time,
simulating more real load.

47

3. Realisation

3.3.2.2 Testing SFTP with scp

This test will generate traffic using sftp protocol to download/upload files
with scp program.

#!/bin/bash

for i in ‘seq $i‘

do

scp -v up_file$i $HOSTNAME:uploaded_file$i 2> log.up$i &

DELAY=$RANDOM

let "DELAY %= $RANGE"

sleep $DELAY

done

The scp program sends log data (-v option) to stderr, which will be re-
directed into a file, from which we can parse time needed to transfer file or
throughput of the transaction and also compute average time of transaction.
All other important data will be collected by nmon.

We will also try concurrent download/upload by invoking scp both ways at
the same time. To solve the problem with interactive password authentication,
we will use sshpass [24] program.

3.3.3 Results

Testing of fileserver consisted of two tests. First was testing plain ftp

using wget and wput tools and second was testing sftp using ssh. Complete
results are available in res/file directory on the CD. On the graphs enforcing
SELinux is in red and orange lines, while disabled SELinux is in blue and
purple lines.

3.3.3.1 FTP test

We carried out concurrent download/upload of 25 files (20 download, 5
upload) that had size 1 GiB and we repeated each test three times. 10% of
files during testing timeouted and were not completed. During all FTP tests
as you can see in example figure 3.16, CPU load was never above 10% for a
longer period of time.

Large number of timeouts indicates that there is a bottleneck in this con-
figuration. It is not the CPU for obvious reasons. Other candidates, that are
stressed during file transfer are network and disk. As you can see in example
figure 3.17, network is not working at peak of its capabilities and network load
is fluctuating. This is the case in all the results.

48

3.3. Fileserver

Figure 3.19: CPU load, ftp test, XFS

Figure 3.20: Network load, ftp test, ext2

49

3. Realisation

After excluding network as a bottleneck, the next possible candidate is disk.
Disk load differs depending on the filesystem. Results:

Disk busy in % Disabled Enforcing

ext2 88.3 91.5

ext4 70.6 77.6

xfs 96.5 98.9

Disk is clearly the bottleneck when using xfs. It has potential of being a
bottleneck when using ext filesystems, as this test was aimed to be a load test.
By increasing concurrent downloads/uploads we would be limited by disk on
xfs server immediately and after rising the load also on other filesystems.

3.3.3.2 SFTP test

We carried out concurrent download/upload of 25 files (20 download, 5 up-
load) that had size 1 GiB and we repeated each test three times. There were no
timeouts, like during FTP test. Secure transfer did put more load on the CPU.

CPU kernel load in % Disabled Enforcing Difference

ext2 5.7 5.4 -0.3

ext4 8.8 9.3 0.5

xfs 5.6 6.1 0.5

Difference spotted in CPU kernel load is not sufficient to say that SELinux
does have impact here. As seen in the example in figure 3.17, CPU is load is
roughly the same.

We must still examine the possibility of disk being the bottleneck of this
test. We get following results:

Disk busy in % Disabled Enforcing

ext2 87.8 86.6

ext4 83.5 81.9

xfs 94.4 95.3

We get similar results, but disk is by roughly 3-4% less busy than it was dur-
ing FTP test. This may be caused by higher CPU load, in other words, CPU
is more loaded and is processing data for longer period of time, therefore disk
has the same work scattered throughout longer period of time. Increasing load
by adding additional downloads/uploads would cause disk to be fully busy and
limit us before SELinux would make a difference in the overall performance.

50

3.4. Workstation

Figure 3.21: CPU load, ftp test, XFS

3.3.4 Optimizations

As was mentioned in the previous section, fileserver is limited by perform-
ance of the disk before SELinux makes any difference in the overall perform-
ance. Based on this observation, testing proposed optimizations is no longer
reasonable, as the same results with disk as a bottleneck of the system would
be measured.

3.4 Workstation

3.4.1 Configuration

Steps needed for workstation configuration:

1. Install OS

2. Configure networking

3. Download necessary packages

4. Install benchmarks

3.4.1.1 Install OS

Configuring a workstation is less complicated than configuring one of the
servers. It is mainly because we will not install ‘Minimal installation’ soft-
ware like before, but ‘GNOME Desktop’ with ‘Development tools’ option of
CentOS.

51

3. Realisation

3.4.1.2 Configure networking

We set up networking using NetworkManager with GUI. We use the same
configuration as before. Running selected benchmarks requires internet con-
nection, so client/firewall should be running same as it was the case when
testing servers, but this time it is used only for connecting to the Internet and
not for the testing itself.

3.4.1.3 Download necessary packages

Packages we need to download:

• policycoreutils-python

• http://pkgs.repoforge.org/rpmforge-release/rpmforge-release-0.5.3-1.e
l7.rf.x86 64.rpm

• nmon

• php-cli

• php-xml

• phoronix-test-suite (needs to be downloaded and installed separ-
ately)

PHP packages are needed for Phoronix Test Suite to work properly.

3.4.1.4 Install benchmarks

To install benchmarks we are going to perform, we invoke following com-
mands:

phoronix-test-suite install pts/compilation

phoronix-test-suite install pts/compilebench

3.4.2 Testing

For testing workstation we have previously selected ‘Timed code compil-
ation’ and ‘Compile bench’ benchmarks. These will be run using following
command:

nmon -fT -s 5 -c 2880 -m $HOME/nmon-data && phoronix-test-suite benchmark

pts/compilation

nmon -fT -s 5 -c 2880 -m $HOME/nmon-data && phoronix-test-suite benchmark

pts/compilebench

52

http://pkgs.repoforge.org/rpmforge-release/rpmforge-release-0.5.3-1.el7.rf.x86_64.rpm
http://pkgs.repoforge.org/rpmforge-release/rpmforge-release-0.5.3-1.el7.rf.x86_64.rpm

3.4. Workstation

During ‘Compile bench’, when asked what type of test do we want to per-
form, we choose option ‘4: Test all options’.

3.4.3 Results

Testing of workstation was divided into two parts. First was testing com-
pilation times using ‘Timed Code Compilation’ benchmark. Second was using
‘Compilebench’ benchmark that works with the filesystem and simulates aging
of the filesystem. Complete results are available in res/work directory on the
CD.

3.4.3.1 Timed Code Compilation

Test consisted of four smaller compilation tasks: Timed Apache Compila-
tion 2.4.7, Timed Linux Kernel Compilation 3.18-rc6, Timed MPlayer Com-
pilation 1.0-rc3 and Timed PHP Compilation 5.2.9. These tasks were invoked
using phoronix-test-suite, which ran each test three times and drew aver-
age value.

Time ext2 ext4 xfs
in s Disabled Enforcing Disabled Enforcing Disabled Enforcing

Apache 127.73 127.68 126.43 128.66 126.81 128.51

Linux Kernel 683.13 691.87 685.69 699.41 682.93 694.90

MPlayer 252.99 265.23 252.79 256.23 252.17 266.92

PHP 155.26 166.58 156.53 157.31 156.37 167.24

These values show us, that enforcing SELinux did take more time compil-
ing. We drew average CPU load from whole benchmark run and the results
were as follows:

CPU kernel load in % Disabled Enforcing Difference

ext2 10.7 11.4 0.7

ext4 10.7 11.3 0.6

xfs 11 11.6 0.6

3.4.3.2 Compilebench

This benchmark was divided into three smaller tasks: Compile, Initial Cre-
ate, Read Compiled Tree. It measured filesystems’ throughput in MB/s.

Throughput ext2 ext4 xfs
in MB/s Disabled Enforcing Disabled Enforcing Disabled Enforcing

Compile 21.81 21.72 30.42 29.67 25.18 22.52

Initial Create 21.13 21.43 26.86 26.04 15.43 13.46

Read Tree 10.06 10.73 16.49 16.47 15.65 13.43

53

3. Realisation

In this test, we can see decrease of throughput after turning SELinux on
into enforcing mode when using xfs, but we do not observe any change of
throughput on ext2 and ext4 filesystems. CPU loads are as follows:

CPU kernel load in % Disabled Enforcing Difference

ext2 4.1 4.9 0.8

ext4 5.3 6.2 0.9

xfs 4.9 5.3 0.4

54

Conclusion

In this thesis we examined SELinux technology and its setup in CentOS
operating system. We designed testing environment and configuration of three
scenarios: webserver, fileserver and workstation. Using the previously created
testing scripts we tested all three scenarios in three versions: SELinux off,
SELinux on and SELinux on with previously drawn up optimizations.

Webserver was tested with stress tests of a single page and load test in form
of random simulation. Stress tests showed, that SELinux does have observable
impact on performance, however the load test did not show any significant
impact. This means that presence of SELinux would cause performance issues
only in traffic that would fully load the server. Optimizations for this version
were tested and lowered the CPU load in kernel space. On the other hand,
some of the tests took longer to complete, which makes these tests ambiguous.
Additional tests did not identify the problem.

Fileserver was tested with concurrent downloads and uploads which did
not load CPU as was expected. Disk was identified as the bottleneck of the
filesystem. Presence of SELinux has no effect on performance of fileserver, as
disk will limit fileservers’ performance before SELinux. Optimizations for this
scenario were not tested, because even the initial test was limited by the disk.

Workstation was tested using benchmarks simulating compiling and work
with filesystem. This showed us that workstation cannot be loaded to such
an extent that SELinux would have impact on performance. Optimizations
for this scenario were not drawn up, because it was expected for the results
to not have observable differences in performance.

55

Bibliography

[1] Mayer, F.; MacMillan, K.; Caplan, D. SELinux by Example: Using Se-
curity Enhanced Linux. Prentice Hall, 2006, ISBN 0131963694.

[2] Loscocco, P. A.; Smalley, S. D.; Muckelbauer, P. A.; et al. The Inevitabil-
ity of Failure: The Flawed Assumption of Security in Modern Computing
Environments. 2002. Available from: http://www.windowsecurity.com
/whitepapers/misc/The Inevitability of Failure The Flawed Ass

umption of Security in Modern Computing Environments .html

[3] Garfinkel, S.; Spafford, G. Web Security and Commerce (Nutshell Hand-
books). O’Reilly Media, 1997, ISBN 1565922697.

[4] Anderson, J. Computer Security Technology Planning Study. 1972. Avail-
able from: http://csrc.nist.gov/publications/history/ande72.pdf

[5] Linden, T. Operating System Structures to Support Security and Reliable
Software. Dec. 1976. Available from: http://csrc.nist.gov/publicati
ons/history/lind76.pdf

[6] Čapek, T.; Ančincová, B. Red Hat Enterprise Linux 7 SELinux User’s
and Administrator’s Guide. 2015. Available from: https://access.red
hat.com/documentation/en-US/Red Hat Enterprise Linux/7/pdf/SE

Linux Users and Administrators Guide/Red Hat Enterprise Linux

-7-SELinux Users and Administrators Guide-en-US.pdf

[7] The Apache Software Foundation. httpd. [software]. Available from: ht

tp://httpd.apache.org/

[8] Evans, C. vsftpd. [software]. Available from: https://security.appsp
ot.com/vsftpd.html

[9] MariaDB Foundation. mariadb-server. [software]. Available from: https:
//mariadb.org/

57

http://www.windowsecurity.com/whitepapers/misc/ The_Inevitability_of_Failure_The_Flawed_Assumption _of_Security_in_Modern_Computing_Environments_.html
http://www.windowsecurity.com/whitepapers/misc/ The_Inevitability_of_Failure_The_Flawed_Assumption _of_Security_in_Modern_Computing_Environments_.html
http://www.windowsecurity.com/whitepapers/misc/ The_Inevitability_of_Failure_The_Flawed_Assumption _of_Security_in_Modern_Computing_Environments_.html
http://csrc.nist.gov/publications/history/ande72.pdf
http://csrc.nist.gov/publications/history/lind76.pdf
http://csrc.nist.gov/publications/history/lind76.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/ 7/pdf/SELinux_Users_and_Administrators_Guide/ Red_Hat_Enterprise_Linux-7-SELinux_Users_and_Administrators_Guide-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/ 7/pdf/SELinux_Users_and_Administrators_Guide/ Red_Hat_Enterprise_Linux-7-SELinux_Users_and_Administrators_Guide-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/ 7/pdf/SELinux_Users_and_Administrators_Guide/ Red_Hat_Enterprise_Linux-7-SELinux_Users_and_Administrators_Guide-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/ 7/pdf/SELinux_Users_and_Administrators_Guide/ Red_Hat_Enterprise_Linux-7-SELinux_Users_and_Administrators_Guide-en-US.pdf
http://httpd.apache.org/
http://httpd.apache.org/
https://security.appspot.com/vsftpd.html
https://security.appspot.com/vsftpd.html
https://mariadb.org/
https://mariadb.org/

Bibliography

[10] Red Hat, Inc. Fedora. [software]. Available from: https://getfedora.o
rg/

[11] What is Stress Testing? 2013. Available from: http://www.testingperf
ormance.org/definitions/what-is-stress-testing

[12] What is Load Testing? 2013. Available from: http://www.testingperf
ormance.org/definitions/what-is-load-testing

[13] IBM. Nigel’s Performance Monitor. [software]. Available from: http:

//nmon.sourceforge.net/

[14] Presnall, H. Nmon Visualizer. [software]. Available from: http://nmon

visualizer.github.io/nmonvisualizer/

[15] Mauelshagen, H. LVM Readme. 2003. Available from: http://ftp.gwd
g.de/pub/linux/misc/lvm/1.0/README

[16] The CentOS Project. CentOS 7. [software]. Available from: https://ww
w.centos.org

[17] The Apache Software Foundation. ab. [software]. Available from: http:

//httpd.apache.org/docs/2.2/programs/ab.html

[18] Fulmer, J. Siege. [software]. Available from: https://www.joedog.org/s
iege-home/

[19] Free Software Foundation, Inc. wget. [software]. Available from: http:

//www.gnu.org/software/wget/

[20] Fritsch, H. wput. [software]. Available from: http://wput.sourceforge
.net/

[21] OpenBSD. ssh. [software]. Available from: http://www.openssh.com/

[22] Phoronix Media. phoronix-test-suite. [software]. Available from: http:

//www.phoronix-test-suite.com/

[23] COMPILE BENCH. 2010. Available from: http://openbenchmarking

.org/test/pts/compilebench

[24] sshpass. [software]. Available from: http://sourceforge.net/project
s/sshpass/

58

https://getfedora.org/
https://getfedora.org/
http://www.testingperformance.org/definitions/what-is-stress-testing
http://www.testingperformance.org/definitions/what-is-stress-testing
http://www.testingperformance.org/definitions/what-is-load-testing
http://www.testingperformance.org/definitions/what-is-load-testing
http://nmon.sourceforge.net/
http://nmon.sourceforge.net/
http://nmonvisualizer.github.io/nmonvisualizer/
http://nmonvisualizer.github.io/nmonvisualizer/
http://ftp.gwdg.de/pub/linux/misc/lvm/1.0/README
http://ftp.gwdg.de/pub/linux/misc/lvm/1.0/README
https://www.centos.org
https://www.centos.org
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
https://www.joedog.org/siege-home/
https://www.joedog.org/siege-home/
http://www.gnu.org/software/wget/
http://www.gnu.org/software/wget/
http://wput.sourceforge.net/
http://wput.sourceforge.net/
http://www.openssh.com/
http://www.phoronix-test-suite.com/
http://www.phoronix-test-suite.com/
http://openbenchmarking.org/test/pts/compilebench
http://openbenchmarking.org/test/pts/compilebench
http://sourceforge.net/projects/sshpass/
http://sourceforge.net/projects/sshpass/

Appendix A

Acronyms

AVC Access Vector Cache
CGI Common Gateway Interface
CIFS Common Internet File System
CLI Command Line Interface
CPU Central Processing Unit
DAC Discretionary Access Control
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
FTP File Transfer Protocol
GUI Graphical User Interface
HTTP Hyper Text Transfer Protocol
IO Input/Output
LAMP Linux, Apache, MySQL, PHP
LSM Linux Security Modules
LVM Logical Volume Manager
MAC Mandatory Access Control
NFS Network File System
RHEL Red Hat Enterprise Linux
SFTP Secure File Transfer Protocol
SSH Secure Shell
WAN Wide Area Network

59

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

scripts.................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

res..the directory with results
web complete results for webserver
file..................................complete results for fileserver
work complete results for workstation

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
assignment.pdf.............................. the thesis assignment

61

	Introduction
	State-of-the-art
	Importance of security in operating systems
	Reference monitor concept
	DAC vs. MAC
	SELinux
	Software and system performance analysis

	Analysis and design
	What to look for?
	Monitoring system performance
	General design
	Webserver
	Fileserver
	Workstation
	Testing environment
	Data gathering scripts
	Optimizations

	Realisation
	Client
	Webserver
	Fileserver
	Workstation

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

