
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of software engineering

Bachelor’s thesis

Analysis and design of supporting

information system enhancing

characterization and quality assurance of

electrically tunable optical products

Simeon Kredatus

Supervisor: Ing. Pavel Náplava

11th May 2015

Acknowledgements

I wish to express my sincere thanks to whole Optotune company, especially
to my supervisor, colleague and friend Christoph Romer for mentoring me
not only through the time I was writing this book. I am also grateful to Ing.
Pavel Náplava who supervised my thesis, provided me with valuable advices
and indeed allowed me to realize it.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 11th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Simeon Kredatus. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kredatus, Simeon. Analysis and design of supporting information system en-
hancing characterization and quality assurance of electrically tunable optical
products. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2015.

Abstrakt

Elektricky ovládatelné optické produkty jsou přelomovou technologíı a jej́ı
vliv v pr̊umyslu rapidně nar̊ustá, přinášej́ı uživatel̊um alternativu ke kon-
venčńım, většinou skleněným řešeńım. S každým rokem se zvyšuj́ıćı produkćı
společnosti, je d̊uležitým faktorem centralizace charakterizačńıho procesu a
procesu zajǐstěńı kvality, škálovatelnost daných proces̊u jako je i např. auto-
matizace a odbouráńı lidského faktoru. Ćılem práce je źıskat znalost daných
proces̊u, vyhodnotit a určit možné části, které by mohli být zlepšeny využit́ım
softwaru jako je i navrhnut́ı samotného softwaru podporuj́ıćı produkci společnosti.
V této práci je obsažena analýza proces̊u, které charakterizuj́ı produkty a
zajǐsťuj́ı kvalitu. Byl navrhnut software využ́ıvaj́ıćı NoSql MongoDb databázi
pro podporu proces̊u. Čtenář najde v této práci vyhodnoceńı př́ınosu daného
informačńıho systému pomoćı r̊uzných ekonomických koeficient̊u.

Kĺıčová slova Elektricky ovládatelné optické produkty, automatizace, zajǐstěńı
kvality, charakterizace, MongoDb, architektura softwaru, design softwaru

Abstract

Electrically tunable optical products are the cutting-edge technology ramping
its sphere of impact in the industrial area bringing its users an alternative to

ix

conventional, mostly glass based solutions. As the production of company is
increasing every year it is important to keep the process of characterization
and quality assurance centralized, scalable and automatized as well as keep
the human impact at each product minimized. The goal of my thesis is to gain
a knowledge of such a processes, evaluate and pinpoint possible parts where
they could be improved via employing a software solution and to design a
system capable of providing support for company’s production. In this paper
there was the analysis of quality assurance and characterization processes
done, a software utilizing NoSql MongoDb database for supporting them was
designed as well as the asset of such improvement was evaluated through
various economic coefficients.

Keywords Electrically tunable optical products, automation, quality assur-
ance, characterization, MongoDb, software architecture, software design

x

Contents

Introduction 1

1 Optics 3

2 Electrically controlled optical products 5

2.1 Overview . 5

2.2 Laser speckle reducers . 5

2.3 Electrically tunable lenses . 6

2.4 Optical product characterization and quality assurance 8

3 Empowering processes via software – required features 11

3.1 Integration of the most important processes in one place 11

3.2 Ensure the reliability of each characterization process 12

3.3 Downswing of human impact at each product validation 12

3.4 Automation . 12

3.5 Backward data evaluation . 12

4 Functional requirements 13

5 Non-functional requirements 17

5.1 Software context . 17

5.2 Communication interfaces . 19

5.3 Software architecture . 19

5.4 Pass/fail tests – product quality assurance 20

5.5 Actions . 20

5.6 Characterization process . 21

5.7 External devices . 23

6 Wireframes and use cases 25

6.1 Profile editor . 25

xi

6.2 Profile form . 29
6.3 Pass fail test configuration . 30
6.4 Automation mode . 32

7 Economic aspects of software 37
7.1 General framework decreases the time required for the imple-

mentation of test and characterization algorithms of a new
product . 37

7.2 The centralization of data and the simplification of data evalu-
ation . 38

7.3 The downswing of human impact and the elimination of pos-
sible process errors . 39

7.4 The automation of characterization processes 39
7.5 Economic assessment summary 41

8 Software architecture and design 43
8.1 Application architecture . 43
8.2 Software design . 45

9 Work breakdown structure and initial workload estimation 53
9.1 Milestone 1 . 53
9.2 Milestone 2 . 54
9.3 Milestone 3 . 54
9.4 Milestone 4 . 54
9.5 Automation extension . 55

10 Return on investment evaluation 57
10.1 Three point estimation . 57
10.2 Return on investment . 58
10.3 Internal rate of return . 59
10.4 NPV . 60

11 Software summary 61

Conclusion 63

Bibliography 65

A Acronyms 67

B Contents of enclosed CD 69

xii

List of Figures

1.1 An example of zooming lens assembly[1] 3

2.1 Laser speckle reduction[2] . 6

2.2 Lens principle[3] . 6

2.3 EL-6-18[4] . 7

2.4 EL-6-18[5] . 8

2.5 Standard product lifecycle . 8

2.6 Standard characterization action lifecycle 9

5.1 Lifecycle of a characterization process 21

5.2 Lifecycle of a session . 22

6.1 Profile editor wireframe . 26

6.2 Add product - wireframe . 27

6.3 Add profile - wireframe . 27

6.4 Edit actions - wireframe . 28

6.5 Add action - wireframe . 28

6.6 Profile form - wireframe . 29

6.7 Wireframe depicting the vector configuration 30

6.8 Wireframe depicting the configuration of test assertion 31

6.9 Wireframe depicting the mapping of configured test assertions onto
available actions . 32

6.10 The main gateway of the automation mode 33

6.11 Depicts every characterization position 34

6.12 Depicts the lifecycle of a single characterization position 34

7.1 Automation speed graphical representation 40

8.1 The sketch of the system architecture 44

8.2 The most important part of data model 48

xiii

10.1 Generic formula for IRR computation, one needs to express r out
of it . 59

xiv

List of Tables

7.1 The savings issued by OptoTester in comparison with the stan-
dalone application per product . 38

7.2 Table depicting issued savings . 39
7.3 Automation mode savings . 40
7.4 Table depicts one time constant savings 41
7.5 Shows periodical savings issued each year by optotester depending

on the amount of produced lenses 41
7.6 Table shows quantified savings in CHF 42

9.1 Table depicts the workload of milestone 1 54
9.2 Table depicts the workload of milestone 2 54
9.3 Table depicts the workload of milestone 3 54
9.4 Table depicts the workload of milestone 4 55
9.5 Table depicts the workload of automation extension 55

10.1 Table shows various return on investment depending on the cost
of software and the amount of produced lenses per year. 59

10.2 Table depicts various IRR coefficients per different cost and pro-
duced lenses amounts. 60

10.3 Table depicts various net present values in CHF. 60

xv

Introduction

Optics is an important industry whose results can be found in many products
around us. Conventional optical solutions (mostly consisting of glass) are
hitting its limits especially when it comes to a price and high speed changes.
This ignited the research in the sphere of deformable optics and incepted the
concept of electrically tunable lenses and polymer based laser speckle reducers.

Optotune, a company developing and producing such products is evolving
fast on the market. To ensure desired level of quality each product needs to be
characterized and evaluated. Due to increasing production it’s also important
to automatize the most important processes to downswing the human im-
pact, increase the reliability and keep the cost of characterization and quality
assurance of each product as low as possible.

In this thesis some possibilities how the processes of characterization and
quality assurance could be supported via uniquely designed software are dis-
cussed. To design a software it is important to have an adequate understanding
of a problem domain. Therefore in the first part of the paper the reader can
find how the characterization and the quality assurance of an optical product
is treated.

Having the relevant information of the problem domain specified, in the
next part the collection of functional and non-functional requirements which
shall be met by the software is presented. These requirements are reflected
in various wireframes for the most important ones. Having specified what the
software brings to the final user it is also important to assess how much in
savings the designed software for supporting company’s processes will bring.

After specifying the initial requirements, the design and the architecture
of the system shall be created which are afterwards translated into the work
breakdown structure depicting functional and non-functional requirement into
particular assignments. The important part of design and architecture is a
decision concerning employed database. Therefore the chosen solution – Mon-
goDb is discussed as well as its advantages over the relational database in the
given problem domain. At the very end there is basic economical assessment

1

Introduction

of designed system provided which considers its cost and overall savings, ad-
vantages it will bring to the Optotune and expressing it in the form of ROI,
IRR and NPV coefficients.

2

Chapter 1

Optics

We can find optics everywhere around us. From the very simple glasses up
to the very complex optical solutions found across many different industry
sectors. Ophthalmology, machine vision, laser projection, lighting, laser pro-
cessing, microscopy – these all are examples of industries employing vari-
ous optical products for bringing the user the best possible results and final
experience. Actual conventional technologies used for zooming and focus-
ing consist mostly of heavy-weight assemblies mechanically moving pieces of
glass (or plastics) to achieve targeted optical properties of the optical system.
These systems are prone to mechanical problems and do not allow high speed
changes.

Figure 1.1: An example of zooming lens assembly[1]

In the picture above 1.1 there is an ordinary example of mechanical zoom-
ing assembly. The adjustment of the focal power is achieved via moving lenses
L1 and L2 on the X-axis. As described above this concept is having some
drawbacks which instigated the research in deformable optics.

Neither the light refraction nor the basic concepts of the lenses principle
are the subjects to this thesis and therefore are not described here. To find
out more explanation concerning previously stated terms a user needs to refer
to other sources. Also the in-depth description of how deformable optical
components work is left out as it is not the topic of this paper either. In
the next chapter an introduction into this technology is provided with the

3

1. Optics

basic description of algorithms used for characterization and quality assurance
processes.

4

Chapter 2

Electrically controlled optical
products

2.1 Overview

Optotune has developed multiple cutting-edge technologies utilizing poly-
mers to simplify the construction and increase the performance of various
optical products. There are 2 main categories of electrically controlled optical
products developed by the company:

• Laser speckle reducers

• Tunable lenses

2.2 Laser speckle reducers

A speckle pattern is an intensity pattern produced by the mutual interference
of a set of wavefronts.[6] The task of laser speckle reducers (LSR) is to lower
the amount of speckle available in a projection. In its very basic principle it
is the set of moving diffusers based on electroactive polymers which are used
to generate an oscillating motion which causes the downswing of the speckle
effect.

5

2. Electrically controlled optical products

Figure 2.1: Laser speckle reduction[2]

Below we can see a picture 2.1 of a simple laser projection snapped before
and after LSR was enabled.

2.3 Electrically tunable lenses

2.3.1 Overview

Electrically tunable lenses employ polymer membranes and optical liquids to
achieve focal power adjustability while being controlled by an electrical signal.
This allows having fewer components instead of utilizing industrially available
lenses based on glass or plastics and avoids heavy-weight assemblies which are
moving the components to achieve required optical properties. The sketch
showing how the lens mechanism works is below - 2.2.

Figure 2.2: Lens principle[3]

In the picture above you can see multiple components:

• Polymer membrane with liquid inside

• Actuation zone

6

2.3. Electrically tunable lenses

Each of electrically tunable lenses has a similar composition but it always
differs in its optical properties and the way it is actuated– e.g. with type
of liquid or different actuation technology. The actuator pushes or pulls on
the membrane on a ring around the lens aperture. Depending on the actu-
ation force (pull or push) the optical liquid is either pumped into the lens
area or drawn from it. This results either in a more convex or more concave
lens surface. Customers can integrate these lenses into their systems utilizing
exposed pinouts. To allow a customer to use the lens in the so called focal
power mode, a lookup table between actuator position and focal power must
be known. This characterization data is stored in an EEPROM chip included
within the lenses. Each type of lens is using different set of parameters to
control the actuator. Some actuators use current, some may use voltage. Ad-
ditionally there is a multitude of sensors present which can measure and report
back the actual lens state.

2.3.2 Multiple lens types

Currently Optotune disposes with multiple electrically tunable lens types.
Each of these types is controlled utilizing slightly different mechanisms. As
the company is evolving fast, new types of electrically tunable (ET) lenses
are released often. Therefore also their characterization and quality assurance
mechanisms have to be scalable enough to reflect this trend. In the next
section some of Optotune’s lenses will be described in further detail.

2.3.2.1 EL-6-18

This lens is controlled either by current or a position feedback signal. There-
fore its EEPROM (electrically erasable programmable read-only memory) chip
has to contain information for both control modes. There is a picture of it
attached below. In position controlled mode PID is driving the lens with differ-
ent currents until proper position value is read-out from the sensor integrated
in the lens.

Figure 2.3: EL-6-18[4]

7

2. Electrically controlled optical products

2.3.2.2 EL-10-30

Current controlled lens – lens is actuated by changing current provided to the
lens.

Figure 2.4: EL-6-18[5]

2.4 Optical product characterization and quality
assurance

Each optical product prior to being sent to the customer has to undergo
particular quality assurance processes and some of them also require char-
acterization. In the picture below there is the basic product’s lifecycle (2.5)
throughout the construction stated. The tasks marked with blue border are

Figure 2.5: Standard product lifecycle

duties which need to be carried out by software. Each product is utilizing
many devices from which data are collected and uses different algorithms for
acquiring them. Each product needs a different data evaluation algorithms
to assess whether it matches a certain level of quality. As stated previously,

8

2.4. Optical product characterization and quality assurance

electrically tunable lenses, in contrast with LSR, require configuration inform-
ation to be stored in its memory chip. Therefore also “Persist configuration”
task is included in BPM diagram above.

2.4.1 Electrically tunable lens characterization process

Each of the electrically tunable lens types undergoes a different character-
ization process throughout which various data about the lens are collected.
Below there are the most important lens types and underlying procedures that
need to be handled by the software discussed. Due to an existing NDA the
description of characterization and quality assurance processes only reflects
the algorithms from an abstracted manner. For the discussion of the software
design this shall not pose a problem since the very particular details are not
required to be known. During the characterization process various algorithms
are employed to collect the data about the lens whereas it is measured at dif-
ferent configurations. The set of algorithms and configurations differ among
product types. In general every characterization procedure consists of mul-
tiple characterization actions which need to be carried out. A characterization
action is the very basic unit of a characterization procedure and in general en-
compasses setting the lens and its environment to a certain configuration and
collecting the data from various external devices used for measuring it. The
results of characterization action shall be assessed by preconfigured pass/fail
criteria used to evaluate whether it is valid or not. For setting the product into
particular configuration external devices are required to be used. Therefore
the designed software needs to be able to interact with various devices and
new ones have to be easily integrated into the system. In the diagram below
(2.6) the general lifecycle of a single characterization action is depicted.

Figure 2.6: Standard characterization action lifecycle

9

2. Electrically controlled optical products

2.4.2 LSR characterization

LSR characterization consists of measuring the so called speckle contrast with
and without LSR and cross-comparing the results. There needs to be a sig-
nificant drop in speckle contrast when the LSR is powered on in contrast to
when it is powered off. This measurement algorithm is handled by an external
software. However, it is important to allow a future integration into the soft-
ware because one of the most important goals for the company is to keep data
centralized and to have a flexible system that can be extended very rapidly.

2.4.3 Quality assurance

Resulting from the description above it is clear that while executing most of
the actions data has to be collected for further evaluation purposes. Each of
the actions require either simple assertions above measured values or some
more sophisticated logic to be executed. Both have to be incorporated within
the designed unified system. As soon as one of the actions does not fit the
evaluation criteria the execution of the rest is suspended and the product is
marked as “Failed”. Of course this information has to be stored in a database
for later post-processing and quality control. An example of a quality assur-
ance criteria would be the maximal and minimal focal power the lens can be
driven to (as they have been built for a certain focal power range). So having
a position controlled EL-6-18 lens, this means at its maximum position value,
focal power has to be below or equal to a certain level and for the minimum
position value it has to exceed a certain threshold.

10

Chapter 3

Empowering processes via
software – required features

As an output from the section above it is clear there are multiple products
with various characterization procedures and different quality assurance spe-
cifications. Optotune needs a software solution which comes at an acceptable
rate of ROI and providing support in following areas:

• Integration of the most important processes in one place

• Ensuring the reliability of each characterization process

• Downswing of human impact at each product validation

• Automation

• Backward data evaluation

3.1 Integration of the most important processes in
one place

It is necessary to have all of the characterization and quality assurance pro-
cesses integrated within one software solution to minimize the costs of main-
tainability. The fact is that company is evolving and new types of lenses come
out each year and therefore new characterization and quality assurance al-
gorithms need to be incorporated into the software very often. Having single
centralized software will maximize the scalability possibilities as well as pos-
sible reusability of already existing features. From this criteria it is apparent
that the best solution shall be the best-of-breed software.

11

3. Empowering processes via software – required features

3.2 Ensure the reliability of each characterization
process

As the characterization itself depends on many external devices connected
to a single PC station it is error prone. Whenever it comes to integration
with hardware through exposed interface (e.g. RS232, TCP/IP) one has to
deal with possible communication errors as hardware interfaces are not al-
ways stable and information may be lost as it is being transferred across the
communication line.

3.3 Downswing of human impact at each product
validation

Data are partially evaluated by engineers manually having a look at measured
values or employing scripts which are not centralized and need manual trig-
gering. This is a very error-prone approach as it depends on a single person.
As the volume of the produced lenses is increasing this evaluation has to be
covered by the software.

3.4 Automation

As there are many lenses being produced and therefore characterized and
tested the software needs to integrate into an automated production environ-
ment which is feeding lenses to the measurement device. The software shall
be capable of being integrated into such an assembly line. So it acts as a mas-
ter where the logic for controlling the characterization part of the automation
system is encapsulated.

3.5 Backward data evaluation

As the software is collecting data for each of the lens it shall be possible to
have a look at this data, filter out the data user is interested in and allow the
user to export it.

12

Chapter 4

Functional requirements

After going through the basic overview of what is required to be met by the
software there is the specification of functional requirements provided in this
chapter. Collecting of the functional and non-functional requirements as well
as drawing of the use cases are the results of team work of Mr. Christoph
Romer and me. The project leader (Mr. Christoph Romer) acts mostly as a
product owner and HCI/UI designer very well aware of company’s processes
and needs which must be incorporated into the software. Together we have
analyzed and designed whole software whereas my position was mainly to deal
with non-functional requirements and information system design / architec-
ture and afterwards preparation of the software development plan (WBS) and
the final implementation itself.

• Product

1. Product is uniquely characterized by serial number and batch

2. Single product can be characterized multiple times

• Characterization process (session)

1. Allow user to use single instance of a software to run characteriz-
ation and quality assurance processes for multiple lenses, one at a
time.

2. Each characterization process can consist of as many steps as de-
sired.

3. Allow user to configure characterization process dynamically – as
characterization process consists of multiple different steps which
need to be carried out sometimes this step may be required to be
retaken with a different set of parameters.

4. Parametrized characterization steps – each characterization step
can require some parameter input from the user.

13

4. Functional requirements

5. Whole characterization process can be carried out by the software
automatically – the assistance of operator is not required for execut-
ing the characterization process as soon as the initial configuration
of characterization process parameters has been done.

6. Data export – it is possible to export the data throughout an on-
going characterization process (so called session)

7. It is possible to break the characterization process in between each
of the steps and afterwards continue either with different charac-
terization process or get back to the one originally running later on
– e.g. after PC restart. This is referred to as well as session resume
(consisting of session repopulation and re-running the session).

8. Each characterization process can have metadata (e.g. comment)
assigned.

9. An operator shall have live data feed from product properties avail-
able so they would be aware of the product’s status, e.g. polling of
the sensor data from the lens.

• Data collection / evaluation / lookup

1. Each characterization step (or action) can collect data and store it.

2. Data can later on be accessed and filtered out by specific criteria

a) Data needs to be filtered out by particular product they belong
to

b) Data needs to be filtered out by particular characterization
process configuration utilized

c) Data needs to be filtered out by quality assurance process result

• Quality assurance process – Pass/Fail tests

1. Each characterization step (or action) may underlie configured data
evaluation

2. Each action may require very specific data evaluation logic

3. In case of a failed characterization step, the characterization pro-
cedure is not allowed to proceed

4. The data shall be evaluated on the vector and test assertion basis
– i.e. the user can define vector of data above which they want to
run particular test assertion evaluation

5. Single test assertion can have multiple pass/fail tests mapped

6. Pass/fail tests mapped within single test assertion are ordered

7. Pass fail tests carry out the logic of the measured data evaluation

14

8. Single test assertion can have Boolean logic applied to evaluate the
result of child pass/fail tests

a) If there is not Boolean logic specified, if each of the test asser-
tion’s pass/fail tests passes test assertion does as well.

b) If there is Boolean logic specified the final result of test as-
sertion (whether it passed or failed) depends at the evaluation
of Boolean expression, e.g. (1 or 2) and 3; where 1, 2 and 3
stand for the ids of pass/fail tests configured within single test
assertion.

• Session termination – as soon as the last action of characterization pro-
cess is successfully finished (i.e. no error occurred or pass/fail test eval-
uation has passed) the session is terminated

• Product / profile configuration grouping

1. Each characterization process (session) configuration is referred to
as a profile

2. Profiles can be grouped into products

3. Product specifies the type of the real-world optical product the
profile is related to

4. Profile session action configuration

a) Session actions (characterization process steps) are defined within
the profile

b) Session actions ordering is left up to the user

c) Session action can be marked as the last one – i.e. the session
is closed after it is finished successfully

• Communication with external devices

1. Software needs to be able to communicate with external devices
over TCP/IP as well as serial link oriented protocols and it needs
to be possible to add further communication protocols in future
versions.

2. Each external device which is accessed by the application shall
provide continually the information of its status to the user.

• Re-flashing of lens’s EEPROM – it must be possible to re-upload char-
acterization data based on historical measurement data stored within
the database.

• Manual EEPROM data edition – the user needs to have the possibility
of editing EEPROM data manually, i.e. it shall be possible to edit the
bytes or data fields which are afterwards stored in the lens EEPROM.

15

4. Functional requirements

• Pass/Fail result – throughout the characterization procedure operator
needs to be able to display the result of pass/fail test evaluation above
single characterization step (action).

• Operator shall have the possibility to specify which set of devices will
be available to the software and the software shall accordingly modify
allowed characterization steps.

• Access restriction – each operator needs to login prior to using the ap-
plication.

1. Profile roles:

a) CREATE PROFILE – allows to create new profiles

b) VIEW PROFILE – allows to view existing profiles to the user
who has been granted access to in Profile access configuration
window

c) EDIT PROFILE – allows the user to edit existing profiles,
though only the ones who have been granted access to

d) SAVING WORKSPACE – allows to save workspaces

2. Administration roles:

a) ADD USER – allows to create new users in application

b) DELETE USER – allows to remove users from application

c) CHANGE PASSWORD – allows to change password to any
user

d) ASSIGN ROLE – allows to assign roles to users

3. Application roles:

a) VIEW HISTORICAL DATA – allows to view collected data
via Database viewer

b) EXPORT HISTORICAL DATA – allows to export data from
database to external files

c) GRANT PROFILE ACCESS – allows granting profile access
to a user/group.

d) OPEN PROFILE – allows to load profile and execute charac-
terization via Profile window

These were only the most important requirements as the rest of the require-
ments will be clarified while discussing particular wireframes in the next
chapter. Non-functional requirements which shall be met by the software
are listed in the following chapter.

16

Chapter 5

Non-functional requirements

Non-functional requirements are grouped into multiple parts. The context
where the software shall be utilized such as operation system which the soft-
ware shall be capable to be executed on and preferred technologies as the
outcome of the environment requirements is discussed in the first part.

5.1 Software context

5.1.1 Software environment

Optotune utilizes throughout its structures mainly PCs with operating system
Windows 7 and newer. Therefore the software needs to be able to collaborate
with such the environment. Optotune does not plan to utilize Linux system
to run the software and therefore the technologies which are heavily bound to
the Windows platform can be employed.

5.1.2 Programming language

Optotune utilizes the .NET family programming language, mainly C#, on the
previous projects and due to its simple integration with Windows platform
they require the software to be written in C#/.NET technology.

5.1.3 Technologies

Optotune demands sticking with open-source technologies wherever possible.
Therefore the employed database and frameworks shall be open-source based
without the need of paying license fees.

5.1.4 Database

To be capable of centralizing the data at a single storage the software needs
to integrate with an external database. The design of the database is included

17

5. Non-functional requirements

within the scope of software implementation. To be capable of reflecting easily
various data types which need to be handled by the application there is the
NoSql solution MongoDb employed. It is an open source database which is
capable of processing large volumes of various data and has many built-in
features for filtering, processing and accessing. The database exposes many
drivers which make it extremely easy to integrate it into an application. Of
course there is also a driver for C# language available, distributed under an
open-source license. Optotune disposes with Windows server machines where
the database server shall be run.

5.1.5 Frameworks

5.1.5.1 .NET 4.5

As the final software will be utilized only with Windows 7 or a newer .NET
4.5 shall be utilized.

5.1.5.2 Unity IoC

As dependency injection framework Unity IoC was chosen. It is licensed under
MS-PL and is freely distributed. There is a large community behind Unity
IoC provided by Microsoft forum which is free to use for anyone so there shall
be enough support when dealing with some technical issues.

5.1.5.3 Managed extensibility framework

In the software there is a need to create a new module per product which is
demanded to be integrated into the software. As one of the non-functional
requirements is to avoid recompiling the whole system when adding a new
product the software is designed in a way it is capable of loading modules
at its start-up. For this purpose Managed extensibility framework which is
the part of Microsoft’s portfolio was picked and is distributed under the open
source license.

5.1.5.4 .NET authorization and authentication framework

As each user needs to log-in prior to using the system and the system needs to
be integratable with LDAP it’s essential to employ suitable technology which
will allow developers to implement such a feature easily. Therefore .NET
authorization and authentication framework comes as a rational choice as it
has been developed by Microsoft.

18

5.2. Communication interfaces

5.2 Communication interfaces

As all of the products which will be characterized or quality assured by the
application need to integrate with different services and third party devices,
it is required to create a framework capable of providing an easy way to
integrate devices which communicate through either TCP/IP (namely socket
connections or via SOA), serial link oriented devices or eventually by some
other means, e.g. provided SDK.

5.3 Software architecture

In this section the non-functional requirements demanded from the software
design and architecture are described.

5.3.1 Modules

Application consists of modules which are being used by the core. Mod-
ules contain the implementation of communication protocols and offer custom
actions which can be triggered by the platform. Modules implement inter-
faces which are exposed by the platform. This ensures that the platform is
able to handle them. Afterwards these custom implementations are stored in
unity context so each of the services can demand them as a dependency. As
the application needs to be easily extensible for new products without being
recompiled the main framework needs to load all deployed modules from a
certain repository which can be either local folder or another network loca-
tion. Each module represents a single product and the characterization and
quality assurance logic is implemented within a module. Modules need to be
versioned and the application must be capable of running multiple versions of
the same module at a time. The modules are uniquely identified by their id
and version whereas id reflects the product type it is dedicated to.

5.3.2 Module architecture

The modules are collecting data about the product. Each product has its
custom properties which need to be collected and evaluated by software –
these are called dictionary fields. A dictionary field is nothing else but a
human readable representation of a watched parameter and a number identifier
assigned to it. When persisting values, the software just uses the number
identifiers and when the application needs to translate an identifier into human
readable form it can search for it.

The module is carrying its dictionary fields. Each version of module has to
be persisted in database with its dictionary fields and transition rules among
the previous and the current version of modules.

19

5. Non-functional requirements

Transition rules are required from scalability point of view – in between
2 versions of module, dictionary fields could be eventually shifted or changed
and when the configuration which was bound to the old version needs to be
transferred onto the new one all of the references pointing toward dictionary
fields need to be updated. To state an example of such a situation it could
occur in module of version 1.0 there is a property “Focal power” mapped onto
the index of 18. For some reason this had to be changed in module version
2– e.g. measurement device specification changed – and in the new version
the same value is stored under the dictionary field id of 20. A user could
eventually have legacy configuration which they would like to port over to
utilize with the new version of the module. In such a legacy configuration
there could be an evaluation criteria bound to “Focal power” property which
it assumes is located at the dictionary field id of 18. In order to sustain the
correct functionality such a reference needs to be re-mapped to 20.

5.4 Pass/fail tests – product quality assurance

Each module can eventually have its own pass/fail tests implementations
packed within it. Platform has to store the configuration information about
pass/fail test (requested pass/fail test parameters or vectors, its fully quali-
fied name, version). Pass/fail tests are versioned. Hereby it allows to avoid
increasing module version with each modification made within single pass/fail
criteria. Whenever there is a change in pass/fail test the version of it has to
be increased and the platform needs to store new configuration for the given
module.

5.5 Actions

Action is a basic unit executing the characterization logic. The characteriz-
ation process consists of executing a certain set of actions. The module is
responsible for executing various actions. Within the action the logic is im-
plemented (driving/measuring/characterizing the lens). There are 2 kinds of
actions:

• Session actions - are directly bound to the measurement session,

• Device actions – devices need to be capable of executing actions as a part
of its lifecycle – for example measurement devices require calibration to
be carried out prior to measuring.

The result of both actions mentioned above can be validated via pass/fail test
concept and persisted in database.

20

5.6. Characterization process

5.6 Characterization process

Characterization process consists of executing the sequence of session actions.
The sequence of actions which need to be executed per product is configured
and stored within the profile. After executing an action which is marked as
the last one in the sequence, the session is considered to be finished and is
stored within the database with a flag marking this state. It can have either
a passed flag or a failed flag attached. There is a requirement to allow the
user to cancel the characterization process. When the cancel is requested, all
of the module actions have to be terminated properly.

Figure 5.1: Lifecycle of a characterization process

5.6.1 Session, distributed session

Session is the mean of grouping the set of actions carried out for a product.
Each characterization process is encapsulated within the scope of session.
Each product can have multiple sessions assigned whereas each of them stands
for particular characterization process.

Session can be utilized across multiple profiles (different configurations).
The session is only bound to the particular product. It is possible to reopen
a closed session (after finishing the last action).

Sessions need to be distributed; meaning user could split-up the session
execution over multiple instances of the software. To provide an example
of distributed session use case there’s a sapmle user story taking place next.
User creates multiple profiles with different configurations selected for the same
product. Starts the measurement at the OT instance, OT1, with profile p1.

21

5. Non-functional requirements

Having all measurement actions done and passed for chose profile and con-
figuration executed, the session is not terminated/closed yet, as he/she might
have chosen the configuration without last measurement action configured (if
there was a configuration with last action and the action was executed then the
session is closed). Afterwards operator at the different position of the assembly
line wants to do the final characterization of the product, therefore he connects
the lens, which has been previously partially characterized and wants to con-
tinue in the started session. First of all, profile related to the given product
must be chosen (distributed session can be used only for the product of same
type) and afterwards existing session is reloaded with chose configuration. If
the selected profile contains last action which was executed, then the session
is terminated, otherwise it remains opened. Sessions which had been already
closed are re-openable.

Below there’s a bpm diagram describing section lifecycle attached.

Figure 5.2: Lifecycle of a session

5.6.2 Repopulating session

After the application is re-populated with the closed session (either passed
or failed one, see the diagram above), and the user re-triggers any of the
session actions (this re-opens a session), the action overwrites the result of its
predecessor in DB and tags the action/session to describe the situation.

22

5.7. External devices

5.6.3 Session inception

To be able to start the session each of the external devices needs to be in a
“Ready” state. As soon as the session is started, the user is not able to trigger
any device action anymore (they are disabled). If the user realizes that they
need to take some other device action after the session has been triggered
they are allowed to press Save and close session button within Profile window
(see Profile window definition in the chapter Use cases), which will close the
session and re-enable device actions. Afterwards they can repopulate with
the session. Such a use case, when the user is triggering a session only for
a particular subset of the actions shall be rare. If required to split-up the
characterization process among multiple steps/characterization stations, then
multiple profiles shall be used.

5.7 External devices

Each external device which OptoTester (the name of the software) integrates
with shall be treated as a state machine. There are few general states each of
the external devices may get into (because of integration with general frame-
work) and need to be reflected within every custom device state machine.
Such general states are mainly error states in case of communication problem
occurs and “Ready” state signalizing special state when the device is ready
to use and an operator may start the characterization process. The general
states are:

• A communication error – when either serial link connection, TCP/IP
connection or another protocol connection could not have been estab-
lished or has failed.

• An error while processing – this error state signalizes the fact that the
framework is able to communicate with a device though unpredictable
exception during the processing of the response occurred.

• Timeout – Each of the devices has certain timeout period configured
after which one device’s state machine is transferred into this state pin-
pointing the situation when something is wrong with the external device
and it’s not responding to the commands.

• Ready state – this is the special state which signalizes to the framework
that the device is ready to be used.

There can be also custom states, for example the state realizing the calibration
of the device itself.

23

Chapter 6

Wireframes and use cases

In this chapter multiple use cases capturing the most important functional and
non-functional requirements are depicted. The use cases are grouped accord-
ing to their relation to the particular wireframe1. The mapping in between
use cases within the wireframe and the functional or the non-functional re-
quirements shall be obvious and therefore this mapping is omitted.

The first wireframe deals with a profile and a product configuration which
is afterwards used for characterization process. The second wireframe “Profile
window” deals with the characterization procedure itself. The profile window
is the most important wireframe as it is the main gateway for the operators
to characterize the product. Afterwards there is a set of wireframes used for
configuring pass/fail evaluation criteria. The last set of wireframe discusses
parallelized lens characterization. There are many use cases which have been
specified for the software but for the sake of simplicity and thesis-length re-
striction only the important ones are stated so the reader can get an overall
basic understanding of the most fundamental task of the software. Each of the
wireframes stated below has been designed as the team work of my supervisor
and the project leader Mr. Christoph Romer and me.

6.1 Profile editor

Profile editor is the window where an operator is able to configure the para-
meters for characterization procedure.

1Representation of skeletal framework of a single screen depicting arranged elements
devoted to accomplish particular purpose.

25

6. Wireframes and use cases

Figure 6.1: Profile editor wireframe

6.1.1 Add product

The user starts by adding a product via utilizing “Add product” window
where he picks a particular module which shall be utilized and configures the
serial number feed used to validate entered product’s serial number and batch
properties. A description may also be provided but it is not compulsory and is
only used for informative purposes. After configuring the product successfully
it is displayed in the main Profile editor window products list.

26

6.1. Profile editor

Figure 6.2: Add product - wireframe

6.1.2 Add profile

After having the product configured and picked user can create profile. In
this window the name and configuration has to be entered. The user using
a different configuration can change the set of devices which are required to
be connected to the PC. So not always necessarily every device needs to be
connected, e.g. for certain characterization steps it is sufficient to have only the
lens driver connected (such as checking the sensors) whereas the measurement
device is omitted.

Figure 6.3: Add profile - wireframe

6.1.3 Edit actions

As soon as the user configures a profile they are able to press “Edit action
button” in the main window and configure the set of characterization actions
which need to be executed for this profile. They can do so by pressing “Add
button” in Edit actions form which pops-up “Add action” window where they

27

6. Wireframes and use cases

can choose the action type and enter a descriptive name which needs to be
unique.

Figure 6.4: Edit actions - wireframe

Figure 6.5: Add action - wireframe

After having a profile and the set of actions defined in the main window
parameter fields for each of the configured actions show-up the user can enter
their desired configuration. The devices can also request parameters, such as
IP address of a device (if it is device accessed via TCP/IP) or for example com
port name for serial link devices. The Pass/Fail test criteria is also treated
as a profile parameter and Pass/Fail configuration window can be opened
from profile editor by clicking “Configure pass/fail test” at the very bottom
of displayed profile parameters.

28

6.2. Profile form

6.2 Profile form

Profile form is the most important wireframe of the whole application. Prior
to opening this window the user needs to choose defined product and related
profile configuration where the characterization process – the sequence of ac-
tions itself – is defined. In the top section of window the user needs to set-up
a connection to each of the devices required by configured characterization
actions. As soon as all of the devices are in “Ready” state and a particular
serial number and a batch number are entered the user is eligible to start the
characterization process by either triggering “Run all actions” or manually
running action by action. Each of the configured actions can have pass/fail
test evaluation criteria assigned (configured from a profile editor) which are
triggered just after the action has been finished. As soon as the action which
is considered to be the last one finishes, the characterization process is con-
sidered to be finished – it can either end-up as a valid product (matched
configured evaluation criteria) or a failed one. An operator is advised of this
state and can act accordingly.

Figure 6.6: Profile form - wireframe

29

6. Wireframes and use cases

6.3 Pass fail test configuration

In this wireframe evaluation criteria for each of the products can be configured.
The user can get into this window from the profile editor. Configuring a
pass/fail test consists of 3 basic steps.

6.3.1 Configuring vector

The vector represents data of the single dictionary field. In the very first step
the user needs to configure the vector of data over which they intend to do
assertions. If the vector consists only of an integer or double data they can
employ simple where condition based restriction of dataset via stating explicit
criteria which the measurement values shall meet within the given vector. E.g.
the user can define the vector of “Focal power” values which were measured
at desired lens configuration.

Figure 6.7: Wireframe depicting the vector configuration

6.3.2 Configuring the test assertion

Each of the modules (representing a single product) may contain custom data
evaluation tests – pass/fail tests - which are used to decide whether the product

30

6.3. Pass fail test configuration

is meeting certain quality criteria. Each of the pass/fail test accepts the vector
of data as an input parameter – the vector over which the assertion itself shall
be executed.

Figure 6.8: Wireframe depicting the configuration of test assertion

6.3.3 Mapping of configured test assertions onto actions

Having the test assertions configured from within the previous step the user
needs to assign them to certain actions which were configured in the profile
editor. Each action after being finished (see profile use case) is capable of
triggering configured set of pass/fail test assertions evaluating its results.

31

6. Wireframes and use cases

Figure 6.9: Wireframe depicting the mapping of configured test assertions
onto available actions

6.4 Automation mode

In automation mode the user is eligible to characterize multiple EL family
lenses at once bringing down the cost significantly – for further cost saving
analyses see Economic aspects of software section. This use case swaps the
way of actuating the framework and exposes possibility to control it with the
minimized assistance of operator. As the highest time consumer during the
characterization process is lens preparation (which occurs prior to measuring
a lens, each lens needs to be characterized at different configurations there-
fore preparation procedures occurs multiple times per single characterization
process), this process is parallelized and lenses are being pre-set to targeted
configuration prior they get characterized. The automation line is moving the
sled filled with lenses back and forth in a measurement device. After any of
the lenses reaches its targeted configuration a PLC2 controller adjusts it into
the measurement position – mantles it within the measurement device – and
the characterization can start. The software needs to be capable of handling
multiple actions at a time and assigning correct data onto them within the
database. Further description concerning how the automatized characteriza-
tion line works is not provided as that is not the topic of this thesis. Only

2Programmable logic controller, digital computer used for industrial electromechanical
processes (e.g. controlling of assembly lines)

32

6.4. Automation mode

requirements which shall be met by the software to allow such integration
from conceptual point of view are considered.

Figure 6.10: The main gateway of the automation mode

The Cockpit UI wireframe (6.10) is the gateway for the automatized char-
acterization where the operator needs to establish the connection with each
of the devices and afterwards can start the system. As soon as the system
is started and there are some positions into which the lens has been placed,
the characterization process which would normally be carried out sequentially
automatically starts.

33

6. Wireframes and use cases

Figure 6.11: Depicts every characterization position

In the Process wireframe (6.11) there is the state of each of the positions
depicted. Each position needs to go through various states throughout which
the lens is set to targeted configurations and measured afterwards. Of course
also the evaluation of measured data is the part of a single position’s lifecycle.
The description of position’s lifecycle is provided in the diagram below.

Figure 6.12: Depicts the lifecycle of a single characterization position

The application consists of many other use cases and wireframes which
were omitted due to the limited scope of this paper. Therefore only the most
important ones explaining the core functionality were included. The most of

34

6.4. Automation mode

the omitted use cases are utilized for data evaluation and further configuration
of the system.

35

Chapter 7

Economic aspects of software

For economic analysis the following aspects of software are considered:

• General framework decreases the time required for the implementation
of test and characterization algorithms of a new product as well as the
time required for incorporating change requests

• The centralization of data and the simplification of data evaluation

• The downswing of human impact and the elimination of possible process
errors

• The automation of the characterization processes

In the scope of this project 3 products shall be incorporated in the final version
and therefore only those are considered for the economic analysis.

7.1 General framework decreases the time
required for the implementation of test and
characterization algorithms of a new product

Before the inception of OptoTester software the company used to create a
standalone application per product. This was producing multiple applications
reusing the same code which differed only in characterization procedures and
had an impact of having hard to maintain code. Such applications were also
difficult to adapt to new modifications (as Optotune is still developing new
products, change requests to adapt procedures are happening multiple times
per month) and with ever increasing amount of the change requests the cost of
maintaining is rising up. The creating of a standalone application per product
lasts in an average 15 man days but such an application has a hidden cost
of high maintainability and low scalability index when a software developer

37

7. Economic aspects of software

needs to spend approximately another 5 man days for debugging and working-
in the change requests from the engineering team. Also such application only
exports data to a plain text file. The cost of this fact is discussed in the
next sections. It is possible to incorporate a new product to the OptoTester
framework in the form of module in an average of 6 man days with all the
necessary debugging included. The time required to work change requests into
the existing module is taken down just to 1 man day.

Task \Application
Type

Standalone
application

Module
in
OptoTester

% of orginial
time required
with
OptoTester

Implementation
[man days]

15 6 40%

Debugging
[man days]

5 1 20%

Time comparison
[man days]

20 7 35%

Table 7.1: The savings issued by OptoTester in comparison with the stan-
dalone application per product

7.2 The centralization of data and the
simplification of data evaluation

Data are important possession companies have – they allow them to evaluate
the performance of their product, identify any weak spots and analyze the
market to help improve their competitiveness. With the legacy approach of
having single application per product data were exported in a single file per
characterized product. Therefore it was also very laborious to get even the
simple statistics out of that. The company was employing different excel sheets
where the operators were manually copying exported data over and sometimes
also adjusting their format. To verify each product there were only semi-
automatized excel macros plotting the measured data of each product and
also an interaction of an engineer was required. It meant that the following
operations had to be realized per each product:

• Run the characterization – done by the software

• Export data into a file – done by the software

• Copy data into unified excel sheet – done by the operator, average time
of 2 minutes per product

38

7.3. The downswing of human impact and the elimination of possible
process errors

• Evaluate the data – done by an operator or an engineer, average time
of 3 minutes per product

The step 3 and 4 will be fully automatized thanks to the information
system and the time of the evaluation will be a few milliseconds long and
therefore it is neglectable. The company asked for the quantification assuming
production of different amount lenses per year, i.e. 3000, 5000, 10000, 20000,
50000. The real sales predictions are the subject to the NDA and will not be
revealed in this thesis.

Amount of lenses
[thousands]

3 5 10 20 50

saved man
days

29 49 98 196 490

Table 7.2: Table depicting issued savings

One man day consists of 8.5 hours (that is an internal regulation of Opto-
tune).

7.3 The downswing of human impact and the
elimination of possible process errors

As the software also in its sequential version brings us the centralization of
characterization and test processes under the single hood the human impact
is minimized. In the legacy state it could have happened that an employee
evaluating the data had simply mistaken and verified broken lens as well.
With the software this will not be the case ever again. The system never
proclaims the broken product to be the working one (unless there is mis-
configuration present) and therefore the only possible way the company could
ship the broken product is a mistake of operators. As lenses are being shipped
within batches and the company does not track the amount of broken lenses
(as it was fairly a small number) there are not statistics available to consider
the savings the software would bring in this domain.

7.4 The automation of characterization processes

The software offers 2 ways of characterizing products:

• Sequential

• Automatic

39

7. Economic aspects of software

In the sequential characterization as stated above the operator can only
characterize single lens at a time. In the automation mode we get the possib-
ility of operating multiple lenses at a time.

7.4.1 Automation speed up

Below possible speed up prediction with utilizing the automatized version
of the system can be found. This graphical representation was prepared by
Optotune’s process engineering team and it’s been used in this thesis with
their kindly allowance. From the picture below it is apparent that the highest
speed-up is achieved when dealing with 5 lenses at a time. This brings down
the characterization time down to 3.4 minutes in an average per lens (instead
of original 12 minutes per lens). It is the major cause of the characterization

Figure 7.1: Automation speed graphical representation

and test procedure cost decrease. Particular time savings in comparison with
the original time required with the ordinary sequential characterization are
stated in the table below.

Amount
of lenses

3000 5000 10000 20000 50000

Sequential
characterization
time [man days]

71 118 235 471 1176

Automation mode
[man days]

20 33 67 133 333

[%] of sequential time 28% 28% 28% 28% 28%

Table 7.3: Automation mode savings

40

7.5. Economic assessment summary

7.5 Economic assessment summary

A sum-up of benefits the software brings to the company and their quantific-
ation can be found in this section. For the quantification purposes an average
salary per hour is considered and since the company is located in Switzerland
a Swiss average hour salary for 2014 which is 44 CHF3 is used.

7.5.1 One time constant cost savings

This section considers the one time savings brought by the software – it is
mainly decreased workload for the creation of new modules per product com-
pared with the creation of the standalone application. This presumes applic-
ation is using 3 products as the part of delivery of the first version of the
software, of course it is easily extensible for new ones later on.

Constant savings 39 man days * 8.5 hrs/man day * 44 14 586 CHF

Table 7.4: Table depicts one time constant savings

7.5.2 Periodical savings

In this section the periodical savings issued by the utilization of OptoTester
on a yearly basis are stated.

Task \Amount of
lenses

3000 5000 10000 20000 50000

Simplification of
data evaluation

29 49 98 196 490

Automated
characterization

51 84 169 337 843

Saved man
days per year

80 133 267 533 1333

Saved CHF 29 920 49 8666 99 733 199 466 498 667

Table 7.5: Shows periodical savings issued each year by optotester depending
on the amount of produced lenses

7.5.3 Savings issued by the software from different time
horizons point of view

Possible savings which could be achieved by utilizing the software are stated
in the sections above. For the overall return on investment evaluation which

3The value is due to Wikipedia.org and is only approximate

41

7. Economic aspects of software

takes place in the very last chapter of the thesis it is necessary to evaluate
the savings from different time horizons. Horizons of 1, 3, 5, and 7 years are
considered. The achieved cost deductions per given period are described in
the following table. The values below are the sum of constant and periodical
savings.

Year \Amount
of lenses

3000 5000 10000 20000 50000

1 44 506 64 453 114 320 214 053 513 252

3 104 346 164 186 313 786 612 986 1 510 586

5 164 186 263 920 513 253 1 011 920 2 507 920

7 224 026 363 653 712 720 1 410 853 3 505 253

Table 7.6: Table shows quantified savings in CHF

The economic aspects of developing the software for Optotune’s purposes
which are used afterwards for returning of investment and others economic
indicators computations were described in this chapter.

42

Chapter 8

Software architecture and
design

After considering the requirements and the overall asset of the system there is
a design and the architecture described upon which basis the time estimation
can be constructed.

8.1 Application architecture

8.1.1 Architecture overview

The final architecture consists of 3 parts:

• Database – MongoDb

• Platform

• Modules per each of the products

A sketch of the architecture and the interaction in between particular
components is outlined in the picture below.

43

8. Software architecture and design

Figure 8.1: The sketch of the system architecture

The components marked with the blue border are considered to be the
platform ones. These components altogether create the targeted framework
offering the general functionality such as interaction with database, function-
ality used for data collection and general APIs for interacting with external
devices over the certain set of protocols (such as support for Tcp/Ip protocol,
as well as various serial link communication protocols such as Modbus and
company’s custom one). The framework exposes various APIs to modules
allowing them to interact with the platform and utilize exposed services.

8.1.2 Database

As the requirement is to be able to store data at a centralized data warehouse
the software needs to integrate with a database system which will allow the
company to execute data analyses and further process their data for R&D4

team research. The decision to utilize NoSql technology – MongoDb was
made. The main reason for such a decision was the fact that throughout the
optical product characterization process heterogeneous data are being meas-
ured. It is also possible that the company may need to utilize further data
processing algorithms (or patterns) to evaluate their data such as map reduce.
Whereas MongoDb meets the criteria perfectly to achieve the same with an
ordinary RDMS would come at a higher development and maintenance cost –
the main cause of this is difficult handling of varying data as it’s not possible
to handle them within single column and multiple different tables would have
to be created or some sophisticated algorithm for data serialization employed
which would bind the database onto particular platform and potentially cause
troubles fetching the data with the 3rd party software. The drawback of util-
izing relational solution is as well the fact each module could eventually export
whatever type of data, this need means the need of adaption of relational data-
base whenever a new module would export new type of data (which has not
been included in the framework previously). Having the application running

4Reasearch and Development

44

8.2. Software design

with MongoDb, the technology allows to store heterogeneous data just within
a single collection and there is no need for creating new collections over and
over for each of the datatypes.

8.1.2.1 MongoDb overview

MongoDb is a document based database. Each record is treated as a separ-
ate document (analogy in RDMS would be a single record in a table). The
documents are organized into collections (in RDMS analogy would be a table).

A MongoDB deployment hosts a number of databases. A database holds
a set of collections. A collection holds a set of documents and a document
is a set of key-value pairs. The documents have dynamic schema. The dy-
namic schema means that the documents in the same collection do not need
to have the same set of fields or structure, and common fields in a collection’s
documents may hold different types of data.[7]

8.1.3 Modular architecture

As each of the products shall be easily integrated into the existing application
without the need of recompiling the utilization of modular architecture is
employed. Application is exposing certain set of interfaces which could be
accessed by modules through shared library (API) whereas the implementation
of them remains located in within each of modules. Custom implementation
afterwards specifies the exact behavior of platform (e.g. executing different
actions per module). There is a central module repository which is checked
at the application’s startup and all of the found modules are loaded by the
software. Each configuration of the module needs to be stored within the
database (for backtracking the exact characterization / evaluation algorithms
used for each product).

8.2 Software design

Various frameworks empowering desired concept are utilized to achieve the
targeted architecture structure from the implementation point of view. For
modular architecture the Managed extensibility framework from Microsoft is
used. Also Unity IoC as an inversion of control container shall be employed
to support the implementation of given architecture and mainly to keep it
scalable and hereby easy to maintain.

8.2.1 Platform design

The platform design underlies standardized n-tier architecture concept whereas
the first tier is UI responsible for processing user impacts, the next tier is the
service tier encapsulating the whole data collection and evaluation logic. The

45

8. Software architecture and design

service tier interacts with the data access layer which treats the database
operations. There is also one more tier – API – the set of interfaces which
are implemented within the core part of the application and exposed through
inversion of control toward modules.

8.2.2 Core architecture

The core is the most important part of the application where the most of the
logic building up the framework is located. It is responsible for maintaining
the communication with database as well as for executing the characterization
process itself. The core consists of many packages but I will state a few of the
most important ones:

• Service – contains the logic of application

• Repository – contains classes for accessing the database (data access
layer)

• Facade – contains the implementation of facades located within API
exposing core features to modules

The core part is capable of interacting with modules through the API as well
as the modules are capable of interacting with the core of application through
API in a vice-verse direction.

8.2.3 API architecture

The API consists mostly of interfaces which shall be accessible from modules
and their implementations are located within the core part of the application.
The core part is capable of interacting with API, as well as modules are capable
of such an interaction though API is not “aware” of either of those. API is
considered to be the middle-finger providing the mean the core and modules
can communicate together.

8.2.4 Modules

Modules are implementing the interfaces exposed from API and therefore the
core is capable of interacting with it. In these implementations modules are
carrying the whole characterization and quality assurance logic per each of
the products.

8.2.5 Inversion of Control

Inversion of control is a must-have of almost every application. It decreases the
maintenance cost as well as ramps-up the scalability of the software solution.
In this application I am utilizing Unity IoC framework which is suitable for

46

8.2. Software design

.NET family languages and disposes with direct support from Microsoft. The
application at its startup sets up multiple IoC contexts for managing the
lifecycle of various classes. Software sets up the main application context
at the very beginning where each of the services gets registered and can be
afterwards accessed easily from the other objects living in the scope of the
same context. As soon as the application context is set-up the application
loads modules found at pointed URL and builds up separate context for each
of modules where the implementations of API interfaces are contained as well
as the platform exported facade services allowing module to interact with it.
This makes the architecture scalable and easy-to-extend for new requirements.

8.2.6 NoSql data model overview

In this section the most important part of fairly complex data model is de-
scribed. Such a data model can be afterwards serialized directly from C#
objects into MongoDb collections utilizing C# MongoDb driver. Unlike re-
lational models, in NoSql modelling it is acceptable to live with a bit of re-
dundant information as it does not support any joins out-of-box. Nor the
transactions are available in MongoDb though it is atomic at the single opera-
tion level. Both of the previously mentioned is the tradeoff for having a simple
implementation and an easy tool for data processing and its filtration. Also
the asset of avoiding joins is the performance – MongoDb has been built for
handling large datasets of various data and therefore persisting information
for thousands of measurements with volume datasets is not the issue. Very
important factor is also the horizontal scalability of MongoDb. Compared to
relational databases, MongoDb is easily horizontally scalable ensuring high
availability at a low cost.

47

8. Software architecture and design

8.2.7 NoSql data model

Figure 8.2: The most important part of data model

The description of the most import part of database model of the applica-
tion is provided in the next lines. Persisting of the characterization procedure
configuration as well as the tracking of measurements are present. The rest has
been omitted due to the simplification purposes. As already stated, MongoDb
is persisting data within collections (collection is analogy to a table in RDMS).
Each record tracked within the collection is called a document. Instead of util-
izing foreign keys to refer to others objects MongoDb employs nesting. E.g.
having a user entity in RDMBS referring an address record through a foreign
key, MongoDb would treat this requirement such as it nests the address ob-
ject into the user document. Therefore there will always be some documents

48

8.2. Software design

grouped within collections which are not nested and thus are the top-level
documents. In data model depicted above there are Profile, Product, Pro-
ductTracking, Session and MeasurementResult entities stated. Each of the
objects is stored within equally named MongoDb collection. Color coding
of the picture captures the set of entities which are nested one to another,
though each of equally colored objects are physically present within a single
document, all of them are stored in the same collection. E.g. Profile collection
(orange color in the picture) nests few other objects within it, like Defined-
DeviceConfiguration and therefore also this entity is marked with orange color
(it belongs to a Profile entity).

8.2.7.1 Persisting characterization process configuration

Characterization process itself depends on the selected module. The module
determines the final product type for which the configuration shall be used,
i.e. there is a module per product which is meant to be characterized by the
software. Each of the module carries its set of actions which could eventually
be configured as the part of characterization process. How does the character-
ization process look like is determined by the configuration entered by the user
(Profile configuration). Profile entity persists basic information about charac-
terization procedure such as session actions, device parameters and pass/fail
criteria configuration. A single profile document contains multiple nested ob-
jects which are used to persist data mentioned in previous sentence. To store
the session action configuration it nests the array of DefinedActionConfig-
uration objects which are carrying the information necessary to match the
configured action with the action physically present within module. Each of
the session actions can demand certain set of parameters used for custom-
izing characterization procedure itself (e.g. maximum current used through
the measuring). The application supports different datatypes for action para-
meters. To reflect such a need DefinedActionConfiguration inherits from Ab-
stractConfigurationObject. Therefore each of DefinedActionConfiguration is
also nesting the array of ParameterValue objects whereas each of parameters
consists of Name/Value properties. MongoDb does not have fixed data types
and therefore it allows to store different types of data within single property of
the same object (it serializes every value into JSON). This approach unlike the
relational one allows to have only a single collection storing various datatypes
and avoids employing of different tables per type or utilization of sophisticated
data deserialization logic (to get all the data into a single column within re-
lational database). As each characterization process utilizes various external
devices to either actuate product or collect information about it, such devices
may also require configuration parameters to be provided (e.g. entering IP
address of measurement device). And therefore it is also possible to provide
parameters for devices in ProfileEditor window. Device parameters are stored
within Profile document, nested as an array of DefinedDeviceConfiguration

49

8. Software architecture and design

objects. They inherit from AbstractConfigurationObject – the same parent
as DefinedActionConfiguration does and store the various types of paramet-
ers in the same way. Product object is used for grouping profiles. From the
model point of view there is 1 to N relationship between Product and Pro-
file entities. From the implementation point of view it is treated differently.
Profile and Product entities are utilizing unique compounded indexes which
consist of domain specific data. Profile entity identifier consists of a unique
name, a version, and a product name used for identifying product which this
entity belongs to as well as a unique module identifier. This approach allows
to compound the information together to fetch the desired profile from the
database easily. And having a product name included within Profile’s key
allows us to have equally named profile among different products and reflect
mentioned 1 to N relationship between these 2 entities. Product entity key
is also compounded key consisting of domain specific data such as its name
and version and the reference to a module it belongs to. As one of the re-
quirements is to be able to backtrack exact characterization configuration per
every characterized product, profile and product entities are versioned (see
the version property of their compound identifier). Whenever configuration
of a profile/product changes it is stored as a new version of it whereas the old
one remains archived and any new characterizations will be realized utilizing
the most recent version found in the database. Also every product is uniquely
identified by the batch and the serial number and thus it is required to keep
the tracking of products in the database on the batch and the serial num-
ber basis. For this purpose there is a ProductTracking entity created which
carries the key of a Product it belongs to as well as the batch and the serial
number. This entity is identified by MongoDb ‘s unique id (MongoDb has
a way of generating unique id for new document inserted into the database
depending upon time of insertion, process id of database and a contingency
value). MeasurementResult entity is the object used for storing the data col-
lected throughout the execution of a configured session action. Its identifier is
as well compounded key consisting of action id (identifier of the action within
module implementation), owner id (the name entered for the action during
the configuration within ProfileEditor window) and session id it is related
to. Every measurement result holds a profile name of the profile which was
configured by the user to be used for the execution of session action5 (profile
determines the set of parameters which shall be used for session action). Each
measurement consists of multiple steps and exports various data. This piece
of information is nested into the MeasurementResult document but the exact
model description is omitted due to the scope limitation of the paper. Session
entity is grouping measurements belonging to the characterization process (as
the characterization process consists of the sequence of multiple session ac-
tions). It holds a reference in a form of having a field holding the value of

5Session action outputs the data into MeasurementResult collection

50

8.2. Software design

ProductTracking id. This allows to have multiple different sessions executed
per single product. Also MeasurementResult entity holds a reference to a
Session in the same manner as Session does with ProductTracking.

8.2.8 Utilizing MongoDb over relational database system
summary

First of all the software needs to handle various data. With this approach it is
possible to fiddle in whatever data required in a single collection. Unlike the
RDMS where one would have to either deserialize different data types into the
same structure or come up with a column or even table per datatype. On the
other hand MongoDb does not allow joins. This can be sometimes painful but
having data model design in a way that it nests all the related information
within one collection there is no need for them (or the amount of needed joins
is brought down to the minimum). Rather than joining (fetching object1 from
application, having a look at a key of the other object stored within object
one, fetching object 2) it is better to have de-normalized database structure.
MongoDb has a native support for MapReduce pattern which allows very
effective data evaluation and the post processing and therefore also further
evaluation criteria may be applied on already characterized lenses without the
need of 3rd party application carrying out the logic (as MapReduce can be
directly implemented within MongoDb).

51

Chapter 9

Work breakdown structure and
initial workload estimation

For planning the work break down structure standardized Gantt charts were
utilized. The particular Gantt charts were left-out from the paper as they are
subject to an existing NDA6. The main implementation of the features has
been split-up into 4 milestones whereas each milestone comes with a different
functionality. The extension of the software to comply with the automated
characterization line is treated separately out of scope of these 4 milestones.
Below there is a brief description of the functionality contained within each of
milestones provided as well as initial workload estimation used for evaluating
the overall costs. At the end of each milestone there is a release of application
which is debugged and fully capable of production run. Overall milestone
workload consists of estimated time for development, debugging and project
management. Time for debugging has been taken as 10% of the time required
on development and adjusted for relative difficulty level of each of the mile-
stones whereas project management time has been estimated depending on a
difficulty level of each of the milestones. Project management time shall in-
clude time spent on discussion with the product owners to clarify all potential
questions and ambiguities which could arouse throughout the development.

9.1 Milestone 1

In the first milestone the attention shall be concentrated on the most import-
ant use cases offering the initial capability of software conduct characterization
and quality assurance of products. Modular architecture shall be implemented
within this one as well.

6Non-disclosure agreement

53

9. Work breakdown structure and initial workload estimation

Activity Time estimation[hours]

Development 684

Debugging 68

Project management 221

Overall 973

Table 9.1: Table depicts the workload of milestone 1

9.2 Milestone 2

The second milestone is short indeed. It only contains capability of reloading
a session and therefore it allows end user to start a measurement at the one
computer station and finalize it at the other one.

Activity Time estimation[hours]

Development 48

Debugging 4.8

Project management 4.8

Overall 57.6

Table 9.2: Table depicts the workload of milestone 2

9.3 Milestone 3

In the milestone 3 features such as data filtration, reporting, and data viewing
capabilities shall be implemented.

Activity Time estimation[hours]

Development 489

Debugging 50.49

Project management 65.96

Overall 605.45

Table 9.3: Table depicts the workload of milestone 3

9.4 Milestone 4

This one is the very last milestone in which features such as user management
and access restriction shall be implemented. Various improvements of the
end-user experience are included in here as well, e.g. the possibility to adjust
the workspace such as it could be bound with an exact user and after logging

54

9.5. Automation extension

in at another software station it is going to display the same set of windows
as the user configured at a different PC.

Activity Time estimation[hours]

Development 352

Debugging 35

Project management 53

Overall 440

Table 9.4: Table depicts the workload of milestone 4

9.5 Automation extension

Automation mode has been estimated out of general milestones planning due
to the fact that this extension of the system is demanded by the project
which covers automated characterization line itself. Extension of the system
for capability of handling multiple products at a time whereas acting as the
master of whole characterization process has been estimated as follows in the
next table.

Activity Time estimation[hours]

Development 401

Debugging 30

Project management 20

Overall 451

Table 9.5: Table depicts the workload of automation extension

55

Chapter 10

Return on investment
evaluation

To evaluate the overall return on investment it is necessary to estimate the
cost of it upon estimations included in the previous chapter. After summing
up the hours of each of the milestones and including automation extension the
time needed for the implementation and establishment of the system – 2526
man hours is computed. This is the most likely estimate which is used as an
input for more precise Three Point Estimation method.

10.1 Three point estimation

The three-point estimation technique is used in management and information
systems applications for the construction of an approximate probability distri-
bution representing the outcome of future events, based on very limited pieces
of information. While the distribution used for the approximation might be a
normal distribution this is not always so and for example a triangular distri-
bution might be used, depending on the application.[8]

The output of such estimation is the weighted value E and standard devi-
ation, SD, which are computed as follows:

E = (A + 4M + B) / 6

SD = (B A) / 6

A – The best case estimate

E = (A + 4M + B) / 6

M - The most likely estimate

B – The worst estimate

57

10. Return on investment evaluation

The output of the Gantt estimation stated in the previous section repres-
ents M – the most likely estimate of 2526 man hours. Considering the 20%
margin for the best case estimate and the worst case estimate get to 2020 man
hours for the best case estimate whereas the worst case estimate is 3031 man
hours. This gives us results as shown below:

E = 2525.8

SD = 168.5

To get even more precise estimation the confidence level of 95% is calcu-
lated. For the simplification purposes only the approximate confidence level
is computed which is close enough to the exact computation and therefor it’s
fine for the estimation purposes.

Confidence level = E +- 2* SD = 2526 +- 337

Therefore there is 95% chance the estimation will fall into the interval of
<2189, 2863>man hours. When considering the same average wage used
for quantifying the savings, the approximate cost is computed as <96316,
125972>CHF and the expected cost is as high as of 111 144 CHF.

10.2 Return on investment

A generic term to define a number of analytical tools for measuring the finan-
cial benefits of an investment, including cash-on-cash, internal rate of return,
equity dividend and financial management rate of return.[9] When simplified it
is nothing besides a factor depicting the benefit to the investor from a certain
investment which is relative so it’s easy to cross compare various investments.
For the purpose of the thesis following formula is used to compute the return
on investment:

ROI = (gain from investment – cost of investment) / cost of investment

The higher ROI gets the higher the efficiency of investment is. For evalu-
ation purpose the ROI on a 7 year yield return is computed and the cost of
maintenance per year is neglected.

ROI formula used for computations could eventually get negative which
would mean developing the software would not bring sufficient savings there-
fore the overall project would produce lost. As the outcome of the table
above there are multiple variants how the return on investment could evolve
depending at the amount of characterized lenses per year.

58

10.3. Internal rate of return

Cost
of lenses per year

3000 5000 10000 20000 50000

96 316 CHF 1.33 2.78 6.4 13.65 35.4

111 144 CHF 1.02 2.27 5.41 11.7 30.54

125 972 CHF 0.78 1.89 4.66 10.2 26.83

Table 10.1: Table shows various return on investment depending on the cost
of software and the amount of produced lenses per year.

10.3 Internal rate of return

The internal rate of return (IRR) or economic rate of return (ERR) is a rate
of return used in capital budgeting to measure and compare the profitability of
investments. It is also called the discounted cash flow rate of return.[10]

This factor depicts the desirability of a project. The higher the value
gets the more desirable the project proves to be. It can be also used to
cross compare projects requiring the same initial investment. Considering the
NPV discounted by the cost of capital we get to a real incomes which can be
expected from an investment. IRR states the highest possible cost of capital
which is affordable for the project to get at least to a 0 revenue (so the company
doesn’t lose money). So as soon as there’s an investment opportunity which
cost of capital is less than IRR, it is worth to take it. Therefore the investment
shall produce revenue.

Figure 10.1: Generic formula for IRR computation, one needs to express r out
of it

59

10. Return on investment evaluation

To get the IRR it is needed to express r from the formula stated above.
Further mathematical description is omitted as it’s not the main topic of the
paper. Below there’s the table containing computed IRR values for different
presumption of produced lenses.

Cost
of lenses per year

3000 5000 10000 20000 50000

96 316 CHF 29% 55% 111% 217% 530%

111 144 CHF 23.1% 45.8% 95.3% 187.9% 459.5%

125 972 CHF 18% 39% 83% 165% 26.83

Table 10.2: Table depicts various IRR coefficients per different cost and pro-
duced lenses amounts.

10.4 NPV

For the computation of NPV the discount of 8% has been chosen as it is
considered to be quite a productive area and the possibility of producing
income in optics is high. In the table below there are net present values
after 7 year horizon stated per different cash flows (depends on the amount of
produced lenses per year).

Cost
of lenses per year[CHF]

3000 5000 10000 20000 50000

96 316 67 559 163 716 404 109 884 895 2 327 252

111 144 53 829 149 986 390 379 871 165 2 313 522

125 972 40 100 136 257 376 650 857 435 2 299 793

Table 10.3: Table depicts various net present values in CHF.

After considering various economic aspects it is apparent the software will
produce sufficient returns to pay back original investment. The returns are not
including eventual competition advantage as well as possible interconnection
with further data analysis system used for improving the process and the
quality of company’s products. In computations above the cost of maintenance
has been neglected.

60

Chapter 11

Software summary

The thesis provides the overview of Optotune’s characterization and quality
assurance processes. Upon the basis of such a description the weak spots of
characterization and quality assurance process are pinpointed and possible
improvements by the software suggested. The software supporting mainly
following activities has been designed:

• Integration of the most important processes in one place

• Ensuring the reliability of each characterization process

• Downswing of human impact at each product validation

• Automation

• Backward data evaluation

The designed software shall consist of multiple parts. To allow the inclusion
of various products without the need of recompiling the project, modular ar-
chitecture is employed. Modules will interact with the platform part, where
the logic for data collection and evaluation shall be located, through exposed
APIs. APIs are utilized by the core part as well as modules to exchange the
information concerning characterization process, data access, data evaluation,
etc. . . This architecture provides scalable concept easily extensible in the fu-
ture for new products. As the application is collecting various types of data
NoSql solution MongoDb is employed as the data storage. This approach
allows an easy-to-maintain and horizontally scalable mean of data storage
furthermore it has built-in features for data post-processing. The platform
offers generic way of the characterization algorithm configuration (as each of
the characterization and quality assurance algorithms may require paramet-
ers). User can configure various characterization action collecting the data
from multiple external devices and afterwards assign pass/fail criteria onto
each of them determining whether the certain quality criteria are met (these

61

11. Software summary

characterization actions and quality assurance criteria vary from product to
product).

”A solid software foundation for the product characterization and quality
assurance processes has been created. This provides a scalable way for

maintaining various processes under a single hood allowing the centralization
of complex logic. Additionally, this framework allowed us to minimize the

system idle times and therefore to maximize the system throughput which in
turn decreases overall production costs.” Christoph Romer, CIO.

62

Conclusion

The goals of the thesis were:

• Analyze characterization and quality assurance processes of optical products

• Determine possible improvement areas via employing supporting soft-
ware

• Design the software reflecting these enhancements employing NoSql solu-
tion MongoDb

• Evaluate benefits of such improvement considering the aspects of integ-
ration, automation, high reliability, and minimal human impact on the
validation of each product

• Evaluate benefits and the cost of system via employing various economic
markers, namely ROI, IRR, NPV

In the thesis the following has been done:

• Processes for characterization and quality assurance has been described
from an abstracted manner which is sufficient for designing the targeted
software

• Possible areas for improvements achieved via employing software solu-
tion were pinpointed

• Functional and non-functional requirements has been collected and ana-
lyzed. These requirements are mapped into the wireframes which can
be used during the implementation.

• The software for empowering Optotune’s characterization and quality
assurance processes has been designed

63

Conclusion

• The architecture, design and the model part of the application is presen-
ted within the scope of this thesis whereas the emphasis has been put
on the modularity and the scalability of the final solution

As the company is evolving the software needs to be capable of integrating
further products into it with the minor intervention to the general framework.
Designed framework offers capabilities for data collection and evaluation as
well as covers the general communication with various external devices.

Upon the created analysis the software development time has been estim-
ated and planned into 4 milestones and one special release for automation
version (as the automation version is the part of another project). Each of
the milestones brings different sort of functionality and at the end of each
milestone the new release is created and debugged.

Upon the initial process analyses possible savings which could be achieved
by the software are estimated. The savings estimation has been evaluated in
various horizons, namely, 1, 3, 5 and 7 years. The overall savings brought by
the software also depends on the amount of lenses characterized per year. As
the exact prediction is the subject to NDA it’s assessed for multiple assumed
amounts (3000, 5000, 10000, 20000, 50000). The worst case savings issued by
the software after 7 years has been estimated to 224 026 CHF whereas the
best case savings after the same time period were estimated at 3 505 253 CHF.

At the very end of the thesis there’s the economic asset of the software
evaluated. For the worst case the cost has been estimated at 125 972 CHF, the
best case estimation is 96 316 CHF. The return on investment, the internal
rate of return as well as the net present value coefficients has been computed
for various cash-flows depending on a different presumptions of sold lenses
per year. The best-case ROI (the highest savings issued, the lowest possible
cost achieved) shall be up to 35.39. The worst-case has been estimated at
0.77. It is apparent under any presumed circumstances the project will bring
an additive value to the company as the ROI is always positive (negative
ROI means project lose money). Currently the automation extension is under
the development. The first 2 milestones are already finished and deployed
for the production use. In the initial estimation only 3 products has been
presumed to be characterized by the software. As the company is evolving
fast, it has already increased into 5 products and in the near future it will be
even more. As the integration of new products was seamless (without the need
for the platform adaption), the initial architecture has proven to be scalable
and robust enough.

64

Bibliography

[1] Wikipedia, opened encyclopedia. A simple zoom lens system. 02 2008.
Available from: http://en.wikipedia.org/wiki/Zoom_lens#/media/
File:Zoomlens1.svg

[2] Optotune AG. Speckle reduction measured with a CCD camera.
Available from: http://www.optotune.com/images/stories/Laser-
speckle-reduction-with-intensitiy-profiles.gif

[3] Optotune AG. Working principle of lens. Available from: http://

optotune.com/technology/focus-tunable-lenses

[4] Optotune AG. EL-6-18. Available from: http://www.optotune.com/
images/stories/EL-6-18.jpg

[5] Optotune AG. EL-10-30. Available from: http://www.optotune.com/
images/products/EL-10-30-C.jpg

[6] Dainty, J. C. Laser Speckle and Related Phenomena. 1984, ISBN 0-387-
13169-8.

[7] MongoDB, INC. MongoDb description. Available from: http://

www.mongodb.org/about/introduction/

[8] Ministry of Defence. Three point estimates and quantitative risk analysis.
2007.

[9] Denise Evans, O. W. E. The Complete Real Estate Encyclopedia: From
AAA Tenant to Zoning Variancess and Everything in Between. 2007,
ISBN 0071476385.

[10] M.A.Main. Project Economics and Decision Analysis, Volume I: Determ-
inistic Models.

65

http://en.wikipedia.org/wiki/Zoom_lens##/media/File:Zoomlens1.svg
http://en.wikipedia.org/wiki/Zoom_lens##/media/File:Zoomlens1.svg
http://www.optotune.com/images/stories/Laser-speckle-reduction-with-intensitiy-profiles.gif
http://www.optotune.com/images/stories/Laser-speckle-reduction-with-intensitiy-profiles.gif
http://optotune.com/technology/focus-tunable-lenses
http://optotune.com/technology/focus-tunable-lenses
http://www.optotune.com/images/stories/EL-6-18.jpg
http://www.optotune.com/images/stories/EL-6-18.jpg
http://www.optotune.com/images/products/EL-10-30-C.jpg
http://www.optotune.com/images/products/EL-10-30-C.jpg
http://www.mongodb.org/about/introduction/
http://www.mongodb.org/about/introduction/

Appendix A

Acronyms

EEPROM electrically erasable programmable read-only memory, is a type
of non-volatile memory which is used to store small amount of data

RS232 standardized serial link communication interface

Session in the scope of this thesis session is considered to be the single char-
acterization process instance. I.e. characterizing a single product and
triggering various actions throughout the characterization process, each
of these actions will be in the same session.

MongoDb open-source NoSql database solution

NoSql mechanism of storage and data retrieval which is other than ordinary
relational database management systems

SDK software development kit. Encompasses the set of tools that allow the
creation of software or simplify the integration of the 3rd party libraries.

MsPl Microsoft’s open-source license

OptoTester the name of the designed software.

Man day A person’s working time for a day. Optotune’s standard working
day consists of 8.5 hours.

67

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

BP Kredatus Simeon 2015.pdf........ the thesis text in PDF format
BP Kredatus Simeon 2015.ps........... the thesis text in PS format

model..............the folder containing model image of the application
model.png.......................the image of the application model

69

	Introduction
	Optics
	Electrically controlled optical products
	Overview
	Laser speckle reducers
	Electrically tunable lenses
	Optical product characterization and quality assurance

	Empowering processes via software – required features
	Integration of the most important processes in one place
	Ensure the reliability of each characterization process
	Downswing of human impact at each product validation
	Automation
	Backward data evaluation

	Functional requirements
	Non-functional requirements
	Software context
	Communication interfaces
	Software architecture
	Pass/fail tests – product quality assurance
	Actions
	Characterization process
	External devices

	Wireframes and use cases
	Profile editor
	Profile form
	Pass fail test configuration
	Automation mode

	Economic aspects of software
	General framework decreases the time required for the implementation of test and characterization algorithms of a new product
	The centralization of data and the simplification of data evaluation
	The downswing of human impact and the elimination of possible process errors
	The automation of characterization processes
	Economic assessment summary

	Software architecture and design
	Application architecture
	Software design

	Work breakdown structure and initial workload estimation
	Milestone 1
	Milestone 2
	Milestone 3
	Milestone 4
	Automation extension

	Return on investment evaluation
	Three point estimation
	Return on investment
	Internal rate of return
	NPV

	Software summary
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

