
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Accelerating evolutionary algorithms by
means of Gaussian processes

Bc. Andrej Kudinov

Supervisor: doc. Ing. RNDr. Martin Holeňa, CSc.

4th May 2015

Acknowledgements

In the first place, I would like to thank my supervisor doc. Ing. RNDr. Martin
Holeňa, CSc. for his guidance and helpful approach. I would also like to thank
Lukáš Bajer for helping with the frameworks and to MetaCentrum VO for
providing the computing resources. Finally, I would like to thank Kateřina
Kuncířová and my parents for their unrelenting support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 4th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Andrej Kudinov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of In-
formation Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kudinov, Andrej. Accelerating evolutionary algorithms by means of Gaussian
processes. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2015.

Abstrakt

Tato práce zkoumá výkon gaussovských procesů (GP) v souvislosti s metodou
zvanou Covariance Matrix Adaptation Evolution Strategy (CMA-ES), state-
of-the-art v oblasti evoluční optimalizace. Pro měření výkonu byly použity
nichingové funkce ze soutěže CEC 2013, které jsou charakteristické vysokým
počtem lokálních optim. Práce popisuje integraci CMA-ES a GP jako náhrad-
ního modelu a srovnává její výkon s metodou Model Guided Sampling Opti-
mization.

Klíčová slova black-box optimalizace, gaussovské procesy, CMA-ES, ná-
hradní model

ix

Abstract

This thesis investigates the performance of Gaussian processes (GP) in the
context of Covariance Matrix Adaptation Evolution Strategy (CMA-ES), the
state-of-the-art evolutionary optimization method for black-box continuous op-
timization, using niching functions from the CEC 2013 competition, which are
characterized by a high number of local optima. It describes the integration
of CMA-ES and GP surrogate model and compares its performance to Model
Guided Sampling Optimization.

Keywords black-box optimization, Gaussian process, CMA-ES, surrogate
model

x

Contents

Introduction 1

1 State of the Art 3
1.1 Black-box optimization . 3
1.2 Gaussian Processes . 4

2 Analysis and design 7
2.1 Methodology of black-box optimization 7
2.2 Integration . 10

3 Realization 21
3.1 Implementation . 21
3.2 Experimental Evaluation . 21

Conclusion 43

Bibliography 45

A Acronyms 47

B Contents of enclosed CD 49

xi

List of Figures

2.1 Activity diagram. 11
2.2 Component diagram. 12
2.3 Fragment of the class diagram – main interface. 14
2.4 Fragment of the class diagram – computations. 15
2.5 Fragment of the class diagram – options. 16
2.6 Fragment of the class diagram – schedules. 17
2.7 Fragment of the class diagram – methods. 18
2.8 Fragment of the class diagram – method integration. 19
2.9 Sequence diagram – computations. 19
2.10 Sequence diagram – integrated methods. 20

3.1 Directory structure. 22
3.2 The example of the implementation of the class SCMAES. 23
3.3 The example of the implementation of the class Computation. . . . 24
3.4 Benchmark functions f1− f6 (all figures taken from [1]). 26
3.5 Benchmark functions f7− f12 (all figures taken from [1]). 27
3.6 Examples of the best-fitness progress – functions f9 (2D) and f10

(2D) (see Section 3.2.3.1 for details). 29
3.7 Examples of the best-fitness progress – functions f11 (2D) and (3D)

(see Section 3.2.3.1 for details). 30
3.8 Examples of the best-fitness progress – functions f11 (5D) and f12

(3D) (see Section 3.2.3.1 for details). 31
3.9 Examples of the best-fitness progress – functions f11 (10D) and f12

(5D) (see Section 3.2.3.1 for details). 32
3.10 Examples of the best-fitness progress – functions f12 (10D) and f12

(20D) (see Section 3.2.3.1 for details). 33

xiii

List of Tables

3.1 Parameters of the tested functions: variable ranges, number of
global and local optima. 28

3.2 Model parameter settings for S-CMA-ES and MGSO performance
testing (see Section 3.2.3.1 for details). 34

3.3 Speed-up of S-CMA-ES using individual- and generation-based EC
strategies and MGSO, compared to CMA-ES without a surrogate
model – functions f1− f6 (see Section 3.2.3.3 for details). 37

3.4 Speed-up of S-CMA-ES using individual- and generation-based EC
strategies and MGSO, compared to CMA-ES without a surrogate
model – functions f7− f12 (see Section 3.2.3.3 for details). 38

3.5 Speed-up of S-CMA-ES using individual- and generation-based EC
strategies and MGSO, compared to CMA-ES without a surrogate
model – functions f13− f16 (see Section 3.2.3.3 for details). . . . 39

3.6 Speed-up of S-CMA-ES using individual- and generation-based EC
strategies and MGSO, compared to CMA-ES without a surrogate
model – functions f17− f20 (see Section 3.2.3.3 for details). . . . 40

xv

Introduction

Evolutionary computation became very successful during the past few decades
in continuous black-box optimization. In such optimization, we have no prior
information about the environment, like the first and second derivatives or the
smoothness of the optimized function, and we can not calculate the value of
that function analytically. In such cases, there is no option but to empirically
evaluate the objective function and measure the obtained result.

In various real-world optimization problems, the evaluation of the objec-
tive function can be very expensive or time-consuming, e.g. protein’s folding
stability optimization [2], computer-assisted design [3] or job allocations in a
computational grid [4], where one evaluation of the objective function can take
seconds, minutes, hours or even days. In such cases, we need to keep the num-
ber of function evaluations as low as possible, without impairing the quality
of expected results.

One of the most successful methods in this field is Covariance Matrix Adap-
tation Evolution Strategy, described in Section 2.1.1, which is quite robust with
respect to a moderate noise and multi-modality of the objective function [5] in
contrast to some other methods in the field of evolutionary computation. How-
ever, it requires a large number of the objective function evaluations, which is
the main limitation of this method and all evolutionary algorithms (EAs) in
general. This prevents using EAs on computationally expensive problems and
remains as an open problem.

Gaussian processes (GPs) are frequently used in conjunction with Gaussian
process regression, a.k.a. Kriging, when the objective function is modeled
using training data. Then it can be used for various purposes, e.g. for the
error estimation or as a surrogate model used during optimization instead of
the original objective function.

The objective of this thesis is to examine the existing methods in the
field of black-box optimization, propose the strategy of integration of chosen
approaches in order to accelerate the computation by minimizing the number
of the objective function evaluations and test the integrated methods on the

1

Introduction

set of chosen testing functions.
Chapter 1 introduces the topic of the black-box optimization and GPs,

Chapter 2 describes examined methods in the field of evolutionary computa-
tion and the analysis and design of the integration of the involved methods.
Chapter 3 describes the implementation and testing the integrated methods
and discusses the obtained results. Chapter 3.2.3.3 concludes the thesis.

2

Chapter 1

State of the Art

The present section describes the problems in the field of black-box optimiza-
tion depending on function properties and introduces theoretical fundamentals
of GPs.

1.1 Black-box optimization

The continuous black-box optimization has to deal with different kinds of prob-
lems which make the process of finding the global optimum more difficult.

Multi-modality
An objective function is called multi-modal when it has more than one
optima. Optimization algorithms in the case of such functions tend to
get trapped in one of local optima and there is no guarantee that after
the optimization process the found optimum is the global one. There
are two most commonly used approaches of dealing with this problem,
restarting the search process for many times to increase the probability
of finding global optimum or using some niching techniques in order to
explore local optima and hopefully find the global one.

High-dimensionality
With the increasing number of dimensions of the input space, the volume
of the search space increases exponentially. Some algorithms, which are
successful in the case of low-dimensional functions, can became useless
for the large dimensions. This effect is called the curse of dimensionality.

Non-separability
A function is called separable when the optimum of the function can be
obtained by performing n independent one-dimensional optimizations in
each dimension. This property breaks the curse of dimensionality, as
the complexity of the optimization process grows only linearly with n.

3

1. State of the Art

Functions where we can perform independent one-dimensional searches
only for a subset of coordinates are called partially-separable.

Noise
Function f is called noisy if for the same x different values f(x) can be
obtained, perturbed by some random value ξ. Noisy functions are much
more difficult to optimize because the information obtained from the
function evaluations is less precise then in the case of noiseless function.
Moreover, the first and second derivatives can be difficult to obtain and
or just useless, which limits the using of gradient-based methods.

Ill-conditioning
If f is quadratic function, such as f → 1

2x
THx, where H is symmetric

positive-definite, is called ill-conditioned if the condition number of H is
much larger then 1. It can cause problem in the case of some methods
during the learning process of appropriate metric, as the algorithm makes
too short or long search steps.

There are more function properties which can cause problems during the
optimization process, like multi-objectivity, deceptiveness or dynamism, which
are described in [6]. The performance of the compared method can be strongly
affected by this properties, different methods handle the respective properties
differently and there is no universal method for all of them.

1.2 Gaussian Processes

GP is a random process such that any finite sequence X1, . . . , Xk of its mutu-
ally different random variables has a multi-variate Gaussian distribution. GP
is defined by its mean value and covariance matrix described by a function
with relatively small number of hyper-parameters, which are usually fitted by
the maximum likelihood method. The probability density of the multivariate
Gaussian distribution of yN , conditioned on XN , is p(yN |XN). GP is first
trained with N data points from the input space X,

XN = {xi|xi ∈ RD}Ni=1

with known input-output values (xN ,yN), then it is used for predicting the
(N + 1)-st point. The conditional density of the extended vector is

p(yN+1|XN+1) =
exp(−1

2y
T
N+1C

−1
N+1yN+1)√

(2π)N+1det(CN+1)

where CN+1 is the covariance matrix of the (N + 1)-dimensional Gaussian
distribution. The covariance matrix can be expressed as

CN+1 =

(
CN k
kT κ

)
4

1.2. Gaussian Processes

where κ is is the variance of the new point itself, k is is the vector of covariances
between the new point and training data and CN is the covariance of the
Gaussian distribution given the N training data points.

Covariance functions provide prior information about the objective func-
tion and express the covariance between the function values of each two data
points xi, xj as cov(f(xi), f(xj)) = k(xi,xj). Consequently, the matrix of
values of the covariance function for any N data points x1, . . . , xN needs to be
positive semidefinite.

5

Chapter 2

Analysis and design

The following section introduces theoretical fundamentals of the approaches
addressing our task. The first, Covariance Matrix Adaptation Evolution Stra-
tegy (CMA-ES), is one of the most successful methods in black-box optimi-
zation. The second method, Model Guided Sampling Optimization (MGSO),
is one of the recent implementations of GPs. The third employed approach is
surrogate modeling, which we will use in conjunction with the first method.

2.1 Methodology of black-box optimization

For the sake of this thesis several methods were examined:

• CMA-ES [5],

• Efficient Global Optimization (EGO) [7],

• MGSO [8],

• GP as a surrogate model [6].

The combination of two listed methods was chosen for the integration, CMA-
ES with GP as a surrogate model. MGSO was chosen for comparison with the
performance of the integrated methods. All employed methods are described
in the following sections.

2.1.1 CMA-ES

CMA-ES [5] is one of the most successful stochastic, derivative-free methods
used for continuous black-box optimization. The covariance matrix adaptation
has the ability to learn and adapt the optimization process in order to increase
the probability of finding a better solution.

7

2. Analysis and design

New points are sampled normally distributed

xi ∼ m+ σyi, yi ∼ Ni(0,C) for i = 1, . . . , λ

as perturbation of m, where m ∈ Rn, σ ∈ R+, C ∈ Rn×n and λ is the sample
size. The mean m represents the favorite solution, the step-size σ controls the
step length and covariance matrix C determines the shape of the distribution
ellipsoid and represents the pairwise dependencies between the variables. The
mean and the covariance matrix are updated after each search step.

Let xi:λ the i-th ranked solution point, such that f(x1:λ) ≤ · · · ≤ f(xλ:λ).
The mean is

m← m+ σyw, yw =

µ∑
i=1

wiyi:λ

where w1 ≤ · · · ≤ wµ < 0 and
∑µ

i=1wi = 1. The best µ solutions are
selected from the set of new solutions and weighted intermediate recombination
is applied, which rewards candidate solutions according to their fitness value.

The main objective of the covariance matrix adaptation is to increase the
probability of successful steps to appear again. The covariance matrix update
consists of two stages, rank-one update and rank-µ update. The rank-one
update computes the evolution path pc of successful moves of the mean, de-
termined in a similar way as the evolution path pσ of the step-size.

The rank-µ update computes the covariance matrix C+ as a weighted sum
of covariances of successful steps of µ best individuals. In a similar way C− is
computed for µ worst individuals to be used for covariance matrix C update
in CMA-ES. The update of C itself is a replace of previously accumulated
information by a new one with corresponding weights of importance.

2.1.2 GP as a surrogate model

Surrogate modeling is a technique used in optimization in order to decrease
the number of expensive function evaluations. Surrogate model, which is a
regression model of suitable kind (in our case a GP), is constructed by training
with known values of the objective function for some inputs first, and then it
is used by the employed evolutionary optimization algorithm instead of the
original objective function (in evolutionary optimization usually called fitness)
during the search for the global optimum.

Every regression model approximates the original fitness function with
some error. To prevent the optimization from being mislead from such an
erroneous approximation, it is necessary to use the original fitness function for
some subset of evaluations. That subset is determined by the evolution control
(EC) strategy.

The individual-based EC strategy consists in determining the subset of
individuals evaluated by the fitness function in each generation. First, λ′′ < λ
points are sampled from N(m,σC), where m is the mean, σ is the step-size

8

2.1. Methodology of black-box optimization

and C stands for the covariance matrix (see Section 2.1.1 for details). These
points are evaluated by the original fitness function and included in training
the model. Then, λ′ points are sampled from the same distribution, where λ′

is several to many times larger then λ. Subsequently, λ− λ′ points are chosen
according to some criterion, e.g. fitness value, and used in the evaluation by
the original fitness function [9].

The generation-based EC determines the frequency of whole generations
evaluated by the original function. A generation is evaluated by the original
fitness function and then the model is trained using obtained values. The
number of consequent model-evaluated generations can be determined also
dynamically, as introduced in so-called adaptive EC strategy [10], when the
deviation between the original and the model fitness function is counted and
then it is decided whether to evaluate with the original fitness or with the
model.

Determining the most suitable EC parameters, however, is an open prob-
lem, which depends on the properties of the fitness function, current perfor-
mance of the surrogate model and it changes during the optimization process.

2.1.3 EGO

The crucial idea of the EGO algorithm is to fit a response surface to collected
data evaluated by the objective function. It tries to balance between finding
the minimum of the surface and improving the approximation by sampling in
the areas where the prediction error may be high. The response surface me-
thodology is based on modeling the objective function by means of stochastic
processes. The response surface is calibrated by fitting the stochastic process
to data.

Modeling the objective function by the response surface has three main
advantages. First, searching for the global optimum requires less objective
function evaluations, as the model brings some insight into the modeled func-
tion and allows the stochastic process to make a conclusions and regulate the
search process instead of moving step-by-step along some trajectory. Second,
the response surface approach provides a credible stopping rule based on the
expected improvement from further searching. Third, it provides fast ap-
proximation to the computer model which can be used to identify important
variables [7].

2.1.4 MGSO

MGSO [8] has the ability to use regression model for prediction and error es-
timation in order to get a probability of obtaining a better solution. It was
inspired by two previously proposed methods in the field of black-box optimi-
zation. The first method, Estimation of Distribution Algorithms [11], creates
a new set of solutions for the next generation using estimated probability dis-

9

2. Analysis and design

tribution from previously selected candidate solutions. The second approach
is surrogate modeling, described in Section 2.1.2.

MGSO was proposed as an alternative method for Jones’ Efficient Global
Optimization (EGO) [7]. Unlike EGO, MGSO produces a whole population
of suggested solutions, instead of selecting a single solution and maximizing a
chosen criterion. The selection of candidate solutions is performed by sampling
the probability of improvement (PoI) of the GP model, which serves as a
measure of how promising the chosen point is for locating the optimum. PoI
is determined by means of a chosen threshold T and the knowledge of the
objective function shape modeled by the current GP model.

2.2 Integration

The section describes the integration analysis and design of the chosen ap-
proaches, CMA-ES with GP as a surrogate model (denoted hereafter S-CMA-
ES). It introduces the requirements and describes some structural and beha-
vioral aspects of the integration design.

2.2.1 Activity diagram

The list below enumerates all required activities provided by a simple user
interface:

• perform optimizations,

• load results,

• get the speed-up of the compared methods compared to CMA-ES,

• perform one-tailed statistical test,

• obtain best parameter settings,

• export results.

The activity diagram is illustrated in Figure 2.1. Most actions are performed
sequentially, as they require the results of all preceding activities. When all
results from performed optimizations are obtained, they can be loaded and
processed. The processing of the results consists of three steps. The evaluation
of the speed-up values of examined methods and the successive evaluation of
the best parameters for each method-function combination. Independently of
these activities, we can also perform one-tailed statistical test on the specified
significance level. The last activity, which depends on all preceding activities,
is an export of previously processed results to some human readable format.

10

2.2. Integration

results computed?
yes no

perform optimizations

load results

evaluate speed-up

get best parameters settings

perform one-tailed statistical test

export results

Figure 2.1: Activity diagram.

2.2.2 Components

Figure 2.2 illustrates the component diagram. In the case of MGSO, the im-
plementation GPEDA (Gaussian Process sampling EDA algorithm) by Lukáš
Bajer and Viktor Charypar [12] was used. In the case of GPs, the implementa-
tion of GMPL (Gaussian Processes for Machine Learning), based on the book
written by Carl Edward Rasmussen and Hannes Nickisch [13], was used, which
provides all necessary functionalityin the context of GP model and it is also
used in the implementation of MGSO. The benchmark from the CEC 2013
competition, described in section 3.2, was used for performance testing.

11

2. Analysis and design

Integration framework

MGSO S-CMA-ES

CMA-ES

CEC 2013 benchmark

GPML

Figure 2.2: Component diagram.

2.2.3 Class diagram

The integration framework was first designed in the procedural style, decom-
posed into several batch files. However, later it was divided using OOP norma-
lization into into classes designated for performing corresponding procedures,
as illustrated in Figure 2.3. The advantage of such decomposition is the ability
to use encapsulation, inheritance, etc., in order to reuse the code, assign re-
sponsibilities and generally improve and simplify the maintenance of the code.

2.2.3.1 Main interface

The main interface, represented by the class PerformanceTestManager, was
implemented for users convenience. It implements the facade design pattern
and allows to launch specific groups of procedures automatically to spare a
user executing all procedures manually. It delegates responsibilities to six
single-service classes:

• ComputationManager,

• ResultDAO,

• SpeedUpEvaluator,

• StatisticsTester,

• BestParamsEvaluator,

• ResultPrinter.

12

2.2. Integration

Except for the first one, all listed classes are abstract and define the required
interface and can be extended by some other classes with different functionality
if necessary.

ComputationManager is responsible for running all planned optimizations
performed by the corresponding methods. This class is described in the next
section in detail, as it deserves a closer look.

Following three classes are responsible for the result processing. The first,
the SpeedUpEvaluator, returns a matrix containing the speed-up values ac-
quired from the performance comparison of two methods for all parameter
combinations defined in the given schedule.

The second class, the StatisticsTester, performs one-tailed statistical test
according to the given value of significance level. For that purpose it uses
the results obtained from optimization processes. The output of this class
is a matrix of Boolean values (zeros and ones) which signify the rejection or
acceptance of the null hypothesis.

The last class in this category, the BestParamsEvaluator, returns the struc-
ture containing best observed parameters determined by passed speed-up va-
lues taking into account the average value of the speed-up for the respective
method-function combination.

There are two classes interacting with the file system. The first, the Re-
sultDAO, provides the access to the persistent storage and is responsible for
loading and saving obtained results. The ResultPrinter exports processed re-
sults gained from result processing to required format.

2.2.3.2 Computations

Figure 2.4 shows the class diagram in the context of planning and performing
the optimizations. The class ComputationManager contains a specified set
of predefined Computation instances. This class specifies, which methods are
going to be used and which parameter setting are going to be examined.

The Computation class is responsible for fulfilling the schedule associated
with the specified method, thus the instances of this class are determined by
the corresponding Schedule and Method in the class constructor.

Instances of the Schedule are defined by sets of values corresponding to each
examined parameter and thereby determine the state space of the computation.
As it is illustrated in Figure 2.6 For each Method there is a corresponding
subclass of the Schedule class. Because schedules can share many common
properties, they can be specified in a parent schedule and accessed through
the method getProperty in the same way as its own properties. For example,
the schedules indiSchedule and geneSchedule have common properties defined
in the scmaesSchedule, thus it can be set as a parent for both schedules so
they can access its properties as their own.

The assembling of the Options objects is not trivial and it varies in accord-
ance with used method. For this reason, this responsibility is assigned to the

13

2. Analysis and design

PerformanceTestManager

runEvaluations(schedule): void
loadResults(): Matrix
getSpedUps(results): Matrix
testResults(results): Matrix
getBestParams(results): Struct
export(results, printer): void

ComputationManager

computations: Array<Computation>

runComputations(): void

ResultDAO

loadAll(schedule): Matrix
load(state): Matrix
save(state, results): void

SpeedUpEvaluator

eval(cmaes, other, schedules): Matrix

StatisticsTester

test(cmaes, other, schedules): Matrix

ResultPrinter

print(results, outputstream): void

BestParamsEvaluator

eval(results, schedule): Struct

0..*

1

0..*

1..*

0..*
1

0..*
1..*

0..*

1..*

0..*

1..*

Figure 2.3: Fragment of the class diagram – main interface.

external class OptionsFactory, which implements the factory design pattern.
It sets all parameters in Options according to the given Schedule and the cur-
rent State of the Computation. The described fragment of the class diagram
is illustrated in Figure 2.5.

The class ResultDAO is responsible for persisting obtained results. It stores
the result after each Method run and assigns it a unique name determined from
the given State. After each Method run the internal state is incremented and
the whole process is repeated until the schedule is fulfilled.

14

2.2. Integration

ComputationManager

computations: Array[Computation]

run(): void

Computation

schedule: Schedule
method: Method
state: State

run(): void

State

state: Matrix
space: Matrix

getValues(schedule): Struct
hasNext(): Boolean
next(): State

OptionsFactory

getOptions(schedule, state): Struct

Schedule

properties: Collection[Property]

getProperty(name): Property
getProperties(): Array[Property]

Method

run(options): Matrix

ResultDAO

loadAll(schedule): Matrix
load(state): Matrix
save(state, results): void

uses

0..*

1..*

uses

1 0..*

1

1

1

1

Uses

Figure 2.4: Fragment of the class diagram – computations.

2.2.3.3 Integration

Figure 2.7 shows the simplified class diagram in the context of the integra-
tion. All methods are represented by the corresponding subclasses of the class
Method. The integration of CMA-ES and GP surrogate model is implemented
in the classes SCMAES and SurrogateManager. The SCMAES is based on the
native CMA-ES implementation, but instead of original CMA-ES sampling of
new solutions, it uses the SurrogateManager in order to control sampling by
employing a surrogate model. The way how the model is exploited is deter-
mined by used EC strategy. EC strategy options are specified in two classes,
GenerationEC andIndividualEC, both inheriting from the abstract class Evo-
lutionControl.

Figure 2.8 demonstrates the SurrogateManager with all its auxiliary classes.
The purpose of the Archive is to save sampled results to a persistent storage
and retrieve relevant samples to become a part of population used for train-
ing a model. The ModelFactory is responsible for creating instances of the
subclasses of the class Model, in our case GpModel, but it can be extended
by other models. The SurrogateSelector is an auxiliary class which provides
the SurrogateManager with additional operations like selecting individuals for
reevaluation.

15

2. Analysis and design

State

state: Matrix
space: Matrix

getValues(schedule): Struct
hasNext(): Boolean
next(): State

OptionsFactory

getOptions(schedule, state): Struct

Schedule

properties: Collection[Property]

getProperty(name): Property
getProperties(): Array[Property]

Options

properties: Array[Property]

getProperty(name): Property

uses

creates usesuses

Figure 2.5: Fragment of the class diagram – options.

2.2.4 Sequence diagram

This section explains how single objects interact in the selected situations using
the sequence diagrams.

2.2.4.1 Computation

As demonstrated in Figure 2.9, the ComputationManager runs successively all
computations defined in the internal collection. When launched, each Compu-
tation gets the current State of the corresponding Schedule and passes both
to the OptionsFactory in order to obtain the instance of Options and use it
in the present computation. After the computation is finished, the result is
passed to the ResultDAO, which saves it to a persistent storage. Finally, the
subsequent state is obtained again and the whole process is repeated until the
schedule is fulfilled.

2.2.4.2 Integration

Simplified diagram in Figure 2.10 demonstrates the communication of objects
of the classes implementing the method integration. When the Computation is
launched, the main control loop of the CMAES is executed. The algorithm be-
haves similarly as CMA-ES except for sampling new individuals. If some model
is present, the sampling is delegated to the SurrogateManager, passing it EC
strategy settings as an argument. The SurrogateManager performs sampling
according to the given EvolutionControl, which decides when to sample new
individuals using original fitness function and when to use a model instead, as
explained in Section 2.1.2. Described procedure is repeated until a stopping
criterion is met.

16

2.2. Integration

cmaesSchedule

state: State
properties: Collection<Property>

scmaesSchedule

properties: Collection<Property>

geneSchedule

state: State
properties: Collection<Property> Schedule

state: State
properties: Collection<Property>

getProperty(name): Property
hasNext(): Boolean
next(): State

indiSchedule

state: State
properties: Collection<Property>

mgsoSchedule

state: State
properties: Collection<Property>

mainSchedule

properties: Collection<Property>

parent

1 1

Figure 2.6: Fragment of the class diagram – schedules.

17

2. Analysis and design

Method

run(options): Matrix

CMAES

run(options): Matrix
sample(params): data

MGSO

run(options): Matrix

SCMAES

surrogateManager: SurrogateManager

run(options): Matrix
sample(params): data

SurrogateManager

model: Model

sample(params, ec)

Model

multiple properties

train(params): Model
predict(params): data
getNTrainData(): data
gnerationUpdate(params): data
shift(obj, xMean): Model
isTrained(): Boolean

EvolutionControl

run(params, model): data
sampleOrig(params): data
sampleModel(params): data

GpModel

multiple properties

train(params): GpModel
getNearMean(params): data
predict(params): data
getNTrainData(): data

uses

0..*

1

1

1

uses

1

1

Figure 2.7: Fragment of the class diagram – methods.

18

2.2. Integration

SurrogateSelector

chooseDistantPoints(params): data
choosePointsToReevaluate(params): data

EvolutionControl

evaluateOriginal(): data
isNextOriginal(): data
evaluateModel(): data
next(): EvolutionControl
holdOn(): EvolutionControl
setNextOriginal(): EvolutionControl
getLastOriginalGenerations(n): data

Archive

save(X, y, generation): data
getDataFromGenerations(generations): data
getDataNearPoint(params): data

Model

multiple properties

train(params): Model
predict(params): data
getNTrainData(): data
gnerationUpdate(params): data
shift(obj, xMean): Model
isTrained(): Boolean

SurrogateManager

model: Model
method: CMAES
ec: EvolutionControl

sampleCmaes(options): data
sampleCmaesNoFitness(options): data
sampleCmaesOnlyFitness(options): data
getModelStatistics(model, params): data
trainGenerationECModel(model, params): data

ModelFactory

createModel(modelType, options): Model

uses

1 1

1

1

uses

uses creates

Figure 2.8: Fragment of the class diagram – method integration.

ComputationManager

ComputationManager

Computation

Computation

State

State

OptionsFactory

OptionsFactory

Method

Method

ResultDAO

ResultDAO

foreach computation

run()

hasnext = hasNext(schedule)

while hasnext == true

options = getOptions(schedule, state)

result = run(options)

save(result)

hasnext = hasNext(schedule)

Figure 2.9: Sequence diagram – computations.

19

2. Analysis and design

Computation

Computation

SCMAES

SCMAES

SurrogateManager

SurrogateManager

EvolutionControl

EvolutionControl

run(options)

loop [until stop criteria are met]

sample(params)

alt [has model]

sample(params, ec)

data = run(params, model)

data

[no model]

data = sampleCmaes(params)

sampledData

result

Figure 2.10: Sequence diagram – integrated methods.

20

Chapter 3

Realization

Section 3.1 shows some examples produced during the implementation process
and Section 3.2 describes the whole process of the experimental evaluation and
performance testing of the compared methods. It also compares the perfor-
mance of the methods and discusses the obtained results.

3.1 Implementation

The implementation was performed using Matlab software developed by Math-
Works [14] with Statistics and Machine Learning Toolbox, as it was used in the
implementations of the compared methods. It provides required functionality
to describe, analyze, and model data using statistics and machine learning.

Figure 3.1 shows the file structure created during implementation. Figures
3.2 and 3.3 show the implementation of the classes SCMAES and Computation,
both described in Section 2.2.

3.2 Experimental Evaluation

For comparison of the performance of MGSO, CMA-ES and S-CMA-ES, the
following set of 12 multi-modal fitness functions, illustrated in Figures 3.4 and
3.5, from the CEC 2013 competition [1] were used:

f1: Five-Uneven-Peak Trap (1D) – Figure 3.4a
This function has 5 local optima (i.e., peaks). However it has only two
global optima.

f2: Equal Maxima (1D) – Figure 3.4b
This function has 5 global optima in the examined range, all symmet-
ricaly located.

21

3. Realization

f3: Uneven Decreasing Maxima (1D) – Figure 3.4c
This function has only 1 global optimum and 4 local optima in the ex-
amined range.

f4: Inverted Himmelblau (2D) – Figure 3.4d
This is an inverted version of Himmelblau function. It has 4 global
optima with 2 closer to each other than the other 2. There are no local
optima in this function.

f5: Six-Hump Camel Back (2D) – Figure 3.4e
The function has 2 global optima as well as 2 local optima.

f6: Inverted Shubert (2D, 3D) – Figure 3.4f
This function is an inverted version of the Shubert function, where there
are n ∗ 3D global optima unevenly distributed. These global optima are
divided into 3D groups, with each group having D global optima being
close to each other. In the case of 2D version, there are 18 global optima
divided into 9 pairs, with optima very close to each other in each pair.
By contrast, the distance between any pair is relatively greater. There
are in total 760 global and local optima.

f7: Vincent (2D, 3D) – Figure 3.5a
This is an inverted version of the Vincent function. It has 6D global op-
tima, but in contrast to the evenly distributed global optima in f6, in this
function the global optima have noticeably different distances between
them. Moreover, there are no local optima in the Vincent function.

CEC2013 the benchmark from CEC 2013 competition
srcthe directory of source codes

computationscomputation classes
dao ...data access classes
main ...main interface classes
methods ..method classes
processingresult processing classes
schedules ... schedule classes
utiladditional classes, result export, etc.

gpedaGPEDA component sources
resultsthe results from performed experiments
S-CMA-ESS-CMA-ES component sources
startup.m ...the startup script setting paths to all required components

Figure 3.1: Directory structure.

22

3.2. Experimental Evaluation

1 c l a s s d e f SCMAES < Method
2 %% Class r ep r e s en t i n g S−CMA−ES
3

4 methods
5 f unc t i on r e s = run (th i s , opt ions)
6 %% Runs the opt imiza t i on proce s s and r e tu rn s i t s

p rog r e s s as matrix o f va lue s [number o f
eva luat i ons , d i s t anc e to optimum]

7 cmOptions = opt ions . cmOptions ;
8 x = opt ions . x ;
9 func = opt ions . func ;

10 sOptions = opt ions . sOptions ;
11 sigma = opt ions . sigma ;
12

13

14 [xmin , f_min , counteval , s t op f l ag , out , bestever ,
y_eval] = s_cmaes (func , x , sigma , cmOptions , ’
sur rogateOpt ions ’ , sOptions) ;

15

16 % Subtract optimum value from reached value to obta in
i t s d e l t a

17 y_eval (: , 1) = y_eval (: , 1) − opt ions . optima ;
18

19 r e s = y_eval (: , [1 2]) ;
20 end
21 end
22 end

Figure 3.2: The example of the implementation of the class SCMAES.

f8: Modified Rastrigin - All Global Optima (2D) – Figure 3.5b
This is a modified Rastrigin function. The global optima in this function
are evenly distributed.

f9: Composition Function 1 (2D) – Figure 3.5c
This function has eight global optima in the optimization box, is multi-
modal, shifted, non-rotated, non-symmetric, separable near the global
optima, scalable and it is constructed using eight basic functions:

• f1 - f2: Griewank’s function,

• f3 - f4: Weierstrass function,

• f5 - f6: Sphere function.

23

3. Realization

1 c l a s s d e f Computation < handle
2 %% Class r ep r e s en t i n g a computation
3

4 p r op e r t i e s (Access = pr i va t e)
5 schedu le %% determines a l l parameter combinat ions to

use f o r op t im i za t i on s
6 s t a t e %% holds the cur rent s t a t e o f the computation ,

the combination o f the parameters
7 method %% opt imiza t i on method to eva luate
8 end
9

10 methods
11 f unc t i on t h i s = Computation (schedule , method)
12 %% Class cont ruc to r
13 t h i s . s chedu le = schedu le ;
14 t h i s . method = method ;
15

16 t h i s . s t a t e = State (schedu le) ;
17 end
18

19 f unc t i on run (t h i s)
20 %% Runs the a l l opt imiza t i on p r o c e s s e s o f g iven

method corre spond ing schedu le
21 whi le t h i s . s t a t e . hasNext ()
22 di sp (t h i s . s t a t e . s t a t e)
23 opt ions = OptionsFactory . getOptions (t h i s . schedule ,

t h i s . s t a t e) ;
24 r e s u l t = t h i s . method . run (opt ions) ;
25 ResultDAO . save (r e s u l t) ;
26 t h i s . s t a t e = th i s . s t a t e . next () ;
27 end
28 end
29 end
30 end

Figure 3.3: The example of the implementation of the class Computation.

24

3.2. Experimental Evaluation

f10: Composition Function 2 (2D) – Figure 3.5d
This function has eight global optima in the optimization box, is multi-
modal, shifted, non-rotated, non-symmetric, separable near the global
optima, scalable and is constructed using eight basic functions:

• f1 - f2: Rastrigin’s function,

• f3 - f4: Weierstrass function,

• f5 - f6: Griewank’s function.

• f7 - f8: Sphere function,

f11: Composition Function 3 (2D, 3D, 5D, 10D) – Figure 3.5e
This function has six global optima in the optimization box, it is multi-
modal, shifted, rotated, non-symmetric, non-separable, scalable and it is
constructed using six basic functions:

• f1 - f2: EF8F2 function,

• f3 - f4: Weierstrass function,

• f5 - f6: Griewank’s function.

f12: Composition Function 4 (3D, 5D, 10D, 20D) – Figure 3.5f
This function has eight global optima in the optimization box, is multi-
modal, shifted, rotated, non-symmetric, non-separable, scalable and it is
constructed using eight basic functions:

• f1 - f2: Rastrigin’s function,

• f3 - f4: EF8F2 function,

• f5 - f6: Weierstrass function,

• f7 - f8: Griewank’s function.

25

3. Realization

0
5

1
0

1
5

2
0

2
5

3
0

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

(a
)
f

1

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

(b
)
f

2

0
0

.1
0

.2
0

.3
0

.4
0

.5
0

.6
0

.7
0

.8
0

.9
1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

(c
)
f

3

(d
)
f

4
(e

)
f

5
(f

)
f

6

F
ig
ur
e
3.
4:

B
en

ch
m
ar
k
fu
nc

ti
on

s
f

1
−
f

6
(a
ll
fig

ur
es

ta
ke
n
fr
om

[1
])
.

26

3.2. Experimental Evaluation

(a
)
f

7
(b

)
f

8
(c

)
f

9

(d
)
f

10
(e

)
f

1
1

(f
)
f

1
2

F
ig
ur
e
3.
5:

B
en

ch
m
ar
k
fu
nc

ti
on

s
f

7
−
f

12
(a
ll
fig

ur
es

ta
ke
n
fr
om

[1
])
.

27

3. Realization

func. variable ranges # global optima # local optima
f1 x ∈ [0, 30] 2 3
f2 x ∈ [0, 1] 5 0
f3 x ∈ [0, 1] 1 4
f4 x, y ∈ [−6, 6] 4 0
f5 x ∈ [−1.9, 1.9], y ∈ [−1.1, 1.1] 2 2
f6 xi ∈ [−10, 10]D, i ∈ 1, . . . , D D ∗ 3D many
f7 xi ∈ [0.25, 10]D, i ∈ 1, . . . , D 6D 0
f8 xi ∈ [0, 1]D, i ∈ 1, . . . , D

∑D
i=1 ki (note

1) 0
f9 xi ∈ [−5, 5]D, i ∈ 1, . . . , D 6 many
f10 xi ∈ [−5, 5]D, i ∈ 1, . . . , D 8 many
f11 xi ∈ [−5, 5]D, i ∈ 1, . . . , D 6 many
f12 xi ∈ [−5, 5]D, i ∈ 1, . . . , D 8 many

Table 3.1: Parameters of the tested functions: variable ranges, number of
global and local optima.

All numbers of local and global optima and variable ranges can be found in
Table 3.1.

In the case of some high-dimensional functions one optimization process
can take a long time, and due to the large number of required evaluations, most
of them were performed on the computation servers provided by MetaCentrum
– Virtual Organization.

3.2.1 MGSO Performance

MGSO performance was examined using two covariance functions with para-
meters shown in Table 3.2. The results in Tables 3.3, 3.4, 3.5 and 3.6 show
the speed-up of MGSO with respect to CMA-ES. As can be seen, the Kiso

SE
covariance function performed better among these two for more than half of
cases.

The highest speed-up can be seen in the case of f2, f4, 3D version of f7,
2D version of f11 and 5D f12. The worst results were observed in the case of
f1, 2D version of f10 and 3D and 10D versions of f12. Figures 3.6, 3.7, 3.8,
3.9 and 3.10 show optimization progress of the respective functions.

1ki = 1, for i = 1 − 3, 5 − 7, 9 − 11, 13 − 15, and k4 = 2, k8 = 2, k12 = 3, k16 = 4

28

3.2. Experimental Evaluation

F
ig
ur
e
3.
6:

E
xa

m
pl
es

of
th
e
be

st
-fi
tn
es
s
pr
og

re
ss

–
fu
nc

ti
on

s
f

9
(2
D
)
an

d
f

10
(2
D
)
(s
ee

Se
ct
io
n
3.
2.
3.
1
fo
r
de
ta
ils
).

29

3. Realization

F
ig
ur
e
3.
7:

E
xa

m
pl
es

of
th
e
be

st
-fi
tn
es
s
pr
og

re
ss

–
fu
nc

ti
on

s
f

11
(2
D
)
an

d
(3
D
)
(s
ee

Se
ct
io
n
3.
2.
3.
1
fo
r
de

ta
ils
).

30

3.2. Experimental Evaluation

F
ig
ur
e
3.
8:

E
xa

m
pl
es

of
th
e
be

st
-fi
tn
es
s
pr
og

re
ss

–
fu
nc

ti
on

s
f

11
(5
D
)
an

d
f

12
(3
D
)
(s
ee

Se
ct
io
n
3.
2.
3.
1
fo
r
de

ta
ils
).

31

3. Realization

F
ig
ur
e
3.
9:

E
xa

m
pl
es

of
th
e
be

st
-fi
tn
es
s
pr
og

re
ss

–
fu
nc

ti
on

s
f1
1
(1
0D

)
an

d
f1
2
(5
D
)
(s
ee

Se
ct
io
n
3.
2.
3.
1
fo
r
de

ta
ils
).

32

3.2. Experimental Evaluation

F
ig
ur
e
3.
10

:
E
xa

m
pl
es

of
th
e
be

st
-fi
tn
es
s
pr
og

re
ss

–
fu
nc

ti
on

s
f1
2
(1
0D

)
an

d
f1
2
(2
0D

)
(s
ee

Se
ct
io
n
3.
2.
3.
1
fo
r
de

ta
ils
).

33

3. Realization

S-CMA-ES
covariance functions cov ∈ {Kν= 5

2
Matérn,Kexp,K

iso
SE,K

ard
SE }

starting values of (σ2f , `)

(0.1, 10) for Kiso
SE

(0.05× J 1,D, 0.1) for Kard
SE

(0.5, 2) otherwise
starting values of σ2n 0.01

MGSO
covariance functions cov ∈ {Kiso

SE,K
ard
SE }

starting values of (σ2f , `)
(0.1, 10) for Kiso

SE
(0.05× (J 1,D), 0.1) for Kard

SE
starting values of σ2n 0.01

Table 3.2: Model parameter settings for S-CMA-ES and MGSO performance
testing (see Section 3.2.3.1 for details).

3.2.2 S-CMA-ES Performance

The speed-up results are shown in Tables 3.3, 3.4, 3.5 and 3.6. In performed
evaluations, four covariance functions in the GP surrogate model were used,
two types of the squared exponential covariance function, the isotropic version
Kiso

SE and the version using automatic relevance determination Kard
SE , and two

types of the Matérn covariance function,K
ν= 1

2
Matérn (Kexp), which is better known

as exponential covariance function, and Kν= 5
2

Matérn, their definitions can be found
in [15]. The covariance functions parameters are shown in Table 3.2.

In the performed experiments, different configurations of the chosen EC
strategies, described in Section 2.1.2, were examined, generation-based and
individual-based. The result are discussed in the following sections.

3.2.2.1 Generation-based EC strategy

Apart from covariance function selection, Generation-based EC strategy was
determined by two other parameters, the number of model-evaluated genera-
tions and the multiplication factor of CMA-ES’ step size σ(g). In the imple-
mentation, the first parameter was fixed on values 1, 2, 4 and 8 consequent
model-evaluated generations and the second parameter was varied among the
values 1 and 2.

In the case of the generation-based EC, the overall best settings with re-
spect to the median values are (Kiso

SE, 8, 1) – 8 consequent model-evaluated
generations with unmodified step size in combination with Kiso

SE covariance
function. The overall best generation-based EC settings showed to be also
the best generation-based EC settings of the respective functions, except for
3D version of f12, where S-CMA-ES performed better using larger step size.

34

3.2. Experimental Evaluation

Using different covariance functions didn’t bring much better results than the
overall best covariance function.

3.2.2.2 Individual-based EC strategy

Apart from covariance function selection, three other parameters were ex-
amined in the case of individual-based EC strategy. In the implementation,
the first parameter α ∈ [0, 1] determines the amount of points λ′′ ∈ [0, αλ],
where λ is the size of the original population. Those points are sampled first
and then evaluated and used for training the model. The second parameter
β ∈ {1, . . . ,∞} is a multiplicator determining the size of extended popula-
tion β(λ − λ′′) without the pre-sampled individuals. Extended population is
required by the model for choosing promising points for re-evaluation by the
original fitness function. The third parameter γ ∈ [0, 1] determines the amount
of points γ(λ−λ′′) with the best model-fitness chosen from the extended pop-
ulation to be re-evaluated by the original fitness function and become a part
of the final population. The complement to λ points is gathered from the rest
of the extended population by dividing it into β(λ − λ′′)(1 − γ) clusters and
selecting the best point from each cluster.

In performed evaluations the parameter α was fixed on values 0, 0.0625,
0.125, and 0.25, the parameter β was varied among the values 5 and 10 and
γ was fixed on values 0, 0.1 and 0.2. Achieved results show the best over-
all settings (Kard

SE , 0, 5, 0.1) – Kard
SE covariance matrix, no pre-sampling before

training the model, 5 as the multiplicator determining the size of extended
population and 0.1 as a multiplicator determining the amount of best points
chosen from extended population.

The best results using described parameters where achieved in the case of
functions f3 and 2D and 3D version of f6. However, the overall performance
of the individual-based EC strategy lags far behind the generation-based EC
strategy, MGSO and even CMA-ES itself. The results show that in most cases
the optimization process is unable to approach the optimum as close as other
methods.

3.2.2.3 Summary

In the case of generations-based EC strategy, employing a GP as a surrogate
model demonstrated performance improvement for most tested functions. The
highest speed-up was achieved on both 2D and 3D versions of f7, 2D and
5D versions of f11 and 20-D version of f12. Figures 3.6, 3.7, 3.8, 3.9 and
3.10 show the optimization progress using the best observed settings for the
respective functions. The highest speed-up can be seen in the later phase of
the optimization process.

The lowest speed-up factors were observed in the case of the functions
f1, f5 and both 2D and 3D versions of the function f6. These functions

35

3. Realization

are characterized by unevenly distributed global optima and relatively large
distances between global and local optima, where the optimization process
tends to get trapped.

36

3.2. Experimental Evaluation
f1

(1
–D

)
f2

(1
–D

)
∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

1e
1

00
.9
0

01
.0
0

01
.0
0

00
.1
7

00
.1
4

1e
-1

01
.0
0

01
.4

4
00

.7
6

00
.1
3

01
.3
0

1e
0

00
.9
0

01
.0
0

01
.0
0

00
.0
6

00
.1
4

1e
-2

01
.4

1
02

.5
4

00
.3
0

00
.1
0

03
.3

0
1e
-1

00
.9
0

01
.0
0

01
.0
0

00
.0
6

00
.0
8

1e
-3

01
.8

5
02

.5
4

00
.1
2

00
.8
6

01
.0
8

1e
-2

00
.9
0

01
.0
0

01
.0
0

-
00

.0
5

1e
-4

03
.1

1
03

.7
5

-
01

.7
3

01
.7

3
1e
-3

00
.9
0

01
.0
0

01
.0
0

-
00

.0
5

1e
-5

04
.0

4
04

.4
9

-
-

02
.2

5
1e
-4

00
.9
0

01
.0
0

01
.0
0

-
-

1e
-6

04
.3

4
04

.8
3

-
-

02
.3

7
1e
-5

00
.9
0

01
.0
0

01
.0
0

-
-

1e
-7

12
.9

5
13

.5
7

-
-

08
.0

5
1e
-6

00
.9
0

01
.0
0

01
.0
0

-
-

1e
-8

12
.2
1

15
.2
3

-
-

16
.7
8

1e
-7

00
.9
0

01
.0
0

01
.0
0

-
-

1e
-8

00
.9
0

01
.0
0

01
.0
0

-
-

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

K
is

o
S
E

K
ar

d
S
E

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
v
=

5 2
M

at
ér

n
,2

−
2
,1

0,
0.
2)

K
is

o
S
E

f3
(1
–D

)
f4

(2
–D

)
∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

1e
-1

02
.4

4
00

.5
2

00
.4
5

01
.8
3

1e
2

00
.5
4

01
.0
0

00
.1
6

00
.1
1

00
.3
5

00
.3
5

1e
-2

05
.7
1

01
.4
4

01
.5
1

02
.1
3

1e
1

01
.2
4

01
.6

3
00

.1
7

00
.4
4

01
.5

5
01

.5
5

1e
-3

21
.3
6

07
.1
2

17
.8
0

09
.4
9

1e
0

02
.5

9
03

.5
2

-
01

.2
6

02
.2

0
04

.0
0

1e
-4

18
.4
1

07
.1
2

-
08

.6
3

1e
-1

02
.7

4
03

.4
7

-
-

01
.9

7
02

.6
2

1e
-5

20
.0
7

07
.7
6

-
09

.4
1

1e
-2

02
.9

9
03

.6
6

-
-

02
.4

4
03

.2
5

1e
-6

20
.0
7

07
.7
6

-
09

.4
1

1e
-3

03
.9

1
05

.0
0

-
-

03
.5

8
04

.5
7

1e
-7

*
*

*
*

1e
-4

04
.4

5
05

.2
2

-
-

04
.5

2
04

.6
8

1e
-8

*
*

*
*

1e
-5

13
.4

4
14

.8
3

-
-

00
.6
7

13
.2
3

1e
-6

17
.6

3
20

.1
0

-
-

-
18

.1
2

1e
-7

+
+

*
*

*
+

1e
-8

+
+

*
*

*
+

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
ex

p
,0

,5
,0

.2
)

K
is

o
S
E

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ex

p
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
ex

p
,2

−
2
,5

,0
.1
)

K
is

o
S
E

K
ar

d
S
E

f5
(2
–D

)
f6

(2
–D

)
∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

1e
0

01
.0
0

00
.1
2

00
.0
9

00
.6
5

00
.6
5

1e
2

01
.1

8
01

.1
8

-
01

.7
4

03
.0

4
02

.0
3

1e
-1

01
.7

2
00

.0
5

00
.0
8

00
.8
0

00
.8
0

1e
1

04
.9
7

04
.2
0

-
-

00
.3
6

02
.2
1

1e
-2

03
.2

8
-

00
.7
0

01
.5

2
01

.5
2

1e
0

07
.1
6

08
.4
0

-
-

-
01

.8
0

1e
-3

02
.9

5
-

-
01

.5
1

01
.9
2

1e
-1

+
+

*
*

*
+

1e
-4

03
.2

7
-

-
01

.9
6

02
.4
8

1e
-2

+
+

*
*

*
+

1e
-5

03
.7

4
-

-
02

.5
5

03
.2
3

1e
-3

+
+

*
*

*
+

1e
-6

*
*

*
*

*
1e
-4

+
+

*
*

*
+

1e
-7

*
*

*
*

*
1e
-5

*
*

*
*

*
*

1e
-8

*
*

*
*

*
1e
-6

*
*

*
*

*
*

1e
-7

*
*

*
*

*
*

1e
-8

*
*

*
*

*
*

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
v
=

5 2
M

at
ér

n
,0

,1
0,

0.
2)

K
is

o
S
E

K
ar

d
S
E

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,4

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
ar

d
S
E
,0

,1
0,

0)
K

is
o

S
E

K
ar

d
S
E

T
ab

le
3.
3:

Sp
ee
d-
up

of
S-
C
M
A
-E

S
us
in
g
in
di
vi
du

al
-
an

d
ge
ne

ra
ti
on

-b
as
ed

E
C

st
ra
te
gi
es

an
d
M
G
SO

,
co
m
pa

re
d
to

C
M
A
-E

S
w
it
ho

ut
a
su
rr
og

at
e
m
od

el
–
fu
nc
ti
on

s
f

1
−
f

6
(s
ee

Se
ct
io
n
3.
2.
3.
3
fo
r
de

ta
ils
).

37

3. Realization

f7
(2
–D

)
f6

(3
–D

)
∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

1e
-2

03
.2

8
02

.9
3

00
.0
5

00
.4
3

00
.1
4

01
.0
2

1e
4

01
.0
0

01
.0
0

01
.0
0

00
.2
7

1e
-3

04
.4

2
04

.8
1

-
-

00
.2
7

00
.5
4

1e
3

17
.5
5

-
07
.4
2

04
.5
3

1e
-4

05
.6

3
06

.0
9

-
-

-
00
.5
2

1e
2

07
.7
2

-
-

04
.0
6

1e
-5

07
.9

1
07

.9
1

-
-

-
01
.4
5

1e
1

05
.9
6

-
-

-
1e
-6

16
.2

4
16

.2
4

-
-

-
03
.3
9

1e
0

+
*

*
*

1e
-7

65
.2
5

68
.6
2

-
-

-
11
.2
9

1e
-1

+
*

*
*

1e
-8

+
+

*
*

*
+

1e
-2

+
*

*
*

1e
-3

+
*

*
*

1e
-4

+
*

*
*

1e
-5

+
*

*
*

1e
-6

+
*

*
*

1e
-7

+
*

*
*

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ex

p
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
ar

d
S
E
,2

−
4
,1

0,
0)

K
is

o
S
E

K
ar

d
S
E

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
ar

d
S
E
,0

,1
0,

0.
1)

K
is

o
S
E

f7
(3
–D

)
f8

(2
–D

)
∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

1e
-1

03
.1

5
00
.0
3

01
.2
8

01
.1
4

1e
0

02
.6

8
02

.6
8

-
00
.9
6

01
.6

8
01
.6
8

1e
-2

05
.2

6
-

-
01

.5
6

1e
-1

03
.9

1
03

.9
1

-
-

02
.2

2
02
.2
2

1e
-3

10
.3

6
-

-
03

.1
6

1e
-2

04
.4

6
04

.7
9

-
-

03
.2

0
03
.2
0

1e
-4

13
.3

3
-

-
04

.9
5

1e
-3

07
.1

5
07

.6
5

-
-

03
.2

9
03
.2
9

1e
-5

64
.4
7

-
-

22
.8
3

1e
-4

12
.9

5
13

.7
4

-
-

05
.6

1
06
.7
3

1e
-6

+
*

*
+

1e
-5

22
.4

0
24

.8
5

-
-

11
.3

9
13
.5
3

1e
-7

+
*

*
+

1e
-6

+
+

*
*

+
+

1e
-8

+
*

*
+

1e
-7

+
+

*
*

+
+

1e
-8

+
+

*
*

+
+

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
v
=

5 2
M

at
ér

n
,0

,1
0,

0)
K

is
o

S
E

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
v
=

5 2
M

at
ér

n
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
ex

p
,2

−
4
,5

,0
)

K
is

o
S
E

K
ar

d
S
E

f9
(2
–D

)
f1
0
(2
–D

)
∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

1e
1

03
.4

0
02

.7
4

-
00
.1
0

01
.0
6

1e
2

01
.9

8
01

.7
6

00
.0
3

00
.2
6

00
.3
9

1e
0

03
.3

8
03

.1
1

-
00
.0
7

01
.1

5
1e
1

02
.2

9
02

.6
2

-
-

00
.4
6

1e
-1

03
.8

2
03

.8
2

-
-

01
.5

3
1e
0

03
.0

1
03

.2
1

-
-

00
.0
7

1e
-2

04
.3

5
04

.3
5

-
-

01
.5

2
1e
-1

03
.7

1
04

.0
0

-
-

-
1e
-3

07
.8

0
07

.8
0

-
-

02
.6

8
1e
-2

06
.1

5
07

.0
2

-
-

-
1e
-4

22
.4

0
23

.5
6

-
-

08
.5

4
1e
-3

18
.2
8

21
.8
8

-
-

-
1e
-5

+
+

*
*

+
1e
-4

+
+

*
*

*
1e
-6

+
+

*
*

+
1e
-5

+
+

*
*

*
1e
-7

+
+

*
*

+
1e
-6

+
+

*
*

*
1e
-8

+
+

*
*

*
1e
-7

+
+

*
*

*
1e
-8

+
+

*
*

*

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
ar

d
S
E
,2

−
4
,5

,0
)

K
is

o
S
E

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
v
=

5 2
M

at
ér

n
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
ar

d
S
E
,0

,1
0,

0)
K

is
o

S
E

T
ab

le
3.
4:

Sp
ee
d-
up

of
S-
C
M
A
-E

S
us
in
g
in
di
vi
du

al
-
an

d
ge
ne

ra
ti
on

-b
as
ed

E
C

st
ra
te
gi
es

an
d
M
G
SO

,
co
m
pa

re
d
to

C
M
A
-E

S
w
it
ho

ut
a
su
rr
og

at
e
m
od

el
–
fu
nc
ti
on

s
f

7
−
f

12
(s
ee

Se
ct
io
n
3.
2.
3.
3
fo
r
de

ta
ils
).

38

3.2. Experimental Evaluation

f1
1
(2
–D

)
f1
1
(3
–D

)
∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

1e
2

03
.9

2
03

.3
8

00
.0
4

01
.0
6

01
.2

4
1e
3

00
.5
3

01
.0
0

01
.0
0

01
.0
0

00
.2
7

1e
1

03
.6

9
03

.6
9

-
-

01
.4

3
1e
2

02
.5

1
03

.0
4

-
-

01
.3

3
1e
0

04
.6

3
05

.0
1

-
-

02
.3

2
1e
1

03
.0

4
03

.3
8

-
-

01
.4

1
1e
-1

05
.1

9
05

.1
9

-
-

03
.1

8
1e
0

03
.1

2
03

.4
7

-
-

01
.8

5
1e
-2

08
.7

0
09

.2
3

-
-

02
.5

1
1e
-1

03
.9

0
04

.3
3

-
-

01
.7

1
1e
-3

12
.0

6
14

.0
4

-
-

03
.7

2
1e
-2

05
.9

5
07

.2
1

-
-

02
.1

9
1e
-4

59
.4
0

65
.2
5

-
-

18
.4
6

1e
-3

27
.8
3

32
.1
5

-
-

11
.0
6

1e
-5

+
+

*
*

+
1e
-4

+
+

*
*

+
1e
-6

+
+

*
*

*
1e
-5

+
+

*
*

+
1e
-7

+
+

*
*

*
1e
-6

+
+

*
*

+
1e
-8

+
+

*
*

*
1e
-7

+
+

*
*

*
1e
-8

+
+

*
*

*
pa

ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
is

o
S
E
,2

−
4
,1

0,
0)

K
is

o
S
E

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ex

p
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
ar

d
S
E
,0

,5
,0

)
K

is
o

S
E

f1
2
(3
–D

)
f1
1
(5
–D

)
∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

1e
2

02
.0

5
01

.7
2

00
.3
7

00
.2
7

00
.9
1

00
.4
6

1e
2

03
.0

2
-

01
.3

6
1e
1

01
.4

2
02

.2
7

-
00

.6
7

00
.3
1

00
.6
3

1e
1

03
.2

4
-

01
.5

1
1e
0

-
02

.2
8

-
-

00
.4
8

00
.6
5

1e
0

04
.3

7
-

01
.9

6
1e
-1

-
02

.7
6

-
-

-
-

1e
-1

09
.7

9
-

03
.1
2

1e
-2

-
03

.7
8

-
-

-
-

1e
-2

27
.1
2

-
07

.5
1

1e
-3

-
19

.5
6

-
-

-
-

1e
-3

47
.8
2

-
13

.1
7

1e
-4

*
+

*
*

*
*

1e
-4

+
*

+
1e
-5

*
+

*
*

*
*

1e
-5

+
*

*
1e
-6

*
+

*
*

*
*

1e
-6

+
*

*
1e
-7

*
+

*
*

*
*

1e
-7

+
*

*
1e
-8

*
+

*
*

*
*

1e
-8

+
*

*

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,8

,2
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
v
=

5 2
M

at
ér

n
,0

,1
0,

0.
1)

K
is

o
S
E

K
ar

d
S
E

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

K
is

o
S
E

T
ab

le
3.
5:

Sp
ee
d-
up

of
S-
C
M
A
-E

S
us
in
g
in
di
vi
du

al
-
an

d
ge
ne

ra
ti
on

-b
as
ed

E
C

st
ra
te
gi
es

an
d
M
G
SO

,
co
m
pa

re
d
to

C
M
A
-E

S
w
it
ho

ut
a
su
rr
og

at
e
m
od

el
–
fu
nc
ti
on

s
f

1
3
−
f

16
(s
ee

Se
ct
io
n
3.
2.
3.
3
fo
r
de

ta
ils
).

39

3. Realization

f1
2
(5
–D

)
f1
1
(1
0–

D
)

∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

1e
2

01
.6

4
01

.7
0

-
00

.0
4

00
.7
8

1e
3

00
.8
9

01
.1
4

00
.1
7

00
.6
4

00
.2
7

1e
1

05
.6

0
06

.6
1

-
-

04
.7

3
1e
2

03
.6

5
04

.1
1

-
-

01
.0
5

1e
0

19
.2
4

33
.0
1

-
-

28
.8
6

1e
1

08
.5

1
09

.3
5

-
-

02
.6
1

1e
-1

+
+

*
*

+
1e
0

09
.7

8
10

.5
9

-
-

02
.1
0

1e
-2

+
+

*
*

+
1e
-1

20
.0

2
21

.5
0

-
-

-
1e
-3

+
+

*
*

+
1e
-2

+
+

*
*

*
1e
-4

+
+

*
*

*
1e
-3

+
+

*
*

*
1e
-5

+
+

*
*

*
1e
-4

+
+

*
*

*
1e
-6

+
+

*
*

*
1e
-5

+
+

*
*

*
1e
-7

+
*

*
*

*
1e
-6

+
+

*
*

*
1e
-8

*
*

*
*

*
1e
-7

*
+

*
*

*
1e
-8

*
*

*
*

*

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,4

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
is

o
S
E
,2

−
2
,5

,0
)

K
is

o
S
E

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
v
=

5 2
M

at
ér

n
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
is

o
S
E
,2

−
4
,5

,0
)

K
is

o
S
E

f1
2
(1
0–

D
)

f1
2
(2
0–

D
)

∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

∆
f o

p
t

S-
C
M
A
-E

S
-
ge
ne

ra
ti
on

E
C

st
r.

S-
C
M
A
-E

S
-
in
di
vi
du

al
E
C

st
r.

M
G
SO

1e
2

08
.9

8
-

01
.8

8
02

.0
2

1e
3

01
.3
9

00
.0
5

00
.1
8

00
.4
2

1e
1

06
.8

3
-

-
01

.0
5

1e
2

02
.7

3
-

-
00

.0
3

1e
0

17
.6

1
-

-
-

1e
1

07
.2

4
-

-
-

1e
-1

+
*

*
*

1e
0

59
.0
6

-
-

-
1e
-2

+
*

*
*

1e
-1

+
*

*
*

1e
-3

+
*

*
*

1e
-2

+
*

*
*

1e
-4

+
*

*
*

1e
-3

+
*

*
*

1e
-5

+
*

*
*

1e
-4

+
*

*
*

1e
-6

*
*

*
*

1e
-5

+
*

*
*

1e
-7

*
*

*
*

1e
-6

*
*

*
*

1e
-8

*
*

*
*

1e
-7

*
*

*
*

1e
-8

*
*

*
*

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

K
is

o
S
E

K
ar

d
S
E

pa
ra
m
:

(K
is

o
S
E
,8

,1
)

(K
ar

d
S
E
,0

,5
,0

.1
)

(K
is

o
S
E
,0

,1
0,

0)
K

is
o

S
E

T
ab

le
3.
6:

Sp
ee
d-
up

of
S-
C
M
A
-E

S
us
in
g
in
di
vi
du

al
-
an

d
ge
ne

ra
ti
on

-b
as
ed

E
C

st
ra
te
gi
es

an
d
M
G
SO

,
co
m
pa

re
d
to

C
M
A
-E

S
w
it
ho

ut
a
su
rr
og

at
e
m
od

el
–
fu
nc
ti
on

s
f

17
−
f

20
(s
ee

Se
ct
io
n
3.
2.
3.
3
fo
r
de

ta
ils
).

40

3.2. Experimental Evaluation

3.2.3 Results and their assessment

This section describes all outputs of the experimental evaluation and perfor-
mance testing.

3.2.3.1 Best-fitness progress diagrams

Figures 3.6, 3.7, 3.8, 3.9 and 3.10 show the examples of the best-fitness progress
with the best observed settings (see Table 3.3 for details). Medians and the
first and third quartiles of the best fitness reached are shown; medians and
quartiles measured for MGSO and S-CMA-ES on 15 and 10 independent runs
(for both EC strategies), respectively.

3.2.3.2 Parameter table

Table 3.2 shows used parameters in our evaluations using the methods MGSO
and S-CMA-ES. The symbols Kiso

SE, Kard
SE , Kexp, K

ν= 5
2

Matérn, denote, respecti-
vely, the isotropic squared exponential, squared exponential with automatic
relevance determination, exponential and Matérn with parameter ν = 5

2 co-
variance functions. J 1,D denotes the vector of ones of length equal to the
dimension D of the input space.

3.2.3.3 Result table

Table 3.3 shows the speed-up of S-CMA-ES and MGSO, compared to CMA-ES
without a surrogate model. For the respective targets (distances to the true
optimum ∆fopt), speed-up of the expected running time (ERT) is shown. ERT
is the number of function evaluations needed to reach the target divided by the
ratio of the targets which reached the target. Stopping criteria: the distance
10−8 to the true optimum and 100 ∗D original fitness function evaluations.

The first column in each box corresponds to the overall best covariance
function and EC settings of the S-CMA-ES: (covariance function,
#(model generations), σsample) = (Kiso

SE , 8, 1). The second column corresponds
to the best covariance function and EC settings in terms of the average speed-
up for the respective function-dimension combination, if there was any better
than the overall best observed settings. The last two columns in each box show
the speed-up of the MGSO with both employed covariance functions.

Signs “-” instead of the speed-up values mean that, unlike the CMA-ES,
no run of the considered method (S-CMA-ES or MGSO) was able to reach
that target. Signs “+” mean that, unlike the employed method, no CMA-ES
run (out of 20) was able to reach the target. Signs “*” mean that neither
the considered method nor CMA-ES were able to reach the target. Speed-ups
written in bold mark cases where the S-CMA-ES’ or MGSO’s median of the
ERT is significantly lower than the median of the CMA-ES according to the
one-sided Wilcoxon’s test on the significance level α = 0.05.

41

Conclusion

In this thesis, two optimization approaches based on Gaussian processes were
tested on the set of niching functions from the CEC 2013 competition [1],
and were compared to the state-of-the-art evolutionary approach in black-box
optimization, CMA-ES. One of them is Model Guided Sampling Optimization
[8], the other approach, S-CMA-ES, consists in using GP as a surrogate model
for CMA-ES.

For this purpose, the framework integrating the methods was designed and
implemented. Afterwards, it was used for performance testing of the integrated
methods on benchmark functions and for comparison of the speed-up of both
methods using different settings with CMA-ES with no surrogate model.

In the case of S-CMA-ES, two evolution control (EC) strategies were used,
the individual- and generation-based EC strategies. Although, S-CMA-ES
using generation-based EC strategy outperformed MGSO, both methods
showed the performance improvement in most cases. On the other hand, the
individual-based EC strategy brought the worst results in comparison to other
methods. We also observed, that S-CMA-ES performs better using generation-
based EC setting with more consequent model-evaluated generations (8 in our
case), unmodified step size and the isotropic squared exponential covariance
(SE) function. MGSO was tested only with two covariance functions, the iso-
tropic SE function and SE function using automatic relevance determination,
better results were achieved again for the former.

43

Bibliography

[1] Li, X.; Engelbrecht, A.; Epitropakis, M. G. Benchmark Functions
for CEC’2013 Special Session and Competition on Niching Methods
for Multimodal Function Optimization’. 2013. Available from: http:
//goanna.cs.rmit.edu.au/~xiaodong/cec13-niching/competition/

[2] Chaput, J. C.; Szostak, J. W. Evolutionary optimization of a nonbiological
ATP binding protein for improved folding stability. Chemistry & Biology,
volume 11, no. 6, June 2004: pp. 865–874.

[3] Arian Nik, M.; Fayazbakhsh, K.; Pasini, D.; et al. A comparative study
of metamodeling methods for the design optimization of variable stiffness
composites. Composite Structures, volume 107, 2014: pp. 494–501, ISSN
0263-8223.

[4] Tesauro, G.; Jong, N. K.; Das, R.; et al. On the use of hybrid rein-
forcement learning for autonomic resource allocation. Cluster Computing,
volume 10, no. 3, 2007: pp. 287–299. Available from: http://dblp.uni-
trier.de/db/journals/cluster/cluster10.html#TesauroJDB07

[5] Hansen, N. The CMA evolution strategy: a comparing review. In Towards
a new evolutionary computation. Advances on estimation of distribution
algorithms, edited by J. Lozano; P. Larranaga; I. Inza; E. Bengoetxea,
Springer, 2006, pp. 75–102.

[6] Loshchilov, I. Surrogate-Assisted Evolutionary Algorithms. Theses, Uni-
versité Paris Sud - Paris XI ; Institut national de recherche en inform-
atique et en automatique - INRIA, Jan. 2013. Available from: https:
//tel.archives-ouvertes.fr/tel-00823882

[7] Jones, D. R.; Schonlau, M.; Welch, W. J. Efficient Global Optimi-
zation of Expensive Black-Box Functions. J. of Global Optimization,

45

http://goanna.cs.rmit.edu.au/~xiaodong/cec13-niching/competition/
http://goanna.cs.rmit.edu.au/~xiaodong/cec13-niching/competition/
http://dblp.uni-trier.de/db/journals/cluster/cluster10.html#TesauroJDB07
http://dblp.uni-trier.de/db/journals/cluster/cluster10.html#TesauroJDB07
https://tel.archives-ouvertes.fr/tel-00823882
https://tel.archives-ouvertes.fr/tel-00823882

Bibliography

volume 13, no. 4, Dec. 1998: pp. 455–492, ISSN 0925-5001, doi:
10.1023/A:1008306431147. Available from: http://dx.doi.org/10.1023/
A:1008306431147

[8] Bajer, L.; Charypar, V.; Holeňa, M. Model guided sampling optimization
with Gaussian processes for expensive black-box optimization. In Blum,
C. (ed.), GECCO Companion ’13: New York: ACM, 2013, pp. 1715–1716.

[9] Bajer, L.; Holeňa, M. Two Gaussian Approaches to Black-Box Op-
tomization. CoRR, volume abs/1411.7806, 2014. Available from: http:
//arxiv.org/abs/1411.7806

[10] Loshchilov, I.; Schoenauer, M.; Sebag, M. Self-adaptive surrogate-assisted
covariance matrix adaptation evolution strategy. In Proceedings of the
fourteenth international conference on Genetic and evolutionary compu-
tation conference, GECCO ’12, New York, NY, USA: ACM, 2012, ISBN
978-1-4503-1177-9, pp. 321–328.

[11] Larrañaga, P.; Lozano, J. Estimation of Distribution Algorithms: A new
tool for evolutionary computation. Kluwer Academic Pub, 2002.

[12] Bajer, L.; Charypar, V. Gaussian Process sampling EDA algorithm. 2013.

[13] Rasmussen, C.; Williams, C. Gaussian Processes for Machine Learning.
2013.

[14] MATLAB. Release 2013b. Natick, Massachusetts: The MathWorks, Inc.,
2015.

[15] Rasmussen, C.; Williams, C. Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning, Cambridge, MA, USA:
MIT Press, Jan. 2006, 248 pp. Available from: http://mitpress.mit.edu/
026218253X

46

http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1023/A:1008306431147
http://arxiv.org/abs/1411.7806
http://arxiv.org/abs/1411.7806
http://mitpress.mit.edu/026218253X
http://mitpress.mit.edu/026218253X

Appendix A
Acronyms

CMA-ES Covariance Matrix Adaptation Evolution Strategy

EA Evolutionary algorithm

EC Evolution control

EGO Efficient Global Optimization

GP Gaussian process

MGSO Model Guided Sampling Optimization

PoI Probability of improvement

47

Appendix B

Contents of enclosed CD

src..the directory of source codes
framework...................the directory of framework source codes
thesis the directory of LATEX source codes of the thesis

text...the thesis text directory
DP_Andrej_Kudinov_2015.eps..........the thesis text in EPS format
DP_Andrej_Kudinov_2015.pdf......... the thesis text in PDF format

README.txt........................the file with CD contents description

49

	Introduction
	State of the Art
	Black-box optimization
	Gaussian Processes

	Analysis and design
	Methodology of black-box optimization
	Integration

	Realization
	Implementation
	Experimental Evaluation

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

