
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Android mobile client for an inquire system

Vojtěch Udržal

Supervisor: Dr.Ir. René van der Heijden

7th May 2015

Acknowledgements

I would like to thank my supervisor Dr.Ir. René van der Heijden for giving
me the opportunity to develop this application and for the support during
the development process and writing the thesis text. Furthermore, I would
like to thank my university for enabling me to work on this project through
the portal Cooperation with industry. Last but not least, I would like to thank
my parents for overall support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I
further declare that I have concluded an agreement with the Czech Technical
University in Prague, on the basis of which the Czech Technical University in
Prague has waived its right to conclude a license agreement on the utilization
of this thesis as school work under the provisions of Article 60(1) of the Act.
This fact shall not affect the provisions of Article 47b of the Act No. 111/1998
Coll., the Higher Education Act, as amended.

In Prague on 7th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Vojtěch Udržal. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Udržal, Vojtěch. Android mobile client for an inquire system. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Techno-
logy, 2015.

Abstrakt

Bakalářská práce se zabývá tvorbou Android aplikace určené pro vykonáváńı
veřejných pr̊uzkumů. Hlavńım ćılem bylo vytvořeńı plně funkčńı a předevš́ım
spolehlivé aplikace, která bude fungovat i v offline režimu. Velký d̊uraz byl
kladen na jednoduché a intuitivńı ovládáńı. Tato aplikace je vytvořena pro
vznikaj́ıćı projekt Sprockler a byla vyvinuta s ohledem na jejich požadavky.
Ćıl práce se podařilo splnit a aplikace je využ́ıvána na prvotńıch projektech.

Kĺıčová slova Android aplikace, veřejné pr̊uzkumy, sběr dat, offline mód

ix

Abstract

This thesis is dealing with a development of an Android application focused
on public surveys. Main goal of this thesis is to develop a fully functional
and reliable Android application, which can work off-line. Great importance
is given to simple and intuitive control as well. This application is made
for commencing project Sprockler and was developed according to its needs.
The goal of the thesis was successfully completed and the application is already
being used in some initial projects.

Keywords Android application, public surveys, data collection, offline mode

x

Contents

Introduction 1

1 Analysis 3

1.1 Target user base . 3

1.2 Similar Applications . 3

1.3 Functional Requirements . 8

1.4 Non-functional Requirements 11

2 Technical Design 13

2.1 Selecting technology . 13

2.2 Modes of operations . 15

2.3 Use cases and their scenarios 17

2.4 Function requirements covered by use cases 19

2.5 Software architecture . 19

2.6 Questions model . 20

2.7 Database model . 20

2.8 Communication with server . 22

2.9 Security . 23

3 User interface 25

3.1 Action Bar . 25

3.2 Navigation drawer . 26

3.3 Download survey screen . 27

3.4 Surveys list screen . 27

3.5 Survey screen . 29

4 Realisation 33

4.1 Mockup prototype . 33

4.2 Packages . 33

4.3 Asynchronous operations . 34

xi

4.4 Question logic . 36
4.5 Option randomization . 36
4.6 Tripole and Clickable image views 37
4.7 Translations . 37
4.8 Deployment . 38
4.9 Implementation evaluation . 38
4.10 Further development . 39

5 Testing 41
5.1 Testing by a programmer . 41
5.2 Testing by testers . 41

Conclusions 43
Contribution . 43
Personal evaluation . 44

Bibliography 45

A Acronyms 47

B Contents of enclosed CD 49

C Development tools 51
C.1 Android studio . 51
C.2 Git . 51
C.3 Issue tracking . 52

D UML Diagrams 53

xii

List of Figures

1.1 Unnatural Android GUI . 4
1.2 Buttons moved into vertical right bar 5
1.3 Infinite loop . 6
1.4 SurveyGizmo web based application 7
1.5 SurveyMonkey iPhone application 8

2.1 Survey type actions . 16

3.1 Wireframe of actionbar . 26
3.2 Wireframe of question detail actionbar 26
3.3 Wireframe of navigation drawer . 27
3.4 Wireframe of surveys list . 28
3.5 Open question screens . 30
3.6 Tripole question screens . 31
3.7 Clickable image question screens 31

D.1 Class diagram of questions . 54
D.2 Sequence diagram of question logic on one page 55
D.3 Survey page class diagram . 56
D.4 Surveys list loading sequence diagram 57

xiii

List of Tables

2.1 Functionality coverage by use cases 19

xv

Introduction

In today’s world, data of any kind play a key role in almost all fields. From
strategic planning over monitoring and evaluation, we usually need data ana-
lysis to get useful answers. Yet, before we can do a data analysis, we must
collect relevant and adequate data. Nowadays, in a modern and computer-
driven society, data collection can be achieved with much more ease than
before.

However, at certain situations, we cannot rely on or use data generated by
machines and computers. For instance, if one wants to get some information
about communities in third world countries, analysing computer data such
as internet traffic will not make it. Much more valuable and accurate data
can still be collected simply by interviewing people. By that we can collect
their personal stories and opinions, which we would not be able to get just by
analysing data that were produced by computers.

First of all, this thesis will discuss and evaluate platforms for running
surveys with focus on their mobile applications.

Afterwards, the rest of the thesis will describe to the reader a development
of a new Android interviewing application for a Netherlands-based project
called Sprockler. Sprockler is at this moment a new emerging project found
by Dr.Ir. René van der Heijden, who has a lot of experience in data mining
and software development and Dr.Ir. Han Rakels MBA and MSc. Lisette
Gast, who have great experience with running surveys in developing countries
and communities. This application was developed in accordance with their
needs and they will be referred to as stakeholders.

It is important to note that this application was developed through Co-
operation with the industry portal and is licensed to Dr.Ir. René van der
Heijden. From this reason, the source code of the application as well as its
Doxygen documentation cannot be publicly attached to the thesis. However,
it is available for inspection by relevant individuals (such as the opponent or
committee members).

1

Chapter 1

Analysis

While developing a new software, it is always a good thing to look at the prob-
lem domain as a whole, analyse and evaluate all requirements, potential prob-
lems and, apart others, also a competition. In this chapter I will introduce
the problem domain in detail and describe and evaluate similar applications.
Moreover, I will specify requirements that were considered important for
the new application.

1.1 Target user base

Since Sprockler is aiming at all situations where interviewing people makes
sense, the target group of users of the Android application is truly boundless.
The stakeholders have experience with running surveys especially in third
world countries in Africa and South America, yet there are already chances
that it will be used in Ireland or Amsterdam. From this I concluded, that a po-
tential information literacy can vary from very experienced users to beginners
in the fields of information technology. All these information had to be ac-
counted for while designing the GUI, which will be described in later chapters.
It is also apparent, that language abilities of users can differ dramatically as
well.

With respect to the age of the users, it is expected to vary between 12 to
90 years old.

1.2 Similar Applications

As already noted, analysing competition and their drawbacks is a key factor
when one wants to develop a better tool. Prior to writing specifications for this
application I examined several competitive survey platforms and focused on
their mobile applications especially from a technological and graphical point
of view.

3

1. Analysis

1.2.1 Sensemaker

Sensemaker[1] was suggested by the stakeholders as a closest competitor and
so I began my research with that. Sensemaker is part of an interesting pro-
ject called CognitiveEdge[2], which was founded in 2005 with “the objective
of building methods, tools and capability to utilise insights from Complex
Adaptive Systems theory and other scientific disciplines in social systems”[2].
However, because I was focused on mobile applications I downloaded their
SenseMaker R© Collector [3] from Google’s Play Store and started testing.

1.2.1.1 Graphical user interface

Upon opening SenseMaker Collector I noticed that it did not look as a usual
Android application. All of the GUI components looked different and unnat-
ural, such as the months selection (see figure 1.1a). I also encountered several
flaws in controls, for instance, the menu did not react on an edge swipe gesture
and I had to click on the menu icon. This may seem as a minor thing but it
definitely is unnatural for Android users.

(a) Month selection (b) Triad question (c) Slider question

Figure 1.1: Unnatural Android GUI

Another point where Sensemaker goes against Android principles is the be-
haviour of back button. It is a common thing that Android application keeps
a stack of previous pages and user can go back to them, however, when there
are no more pages to go back to the application closes. Oddly, that is not how
Sensemaker behaves, and instead it opens or closes the menu.

It is also impossible to overlook the poor-quality of some graphical ele-
ments, such as the triad triangle (see figure 1.1b). To my opinion the use of

4

1.2. Similar Applications

colors is not well considered and this applies for slider question as well (see
figure 1.1c).

What I appreciated on Sensemaker was, that the screen layout always ad-
justed depending on the screen rotation. When in portrait mode, the buttons
forward and backwards were at the bottom of the page as seen on figure 1.1c.
Once the screen was rotated, the control buttons were moved into vertical bar
on right side as illustrated on figure 1.2.

Figure 1.2: Buttons moved into vertical right bar

The sum of all, those imperfections results in quite an unattractive GUI.
A great tool not only has to offer great functionality but must also be graph-
ically attractive and intuitive to use. I took it as a challenge since I do not
consider myself a person with a well developed graphical skills.

1.2.1.2 Technical functionality

While using Sensemaker, I had not encountered any application crashes or
freezes. Nevertheless, I was quite sceptical about its reliability. From time
to time the application just stopped, pretending to be doing some task for
several minutes without ever finishing them. One of those cases can be seen
on figure 1.3, where the application stayed like that for several minutes and
the task had to be canceled.

1.2.1.3 Summary

Considering the above, I came to the conclusion that Sensemaker is not a nat-
ive Android application, but uses Cordova [4] framework instead. This con-
clusion was further substantiated by the fact that, at least in one occasion,
some partial HTML tag remained visible in the GUI. More details about this
technology will be mentioned in Selecting Application’s technology chapter
2.1.1, but I can already state that having a look at Sensemaker was a key
reason why I have decided not to use it. Furthermore, the mentioned glitches
certainly did not make a great impression and I knew it was important to
prevent any minor defects in our application.

5

1. Analysis

Figure 1.3: Infinite loop

1.2.2 SurveyGizmo

Another popular and large survey platform is SurveyGizmo. It was founded
in 2006 and is based in Colorado, USA. As one can read on the website, their
mission is to “provide great survey software and great service to businesses
and organizations around the world.” While they offer wide range of different
question types, they do not support special questions such as Clickable images
or Tripoles, which were important for the stakeholders and will be introduced
later.

1.2.2.1 Graphical user interface

The graphical design of SurveyGizmo’s mobile web application is clean and
intuitive, even though we can still encounter minor imperfections such as
the edit, upload and delete buttons overlay on figure 1.4a. All in all, from
graphical point of view, SurveyGizmo comes out much better than Sense-
Maker 1.2.1.

1.2.2.2 Technical functionality

SurveyGizmo supports offline mobile surveys, but only to a limited extend.
Instead of native Android or iOS application, which would be available for
download in Play Store or iTunes, they offer the possibility to download and
store web page and survey’s data in a browser’s cache (see figure 1.4b). That
brings a great advantage of reusability of such a solution, since the same code
will work well on all devices with browser regardless the platform, and thus
makes the development much faster and cheaper.

6

1.2. Similar Applications

(a) Minor imperfections:
button overlay

(b) Caching of survey in
browser

Figure 1.4: SurveyGizmo web based application

1.2.2.3 Summary

Even though I like the simplicity, elegance and quality of the SurveyGizmo’s
mobile solution, it is not suitable for our application. There are several draw-
backs when it comes to browser based applications, one of them being the lack
of access to special services of the Android platform such as Alarm Manager.
Alarm Manager is used for setting timeouts of a long time repetitive tasks
such as upload of responses. Since it is not accessible from browser based
application, the responses must be uploaded manually by tapping a specific
button. That makes it inconvenient and puts unnecessary task on the user.

Another disadvantage is, that there is no list of downloaded surveys. It is
responsibility of the user to bookmark a specific survey page so he can load
it when offline, which is also unnecessary and confusing. Both mentioned
disadvantages are really just a beginning of all the limitations that browser
cached applications have.

1.2.3 SurveyMonkey

Last platform I focused on was SurveyMonkey. It is a huge company with
headquarters in Palo Alto, California and over 10 years of experience. They
are proud to state that their “customers include 100% of the Fortune 100, as
well as other businesses, academic institutions, and organizations of all shapes
and sizes.” and that “millions of people use SurveyMonkey ” [5].

Given the size of a company, I was expecting them to cover whole market

7

1. Analysis

from iOS over Android to Windows mobile platform. I was surprised that
even after thorough examination of the web site, I only found a reference
to an iOS application [6]. There is no sign of Android, even though there
is a demand for that, as their website says: “We’re listening–and we know
you want a SurveyMonkey Android app...”[6]. As a solution, they claim that
their surveys use responsive web design so they will look well on any platform.
However, their web surveys are not as advanced as SurveyGizmos’s, so they
do not work offline.

On the other hand the iPhone and iPad application look amazing 1.5, but
unfortunately I did not have an opportunity to test it.

(a) (b)

Figure 1.5: SurveyMonkey iPhone application

1.3 Functional Requirements

I briefly discussed the problem domain over a Skype interview with the stake-
holders, but specific requirements were agreed on on a first meeting in The Neth-
erlands. From that, and from analysis of similar applications we have come
up with the following list of requirements for the application:

F1 Download surveys User will be able to download a survey upon en-
tering survey code.

8

1.3. Functional Requirements

F2 Update surveys The application will provide a possibility to update
surveys.

F3 Offline mode The application will be able to work offline and provide
full functionality for downloaded surveys. Once connected to the inter-
net, collected responses will be uploaded to the server and removed from
the application.

F4 Multilingual The application will be able to present itself in different
languages, among which are English and Arabic. User will be able to
switch between languages that are supported by the downloaded surveys
or to a language of the Android system (if such a language is supported
by the application).

F5 Conditional logic The application will support simple conditional lo-
gic. For example, skipping of certain questions based on responses to
previous question depending on how the rules specified for the respective
survey.

F6 Saving of common questions’s responses The application will save
responses to questions that have a specific tag into device’s memory.
When applicable, such stored responses will be used as default answers
to any subsequent question with the same tag. Depending on a design
option, it will either show the question so the user can confirm the answer
or completely skip the question and answer it automatically. The user
will be able to see all saved responses and question tags that are stored on
the device and must be able to individually delete them. This tagging
system forms a flexible alternative to user profiles that other systems
may use.

F7 Questions help At complex question types, the application will offer
a help screen explaining that type of question.

F8 Question illustrations The application will be able to display ques-
tion’s image depending on how it was designed.

F9 Required questions The application will not let the user continue or
complete the survey unless required questions are answered.

F10 Questions order and grouping The application will support group-
ing of questions on one page and display questions in the order they were
designed.

F11 Interviewer mode The application will have protected interviewer
mode, which will allow the application’s user to collect responses of other
people.

9

1. Analysis

F12 Question types The application will support following question types

1. Open question Depending on how designed, this question will
offer the possibility to write a text responses, take and select a photo
and video and record audio.

2. Multiple choice question Depending on how designed, it will
allow selecting specified amount of options or may also offer a pos-
sibility to write the response in a text field.

3. Bipole It will show a slider which user can drag and set between
two options, depending to which he gives more value.

4. Tripole Triangle with 3 options at each corner will be shown.
User will be asked to move a dot inside the triangle to a position
where according to him it strikes the best balance.

5. Clickable image An image will be presented and user will be
asked to point one or more locations.

6. Descriptive question This question will only be used as an in-
formative text for the user and will not offer the possibility to
respond.

F13 Mobile data limit The application will make it possible to set a data
limit on uploaded responses so user’s mobile data plan is not drained by
uploading large media files. The limit will not be applied when connected
over WiFi.

F14 Not applicable option The application will provide Not applicable
option for questions which allow it.

F15 Delete survey User will be able to delete downloaded surveys.

F16 Storage of location and time The application will store a location
where the inquiry has been filled and a time, when it was started.

F17 Randomization of choices The designer can instruct the application
to randomize the presentation order of the options, which may help to
avoid bias due to a specific order. The application should respond to
such an instruction.

F18 Interviewer questions The application will mark questions which
are targeted at the interviewer. Such a question can be used to record
the interviewer’s impression of the interviewed person.

10

1.4. Non-functional Requirements

1.4 Non-functional Requirements

NF1 Running on Android OS The application will be running on An-
droid powered mobile devices.

NF2 Simple, easy and intuitive design Given the target user base,
the users should be able to grasp control with ease from the very begin-
ning. In order to achieve that, Android Design guidelines [7] should be
followed. 1

NF3 Starting application via a link The application will be started and
user will be taken to survey download page when a link with a survey
code targeting Sprockler’s website is clicked.

NF4 Encryption of responses The application will encrypt responses
and safely transport them to the server.

1Application was implemented in the Summer of 2014, so it does not follow later released
Material design

11

Chapter 2

Technical Design

Technical design is the second main step in software development, after spe-
cifying the functional and non-functional requirements of the application.
The challenge here is to translate these requirements (the what part) into
a suitable design (the how part). Careful design of application can help to
avoid difficulties at the implementation stage or in future development.

2.1 Selecting technology

Selecting the right technologies is one of the key factors that shape the software
for its whole life. A wrong decision can have devastating consequences. Every
software developer usually stands in front of this decision multiple times in
a software project, and this case was no different. I had to select the right tech-
nologies for the application, for the communication protocol, and for the data
storage.

2.1.1 Application

As one can read in Similar Applications section1.2, there are different ways
of how to create an Android application and each has its own up and down
sides. The first decision concerns the required Android version. Since less
than 8% of Android devices run a system version lower than 4.0 (API 15) [8],
it was decided to overcome possible compatibility issues by only supporting
system versions above API 15 (Ice Cream Sandwich and newer). Apart from
other extensions, version 4.0 has better multi lingual support which is key for
the application under consideration. In contrast of what is generally presumed,
smart phones in developing countries are quite modern, making this limitation
acceptable to the stakeholders.

13

2. Technical Design

2.1.1.1 Cordova

One way to make an Android application, is to use the Cordova framework
[4], that allows developers to create a mobile application using web technolo-
gies such as HTML and Javascript and provides them a limited API to access
some of the native device’s functions. Cordova, also known as Phonegap, was
founded by Nitobi Software and acquired by Adobe in 2011 [9]. If a developer
wants to use more advanced features of the native Android API, he must
create a custom Javascript plugin which provides a bridge to the Android
API. The Cordova application can be understood as single page application
(SPA) wrapped by a device platform’s web view. Using this framework of-
fers the undeniable benefit of cross compatibility between different platforms.
The developer can, with a few changes, deploy the same application to An-
droid, iOS, Windows Phone, and other platforms. Furthermore, he does not
need to learn each platform’s different programming language such as Java
for Android and Objective-C for iOS. On the other hand, he should at least
know about one of Javascript SPA frameworks (such as AngularJS, Backbone
or others) and web design.

In the beginning, we have also been playing with the idea to develop
the application in the Cordova framework. The idea to develop once - run
everywhere sounds just too nice to not try it. Moreover, it was specifically
suggested by the stakeholders. However, after evaluating performance, re-
liability, and graphical interface of applications running on Cordova, it was
decided not to use it. At times, they performed slow, sometimes behaved
in an erratic way (see figure 1.3) and did not comply to the Android design
guidelines as mentioned in section 1.2.1.1. Thinking about this, the whole idea
that is summarized in develop once - run everywhere seems impossible, as iOS
and Android guidelines simply do not match. Last but not least, even though
the community behind Cordova is very active, more than a few of the plugins
and extensions I tried for accessing Android’s API, which are necessary for
any non-trivial tasks, were bugged or did not work well and I did not want to
get clogged by fixing other developers’s bugs while developing this application.

2.1.1.2 Xamarin

Xamarin enables developers to write a complete application using C# and use
up to 90% of the code on all platforms [10]. It is a very interesting project that
looks like a solution to diverse mobile platforms development and seems like
a big relief for developers. It was founded in 2011 by creators of Mono [11] in
order to unify the development of mobile applications. Unlike Cordova, which
makes your application look exactly the same and unnatural on all platforms,
Xamarin let’s you share only your business logic, models, data layers and
similar. All user interface implementation is still developed in C# , but must
be implemented individually for each platform. Therefore, the programmer

14

2.2. Modes of operations

needs to know his way on both platforms, but can still save a lot of time by
reusing significant parts of the code. As a result, the application looks natural
and native on all platforms, while the costs of development can be kept lower,
depending on the project. However, Xamarin comes at a price which was one
of the reasons we did not choose it. It costs about $25 per month per developer
and per platform [12]. Furthermore, the community around Xamarin is not big
enough yet, which may form an obstacle when looking for help with a problem
or bug. The small community makes such an endeavor much less fruitful.

2.1.1.3 Android SDK

Even though there are many ways how to develop an Android application,
using Android’s SDK is still the most popular one. It has several benefits which
outweigh the disadvantages for many developers including ourself. First of all,
it is the oldest way of developing Android applications, so it contains fewer
bugs and has a solid documentation with many best practises and tutorials
[13]. Moreover, there is a massive community of tens of thousands developers
who publish tutorials or answer questions about Android’s SDK. This gives
the developer a strong confidence that he will not get stuck with some problem
or bug which would take days to fix. Last but not least, the SDK provides full
functionality of the platform and is recommended by Android. This altogether
supported our choice for the Android SDK.

2.1.2 Data storage and communication

I have decided to store surveys and responses on the device by using SQL-
ite databases, which is a common practice for the Android platform, while
the Android’s SDK provides a convenient library for working with these
databases [14]. The SQLite database containing survey will be created by
the server and downloaded by the application as regular file upon HTTP
request. As such, SQLite file will be also used as a container for transport-
ation. A similar approach will be used for collecting and uploading sets of
responses (referred to as participations), where every participation will use
its own SQLite database that is uploaded via regular HTTP post request.
The JSON format will be used for other communication between the applic-
ation and server, such as a check for updates.

2.2 Modes of operations

One of the requirements (F11) was to provide two different modes of opera-
tion: an interviewer mode that will allow to collect an unlimited number of
participations from general participants, and a private mode that will allow to
collect a single set of responses (typically from the owner of the device). It was
decided to meet this requirement by using different survey codes and make

15

2. Technical Design

the distinction by their code length. Therefore, the interviewer mode can be
accessed only by people who have an interviewer survey code for the particular
survey. Apart from the interviewer mode and the private mode, we decided to
add a test mode that can not only be used to test the application, but also to
test-run new surveys. Each survey mode has slightly different purposes and
allows different actions. Here I would like to briefly describe the survey modes
and show their supported actions on figure 2.1.

Figure 2.1: Survey type actions

Personal mode Personal mode is expected to be the most common survey
type. Its survey codes consist of 5 characters and can only be filled twice.
This survey type is intended to be used by general public when a survey
is launched and the survey code will usually be distributed.

Interviewer mode Interviewer mode is supposed to be accessed and down-
loaded by selected people only. Its survey codes consist of 6 characters
and will offer the possibility to run the survey for an unlimited number
of times. This survey mode will be used for collecting responses from
different people, e.g. by having an interviewer going from door to door.
In case the same person participates multiple times, the participations
will share a unique code so all the responses can be connected and allow
for an appropriate analysis.

Testing mode The purpose of testing mode is to provide a possibility for
survey designers to try the survey on a mobile device without influencing
the results. While testing, the responses will be uploaded, but the server
will mark them with a special tag.

16

2.3. Use cases and their scenarios

2.3 Use cases and their scenarios

Use cases describe the functionality of a software from a user perspective. Each
Use Case describes a specific interaction between a user and the application.
It works best for functional requirements which are rich on user interaction,
but it does not do a good job in expressing non-interaction functionalities.
Therefore, following use cases only list interactive functions, and disregard
other functionalities.

UC1 Download survey User can enter survey’s code and download the sur-
vey.

1. The user will click on a button on main screen to add a new survey.

2. The application will show a page with text field.

3. The user will enter survey’s code to the text field and click down-
load.

4. The application will show a progress dialog indicating the status of
the download.

5. If the download was successful, user is taken to the main screen. If
the download failed, an error message is shown.

UC2 Update survey User can update surveys.

1. The user will long press on a survey.

2. The application will show context menu for that survey.

3. The user will select Update option and application will take him to
download page with pre-filled survey’s code.

4. Following steps are similar to UC1.

UC3 Upload responses Even though responses are uploaded automatic-
ally, the user is also able to invoke the upload process manually.

1. The user will press and hold a survey.

2. The application will show a context menu for that survey.

3. The user will select the Upload option.

4. The application will show an indeterminate progress bar and then
update completed/uploaded statistics.

UC4 Show questions help Complex questions provide a special help
dialog to describe the question and how to answer it.

1. The user will open the complex question and a question mark will
appear in top right corner.

17

2. Technical Design

2. Upon tapping the question mark, a dialog with instructions will be
shown.

3. The user will close the dialog by tapping OK button.

UC5 Possibility to disable or restrict uploaded files over mobile data
The user is able to disable or restrict mobile data usage for uploaded
files.

1. The user will open the menu drawer and select Settings.

2. The application will show the settings page.

3. The user will either check or uncheck Use Mobile data or Small files
only, depending on his preference.

UC6 Not applicable responses Some questions can be answered by
checking Not applicable checkbox.

1. A question will be shown with the Not applicable checkbox in top
right corner.

2. The user will check the checkbox and continue to the next question.

UC7 Change language User can change the language of questions and
the application.

1. The user will click on the Globe icon in top right corner in action
bar.

2. The application will show a list of available languages that at least
one of the downloaded surveys supports.

3. The user will select a language by tapping on it and navigate back
by pressing back button.

4. The application will return to previous page.

UC8 Show saved responses User can look at responses and their tags
that are saved on the device.

1. The user will open the navigation drawer and select User Profile.

2. The application will show a list with Tag and Answer column.

UC9 Delete selected responses User can delete saved responses on
device.

1. Include (UC8 Show saved responses)

2. The user will check the answers he wants to delete and click Delete
selected answers.

18

2.4. Function requirements covered by use cases

F1 F2 F4 F6 F7 F13 F14 F15

UC1 X

UC2 X

UC3

UC4 X

UC5 X

UC6 X

UC7 X

UC8 X

UC9 X

UC10 X

Table 2.1: Functionality coverage by use cases

3. The application will remove those answers from the device.

UC10 Delete survey User can delete downloaded survey.

1. The user will long press on a survey.

2. The application will show context menu for that survey.

3. The user will select Delete option.

4. The application will show a confirmation dialog.

5. The survey will be delete upon confirming the deletion.

2.4 Function requirements covered by use cases

Most of interactive functional requirements are covered by use cases. It can
be seen in table 2.1

2.5 Software architecture

Every software program should have some software architecture which is effi-
cient, maintainable, readable and functional. Even though it may seem time
consuming in the beginning, it is always worth the time to put some thought
into it, especially when the application is supposed to be complex or continu-
ally developed, and/or to be supported by other people. The Android platform
does not demonstrate any preference or enforce any software architecture for
its applications. Accordingly, it is up to the responsibility of the program-
mer. I decided that the base architecture should be the model-view-controller
(MVC). The MVC pattern separates the business logic from the user interface
and is well known throughout the developers community. Readers who would
like to learn more are referred to e.g. [15] or any of the other online sources.

19

2. Technical Design

Since there is no direct support of Android SDK for any software architecture
including MVC, programmers need to match Android’s provided classes and
elements to the selected architecture pattern. Fragments, Activities and Ad-
apters play the same role as Controllers. XML view layouts and View classes
are the same as Views. Finally, Models are created by the programmer as any
class or entity that encompasses main business logic. The final architecture in
the application may not always follow the true principles of MVC because it
had to be adapted to the Android platform and should work with the classes
provided. For instance, some models are bound directly as Listeners on their
views in order not to clutter Fragment class code, even though that does not
precisely respect the MVC pattern.

2.6 Questions model

Since the application will have to support many question types, it is neces-
sary to have a reasonable model design. I have decided to create an abstract
class Question, from which the other questions are inherited (see figure D.1).
Furthermore, after looking closer on the question types, I have created an-
other abstract class OptionQuestion, which is a parent of any question type
which has some options (i.e. RadioQuestion, SliderQuestion, Tripole, Click-
able Image, CheckboxQuestion and ComboboxQuestion). Creating of ques-
tion instances is handled by QuestionFactory, which has a method create()
and accepts a question type, question id, survey database and participation
database as parameters.

An abstract Question class implements interface Printable, which is used
by Visitor pattern [16] for displaying the question. Additionally, Question-
WithTag interface is implemented by question types which allow storing of
responses into device’s permanent memory.

To enable multiple questions on a page, questions are grouped in a Ques-
tionGroup class. Each question group represents a single page of the survey
and is created by Survey model. An interaction between Controllers (Sur-
veyFragment and QuestionListAdapter) and Models (Survey, QuestionGroup
and Question) is outlined on figure D.3.

2.7 Database model

Even though the server side is not part of this thesis, it was my task to design
a database structure for storing data on device and for transmitting them
from or to the server. There are three different database structures which will
be described in following subsections.

20

2.7. Database model

2.7.1 Surveys Manager database

We would like to recall the fact that each survey has its own SQLite file and
there is no central database on the device which would store all information
about downloaded surveys. This approach was used for performance and con-
current access reasons. The only exception is the SurveysManager database.
It is a small database which has following three tables and stores only basic
information about the downloaded surveys.

• Surveys This table stores some general information about all down-
loaded surveys. For instance, the survey code, version, completed and
uploaded statistics.

• Languages Stores languages which are supported by downloaded sur-
veys. It is updated when a survey is downloaded or removed and is used
for showing available languages on language change page. It lists all
supported languages per downloaded survey.

• PersistentQuestions Stores responses on questions which have a tag
as described in functional requirement F6.

2.7.2 Survey database

Survey database is used for storing all information about a survey, such as
questions, translations, images, exclusion logic rules, and so on. There is one
database file for each survey, and it is created on the server and downloaded
by the application. The structure of the database is as follows:

• Languages Stores languages which are supported by this survey. Those
rows are added to Survey Manager database upon download.

• Questionnaires Stores information about the survey. It always con-
tains just one row.

• QuestionnaireTitles Stores translations of survey’s title.

• Questions Stores survey’s questions.

• QuestionTexts Stores different translations for questions.

• QuestionOptions Stores options for option questions and their trans-
lations.

• QuestionExclusionLogic Stores rules used for hiding or showing ques-
tions.

• QuestionIllustrations Stores question images in a blob field.

21

2. Technical Design

2.7.3 Participation (Responses) database

Each participation has its own database and thus, a separate SQLite data-
base file. This is to ease concurrent access especially in situations such as up-
loading of previously saved and completed participations while user is saving
responses to other participation. By splitting each participation to separate
database(file), the submit process can treat the responses like files and not
like rows in one database. Upon successful upload, the particular responses
database is deleted. Structure of the database is following:

• Participation Stores general information about the participation such
as location and start time.

• Responses Stores responses to all questions except option questions. It
can store text and numbers.

• ResponseOptionsSelected Stores which options were answered. For
Tripoles, it stores also distance to the option and for Clickable image
a coordinates of the option.

• ResponseMedia Only audio recordings are actually stored in the data-
base. Videos and photos are stored as files because of performance issues
and this table is used only as pairing table between the responses and
the files on disk. It turned out that when SQLite has more than 30MB,
it gets significantly slower. Furthermore, the data itself can be then up-
loaded over a mobile network in an early stage, while the media will be
added later when a WiFi connection is available.

2.8 Communication with server

As already mentioned, the application needs to communicate with a server to
download surveys, and to upload responses. However, the application will not
be dependent on internet connection, so user can flawlessly work with already
downloaded surveys off-line. Responses will be stored in separate directories,
called participation directories, which will always contain one participation
SQLite database (see 2.7.3) and then photos or videos, which the user supplied.
Photos and videos, which will generally be over a certain size (approx. 4MB),
will be split into smaller file parts in order to make the upload smoother in
case of an unreliable internet connection. It also eliminates the need to be
restarted every time the connection has been lost.

2.8.1 API description

In order for the application to communicate with a server, the server must
support following requests.

22

2.9. Security

GET /downloadSurvey/{survey code}/{application version}/
{downloaded survey version or 0} This request is used for down-
loading or updating a survey. This request has following response codes:

200 OK When code is valid and survey is found. The survey SQLite
file is sent in the response body.

304 NOT-MODIFIED When the downloaded survey is the newest
version already.

404 NOT-FOUND When survey with this code does not exists or is
not available.

460 NOT-COMPATIBLE When this application’s version is too old
and not compatible with the survey database file. The application
notifies the user to update the application.

POST /participationSubmission/{code} This request is for uploading
of responses. Each file (such as participation database, media file or its
filepart) has its own participationSubmission request. Server responds
either with 200 for accepted or 500 for error. In that case, the file is
kept on the device and the application will attempt to upload it later.

POST /checkForUpdate This request is for checking available versions
of downloaded interviewer surveys, because surveys can be changed and
published with a new question after its older version was already down-
loaded.

Request The request must contain a JSON array with JSON objects,
one for each downloaded survey. Each object then contains survey code
(code) and downloaded version of the particular survey (version) as well
as a version of the application itself (appVersion).

Response The response is a JSON array of objects each containing
a newest version number (latestVersion) and a survey code (code). If
a new version is available, the application shows an update icon next to
the survey.

2.9 Security

Security was important for the stakeholders (NF4), because the application is
going to be used in various types of environments and societies where not all of
them are safe. It was necessary that the data are encrypted from the moment
participant fills out the survey and that neither interviewer nor anyone else
who gets control over the device will have ability to view previous responses.
Because this thesis text is public, it is in stakeholder’s interest that some
specific security details are omitted.

23

2. Technical Design

2.9.1 Communication security

Communication will be realized over HTTPS protocol with a certificate au-
thorized by a well known certification authority trusted by Android devices.
When using HTTPS with authorized certificate on Android, the implement-
ation’s code does not differ from usual HTTP communication except for
the used protocol name in address.

2.9.2 Device data encryption

Encrypting communication is important to avoid eavesdroppers on the net-
work, however, it will not help when someone gets access to the device. For
that, we will need to encrypt the responses on the device already. Android
offers a way how to achieve that easily by simply turning on encryption for
the whole device. We discussed this method with the stakeholder as most reli-
able one, because the whole device is encrypted and no-one can take control of
it unless they know the password. Nonetheless, after this consultation it was
decided that a mechanism to encrypt responses data should be implemented
independent of the device settings.

One of the ways to achieve that would be by using synchronous block
cipher for file encryption with a key, which would be asynchronously encryp-
ted by a public key and transported in the beginning of the files. Synchronous
encryption should be done probably by AES with 256-bit key, which is a re-
commended standard.

24

Chapter 3

User interface

For the design of the user interface, I used a wireframe designer FluidUI
[17]. It is a neat tool that helps you to quickly and easily create wireframes
for your application. It already contains predefined Android elements and
templates, helping to make the wireframes look very close to real Android
application. I have been designing the user interface for the initial meetings
with the stakeholders in order to elucidate and communicate my understand-
ing of the application. Reversely, it allowed the stakeholders to get an early
but quite realistic glimpse of what the application could look like. Equally,
this enabled an immediate adaptation, even before starting with the technical
(architecture) design. Last but not least, it also turned out to be very con-
venient to print the wireframes in a size common to mobile devices, and to
take a look at them in hand. I consider this as a great benefit and recommend
others to use the same approach as it facilitates discussing the application
with the stakeholders and clarifies what everybody has in mind by making
the concepts and ideas much more concrete. The main priority was given on
mobile design, however, from time to time I also adjusted the design to better
accommodate tablet devices.

3.1 Action Bar

The Action bar component was introduced in Android 3.0 (version 11) but
thanks to Android Support Library [18] it is available on all Android versions
down to version 7. The action bar component has become an essential part
of most applications, and provides similar functionality across all of them.
It allows a user to better grasp control of an application that he encounters
for the first time. The action bar component is always located on top of
the screen, and starting from left usually contains an icon of the application
together with an icon to access the hierarchically higher pages. Then, there
could be a textual representation of a visible page or section, so the user
can always see in which part of the application he currently is. Then, there

25

3. User interface

are usually a few but most important icons for specific actions which are
called ”Action buttons”. Lastly, there can be a three dot overflow icon on
the right, indicating that additional actions are available from the dropdown
menu, that the overflow icon shows or hides. The action bar is configurable
allowing a developer to choose to display only those elements that he finds
relevant or convenient for the application.

The stakeholders required that changing a language would be easy to do
regardless of application’s page. To accomplish that, language selection was
an obvious choice for the Action button in the Action bar (see figure 3.1).
Furthermore, we added a drawer navigation icon to the left, which indicates
that there is a drawer to be opened from the left side. The drawer navigation
itself will be described in following section. In addition, there is a text that
describes the currently opened page, such as Download for download page or
the survey title when in a survey. Only in the case where detail views of spe-

Figure 3.1: Wireframe of actionbar

cial question types (like Tripole or Clickable image) require so, the contents
of the Action bar changes. Those questions are always opened in a separate
page and it was necessary to create a different action bar, that provides but-
tons for saving the answer, canceling the answer and showing a help dialog.
An example of such an action bar is presented in figure 3.2.

Figure 3.2: Wireframe of question detail actionbar

3.2 Navigation drawer

The navigation drawer is a panel that is shown after a swipe gesture from
the left edge, or by clicking drawer icon in action bar. The navigation drawer
should provide a quick navigation to different screens of Android application.
Together with action bar’s action buttons, it basically forms a main menu.
The first item of navigation drawer is a link to main screen, which contains

26

3.3. Download survey screen

a list of all downloaded surveys. Next is the User profile section, that shows
information about stored answers. Language, Settings and About items follow
next. The wireframe of the navigation drawer is shown in figure 3.3.

Figure 3.3: Wireframe of navigation drawer

3.3 Download survey screen

To start using the application, a survey must be downloaded first. When
the user navigates to the Download screen from the surveys list, he will be
presented with a text box to enter a survey’s code and a Download button.
Naturally, after entering the code and pressing the button, a progress dialog
will be shown indicating the download progress, and reporting any errors. If
everything went smoothly and the survey was downloaded, the user will be
taken back to surveys list screen.

3.4 Surveys list screen

The home screen of the application will be a list of all downloaded surveys,
providing quick navigation to the application’s main functionality - filling out
inquiries. When there are no downloaded surveys (such as when the applica-
tion is ran for the first time), an informative text is shown with instructions
how to download a survey: by pressing a plus icon at the bottom of the sur-
vey list screen, which links to the download page. The list itself displays some

27

3. User interface

information about surveys, most prominently, surveys’ title and subtitle. Be-
cause the application supports three modes of operation (personal, interviewer
and testing), the survey mode is displayed as well. It is indicated by means
of a specific icon for interview mode (microphone), and for test mode (repair
icon). Next, there are two numbers showing how many surveys have already
been completed and how many have been uploaded so far. This is especially
helpful for interviewers. A progress bar reflects the completed and uploaded
numbers, but also works as a divider between the listed surveys (see figure
3.4). Last but not least, an edit pen icon indicates which surveys have been
started but not yet completed.

Figure 3.4: Wireframe of surveys list

It is a common practice on the Android platform to show additional actions
for each list item. Even though it is not visible in any way, users familiar with
the Android platform expect a context menu for each list item, that can be
invoked by a press and hold action on the respective list item. Of course, I
will comply to this standard and display a context menu after the press and
hold action on any survey. From that context menu, a user will be able to:

• Restart the survey from the beginning.

• Immediately submit responses (and not wait for the automatic upload).

• Delete a survey.

• Delete a completed but not yet uploaded set of responses.

• Reset the build-in completed and uploaded counters.

• Update a survey - this takes user to download page with a pre-filled
survey code.

28

3.5. Survey screen

• Display information about the survey (code, version and available ver-
sion).

3.5 Survey screen

When a user taps on a survey from the surveys list, the respective survey will
start, and he will be able to answer questions. Questions will be grouped on
pages and ordered in a list, conforming the design of the survey. The exact be-
haviour depends on the design of the survey. Each screen has two control but-
tons at the bottom, allowing to navigate forward and backward. The bottom
of each page also shows a progress bar that indicates, how many questions are
still left. The forward button will be disabled if some yet unanswered question
requires an answer. Users can move forward without answering the question
when the designer allows to skip that particular question. In case the de-
signer allows the user to indicate that a particular question is not applicable
(so called Not Applicable or N/A flag), the application shows a checkbox at
the top right of the question. If user checks this N/A box, the layout of such
a question will be hidden.

There are several complex question types, which required a careful design
to be sure that they are functional, simple and easy to understand. Usu-
ally those questions cannot be answered from the questions list but require
an additional tap to take the user to the individual question screen instead.

Selected question types will be described in the following subsections.

3.5.1 Open question

Depending on survey’s design options, an open question can be answered by
a text, an audio recording, a photo, or even a video recording. It would be to
confusing and messy if all those functionalities were shown at the questions
list. Therefore, open questions only offers to type in a text response from
the questions list page, while responses by audio, photo or video are offered
by their respective buttons that link to specific screens (see figure 3.5a).

The audio recording screen shows the question text on top and displays
buttons to record, play, stop and remove a recording (see figure 3.5b).

The photo detail screen also shows the question text on top, while the user
is provided with buttons to select a photo or take a new photo. The button to
select a photo starts the gallery application, where user can choose the photo
he prefers, which is then added to the screen. Naturally, taking a photo starts
the camera and attaches the photo as well. A photo can be removed by
tapping and holding it to open the context menu, and then selecting Delete.
For this question type, the user is able to click on a question mark at the right
of the action bar. This will invoke a help dialog with some explanation of
the question (see figure 3.5c).

The video detail page behaves exactly the same as a photo detail page.

29

3. User interface

(a) Main layout (b) Audio detail (c) Photo detail

Figure 3.5: Open question screens

3.5.2 Tripole question

The Tripole question is one of the most interesting question types. It shows a
triangle and a touch point in a question layout. The actual answering process
requires a detail screen because that leaves more space for the user to select
an appropriate point in the triangle. If there is no answer or if the answer is
invalid (out of triangle), a ”touch me” icon will be shown in the questions list
(see figure 3.6a).

When the user taps on the Tripole in the questions list, a detail screen
is opened. This detail screen allows the user to drag the circle and place it
to a position where it optimally reflects his opinion. Every time the circle is
dragged over the edge of the triangle, the device vibrates allowing the user
to place the point on one of edges or in the corner of the triangle. Also,
the triangle sides will turn from blue to grey when the point gets out of
the triangle and vice versa.

3.5.3 Clickable image

The Clickable image is an innovative and also very interesting question type
which needed a good thought in terms of design. Similar to the Tripole ques-
tion, the Clickabe image question shows a ”touch me” icon in the questions
list when it is not answered (see figure 3.7a). Upon clicking the image in the
questions list, a detail screen will be launched which presents the image and
the question text, as well as a list of options (max. three) that need to be
placed in the image (see figure 3.7b). When there indeed are options avail-

30

3.5. Survey screen

(a) Main layout (b) Detail

Figure 3.6: Tripole question screens

able, the user needs to select option he wants to indicate in the image and
then touch the image at place he wants to relate the option to. If the de-
signer did not specify additional options, the user should still place a point in
the image but does not need to select an option first. The point then reflects
the question itself.

(a) Main layout (b) Detail

Figure 3.7: Clickable image question screens

31

3. User interface

3.5.4 Choice question

Choice questions do not have any detail screens and can be answered directly
from within the questions list page. These questions can be configured to
allow an ”other” option, which is then displayed together with a text field
where user can specify the other option that they are missing. Furthermore,
multiple choice selection questions can be configured to enforce a maximum
number of options to select.

32

Chapter 4

Realisation

After analyzing the problem domain, specifying the requirements, designing
the user interface and several meetings with the stakeholders I advanced to
the implementation stage. Since the requirements were mostly known at
the beginning, the Waterfall development process could be used, although
some functionalities were reevaluated and changed during the development.
Firstly a mockup prototype was created using FluidUI, which also simulated
the navigation between the screens. Then I tried to get familiar with sev-
eral Android functionalities I wanted to use such as the navigation drawer,
SQLite databases, HTTP connections, and so on. For that reason, several
minimalist prototype applications were created so I could get acquainted with
yet unknown elements. After that, an implementation of the actual applic-
ation begun, and a month later a first proprietary version was presented to
the stakeholders.

4.1 Mockup prototype

In previous chapters, one could read that for the wireframes design I used
a web application called FluidUI. Interestingly, FluidUI does not only allow
to design static wireframes, but also enables its users to create an interactive
prototype of their designed application. All one needs to do is to select ele-
ments like a menu item or a button in the wireframes and link them to another
wireframe as an ”onClick” action. Running the prototype allows to get a good
feeling about the application, almost as if it was already implemented. One
can test how the user interface feels, without writing a single line of code.

4.2 Packages

The application code is divided into several logic packages. The idea was to
logically bind elements with similar functionalities together, so it is easy to

33

4. Realisation

navigate around the code for developers. They were created during the devel-
opment process whenever it was effective. Finally, the application consisted
of the following packages:

• adapters On Android, Adapters act as a bridge between data and
a list view. They are bound to a list view and their task is to create or
recycle rows for each data item. This package contains Adapters for all
lists in the application including surveys list and questions list.

• conf This package contains a few configuration classes of fragments,
languages and general configuration (e.g. mobile data file limit or file
split size).

• databases All code, which works with any database is stored in this
package. The databases are accessed through DatabaseHelpers wrapping
the SQL queries by methods.

• fragments Fragments (which we could call ”pages” for readers that
are not familiar with Android development) are stored in this package.

• helpers This package contains classes used for text formatting, con-
verting or other help functions used through-out the application.

• models This package contains all models used in the application.
These include model of Survey, Media response and also all question
types.

• network This package contains tasks used for network communica-
tion including DownloadSurveyTask or SubmitParticipationTask.

• receivers This package has only two classes which are called by
the system when the device gets connected to wifi, or after specified
amount of time. It is used for invoking the automated upload of re-
sponses.

• tasks This package contains background tasks for asynchronous op-
erations (see paragraph 4.3).

• views Some Views had to be adjusted by inheriting from generic
Android view classes. For example, the ClickableImageView and Tri-
poleView are placed here.

4.3 Asynchronous operations

While developing almost any application, a developer sooner or later encoun-
ters a need to use asynchronous operations. On Android, application initially
run on the main thread (also called the UI thread) which is shared among

34

4.3. Asynchronous operations

all application’s components. This is the only thread that is allowed to draw
or modify any visible user interface elements. Therefore, when a developer
wants to access some data over a network, or load an image from the device,
he should avoid using the UI thread, because that would freeze the whole
device. Eventually, the application would even be killed by the system. In-
stead, the application must start an asynchronous operation in a separate
thread, which loads the image, or downloads the data from Internet without
blocking the main UI thread. However, when the data is ready, the separate
thread cannot touch any user interface elements but must send the data to
main thread instead. Subsequently, the main thread is responsible for updat-
ing the user interface. Since all this would be too annoying to implement every
time we want to access data over Internet or do any other asynchronous op-
eration, Android has a special class called AsyncTask[19], which keeps all this
under the hood, while the programmer is asked to only implement methods
onPreExecute(), doInBackground() and onPostExecute().

4.3.1 AsyncTasks

All AsyncTasks can be found in the tasks package or in the network pack-
age. The network package contains all tasks for network communication:
for downloading surveys and uploading responses. The tasks package con-
tains one AsyncTask which encrypts response databases, splits large files and
moves everything to a special folder for completed responses that are ready
for upload. Then, when the time comes, the network package’s task Submit-
ParticipationTask goes through this directory and uploads all files it contains.

4.3.2 Image loading and caching

Another case that required asynchronous operations, was the decoding of im-
age bitmaps. It turned out that decoding larger images could cause freezes of
about 1000ms, which, of course, did not go unnoticed when changing a ques-
tions page. Therefore, an ImageLoader class was implemented in the support
package that includes an AsyncTask inside. It accepts an ImageView and a file
path or a byte array of the image as arguments, and updates the ImageView
after decoding the image off the UI thread. Until the image is decoded and
displayed, a loading icon is shown instead. In addition, an image cache was
also implemented in order to prevent repetitive decoding of the same image in
a short period of time. As a key to the cache I used either the file’s path (for
images added by the user as a response) or the survey, question and image id
(for question images).

35

4. Realisation

4.4 Question logic

Question logic (requirement F5) allows a creator of a survey to add rules,
which will hide or show a question based on respondent’s previous answer.
Implementing question logic was one of the most challenging tasks, together
with the Tripole and Clickable image questions. Every question, which has
some logic rule assigned, needs to be aware of previous responses and display or
hide itself when necessary. This must, of course, also work when two questions
are on the same page and the second question is controlled by the previous one.
Question logic was limited to choice question types as controlling questions.
When a question has one or more rules assigned, it will only be shown when
at least one of its rules is met.

When the controller and controlled questions are on separate pages, the im-
plementation of logic rules is quite straight forward; just before the controlled
question is about to be displayed, the application will first check user’s an-
swer and display or hide the question based on that. However, when control-
ler and controlled questions are on the same page, things get more complic-
ated. The controlled question needs to be notified about response changes
of the controller question in order to allow it to react appropriately. This is
accomplished by maintaining a list of controlled questions and sending them
a change message. Because questions are loaded in the order they are dis-
played, the controlled question upon its creation locates its controller ques-
tion and registers as a Listener for response changes. When user changes
a response to the controller question, the Fragment calls onAnswerChanged()
on the respective question and that question immediately calls onControlQues-
tionAnswerChanged() for each of the dependant (controlled) questions. Each
dependant question can then react by hiding or showing itself and passing
the call on to its own dependant questions, if any. It is important to add,
that one question might even be controlled by multiple questions. In order
to address this problem, each controlled question has a list of questions that
make them visible. If this list is empty, the question is hidden and if not,
the question is visible. A simplified sequence diagram of one page question
logic is shown on figure D.2.

4.5 Option randomization

Questions with options can be designed in a way that requires randomization
of its options’ order (F17). Implementation was achieved by using Java’s Col-
lections.shuffle() method. However, in order to keep same order of options
in one participation but different across multiple participations, an additional
step must have been made. At the time a new participation is started, the ap-
plication generates random seed number which is saved into Participation
Database. Then, every time a question with randomized options is shown,

36

4.6. Tripole and Clickable image views

the saved seed number is passed as a second argument to the shuffle() method,
ensuring that the randomized options order is always the same in that particip-
ation even if it is closed and opened later. Additionally, when a participation
is started, the device’s location and time are also stored (F16).

4.6 Tripole and Clickable image views

The Tripole and Clickable image questions are unusual question types and
required a special approach. For each of them special classes TripoleView and
ClickableImageView extending View class were created. These views handle
all drawing and touch events and can be used just as any other view in xml
layout. The overridden method onMeasure() in TripoleView makes sure that
the triangle is always equilateral.

Because the position of options in the Tripole can be designed to be ran-
dom, it was necessary to save the distances from the touch point to each option
(vertex) of the Tripole instead of simply saving the coordinates of the touch
point. When the Tripole’s answer is about to be displayed, the touch point is
calculated by the distance of two options (vertices).

The Clickable image touch point saves coordinates, since the image does
not allow randomization; i.e. it cannot be rotated and always has the same
orientation.

4.7 Translations

The application must support multiple languages and allow users to easily
switch between them. On Android, adding resources in multiple languages
is easy. All resources are stored in xml files in specific directories contain-
ing the name of the language. Also, the Android system handles loading of
the correct language resources itself. The only responsibility of the developer
is to call a method that sets the respective language. After that, all newly
created views will use the new resource. If the language changes, but some
view is not recreated (such as navigation drawer in this case), the developer
must request recreation of such a view in order to adapt to the new language
setting.

4.7.1 Translations management

Still, managing translations for over 20 languages quickly becomes a complex
and annoying task. This is because every time a new text resource is added
to the resource, it also needs to be translated and added into all supported
translation files. To ease this process, a Google spreadsheet that was shared
with the whole team was created. This spreadsheet contains a sheet for each of
the supported languages with 4 columns (Explanation, StringName, English

37

4. Realisation

and a column for the translation). The first three columns are linked to
a sheet called ’Original English’, where the terms are added, one per row. If
one wants add or modify a translation for some language, he just needs to open
the respective sheet and fill in the translation column. Furthermore, if new
terms for translations are added into Original English sheet, they immediately
appear as untranslated terms in all other language sheets. Last but not least,
I have also created a Google spreadsheet script, which upon language selection
generates a xml file, that can easily be added to the Android application every
time new translations are provided.

4.8 Deployment

The final step in a software development is its publication, also called deploy-
ment. On Android, applications are usually published and distributed over
Google Play Store. In order to do that, an application’s profile must be created
on the Play Store first. Then the application must be digitally signed with
a developer’s certificate and uploaded to the Play Store through Developer’s
console. It is important to note that once an application is signed and up-
loaded to Google Play Store for the first time, then all its future updates
must be signed with the very same certificate. That is to ensure that future
versions come from trustworthy origin and that no intruder can upload their
own version of the application with possible malware in case the developer’s
account is compromised.

4.9 Implementation evaluation

Overall the implementation is considered as successful. The application per-
forms flawlessly, is responsive, reliable, does not crash, and communicates
smoothly with the server.

Unfortunately, the data encryption on the device was not implemented in
the way it was planned. As was described in chapter 2.9.2, I wanted to use
synchronous AES cipher to encrypt files with a key, that would be asynchron-
ously encrypted. Naturally, this encryption puts a requirement on the server’s
backend, which needs to implement a corresponding decryption process. How-
ever, at the time of implementation, the backend’s decryption process was not
ready so this encryption method could not be used. Therefore, more simpler
encryption method which is already supported by the server has been imple-
mented, but the encryption method itself cannot not be discussed in the thesis
because its security is based on secrecy and the stakeholder does not want to
reveal these details.

If someone would implement the same application again, I would recom-
mend to use a special library for network communications. Fortunately, net-
work communication is not extensively used in this application so it is not a big

38

4.10. Further development

issue. Nevertheless, after working with Retrofit [20] library for REST API in
other projects I would not use plain AsyncTasks for network communications
anymore.

4.10 Further development

The application does not need any additional implementation and is ready to
be published. Even though there are already few requests for minor improve-
ments, none of them involves an important feature or fix which needs to be
included in the first public release. However, the whole Sprockler project is
still waiting for its public launch because other necessary tools such as surveys
designer or responses visualizer need to be finished.

For future versions and iterations of the development I would implement
a compression algorithm for videos before their upload. Sadly, so far only
commercial libraries to compress video files on Android were found.

39

Chapter 5

Testing

5.1 Testing by a programmer

Testing was done during the whole development after implementing every
new functionality or screen. It is always better to find a bug sooner, when
you are still well aware of the problem domain and context, than later. I
appreciate the development and debugging tools that the Android platform
provides. They were quite helpful when something was not working properly
or behaved weird. Especially the detailed and visually attractive profiler or
explorer of hierarchy views saved a lot of time.

5.2 Testing by testers

The Sprockler project team helped out in testing the software and providing
quick feedback. This speedy testing was quite helpful to fix bugs promptly. To
make the distribution of new application versions easier, a Google group for
beta testers has been created and the application has been released on Google
Play in beta mode. There were about three people actively testing the ap-
plication after every release, and throughout the whole development process
a total of thirteen people joined the beta group and tested the application.
Most bugs or problems were usually reported within a few days. The rapid
feedback was very valuable and helpful. Having all coding still clear in my
mind, I could trace and solve most bugs rather quickly.

5.2.1 Exception reporting

While distributing the application to beta testers over the Google Play store,
it sometimes happened that the application crashed. To help detect the error,
Android devices can send a report of the callstack and exception message to
the developer’s Google Play console. The only problem is that this must be
approved by the user and not all of them always do so. Furthermore, for

41

5. Testing

yet unknown reasons, it usually takes several hours to receive such a report,
leaving the developer in doubt in the mean time. Accordingly, fixes may
take significantly longer than needed. After a while I started looking for
alternatives and found Crashlytics [21] crash reporting platform. It does not
only send the reports immediately, but also provides more detailed information
of the crash and of all threads that your application was running. There is also
NewRelic applications analysis platform that provides even more information
about application’s response times, usage and so on, but offers only paid
services. Yet, I was absolutely satisfied with using Crashlytics.

5.2.2 Issue tracking

Having dedicated testers is always a great help for a developer, however, it
can easily become difficult to keep track of all problems. This project was no
exception. It quickly turned out that reporting issues via email is not conveni-
ent. Since I was already using a Bitbucket[22] as a git[23] repository and its
ticketing system for developing tasks, I have asked the testers to join the tick-
eting system and submit all issues there. I could then more easily respond
to the problems and avoid growing mail conversations covering several issues.
The data from the Bitbucket’s tracking system are exported and attached on
the enclosed CD in a dedicated folder. I have also tried to export a mail
communication as an illustration of the testing and reports from testers, but
because of the complex conversations covering all kinds of issues and subjects,
it appeared impossible (which just supports the usage of issue tracking).

42

Conclusions

In the beginning this thesis has briefly introduced and analyzed mobile applic-
ations of various survey platforms and evaluated them. Next, based on those
findings and with accordance with the stakeholders’ wishes, requirements for
a new mobile survey application were set. After that, a graphical interface of
the new application was designed, followed by a technical design of the ap-
plication. Then, the implementation phase started after which testing and
debugging begun.

The goal of this thesis was to develop a complete, reliable and functional
application that could be used to interview people offline using mobile devices
as part of new inquiry platform called Sprockler. All in accordance with
the stakeholders’ needs. Throughout the whole development process I have
been in a close contact with the stakeholders. This assured full satisfaction
with the result. The resulting application meets all the requirements and was
appreciated and accepted by the stakeholders.

Although the application was also tested by the developer, it was extens-
ively tested by the stakeholders’ team and debugged accordingly. So far, it
has been working flawlessly to the best of my knowledge. Since the applica-
tion is a part of a new interviewing platform, some functionalities cannot be
used or demonstrated to its full potential yet. This is due to limitations of
other elements in the larger project, such as the server or the visualization of
responses.

I think it is safe to say, that with the deliverable of a well working Android
application, the project has been completed successfully.

Contribution

The application has already been used for collecting responses of inquiries
that ran in Jerusalem and Brazil and more projects are about to come. I
believe that it has proven itself as a reliable and very useful part of the survey
platform and that it will be a great asset to the Sprockler project.

43

Conclusions

Personal evaluation

Thanks to this thesis I had a chance to get experience in developing a real
product for a real stakeholders with all what it takes. It has been like no other
school project and I learned many soft skills of software development. I had
to go through the full software development process, starting with effort and
time estimation and analysis of the stakeholders’ wishes, over software and
graphical design, to implementation and final testing. Furthermore, I also im-
proved my project planning skills since I regularly had to provide a reasonable
time plan and then had to make sure I delivered as scheduled. Additionally,
I believe I also enhanced my communication skills since I had to extensively
communicate and discuss all things with the stakeholders in English.

However, I did not only improve my software engineering skills, but also
learned many new things about the Android platform and have also gained
some experience in designing a user interface.

Lastly, it has been a great experience to stay in the Netherlands and ex-
plore its beautiful parts while being there at the beginning of the development
period, and when travelling for meetings. I enjoyed working on this applica-
tion and thesis from the beginning to the end and I am very glad I had this
opportunity.

44

Bibliography

[1] Cognitive Edge Pte Ltd. Sensemaker homepage. [Online, accessed: 2015-
01-24]. Available from: http://www.sensemaker-suite.com/

[2] Cognitive Edge Pte Ltd. Cognitive Edge homepage. [Online, accessed:
2015-01-24]. Available from: http://cognitive-edge.com/

[3] Cognitive Edge Pte Ltd. Sensemaker Android application. [Online, ac-
cessed: 2015-02-15]. Available from: https://play.google.com/store/
apps/details?id=com.cognitiveedge

[4] The Apache Software Foundation. Cordova project. [Online, accessed:
2015-02-24]. Available from: http://cordova.apache.org/

[5] SurveyMonkey Ltd. SurveyMonkey - About us. [Online, accessed: 2015-
02-16]. Available from: https://www.surveymonkey.com/mp/aboutus/

[6] SurveyMonkey Ltd. The SurveyMonkey App for iPhone R© and
iPad R©. [Online, accessed: 2015-02-16]. Available from: https://

www.surveymonkey.com/mp/iphone-survey-app/

[7] Google Inc. Android Design. [Online, accessed: 2015-01-24]. Available
from: https://developer.android.com/design/index.html

[8] Google Inc. Platform Versions. [Online, accessed: 2015-03-09].
Available from: https://developer.android.com/about/dashboards/
index.html#Platform

[9] Adobe Systems Inc. Adobe Announces Agreement to Acquire Nitobi,
Creator of PhoneGap. [Online, accessed: 2015-03-08]. Available
from: http://www.adobe.com/aboutadobe/pressroom/pressreleases/
201110/AdobeAcquiresNitobi.html

45

http://www.sensemaker-suite.com/
http://cognitive-edge.com/
https://play.google.com/store/apps/details?id=com.cognitiveedge
https://play.google.com/store/apps/details?id=com.cognitiveedge
http://cordova.apache.org/
https://www.surveymonkey.com/mp/aboutus/
https://www.surveymonkey.com/mp/iphone-survey-app/
https://www.surveymonkey.com/mp/iphone-survey-app/
https://developer.android.com/design/index.html
https://developer.android.com/about/dashboards/index.html#Platform
https://developer.android.com/about/dashboards/index.html#Platform
http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresNitobi.html
http://www.adobe.com/aboutadobe/pressroom/pressreleases/201110/AdobeAcquiresNitobi.html

Bibliography

[10] Anderson, T. Microsoft, Xamarin give Visual Studio a leg-
up for... iOS and Android? [Online, accessed: 2015-03-08].
Available from: http://www.theregister.co.uk/2013/11/13/
microsoft xamarin ios android c sharp visual studio/

[11] Binstock, A. .NET Alternative In Transition. [Online, accessed: 2015-03-
08]. Available from: http://www.informationweek.com/architecture/
net-alternative-in-transition/d/d-id/1098050?

[12] Xamarin Inc. Xamarin pricing. [Online, accessed: 2015-03-09]. Available
from: https://store.xamarin.com/

[13] Google Inc. Introduction to Android. [Online, accessed: 2015-03-09].
Available from: https://developer.android.com/guide/index.html

[14] Google Inc. SQLite Database. [Online, accessed: 2015-03-10]. Available
from: http://developer.android.com/reference/android/database/
sqlite/SQLiteDatabase.html

[15] Reenskaug, T.; Coplien, J. O. The DCI Architecture: A New Vision of
Object-Oriented Programming. [Online, accessed: 2015-04-12]. Available
from: http://www.artima.com/articles/dci vision.html

[16] Gamma, E.; Helm, R.; Johnson, R.; et al. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

[17] Fluid Software Ltd. Fluid UI. [Online, accessed: 2015-03-25]. Available
from: https://www.fluidui.com

[18] Google Inc. Android Support Library. [Online, accessed: 2015-04-
13]. Available from: http://developer.android.com/tools/support-
library/index.html

[19] Google Inc. Android AsyncTask. [Online, accessed: 2015-03-25]. Avail-
able from: http://developer.android.com/reference/android/os/
AsyncTask.html

[20] Square, Inc. Retrofit. [Online, accessed: 2015-04-02]. Available from:
http://square.github.io/retrofit/

[21] Twitter Inc. Crashlytics. [Online, accessed: 2015-03-28]. Available from:
https://crashlytics.com/

[22] Atlassian Pty Ltd. Bitbucket. [Online, accessed: 2015-04-02]. Available
from: https://bitbucket.org/

[23] L. Torvalds and others. Git. [Online, accessed: 2015-04-10]. Available
from: http://git-scm.com/

46

http://www.theregister.co.uk/2013/11/13/microsoft_xamarin_ios_android_c_sharp_visual_studio/
http://www.theregister.co.uk/2013/11/13/microsoft_xamarin_ios_android_c_sharp_visual_studio/
http://www.informationweek.com/architecture/net-alternative-in-transition/d/d-id/1098050?
http://www.informationweek.com/architecture/net-alternative-in-transition/d/d-id/1098050?
https://store.xamarin.com/
https://developer.android.com/guide/index.html
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://www.artima.com/articles/dci_vision.html
https://www.fluidui.com
http://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/support-library/index.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://square.github.io/retrofit/
https://crashlytics.com/
https://bitbucket.org/
http://git-scm.com/

Appendix A

Acronyms

AES Advanced Encryption Standard

API Application Programming Interface

GUI Graphical User Interface

GPS Global Positioning System

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated development environment

JSON JavaScript Object Notation

REST Hypertext Transfer Protocol

SDK Software Development Kit

SPA Single Page Application

UC Use Case

UI User Interface

XML Extensible Markup Language

47

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
text

thesis.pdf...........................the thesis text in PDF format
issueTracking............................the directory of issue tickets

49

Appendix C

Development tools

C.1 Android studio

Android studio is by Google the promoted IDE for Android. It is based and
built on top of IntelliJ IDEA software, which is one of the most popular and
advanced integrated developing environments. Eclipse with Android develop-
ment plugin was the standard until the release of Android studio in May 2013.
Since then, developers started to move to Android Studio. Android studio is
far superior to Eclipse and offers many new and improved features.

One of those new features is integration of Gradle. Gradle is a tool for build
automation and, apart other useful features, allows developers to easily man-
age dependencies by adding only one line for each dependency. Furthermore,
it allows developers to smoothly create and manage build configurations. For
this project build configurations for a release (production) build, Beta build
and a Debug build were created. The Production build connects to a pro-
duction server, while Beta build uses test server and Debug build connects to
a local server. Additionally, the Beta and Production builds use ProGuard to
shrink, optimize, and obfuscate the code in order to make reverse engineering
more difficult. Then, at the time of build, the developer only needs to select
what type of build configuration he wants to run without changing anything
in the code itself.

C.2 Git

Using Git or any other versioning system is a common practice and almost
a must in a software development. Although it is especially useful for projects
consisting of multiple developers, even projects with one developer can find
versioning systems convenient; especially for reverting already saved changes.
This project’s repository was hosted at bitbucket.org [22].

51

C. Development tools

C.3 Issue tracking

To keep a track of all tasks and issues during the project a ticketing system
which came with the git repository at bitbucket.org [22] was used. Further-
more, once testers joined the team they were asked to use the issue tracking
system as a reporting platform for submitting bugs and encountered issues
(more in the section 5.2.2).

52

Appendix D

UML Diagrams

53

D. UML Diagrams

F
igu

re
D

.1:
C

lass
d

iagram
of

q
u

estion
s

54

Figure D.2: Sequence diagram of question logic on one page

55

D. UML Diagrams

F
igu

re
D

.3:
S

u
rv

ey
p

age
class

d
iagram

56

F
ig

u
re

D
.4

:
S

u
rv

ey
s

li
st

lo
ad

in
g

se
q
u

en
ce

d
ia

gr
am

57

	Introduction
	Analysis
	Target user base
	Similar Applications
	Functional Requirements
	Non-functional Requirements

	Technical Design
	Selecting technology
	Modes of operations
	Use cases and their scenarios
	Function requirements covered by use cases
	Software architecture
	Questions model
	Database model
	Communication with server
	Security

	User interface
	Action Bar
	Navigation drawer
	Download survey screen
	Surveys list screen
	Survey screen

	Realisation
	Mockup prototype
	Packages
	Asynchronous operations
	Question logic
	Option randomization
	Tripole and Clickable image views
	Translations
	Deployment
	Implementation evaluation
	Further development

	Testing
	Testing by a programmer
	Testing by testers

	Conclusions
	Contribution
	Personal evaluation

	Bibliography
	Acronyms
	Contents of enclosed CD
	Development tools
	Android studio
	Git
	Issue tracking

	UML Diagrams

