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Abstrakt

Tato práce popisuje metody rekonstrukce 3D obrazu. Metody rekonstrukce
jsou porovnávány z hlediska využit́ı pro parkovaćıho asistenta vybaveného
webovými kamerami. Byl navržen algoritmus pro detekci objekt̊u ve scéně a
pro odhad jejich vzdálenost́ı. Práce se dále zabývá detekćı obrubńıku a detekćı
člověka podle jeho dolńıch končetin. Jednotlivé algoritmy jsou vyhodnoceny
jak z hlediska úspěšnosti detekce a přesnosti, tak i časové náročnosti.

Kĺıčová slova stereo obraz, SfM, detekce obrubńıku, detekce lidské nohy

Abstract

Thesis explains methods for 3D reconstruction of scene. Reconstruction meth-
ods are compared in terms of application for parking assistant using web cam-
eras. Algorithms for detection of objects in scene and estimation of their
distances are proposed. Further, thesis describes methods for detection of
curbs and human being based on legs. Successful detection rate and precision
of particular methods is also presented in this thesis.

Keywords stereo imaging, SfM, curb detection, human leg detection
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Introduction

Automobile industry experienced growth in connection with information tech-
nologies in the past few years. Renowned companies announced development
of self-driving cars that happened to be objective for next decade. Self-driving
cars contain various sensors enabling detection of road lines, road signs, traffic
lights or obstacles which might affect safety of ride. All mentioned features
have mostly been contributed to ordinary cars and gradually facilitate a car
driving.

A parking assistant is also among the mentioned features that are daily
exploited by millions of drivers. Currently, most of new cars have a built-in
radar sensor that is able to measure distance between the sensor and object.
A detection of close object helps to back a car, whereas no one is able to
see right behind a car while parking. Some cars are equipped with a back
up camera. A necessity and usefulness of a parking assistant has even been
confirmed by US law that requires each car to possess a back up camera by
20181. On the other hand, the radar sensor also has its own drawback – single
purpose. There are no other scenarios for which it might be utilized.

While most of cars possess radar or laser sensor for an adaptive cruise
control and collision avoidance system, Subaru proposed and implemented
system based on stereo cameras. Stereo cameras preserve spatial information
about scene and allow to run image processing algorithms, e.g. distinguish-
ing between vehicles and pedestrians. It makes stereo cameras multipurpose
equipment. Current enhanced digital sensors are able to see in the dark,
therefore the prior advantage of radar and laser sensors decrease. Moreover,
an overall price of stereo based system is generally lower2. According to spe-
cification of the newest Subaru stereo system called 2015 Subaru EyeSight3,
differential speed to which the system is able to respond is up to 30 mph.

1http://www.cnet.com/news/u-s-requiring-back-up-cameras-in-cars-by-2018
2http://www.subaru.com/engineering/eyesight.html
3http://www.planetsubaru.com/2015-subaru-eyesight-capability-revealed.htm
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Introduction

In this thesis we aim to create a simple parking assistant using web cameras
that enable to detect a stationary object in a colliding distance, detect an
edge of a potentially dangerous object, such as curb, and classify an object
as human being or another object. All mentioned features are designed to be
processed in real-time.

This thesis is divided into two parts: theoretical and practical. The first
chapter of theoretical part describes camera models, their properties and cal-
ibration methods. The next two chapters explain state of the art methods
that can be used for 3D scene reconstruction. The chapter 2 introduces ste-
reo imaging and the chapter 3 examines structure from motion. Practical
part proposes design of parking assistant in chapter 4. Further, it provides
a description of implementation details (chapter 5) and includes evaluation
of employed methods (chapter 6). Chapter 7 discusses results of thesis and
finally the thesis is finished by conclusion.

2



Chapter 1

Camera Models and Calibration

An understanding of camera models is a crucial part from which other import-
ant aspects and algorithms are derived. It allows to incorporate parameters
of real cameras and thus enhance acquired images. A process of calibration
is employed to obtain fundamental parameters of particular camera, because
these parameters vary from piece to piece.

This chapter provides a basic understanding of a pinhole camera model and
later explains parameters of commonly used cameras and their imperfections.
The last part of chapter explains a calibration of monocular camera.

1.1 Camera Models

A basic camera model, which we firstly introduce, is called the pinhole camera
model. It consists of an image and pinhole plane with a small aperture in
a center. This model reacts to rays coming towards to the pinhole plane.
Only the rays, which pass through the aperture, are projected onto the image
plane. All other rays are blocked. Due to the aperture projection is upside
down than an actual object or a scene appears. The pinhole camera model
defines a distance between the image plane and pinhole plane as focal length
(f). Distance between the pinhole plane and observed point of object in scene
indicates depth. Using these information we can describe the pinhole camera
model by the equation

−x = f
X

Z
, (1.1)

where x is a reflection on the image plane of object’s point X, both expressed
as length vectors. Parameter Z is a distance between the pinhole plane and
the object X. Finally, f indicates the focal length.

The pinhole camera mode is not usually used for computer vision tasks.
However, a derived model [1] (fig. 1.1) is utilized to simplify matters. One
of the differences is that a captured object does not appear upside down

3



1. Camera Models and Calibration
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Figure 1.1: Derived camera model from the pinhole camera model.

anymore. The reason for that is because the image plane and the pinhole
plane are swapped. The aperture is replaced by a center of projection located
behind the image plane. Every ray now comes through the image plane to
the center of projection. A point where the ray intersects the image plane is
called a principal point and all of them create an image of a distant object.
Since the image is rightside up, the equation of model has slightly changed to
the form

x

f
=
X

Z
. (1.2)

1.2 Camera Parameters

Camera parameters can be divided into two sections: intrinsics and extrins-
ics parameters. The intrinsics parameters include a camera intrinsics matrix
and distortion coefficients. These parameters describe a particular camera.
Hence, once we calculate intrinsics parameters we can use them for that cam-
era whenever after. On the other hand, the extrinsics parameters have to be
computed for each new view of camera. The extrinsics parameters comprise
of rotation and translation of camera with respect to preceding position.

1.2.1 Camera Intrinsics Matrix

A center of imager in real cameras is commonly not on the optical axis. In
order to define (eq. 1.3) the model more precisely we present two new para-
meters cx and cy.

x = fx

(
X

Z

)
+ cx, y = fy

(
Y

Z

)
+ cy (1.3)
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1.2. Camera Parameters

These parameters express a shift of the optical center of imager. Another
refinement of the model is because of shape of pixels in imager. Their shape
occurs more often as rectangular than square one. Therefore, a computation
of focal length (fx = Fsx, respectively fy = Fsy) incorporates a physical focal
length F and a size of the individual imager elements (sx, respectively sy).

One of the conventions of image plane represention is to transform points
to homogenous coordinates. The transformation causes an enlargement of
dimensions by one. Homogenous coordinates enable to express the same point
in various ways, because points with proportional coordinates belong to the
same point. The conversion from homogenous coordinates back to former ones
can be performed by dividing them through by the last coordinate value.

Since homogenous coordinates are employed, the point q = [x y z]T in
the image plane consists of three coordinates. The projection of the points in
the scene into the image plane can be calculated by projective transformation
defined as q = MQ, where M (eq. 1.4) denotes a camera intrinsics matrix [2]
and Q is the point in the scene.

M =

fx s cx
0 fy cy
0 0 1

 (1.4)

The only camera property, which have not been mentioned yet, is skew of
the pixel array in the imager (denoted as s). For the sake of simplicity it can
be safely set to zero [3].

1.2.2 Distortion Coefficients

The pinhole camera model is not frequently used for recording of images. This
model cannot absorb enough light per unit of time and exposure lasts unpleas-
antly long time. It results in using cameras with lenses instead. Unfortunately
they also have their own drawbacks, called lens distortions. Phenomenon of
the lens distortion appears mostly at the cameras including cheap lenses.

There are two main types of lens distortions: radial and tangential. The
distortion coefficients encode lens imperfections within 5 coefficients and can
be used for image correction called an undistortion.

Radial distortions are caused by shape of lens, because manufactured lenses
are imperfect. This distortion introduces a ”barrel” effect which defects the
image mainly at edges. Pixels closer to the center of imager are less affected.
The distortion in the center of imager is 0 and becomes larger with distance
from the center. The radial distortion of x coordinate can be eliminated using
equation 1.5, where ki denotes terms of a Taylor series of distortion function.
The parameter r expresses the distance from center of imager for a particular
pixel. The correction of y coordinate is computed in a similar manner.

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6) (1.5)

5



1. Camera Models and Calibration

The tangential distortion is a result of mechanical inaccuracy when the lens
and imager are not parallel. A distorted image can be recovered by equation
1.6, where p1 and p2 describe tangential distortion coefficients.

xcorrected = x+ [2p1y + p2(r
2 + 2x2)]

ycorrected = y + [p1(r
2 + 2y2) + 2p2x]

(1.6)

1.3 Calibration

The calibration is a process of finding both camera parameters: intrinsics and
extrinsics. The intrinsics parameters can be used in order to correct a distorted
image. Rotation and translation information, contained in the extrinsics para-
meters, gives us more or less precise movement estimation of camera within
scene. The calibration is an essential part of algorithms requiring usage of
calibrated camera and their performance greatly depends [2] on calibration
accuracy. In this section we shortly describe two types of calibration.

A first method [3] keeps calibration as simple as possible. It assumes
square straight pixels, alignment of imager at the center of the image and
no lens distortions. We should also emphasize that without any modifications
proposed calibration works only for the same image resolution and orientation
as was employed for calibration. To setup a calibration environment we need
flat object with known dimensions X, Y and determine a distance Z from
object to camera. If we want to meet our expectations about calibration we
have to adjust a camera and calibration object to be parallel. Then we take
a picture of object and measure a size of object x and y in pixels. Partial
computations are substituted to early introduced camera intrinsics matrix.

M =


x

X
Z 0

col

2

0
y

Y
Z

row

2

0 0 1

 (1.7)

More robust calibration approach [4] comes with an idea of detection
planar pattern in different positions. Simple chessboard [1] has become one
of the options. It is recommended not to use chessboard with the same grid
in both dimension due to ambiguity of position. The chessboard pattern has
the advantage of simple detection of corners that are symmetrically aligned.
Fundamental preprocessing steps, like equalizing histogram or thresholding,
typically precede the calibration process.
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1.3. Calibration

The calibration process employs a mapping of pattern on imager of camera.
This mapping is called a planar homography and is formulated as

q̃ = sHQ̃, 4 (1.8)

where H represents a homography matrix, q̃ is a point on imager and Q̃ is its
corresponding mapping. The variable s denotes scale factor. The homography
matrix can be decomposed into two parts: camera intrinsics matrix M (eq.
1.4) and extrinsics matrix W containing a physical tranformation. The ex-
trinsics matrix is composed of a rotation matrix and translation vector. As we
see from equation 1.8 there is no need to know camera intrinsics matrix in or-
der to compute homography. Therefore, we can focus on another six unknown
parameters: three angles from the rotation matrix and three offsets from the
translation vector. From each image with detected pattern four points (x, y)
can be derived. Hence, we can compose eight equations which are ample to
calculate six unknown parameters of each view. However, as result of calibra-
tion there should be camera intrisics matrix as well. That adds to our set of
equations another nine parameters introduced in section 1.2 that need to be
served.

Our sought parameters are deduced gradually acording to listed order:
camera intrinsics parameters, rotations and offsets and finally lens distortions.
A derivation [5] is built upon knowledge that rotation vectors are orthonor-
mal. It leads to constraint hT1M

−TM−1h1 = hT2M
−TM−1h2 which meets

requirements. The part of the equation M−TM−1 produces 3-by-3 symmet-
rical matrix B (eq. 1.9) which is later reduced to six-dimensional vector b.

B =



1

f2x
0

−cx
f2x

0
1

f2y

−cy
f2y

−cx
f2x

−cy
f2y

c2x
f2x

+
c2y
f2y

+ 1


(1.9)

A final step consists of solving several equations with elements from ho-
mography matrix H and vector b on the other side. Particular results are
then calculated [5] with simple formulas. Sometimes it can happen that found
rotation matrix R does not satisfy RTR = RRT = I5 condition and correction
is required. A common solution employs factorization of rotation matrix using
SVD. A unitary matrix of decomposition is replaced with an identity matrix
and multiplied again to create a rotation matrix.

4Both q̃ and Q̃ are expressed using homogenous coordinates as follows q̃ = [x y 1]T and
Q̃ = [X Y Z 1]T .

5I denotes identity matrix.
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1. Camera Models and Calibration

(a) (b)

Figure 1.2: Figure displays comparison of image (a) before and (b) after un-
distortion process. Image courtesy of [1].

Calculations in preceding parts of camera calibration assumed no distor-
tions. However, these parameters have to be retrieved in order to undistort
image (fig. 1.2). That can be performed [6] by following equation

[
xp

yp

]
= (1 + k1r

2 + k2r
4 + k3r

6)

[
xd

yd

]
+

[
2p1xdyd + p2(r

2 + 2x2d)

p1(r
2 + 2y2d) + 2p2xdyd

]
, (1.10)

where xd, yd is distorted position on image plane and xp, yp determines a
corrected position of distorted point.

A question remains how many images it is necessary to perform sufficiently
accurate calibration. According to [1] one is able to compute calibration within
two images. Nonetheless, they advice to utilize at least ten images of rather
larger chessboard in different positions.
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Chapter 2

Stereo Imaging

A first stereo vision system which we could have encountered was through our
eyes. Due to our stereo visual system we can perceive the third dimension
called depth. Basically, each eye captures an image of scene from different
point and then they are put together to induce a depth perception. Through-
out the chapter we presume that images have already been undistorted.

This chapter explains stereo imaging methods, namely a rectification, cor-
respondence and triangulation, leading to acquisition of depth from stereo pair
of images. However, firstly we introduce epipolar geometry as fundamental
part of stereo imaging.

2.1 Epipolar Geometry

The aim of stereo imaging is to find corresponding points in both images,
left and right one6. If we approach searching for these points without any
constraints, we end up with inefficient solution, because we have to always
search through all image. Fortunately, there is a way using epipolar geometry
which saves computation time.

The epipolar geometry introduces a model of two cameras depicted in
figure 2.1. The model consists of two centers of projection, Ol and Or, related
projective planes, Πl and Πr, and lastly point P from scene. Projection of
point P onto image planes is expressed by pl for the left image plane and pr for
the right one. The most fundamental objects are epipoles, epipolar lines and
epipolar planes The epipoles, el and er, lie on its image planes accordingly
to their side and are characterized as images of the center of projection of
the camera from the other side. The epipolar lines (elpl, respectively erpr)
intersect epipoles and projection points and form together with point P the
epipolar plane.

6In this thesis we assume horizontal alignment of stereo cameras, although algorithms
work fine for vertical adjustment as well.

9



2. Stereo Imaging

b b
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Figure 2.1: Representation of epipolar geometry

It is impossible to estimate depth of point P with only one image, because
that point can be located anywhere on the line Orpr, respectively Olpl. How-
ever, that line is projected on the other image plane and matches its epipolar
plane. Due to that there is relation between point pl (respectively pr) in one
image plane and epipolar line erpr (respectively elpl) in the other one. This
cognation is referred as epipolar constraint.

The epipolar geometry can be represented by fundamental matrix F [7]
which defines a relation (eq. 2.1) between pixel coordinates of stereo images.

pTl Fpr = 0, (2.1)

The fundamental matrix includes information about rotation and translation
of right camera relatively to left one7. It also contains intrinsics parameters
of cameras.

Another way of formulating epipolar geometry is by essential matrix E [7].
The essential matrix does not possess any information about cameras, hence
we know only geometry of two cameras. Due to that minor difference8, the
essential matrix can be easily derived from fundamental matrix as

E = M ′TFM, (2.2)

where M is camera intrinsics matrix (eq. 1.4).

The last important fact about epipolar geometry is an epipolar ordering
constraint. This constraint relates to two horizontally aligned points. The
order of these points is preserved. Therefore, if they are both visible in one

7We assume that left camera has no rotation and translation because it is aligned with
world coordinates.

8In case we rectify images (sec. 2.3) and divide points by focal lengths, fundamental and
essential matrix become equal [1].
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2.2. Stereo Calibration

image and occur in specific order, that order is preserved even for another
image where they both also appear.

2.2 Stereo Calibration

With the knowledge of epipolar geometry we can proceed to stereo calibration;
a method estimating intrinsics parameters of each camera and rotation and
translation of right camera relative to left one.

Matching points positioned on planar area are expected as the input of
stereo calibration. In the first phase each camera is calibrated individually
according to explanation in the section 1.3. Originally both cameras have
their own coordinates, denoted with subscript l, respectively r. Therefore,
an arbitrary point P have coordinates Pl for left image and Pr for right one.
Using a rotation matrix Rl and translation vector Tl, respectively Rr and Tr,
which we have obtained at the first phase, we can declare their relations as
Pl = RlP +Tl and Pr = RrP +Tr. Recombination of these equations leads to

R = Rr(Rl)
T

T = Tr −RTl,
(2.3)

where R is a rotation matrix of right camera relative to left one and T is
its translation. In the second phase equation 2.3 is solved, and thus rotation
matrix R and translation vector T are retrieved. Individual subresults vary
because images used to stereo calibration are usually affected by noise. One of
the possible proposed solutions [1] is to employ Levenberg-Marquardt iterative
algorithm which minimizes an error.

2.3 Rectification

Section 2.1 revealed the epipolar constraint that facilitates searching for cor-
responding points. However, it does not guarantee common direction of all
epipolar lines, and thus computation of corresponding points is still not satis-
factory. The rectification method transforms left and right image in a way that
they are both mutually row-aligned. After images are rectified, corresponding
points lie on the same row of image.

2.4 Correspondence

The correspondence is method which relates points in one image to points
in the other one. Each couple of corresponding points differ in position on
image planes and their relative distance between them is known as disparity.
The disparity can be assigned only to points which are located on both image
planes. Otherwise they are called occluded. The outcome of correspondence is

11



2. Stereo Imaging

du

v

Il Ir

Figure 2.2: Block matching representation

disparity map that stores information about distance between all correspond-
ing points. The next section 2.5 depicts how to employ disparity map in order
to reconstruct 3D scene.

Methods [8] applied to obtain disparity map are divided to local and global.
The local methods target on neigborhoods of examined points. Hence, it poses
disadvantage determined by the size of neighborhood. There can also arise
an issue with ambiguity of compared regions e.g. uniform texture or occluded
regions. The global methods are not limited by neighborhood, therefore they
can perform better on ambiguity regions. On the other hand, computation
time of global methods is higher [8].

2.4.1 Local Methods

The local methods are further divided into three categories: block matching,
gradient methods, and feature matching9. The block matching (pseudocode
of left-to-right matching in algorithm 1) introduces a template which stands
for a block of image with a point of interest in the middle. The template is
then compared with blocks contained in search region of the other image. Due
to epipolar constraint and rectification, the search region is row-aligned with
the template. Figure 2.2 displays a process of block matching where the Il
determines left image and Ir right one. Coefficients u and v define the size of
neighborhood and d expresses maximum predefined disparity.

There are many different metrics [8] which can be used for comparison of
blocks. Sum of absolute differences (SAD)

∑
u,v

|Il(u, v)− Ir(u+ d, v)| (2.4)

9Gradient methods and feature matching are addressed in chapter 3.
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2.4. Correspondence

and sum of squared differences (SSD)∑
u,v

(Il(u, v)− Ir(u+ d, v))2 (2.5)

belong to basic statistical methods.
Another approach is rank [9] which first performs local nonparametrical

transformations on input images and then apply any of statistical methods
(e.g. SAD) mentioned earlier. The local nonparametrical transformation is
performed for each point that is replaced by a number of neighbor points with
less intensity than a center point possess. By using this transformation we lose
part of descriptive information of image, and thus decrease a probability of
correctly found correspondence. The method called census [9] is considered as
eligible replacement. Census also applies local nonparametric transformation,
but preserves geometrical information about vicinity. The output of particular
points are binary votes which are composed of comparisons between the center
point and each of points in the neighborhood. When the center point is
higher, then census returns 1, otherwise 0. This binary encoding is penalized
by enlargement of dimensionality by factor of neighborhood size. Finally,
generated binary strings are matched using Hamming distance.

Algorithm 1 Block matching

1: M ← auxiliary matrix with the size of image and large initial values
2: D ← disparity matrix with the size of image
3:

4: for k ← 0 to maxDisparity do
5: Ir ← ShiftToRight(Ir, k)
6: C ← Compare(Il, Ir)
7:

8: for all i← 0 to rows do
9: for all j ← 0 to cols do

10: if C[i, j] < M [i, j] then
11: M [i, j]← C[i, j]
12: D[i, j]← k

2.4.2 Global Methods

As we have mentioned earlier, the global methods are not constrained by local
neighborhood. In contrast, this great asset of calculation superior disparity
maps requires longer computation time. We shortly introduce dynamic pro-
gramming [10] and graph cut [8].

Dynamic programming decomposes a problem to subproblems which are
then solved in continuous stages and utilized to obtain a final disparity map.
Global cost function based on epipolar ordering constraint is determined as

13



2. Stereo Imaging

minium-cost path of each pair of corresponding rows of images. All possible
combinations of pixel correspondences create a square matrix with dimensions
equal to width of image. For each pair the cost of potential match is com-
puted and then selected that with the lowest value. Thereafter, the costs of
individual paths are summed in order to get the cost of optimal path.

The latter global method is called graph cut and seeks for a maximum
flow in a graph. The graph cut is defined by directed graph G = (V,E), set
of vertices V and set of edges E. The main vertices are source, denoted as s,
and t expresses sink . The rest of them is defined as three-dimensional vectors

V ∗ = {(x, y, d), x ∈ [0, xmax], y ∈ [0, ymax], d ∈ [0, dmax]}. (2.6)

The flow starts from s and leads to all vertices V ∗ with coordinates (x, y, 0).
Each of them is then connected to vertices V ∗ with coordinates (x, y, dmax).
Finally, they are linked to t. Each edge has assigned flow capacity that is
computed as cost of connected adjacent nodes. The cost is directly propor-
tional to amount of flow which can be sent from s to t through particular edge.
To obtain vertex correspondences we perform cut of edges between connected
vertices that have the lowest capacities.

Left row

R
ig
h
t
ro
w

(a)

b

b

s

t

dx

y

(b)

Figure 2.3: Figure a displays matrix, computed by dynamic programming,
with combination of all pixels in two corresponding rows. Figure b depicts
model of graph cut.

2.4.3 Evaluation

A performance of particular correspondence methods varies and depends on
their parameters. In order to achieve quantitative evaluation of these methods
it is required10 to possess a ground truth. The ground truth is comprehended

10There are also methods [11] which evaluate correspondence methods without ground
truth, however we do not consider them in this thesis.
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2.5. Triangulation

as the best result that could be retrieved by algorithm. It is basically the dis-
parity map with correct disparities. Among the other evaluation methods [10]
there are two called root-mean-squared error (RMSE)

R =

√
1

N

∑
x,y

|dC(x, y)− dT (x, y)|2 (2.7)

and percentage of bad matching pixels

B =
1

N

∑
x,y

(|dC(x, y)− dT (x, y)| > δd), (2.8)

where N denotes total number of pixels, dC is computed disparity map and
dT is ground truth disparity map. The latter method includes extra disparity
error tolerance δd. This constant sets a minimal correspondence difference
that is counted as error.

2.5 Triangulation

The last step of stereo imaging, named triangulation, is utilized to reconstruct
3D scene. The disparity and depth are inversely proportional [1], and therefore
one can employ disparity map for depth derivation. Equation 2.9 represents
that conversion where f11 denotes focal length of cameras and T is distance of
centers of projection between cameras. Objects closer to camera have smaller
disparity and vice versa. Due to inverse relation, depth resolution is high only
for objects closer to camera and decreases with distance.

Z =
fT

xl − xr
=
fT

d
(2.9)

11We expect the same focal length for both cameras of stereo rig.
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Chapter 3

Structure from Motion

Structure from motion (SfM) [12] is another method for reconstruction of 3D
scene. In contrast to stereo imaging there is no need to have stereo rig with
dependent calibrated cameras. SfM requires only a couple12 of independently
calibrated cameras, thus there is available camera intrinsics matrix created for
each of them. As an alternative to pair of cameras there can be employed only
single monocular camera that captures a scene. Continously taken images re-
place a necessity of the second camera, however this option is constrained by
minimal movements in scene, otherwise reconstruction could become inaccur-
ate.

While the stereo calibration uses chessboard for estimation of translation
and rotation between cameras, SfM needs to find own specific matching points
that can be utilized for computation of fundamental matrix. An accuracy and
correctness affect quality of estimated spatial relation between cameras or
between captured images.

This chapter focuses on different approaches that find corresponding points
in pair of images. There exists a couple of methods used for these purposes,
but we introduce more thorougly only feature descriptors and optical flow.
Further we explain possible ways of evaluation and shortly describe process of
3D scene reconstruction.

3.1 Local Feature Detection and Extraction

The aim of local feature detection and extraction is to find reliable significant
features in given images and describe their neighborhood in manner that they
are easily matched with other features. The feature extractors are supposed
to provide results that are repeatable and precise [13]. Therefore, the found
features of the same object illustrated on the two different images should be

12It is also possible to utilize more than two cameras, however we do not consider this
option in this thesis.
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Figure 3.1: Figure depicts relation between eigen values λ1 and λ2 from Harris
corner detection. If one of these eigen values is much larger than the other,
then examined region is edge. Approximately similar large eigen values de-
termine corner region. In all other cases flat region is found.

the same. Moreover, the features obtained from different parts of image should
be distinctive to each other.

3.1.1 Feature Detection

The feature detection is preceding step before the descriptor extraction. In
this step we search for such features that can be found under varying im-
age conditions, different viewpoints changes and even in noisy images. The
features that are found should not be dependent on translation or rotation
of image. In conclusion, there is limited number of points that satisfy these
conditions. Among other feature detection algorithms there is a Harris de-
tector [13] which is introduced in following paragraph.

The Harris detector is a method used to find corners as very significant
features. The detector computes a second-moment matrix

C =
∑
x,y

w(x, y)

[
I2x IxIy

IxIy I2y

]
, (3.1)

where the left part of equation represents computing a weighted sum (weight
is denoted as w) and the right part is matrix composed of multiplication of
image derivatives. The matrix C is computed for each block of image. Using
equation 3.2 and 3.3 the eigenvalues of matrix C can be computed and based
on them one can determine the type of block (fig. 3.1). The blocks that can
be recognized are edge, corner and flat region. If the both eigenvalues are
large, then the examined block is corner.

det(M) = λ1λ2 (3.2)

18



3.2. Optical Flow

trace(M) = λ1 + λ2 (3.3)

3.1.2 Descriptor Extraction

The descriptor extraction is a way how to obtain and encode information
around a point of interest in order to be matched only with identical point
in the other image. The extracted descriptors aim to be rotation and scale
invariant and concurently illumination and noise resistant. Such properties of
descriptors significantly increase a number of correct point correspondences.
One of the famous descriptor extraction algorithms is Scale Invariant Feature
Transform (SIFT) [14].

SIFT is a method that includes even keypoint detection, however only
descriptor extraction is explained in this thesis. Keypoint does not have to
be necessarily aligned within pixel coordinate. If it occurs, neighborhood
pixels need to be interpolated. This first step consists of finding dominant
orientation of its neighborhood and crop accordingly around it. The result
is 16 × 16 px region which is then divided to 16 square blocks. Thereafter,
for each block histogram of gradient orientation is computed. Histogram is
composed of 8 bins. In order to reward pixels closer to keypoint and at the
same time punish farther keypoints gaussian, weighting function is employed.
Calculated histograms are lined up next to each other and create feature vector
of length 128 bins. The final step is normalization of descriptor.

The algorithm explained above suffers from rotation and illumination vari-
ancy. To meet the previously set goals rotation of keypoint should be sub-
tracted from each gradient orientation. The illumination variancy is handled
by thresholding and normalization of final vector.

3.1.3 Descriptor Matching

The most straightforward approach of descriptor matching is to gradually
compare each descriptor of one image with all descriptors at the other im-
age. For each couple of feature vectors distance metric such as euclidian or
manhattan distance is computed.

SIFT utilizes ratio test to avoid false matches and algorithm called a best-
bin-first that reduces computation time when searching for nearest neighbor
of keypoint.

3.2 Optical Flow

Optical flow is a method that estimates motion of particular pixels between
two images. It is mainly used for motion detection and tracking objects in
scene. However, it also might be utilized for reconstruction of 3D scene,
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3. Structure from Motion

It It+1

OF estimation
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Figure 3.2: Firstly, optical flow is calulated for the most downsampled image,
denoted in the top layer of pyramid. The next layer exploits result from previ-
ous layer, refines it by estimating optical flow on image with higher resolution.
In the same manner optical flow is improved until the layer with the original
image is reached.

because optical flow keeps information about motion that is necessary13 for
such task. Each pixel has assigned velocity determining a direction where
the pixel moved from previous to current image. If one performs motion
estimation on all pixels of image, it is called a dense optical flow. It is not
easy to calculate dense optical flow due to ambiguity pixels in image. An
example of ambiguity could be a block with solid color. In order to tackle with
this issue, dense optical flow algorithm must employ methods that interpolate
ambiguity pixels. Finally, this leads to requirement for longer computation
time.

Another type of optical flow is a sparse optical flow. Points of image,
whose motion is supposed to be estimated, are input for sparse optical flow.
These points should be selected in favor simple and unique detection and
recognition. Distinguishable corners might be considered as realiable points.
In the next subsection we present the most popular sparse optical flow method
called Lucas-Kanade optical flow.

3.2.1 Lucas-Kanade Optical Flow

Lucas-Kanade optical flow [15] describes examined points by information about
their local neighborhood. Algorithm assumes that velocity does not exceed
neighborhood around point of interest, otherwise it cannot estimate optical
flow for such points. The solution that is able to estimate optical flow even for
large motions utilizes pyramidal approach (fig. 3.2). At first, the algorithm is

13Objects closer to camera shift more than farther objects.
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3.2. Optical Flow

applied to downsized image, which lacks the details, however blocks of neigh-
borhood cover larger parts of image. Thereafter, the algorithm calculates at
gradually larger images that possess precise details. At each layer of pyramid
previous result is refined until the final layer is reached.

Lucas-Kanade algorithm itself without pyramidal approach is based on
three assumptions: brightness constancy, temporal persistence and spatial co-
herence. The first assumption means that pixel does not change intensity over
time. Temporal persistence was already mentioned shortly. It requires small
motions between images. The third assumption, spatial coherence, introduces
relation between points in scene and their projections on image plane. Adja-
cent points in a scene remain adjacent even after projection on image plane.

Mathematical equation expressing Lucas-Kanade optical flow is

Ixu+ Iyv + It = 0, (3.4)

where Ix (respectively Iy) is a spatial derivative across image in x-dimension
(respectively y-dimension) and It is a derivative between images over time. A
component u characterizes velocity in x-dimension, respectively a component
v is for y-dimension. The equation contains two unknowns for each pixel, thus
it is not possible [1] to solve them individually in order to retrieve both motion
components. One is able to obtain a line described by equation 3.4. Therefore,
motion componenents could be solved only for motion that is perpendicular
to that line. This problem is known as aperture problem (fig. 3.3) and arises
from observation through a small aperture. If objects are larger than the
aperture, their edges occur most of the time, however corners do not. The
edges itself are not sufficient to estimate correct motion of object. Spatial
coherence enables to surpass the aperture problem because we assume that
the motion in neighborhood is consistent. For each examined pixel we can
employ all pixels from its neighborhood and lay set of equations

Ix(p1) Iy(p1)

Ix(p2) Iy(p2)

...
...

Ix(pn) Iy(pn)


︸ ︷︷ ︸

A

[
u

v

]
=


It(p1)

It(p2)

...

It(pn)


︸ ︷︷ ︸

b

, (3.5)

where p denotes a pixel and n is a total number of pixels in neighborhood. Set
of equation is solved using least-squares minimization, therefore final solution
can be formulated as [

u

v

]
= (ATA)−1AT b. (3.6)
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t t+1 t+2

Figure 3.3: Figure explains an aperture problem. The first row denotes view
through small aperture behind which object is moving. This movement ap-
pears as shift in x-dimension, however the real motion, as it can be seen at the
second row, is actually along the diagonal direction from top left to bottom
right.

3.3 Evaluation

A high precision in correspondence of descriptors and estimation of optical flow
is mandatory in order to achieve accurate 3D scene. Since the methods used
for structure from motion possess many options of adjustment, evaluation of
individual settings becomes necessary. We assume that we have ground truth
of optical flow.14

Fundamental evaluation methods [11] are L2 endpoint error

Eep2(u,u
∗) =

√
(u− u∗)2 + (v − v∗)2 (3.7)

and L2 endpoint error

Eep1(u,u
∗) = |u− u∗|+ |v − v∗|, (3.8)

where u = (u, v) denotes a calculated optical flow and u∗ = (u∗, v∗) is a
ground truth. Another evaluation metric called angular error measures error
in spatio-temporal directions.

Eang(u,u∗) = acos

(
uTu∗

|u||u∗|

)
. (3.9)

14Ground truth for optical flow can be employed even for evaluation of feature descriptors.
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3.4. Scene Reconstruction

3.4 Scene Reconstruction

A final phase of structure from motion is scene reconstruction which covers
obtaining rotation and traslation between cameras and triangulation. The ro-
tation and translation is retrieved from essential matrix and the whole process
is explained in section 1.3, 2.1 and 2.2.

In a nutshell corresponding matches are employed to compute the funda-
mental matrix (eq. 2.1) that is converted to essential matrix (eq. 2.2) with
knowledge of camera intrinsics matrix (eq. 1.4). In the next step rotation
and translation of the second camera is derived from essential matrix using
SVD. The first camera is considered static, therefore there is no rotation or
translation. The rotation R and translation matrix T compose a projection
matrix P = [R|T ]. For each point of scene projection matrix satisfies equation
x = PX (respectively x′ = PX ′ for the other image) where x (respectively
x′) is a point from image and X (respectively X ′) a is 3D point of scene.
Corresponding points in normalized coordinates are put to set of equations
and solved for particular points in scene.
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Chapter 4

Design

The parking assistant is supposed to detect a stationary object in a colliding
distance, detect an edge of a potentially dangerous object, such as curb, and
classify an object as human being or another object. This chapter describes
design of three main parts which fulfill mentioned demands of parking assistant
and thoroughly explains the chosen method for obtaining depth perception.

4.1 General

An equipment of parking assistant consists of stereo rig and computation
unit. Stereo rig contains two cameras15 that are horizontally aligned. Stereo
cameras are fastened to back side of a car (fig. 4.1), therefore they can watch
area behind a car. Acquired images by stereo cameras are transfered to the
computation unit where all these information are processed and adequate
response is returned.

The parking assistant operates in three modes: calibration, standby and
running mode. The calibration mode runs only in order to obtain or refine
cameras’ intrinsics and extrinsics matrices and detect distortions of cameras’
lenses. More about calibration can be found in subsection 4.4. The standby
mode is actively running on background and waiting for interruption. There
is no output of this mode and it is used only for saving of computation time
and switching to and from running mode. Switching to running mode can be
triggered by one of two possible conditions. The first one requires interaction
of driver that turns manually parking assistant on, otherwise parking assistant
remains in standby mode. The second condition is met by engaging a reverse
gear.

While the parking assistant is in running mode, the stereo rig captures
images and computation unit processes them. The parking assistant allerts to

15The cameras should be able to acquire similar images in terms of focus and pixel
resolution. Usage of cameras of the same brand and model are considered as more reliable
approach.
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4. Design

objects in a colliding distance, detects curbs and determines if human appears
in area behind a car. Termination of running mode is reverse operation to
interruption of standby mode, thus turning manually parking assistant off by
driver or disengaging a reverse gear.

blind
spot

blind
spot

left
camera

right
camera

Figure 4.1: Top view on back side of a car shows blind spots of stereo rig.

4.2 Constraints

Proposed parking assistant is designed to work under particular set of con-
straints. This section explains them and implies possible solutions.

The parking assistant is based on processing of images acquired from real
world. The overall confidence of parking assistant is strongly correlated to
quality and variance of images taken in different lighting conditions (direct
sunlight, cloudy, dimness, etc.). Possible solutions16 for managing all these
different cases reach outside the scope of this thesis and thus we assume17 for
all our performed evaluations stable lighting conditions.

As the name suggests, the parking assistant is intended only for parking
purposes. It is not designed to increase safety while backing a car. This
constraint arises together with constraint on upper limit of car speed18. Since
the parking assistant does not assume high speed of a car, the cameras also
do not have to capture a large number of frames per second. Therefore, these
constraints reduce the complexity of calculation in computation unit. On the
other hand, only by increasing of computational power parking assistant can
perform at higher speeds.

16The solution for bad lighting conditions could be high dynamic range imaging, that is
able to capture good quality images even at night.

17Even though we are not able to cover all cases, we still try to minimize their influence.
18The upper limit of car speed is derived from camera’s FPS and duration of performing

algorithms. Section 6.7 derives maximum achievable FPS.
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All information that can be employed comes through stereo cameras. Or-
dinary cameras capture a scene with narrow angle of view19. It leads to
constraint of the size of blind spot (fig. 4.1) behind a car and maximum ob-
servation distance. These two constraints are proportional.

4.3 Comparison of 3D Reconstruction Methods

Theoretical part of thesis introduced two types of 3D reconstruction. This
section is addressed to selection based on experimental comparison of pros
and cons between these two approaches.

Struture from motion possess several advantages which are applicable to
more sundry situations, however the parking assistant is rather bounded scen-
ario. Together with these advantages SfM brings complexity, moreover, it
does not depend on whether one uses single camera or couple of them. The
movements of single camera between capturing images leads to complicated
computations that need to be performed at each change. At the same time,
if one decides to exploit more cameras whose position is fixed, stereo imaging
approach seems to be more realiable approach. The reason is that even with
pair of stereo cameras position has to be fixed in a fashion that allows to re-
construct 3D scene, but guarantees that view contains minimum of occluded
regions. Therefore, in order to capture images that contain mutually little of
occluded regions, some sort of decision while positioning of cameras has to be
done.

In the next several paragraphs we perform SfM on pair of images (fig. 4.2)
and discuss results. The examined pair of images could be considered as im-
ages captured by two cameras or as continuously taken images with single
camera. To obtain 3D structure of object we employ the sparse and dense
optical flow (explained in section 3.2). Figure 4.2 shows feature correspond-
ences (blue dots) and features that are not utilized (red dots) due to high
error. The sparse optical flow is calculated using precomputed features. A
result of 3D reconstruction after undistortion of points, computation of es-
sential matrix and triangulation is shown in fig. 4.3. Particular projections
are rotated counterclockwise around vertical axis. One can notice that some
projections are disproportional, and therefore it is hard to recognize what
kind of object is displayed. This also applies to object recognition using suit-
able algorithms. As we tested further, acquired models seem to have low
depth precision for all tested cases of methods goodFeaturesToTrack and
calcOpticalFlowPyrLK20. Another disadvantage is that sparse model of ob-
ject does not contain information about surface between the closest points.
Therefore, one can only presume that there are no high variances of depth.

19http://en.wikipedia.org/wiki/Angle of view
20 Both methods goodFeaturesToTrack and calcOpticalFlowPyrLK are part of the

OpenCV library.
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(a) (b)

Figure 4.2: Figure displays two images of soldier taken from different angles.
The angle difference is 45◦. The blue dots on the left image represent found dis-
tinctive features using method from OpenCV called goodFeaturesToTrack21.
There is about 5 thousand features. The blue dots on the right image are
found correspondences (using OpenCV method calcOpticalFlowPyrLK22) to
the features on the left image. The red dots are either features which could
have not found correspondences or they are among 20 % of the features with
the highest estimated error. Image courtesy of [16].

The method of dense optical flow does not rely on selected features, but en-
deavors to estimate optical flow for all pixels. This approach should overcome
disadvantage of sparse optical flow which allows to use only selected features
for 3D reconstruction. Figure 4.4 represents result of reconstruction using
dense optical flow (OpenCV method calcOpticalFlowFarneback23). In or-
der to downsize number of points employed for computation of fundamental
matrix, only each sixth row of image was retained. A resulting 3D model is
composed of rather continuous points if we compare it with model created
using sparse optical flow. However, only right arm and head of soldier possess
nearly correct depth estimation. Using other combinations of parameters of
dense optical flow did not lead to significantly better results and accuracy of
all 3D reconstructions were more or less similar.

It should be also mentioned that resulting inaccuracies may not be caused
by estimation of optical flow, but rather in some of the following steps of 3D
reconstruction. The undistortion coefficients are provided to pair of images
(fig. 4.2), therefore there should not be the problem hidden. Searching for fun-

21maxCorners: 5000; qualityLevel: 0.001; minDistance: 3
22winSize: 40; maxLevel: 3
23pyr scale: 0.5; levels: 3; winsize: 40; iteration: 20; poly n: 5;

poly sigma: 1.2; flags: OPTFLOW USE INITIAL FLOW
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Figure depicts rotation of object reconstructed from pair of im-
ages (fig. 4.2) using sparse optical flow. Images through (a) to (f) represent
counterclockwise rotation of object around vertical axis.

damental matrix was performed using OpenCV method findFundamentalMat,
thus we do not consider it as weak part of reconstruction algorithm. According
to [7] there are four possible camera matrices, but in any of our experiments
we did not find camera matrix that would provide decent reconstruction.

Stereo imaging requires pair of undistorted, rectified images from which
one can compute disparity map (chapter 2 describes stereo imaging more thor-
oughly and chapter 6 contains examples of disparity maps and pairs of images
used to obtain disparity map). Disparity map includes information about
depth and is employed for final triangulation. One of the main advantages of
stereo imaging is that relation between left and right camera is calculated just
once within calibration, unlike SfM that employs single camera. Figure 4.5
displays rotation of 3D model of teddy bear created using stereo imaging (dis-
parity map was obtained using OpenCV method StereoBM). One can notice
that all parts of teddy bear are proportional and depth can be well perceived.
The model is composed of nearly continous points, and therefore surface is
sufficiently precisely defined. However, it could happen that some regions
of images, mostly filled with solid colors, are not matched to corresponding
regions at the other image, thus disparity values would become inaccurate.
White spaces inside model of teddy are result of either occluded or ambiguity
regions.

Properties of particulas methods and even experimental evaluation make
stereo imaging conclusively suitable method for parking assistant.

29



4. Design

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Figure depicts rotation of object reconstructed from pair of im-
ages (fig. 4.2) using dense optical flow. Images through (a) to (f) represent
counterclockwise rotation of object around vertical axis.

4.4 Calibration

The calibration is necessary preceding step before the parking assistant can be
properly used. It needs to be performed only once and then only if the relative
position of stereo cameras changes. In order to obtain accurate calibration
dozens of various chessboard positions have to be employed. To get an equally
accurate results each stereo rig should be calibrated independently24.

A decision whether stereo cameras should be calibrated before fastening to
back of a car or after is associated to manufacturing process and consecutive
handling of stereo rig. If one can guarantee that mutual position of cameras
is same for all stereo rigs and fixed until fastening is finished, calibration can
be performed in advance for all cameras. A problem which can arise is that
each camera likely possess different properties of lens. These properties were
explained in section 1.2 and are essential for stereo imaging. Therefore, the
other option for calibration when each car with fastened stereo rig is calibrated
independently would meet demands. Each car has to be placed to calibration
room where calibration chessboards can be projected on plane surface behind
a car. The parking assistant captures such scene and after acquisition of spe-

24The calibration of individual stereo rigs decreases influence of lens differences and rel-
ative position of cameras
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Figure depicts rotation of object reconstructed from pair of images
using stereo imaging. Images through (a) to (f) represent counterclockwise
rotation of object around vertical axis.

cified number25 of calibration chessboards sets internal settings and becomes
ready to use.

4.5 Collision Avoidance System

This section provides detailed specification of the entire collision avoidance
system (fig. 4.6). The system is splitted into several steps that must follow
consecutively. The first few steps, namely image acquisition, undistortion and
rectification, perform independently for each camera. However, they require
some kind of synchronization in order to acquire left and right image at nearly
the same moment. In this section we assume that cameras have already been
calibrated, thus cameras’ intrinsics and extrinsics properties are available.

Cameras of stereo rig have predetermined side where they belong to, left
and right one. However, computer where they are connected to does not
know their relative position. In Linux cameras obtain specific index counted
from number zero26. In order to express relative position between cameras one
should first connect left camera and then right one. It is also worth to mention
that each camera should be connected to separate USB bus. The reason is
that it avoids an issue when transmission of images from camera could be
protracted. Selection of output camera format like YUYV or RGB depends

25The minimum number of calibration chessboards necessary to obtain precise calibration
is derived in chapter 6.1.

26If computer has built-in webcam and boots with no other connected cameras, zero index
is assigned to built-in webcam.
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Figure 4.6: Figure depicts main components of collision avoidance system and
data flow between them.

on particular cameras and support in system where cameras are connected to.
A resolution of video stream was determined as 640 × 480 px and for some
time-consuming tasks could be downsized. FPS is be determined (section 6.7)
based on evaluation of processing time of single image. Before processing any
image one should ensure that cameras possess the same properties, otherwise
following steps do not lead to successful performance.

Since images from stereo cameras are captured we can proceed to next
two steps: undistortion and rectification. Both steps are simple remapping
of images from cameras and do not change in time. They require to know
intrinsics and extrinsics properties of cameras, therefore a change of position
between cameras causes incorrect remapping.

The last three steps are very related, and therefore following explanation
includes all of them together (fig. 4.7). An ouput of these steps is position
of the closest object and its distance to cameras. Firstly, a disparity map
is calculated using undistorted and rectified images. A quality of disparity
map is influenced by type of utilized method and its properties. Selection
of method and its properties is described in section 6.2. To make detection
of object easier it is necessary to keep disparity map of scene without any
objects. This disparity, reffered as background, has to be calculated with the
same method and using the same properties as regular disparity calculation do.
Thereafter, background is element-wise subtracted from calculated disparity
map of scene and only pixels that exceed determined threshold are maintained
in resulting mask. The mask is applied to input disparity map to obtain only
objects which appear in scene. From the resulting disparity map a histogram
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Figure 4.7: Figure shows process of computation position and distance of the
closest object toward camera.

is computed. Peaks in histogram represent particular objects that remained
in scene, however histogram still contains noisy data. In order to tackle with
this issue minimum size of object is required. Each bin of the histogram is
thresholded by minimum size of object. Detection of the closest object using
such histogram is based on assumption that the closest object in disparity map
have higher intensity values and that histogram is sorted from the lowest to
highest intensity. To find the closest object values of particular bins are read in
descending order until nonzero value is found. Number of such bin indicates
upper intensity value of the closest object. Further, lower intensity value
need to be find, therefore checking of bins continues. Terminating condition
is finding a bin with zero value. Lower intensity value of the closest object
is derived from bin which still has nonzero value, but his left neighbor is
zero. Lower and upper intensities are employed to mask disparity map with
subtracted background and this results in finding of position of the closest
object. The mask is also applied to output map of triangulation computed
from disparity map. Distance to closest object is determined as mean of all
nonzero values of masked triangulation map. In a similar manner the other
objects and their distances can be found, however collision avoidance system
targets only on the closest one.
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4.6 Curb Detection

Proposed collision avoidance system is sufficient to detect any object in a
colliding distance. However, if freckles occur in disparity map, detection and
classification of particular object can become more difficult. In order to detect
curbs more precisely, RGB image is employed. On the other hand, it also
possess its own drawbacks, like noise and dissimilarities of scene captured at
different lighting conditions.

There is a variety of curbs but they all have common features. These
features are represented as lines that form shape of curb. The main line is at
the edge of curb. Another line, underneath the main line, separates curb from
road. The third line, above the main line, lays on the borderline between curb
and pavement. Rarely the third line is missing.

Curbs may vary in shape, from the straight to circle ones. During the
observation of curbs, while creating an evaluation dataset, we found out that
curbs at parking lots are rather straight. Since curb detection is designed
to enhance options of parking assistant, we decied to apply curb detection
only at straight curbs. Our proposed curb detection algorithm (fig. 4.8) is
composed of sequence of image processing algorithms and heuristics derived
from an empirical observation.

In the first step RGB image from left camera is converted to grayscale.
In case of curb detection color information has no added value, therefore
curbs should not be treated based on it. The RGB image is obtained from
left camera, because left-to-right matching was utilized to compute disparity
map in the collision avoidance system. This assumption enables to put final
lines of curb over a disparity map and acquire an augmented reality. In the
next step, histogram equalization [11] reduces issues related to various lighting
conditions. Histogram equalization cannot suppress for example an influence
of strong shadows, bad lighting conditions, but it works well overall. Amount
of noise in captured images can do a harm in further steps of detection, and
therefore noise filter is applied. A median filter was chosen among the others,
because it preserves edges better [17], unlike Gaussian filter. The next steps
are to detect edges and then find straight lines. For the purpose of edge
detection canny edge detector [18], state-of-the-art method, is suggested. The
lines are supposed to be searched by method called a Hough transform [19].
This method returns plausible lines of sought curb and in the next step they
are reduced to maximum number of three. The following paragraph describes
an idea of proposed heuristics.

The heuristics firstly tries to merge lines that lay close to each other. The
merge of lines is performed by creating a new line that is an average of lines
which are perceived as one cluster. After the new line is created all lines
from cluster are removed. The remaining lines are iterated through from the
bottom to upper side of image. Since one cannot estimate from which angle
car approaches to curb the first line is considered as line of curb. The next
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Heuristics

Input RGB Grayscale Histogram Equalization Blur

Edge Detection Line Detection Curb Lines

Figure 4.8: Figure depicts steps of curb detection algorithm.

two lines are controlled regarding to maximum allowed angle difference. The
size of angle has to be large enough to handle perspective in images. After
those three lines are explored algorithm for curb detection in single image is
over. The possible outputs of algorithm are none, one, two or three lines.

4.7 Human Detection

Detection of human being belongs to challenging computer vision tasks. Pro-
posed methods usually focuses on detection of human that fully appears in
scene, from head to toe. In our case we have to deal with human detec-
tion based on legs, because legs are the only body part that stereo cameras
could see. Within research of interaction with robots several algorithms for
human leg detection were proposed [20][21]. These approaches utilize laser
range scanners and assume high precision of measured data, and therefore our
computed disparity map would not be sufficient.

We propose an algorithm for detection of human legs that handles dis-
parity map even with freckles. Legs have their own specific shape, especially
between a fibula and foot. Using this shape we extract features and employ
them in machine learning algorithm. However, one should bare in mind that
this approach is not applicable to all views of leg. Current feature extraction
method does not exploit values of disparity map. In case human is rotated to-
ward cameras, and thus curved line of leg is not so obvious, values of disparity
map could be useful.

Process of feature extraction is depicted in fig. 4.9. Firstly, objects from
scene need to be detected. Detection of objects in scene was introduced in
section 4.5. For sake of simplicity we assume in this section we have already
obtained single objects. In the second step we convert detected object to
binary mask. To enhance binary mask white freckles are removed and black
holes within object are filled. Detected objects differ in size according to
distance from camera, and thus they need to be normalized to fit the same
size of image. In the next step Euclidean distance transform is applied. After
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Figure 4.9: Figure shows process of feature extraction from detected object
for purpose of human leg detection.

applying the distance transform, each pixel of image has value that equals to
the distance between that pixel and its nearest zero pixel. This transformation
highlights inner shape of object. During the next step maximum values for
each row of image are sequentially found and their positions are considered as
features. If there are more values with the same maximum value in a row, the
middle position is used. Features from individual rows form feature vector.
Length of feature vector equals to the height of normalized image. Due to
this relation, feature space can be simply reduced by downsizing input binary
image.

After feature extraction is performed, training phase of machine learning
algorithm follows. Human leg detection is binary classification problem, there-
fore positive and negative training samples are needed. Positive samples stand
for human legs. Negative samples consist of arbitrary objects. The output
of training phase is model which can decide whether given feature vector cor-
responds to human or not. For the purpose of classification, random forests
(RF) [22] algorithm was selected.

Broad description of training and evaluation of proposed feature extraction
method used to human detection is described in section 6.6.
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Chapter 5

Implementation

One of the main requirements of parking assistant is to perform fast. In real
application there should be minimum delay between evaluation of captured
images. To meet this demand C++ programming language with standard
C++11 using STL was selected. Since proposed parking assisstant is largely
connected to image processing and computer vision, open source computer
vision library called OpenCV was utilized. OpenCV 2.4.10 completely fulfill
our needs on parking assistant. Project was compiled under GNU/Linux 3.13
using cmake 2.8.12.2 with gcc 4.8.2.

The main controlling mechanism of parking assistant is finite-state ma-
chine (fig. 5.1). After launching, application stays in standby mode from
which can proceed to either calibration or running mode. Return from these
modes is allowed only back to standby mode. Standby mode simulates passive
waiting for interruption. During calibration any of modules, such as collision
avoidance system or curb detection, is not performed. Running mode is re-
sponsible for an active seeking of objects in a colliding distance and detection
of curbs.

The parking assistant is designed as object-oriented project. Objects27

27In the rest of this chapter we use word object in abstract meaning, not as programming
term.

Standby RunningCalibration

Launching

Termination

Figure 5.1: Figure defines states of parking assistant and explains transitions
between them.
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of parking assistant are divided similarly as proposed modules described in
chapter 4. Hence, if any new module would be desirable, adding it to existing
implementation would not cause major issues. Entry point for all modules
is image acquisition object. Images acquired by this object are then distrib-
uted to particular modules and processed further. Collision avoidance system
is divided to objects (depicted in fig. 4.7) that take care of specific part of
algorithm. Undistortion and rectification, disparity computation, object de-
tection and triangulation are fundamental objects utilized in collision avoid-
ance system. Communication between all mentioned objects is carried out
by OpenCV data structure called Mat. Mat is defined as n-dimensional dense
array that is employed for storing images.

Each of implemented modules in C++ has their own return structure that
would be accepted by reaction mechanism of car. Collision avoidance system
returns structure that contains position of object, expressed as Mat binary
mask, and distance toward to object stored as float in units of centimeters.
Curb detection system returns structure with boolean variable determining if
any curb was found and STL structure vector containing individual lines of
curb. Line of curb is stored as vector of OpenCV data structures Point.

In current implementation parking assistant can process video stream cap-
tured from cameras. However, one needs to possess stereo rig and perform
correct calibration in advance. To present results of particular modules park-
ing assistant can run in two modes: stream and demo. Selection of mode is
done before compilation using cmake variable called DEMO. Number zero of
DEMO variable correspondents to stream mode, number one is for demo mode.
Stream mode can be controlled using keyboard shortcuts. Key c switches from
standby mode to calibration mode. To start running mode r key has to be
pressed. Termination of running mode is performed by s key. For purpose of
termination of application, q key is determined. Demo mode runs sequentially
through created datasets and performs particular task on each of them. Res-
ults of single input are visualized. By pressing any key evaluation of dataset
moves forward.

Human detection system is based on quality of feature extraction and use
of an appropriate machine learning algorithm. GNU Octave 3.8.1 and Py-
thon 2.7.6 using scikit-learn 0.15.2 were employed for this purpose. Octave
produces labeled features that are then imported to Python, splitted, normal-
ized, trained and finally classified.
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Chapter 6

Evaluation

Evaluation of designed and implemented modules of parking assistant is final
necessary step, performed in testing environment. Each module was evaluated
independently and for each of them testing dataset was created. Collision
avoidance system was tested regarding to position of detected object and its
distance from camera. Curb and human detection modules were evaluated in
terms of success rate detection. Because of importance of low execution time,
all modules were time-analysed.

Stereo rig (fig. 6.1a), employed for evaluation purposes, consists of two
web cameras Genius FaceCam 2000. Height of stereo rig from the ground was
about 40 cm. Focus of web cameras was manually set in order to perceive
similar images from both cameras. Distance between cameras was approx-
imately set to 8 cm. The maximum achievable FPS was around 8. Spe-
cification of computer, where evaluation was performed, is GNU/Linux 3.13,
Intel R© CoreTM i3, 4 GB RAM.

This chapter describes all details of evaluation process and sheds some
light on a usage in real environment.

(a) (b)

Figure 6.1: Figure shows stereo rig composed of two web cameras (a) and
arrangement of place (b) where some evaluation datasets were captured.
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(a) (b)

Figure 6.2: Figure compares quality of computed disparity maps. Disparity
map (a) contains large number of freckles caused by poor calibration. Dispar-
ity map (b) on right side was calculated using more precise calibration.

.

6.1 Calibration

This section provides some observations which were encountered during cal-
ibration. All attempts to calibrate stereo rig were performed using 9-by-6
chessboard28.

To verify calibration accuracy one can read the output after calibra-
tion of parking assistant. This output, returned from OpenCV method
stereoCalibrate, is final value of the re-projection error. The less value
is returned, the better calibration was performed. However, re-projection er-
ror should not be considered as the only evaluation criterion. If the number
of stereo images intended for calibration is small, rectification happens to be
insufficiently precise even though re-projection error is low. From our exper-
ience we prefer to verify calibration by rectification and drawing horizontal
lines in left and right image. These lines should connect the same points that
appear in both images.

A lot of calibration issues arises from blurry images. Corners cannot be
detected with subpixel accuracy and calibration does not perform well. In
case of parking assistant we assume that calibration would be done in stable
environment, thus this issue would be avoided.

The result of experiments is that 20 stereo pairs are sufficient for calcula-
tion of decent calibration. Using web cameras Genius FaceCam 2000 (fig. 6.1a)
with standard settings for parking assistant the lowest achieved re-projection
error was 0.3.

28This number of fields was determined, because it fits well on the size of paper while
orientation of chessboard can be understood definitely[1].
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6.2. Stereo Correspondence

6.2 Stereo Correspondence

In order to evaluate accuracy of computed disparity maps we exploited Middle-
bury stereo datasets [10][23][24][25] and Tsukuba stereo pair with lamp and
bust (fig. 6.3). Datasets consist of 36 different scenes. Each scene includes
couple of undistorted horizontally rectified images and two corresponding dis-
parity maps. For our evaluation we employed only single disparity map and
corresponding stereo pair of images. Among the tested methods for com-
putation of disparity maps belong SAD, SSD, rank and census, all of them
described in subsection 2.4.1. We have also included StereoBM method from
OpenCV. RMSE and percentage of bad matching pixels were applied as the
evaluation methods.

(a) (b) (c)

Figure 6.3: Figure displays views from (a) left and (b) right camera (courtesy
of the University of Tsukuba). The most right image denotes ground truth
disparity map (courtesy of Rick Szeliski and Ramin Zabih).

.

A process of evaluation was performed in several steps. At first, for each
couple of stereo pairs disparity map was computed. Since we test block match-
ing methods, which strongly depend on the size of neighborhood, we examined
various sizes. The tested sizes were odd numbers between three and nineteen,
including these boundaries.

Performance of basic stereo corresponding methods (SAD, SSD and rank)
resulted (fig. 6.4a) in strong dependency on the size of neighborhood. Their
minimum error differed with size of neighborhood. Census method has steady
course and is not dependent on size of neighbohood29, however the error
ranks high. The overall winner of stereo correspondence evaluation is StereBM
method whose error rate is the lowest. It seems to be very independent on size
of neighborhood (fig. 6.4b). On the other hand correct number of disparities
is essential. Both displayed graphs (fig. 6.4a and 6.4b) are computed with
error tolerance 15.

29Census is not dependent on size of neighborhood, because precomputed values of tem-
porary disparity map are compared only using element-wise Hamming distance.
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Figure 6.4: Figure (a) presents comparison of stereo corresponding meth-
ods according to percentage of bad matching pixels depending on the size of
neighborhood. Figure (b) expresses performance of StereoBM algorithm with
different combination of number of disparities and size of neighborhood.

6.3 Object Detection

The following evaluation targets on reliable detection of the closest object to-
ward to camera. In order to confirm quality of proposed detection method
evaluation dataset was created (fig. 6.5). This dataset consists of 10 scenes.
The scenes are composed either from single object or multiple ones. Single
objects are placed at 12 different positions. The scenes with multiple objects
consist only of one composition. For each scene there are rectified left and
right images (resolution 640 × 480 px) and computed disparity maps with
various number of disparities30. Images were captured in nearly ideal lighting
and texture conditions. In the section 4.5, where collision avoidance system
was explained, there is also described the necessity of background possession
when the object is detected. Images of empty background without any object
(fig. 6.2b) are part of dataset too. Such images could be replaced by arti-
ficially created background images. It would require only the knowledge of
stereo rig rotation and distance from the ground. Finally, intrinsics, extrinsics
and distortion information about cameras that captured this dataset are also
attached.

To make evaluation equal for all scenes and simulate real environment31

object detection was performed with the same number of disparities, specific-
ally 176. This number was chosen as the smallest one which can be utilized
for correct disparity map computation. It is worth to mention disadvantage of

30There can be found disparity maps with 112, 128, 144, 160 and 176 disparities.
31In real environment the same number of disparities, which were set at the beginning,

would be utilized all time since selection of various numbers of disparities for different situ-
ations was not proposed.
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Figure depicts part of object detection dataset in the first two
columns. The first column represents captured image from left camera. The
second column displays computed disparity map using StereoBM method with
176 disparities. The last column shows the closest detected object.

large number of disparities. The larger number of disparities32 is, the smaller
part of disparity map is applicable. For example, if disparity map is computed
from stereo images with resolution 640× 480 px and number of disparities is
144 (in fig. 6.2b visualized as black segment on the left side), disparity map
lacks of slightly over 20 % of view. The side of blind spot depends on if
disparity map is computed as in left-right or right-left manner. Within this
knowledge there arises an option to compute disparity maps in both directions
and then stitch these disparities together. However, for evaluation purposes
only simple disparity maps were employed. Parameter size of neighborhood
was set according to result of experiment displayed in figure 6.4b to 21.

The only necessary input parameter to algorithm, except background for
subtraction, is threshold for minimum size of object that we consider as dan-
gerous. The size is defined as number of pixels and all intensities are treated
independently. Using empirical approach we found out that threshold value
3100 is sufficient for detection of all closest objects from evaluation dataset.
Although this number might seem large, it covers only 1 % of examined dis-
parity map.

The scene number 1 (fig. 6.5d), which strongly affected discussed threshold,
is composed of multiple objects. Two of them are in similar but still signific-
antly different distance. Their disparity values fused together and apparent

32Large number of disparities is essential for scenes where objects appear closer to camera.
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(a) (b) (c)

(d) (e) (f)

Figure 6.6: Figure displays part of dataset (a), (d) utilized for estimation of
depth accuracy. The second column depicts calculated disparity maps of stereo
pairs. The estimation of distance from camera to object is calculated using
masked disparities, shown in the last column. Significant freckles contained
in disparity maps are caused by suboptimal calibration.

space between objects disappeared in disparity map. In case that objects
would be considered as one depth estimation would happen to be inaccurate.

Another issue which was encountered relates to rather smaller curved ob-
jects or parts of objects (noticeable in fig. 6.5f). Disparity values of curved
objects are distributed among several intensity values in disparity map. There-
fore, they are discarded using threshold together with freckles.

6.4 Depth Estimation Accuracy

The most important result of stereo imaging regarding to parking assistant
is an accuracy of depth estimation. In order to evaluate depth estimation a
set of ten stereo images with object at different distance from camera was
created. Images were taken with resolution 640 × 480 px. Shape of object is
planar and real distance of object from camera was measured as the shortest
line between them. Because of this kind of measurement we should be aware
of measurement error which can affect evaluation. Measured distances are
located between 37 and 144 cm. Each stereo pair contains additionaly mask
that highlights only the examined object. Object detection module was not
employed for finding the closest object. Masks were created manually. As
it was already mentioned in section 2.5, disparity and depth are inversely
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Figure 6.7: Figure (a) confirms non-linear inverse proportion of depth and
disparity. For large disparities there is a large range of shallow depths, how-
ever low disparities are spread among a small range of greater depths. Graph
depicts relations computed by StereoBM with various number of disparities.
Figure (b) expresses accuracy of depth estimation according to different num-
ber of disparities. The best estimation draws near to ideal line.

proportional, moreover, that proportion is non-linear [1] (fig. 6.7a). This
property causes that for objects closer to camera one can expect more accurate
depth estimation than for farther ones. The estimated value of distance is
computed using mean for all triangulated values inside of masked object.

Accuracy of estimated depth was evaluated within three number of dispar-
ities: 160, 176 and 192. Selection of disparities were shortlisted in advance.
Remained disparities performed best in preceding tests. Parameter size of
neighborhood was set according to result of experiment displayed in figure
6.4b to 21. A method utilized for disparity calculation was StereoBM from
OpenCV.

According to results (fig. 6.7b) it has turned out that selection of right dis-
parity is crucial for obtaining rather accurate depth. Disparity map calculated
using 160 disparities performed best. Accuracy of depth estimation decreases
with larger number of disparities. The estimation error did not exceed 8 cm
(RMSE 5.6 cm) within tested range up to 104 cm. Tested distances which
are larger than 104 cm possess larger estimation errors. This observation
correlates with early explained depth distance non-linearity.

Since not all calculated disparities are perfect, and thus tested object con-
tains freckles, one more specialized test was performed. For each stereo pair
lower and upper boundaries of disparity map within examined object were
found. These boundaries were used to determine which disparity values are
considered. Accuracy (depicted as mask in fig. 6.7b) has slightly improved
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Figure 6.8: Figure displays random images from dataset of curbs.

mainly for larger distances33, however course of function is overall same. Even
though it is not possible to break non-linearity constraint between depth and
distance, accuracy of estimated depth can be enhanced by increasing calibra-
tion accuracy.

6.5 Curb Detection

Algorithm proposed in section 4.6 deals with curb detection in RGB image. It
is intended as additional function that enhance capabilities of parking assist-
ant. Because we did not find any dataset of curb images, which would meet
our demands, we collected our own dataset (fig. 6.8). The dataset consists of
191 images captured with resolution 4160×2340 px. For the purpose of evalu-
ation, images are six times downsized to 640× 360 px which is approximately
the same size as we consider in another units of parking assistant. Dataset is
very challenging. Images were captured at different locations, under various
lighting conditions, road was wet and dry, curbs and road appear with cracks
and one can find even sign on the road. Height of curbs contained in dataset
varies from low to high one.

Evaluation was performed manually for each image from dataset. The
number of found lines can be between zero and three and the same range
applies to number of poorly detected lines. Number of particular combinations
obtained from evaluation is shown in table 6.1. The largest group defines
three correctly found lines. The second one consists of two curb lines with no
detected error. Finally, the third largest group presents three curb lines with

33Accuracy of estimation is higher due to removed freckles. Size of object decreases with
larger distance, but the size of freckles is more or less still the same. Therefore, smaller
objects are more prone to bad results because of freckles.
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one error detection. There are 19 images, nearly 10 % of all images, for which
not a single line of curb was detected.

The main purpose of curb detection was to identify potentially danger-
ous edge, therefore, one more statistics were measured. The most important
line is the middle one. This line describes curbs best and by examining its
neighborhood other important features can be easily found. The middle line
of curb was found in 156 cases out of 191. That makes successful detection
rate slightly over 81 %.

Some images that caused issues with curb detection had specific patterns of
scene. The most frequent ones are listed in the rest of paragraph. Rectangular
manholes with straight hole lines were mostly detected as curbs. Manholes
usually appear just before curb and heuristics unfortunatelly considers only
the first few lines from the bottom of image. As it was already mentioned, curb
detection is not stable to variancy of sunlight. Dataset contains several images
where curbs cast a shadow. Heuristics algorithm misclassifies those shadows
as lines of curb. Tree needles, gravel or any untidiness at curbs deteriorated
detection too. In several cases the highest line of curb was confused with
cracks or the end of pavement. Each of these patterns in scene are difficult to
deal with using RGB image.

Found
Lines

3 2 1 0

Error
Detection

0 46 44 22 19
1 37 8 0
2 11 1
3 3

Table 6.1: Results from evaluation of curb detection.

6.6 Human Detection

Human detection system introduced in section 4.7 detects human based on
leg detection. In order to perform evaluation of proposed feature extraction
method, positive and negative datasets must be available. To preserve the
same view and overall quality of images, we created positive dataset using our
constructed stereo rig (fig. 6.1a). As negative dataset was exploited DUT-
OMRON image dataset [26] that contains masks of different objects.

Positive samples of human legs were captured by stereo cameras with res-
olution 640 × 480 px. Four different subdatasets were created and contain
between 38 to 42 stereo images. Each couple of images in particular subdataset
represents legs from another angle or distance. Within preprocessing of posit-
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Figure 6.9: Figure shows small part of binary images from human leg detection
dataset. The first row displays human legs. The second row contains images
of negative samples.

ive dataset disparity map was computed using OpenCV method StereroBM34

for each couple. Individual legs were extracted from disparity map using al-
gorithm described in section 4.5. Because not every extracted leg met the
conditions on which proposed method is based, only those with significant
curved shape were retained. Total number of extracted legs is 165, counted
together left and right ones. When we vertically rotated all of them, total
number of legs doubled. Further steps of preprocessing follow instructions
explained in section 4.7. Legs are normalized35 to height 450 px and centered
on black background of width 656 px.

DUT-OMRON image dataset contains 5172 binary masks of various ob-
jects. Their size differed from determined 656 × 450 px, and therefore all
objects detected in these masks had to be resized. Due to such normalization
some of the objects did not fit ratio well and covered large part with white
pixels. Because these objects would not bring any potential value to negative
dataset, besides artificially decreasing classification error rate, objects which
covered more than 70 % of image were removed from dataset. 4220 binary
masks were left.

Introduced positive and negative samples of data are imbalanced. There-
fore, evaluation of classification should be performed with respect to their class
ratio. Another method that also deals with imbalanced data is SMOTE [27].
SMOTE over-samples minority class by creating synthetic examples. In order
to run SMOTE, one has to specify amount of over-sampling. If the amount is
e.g. 200 %, two nearest neighbors of each sample in minority class are found
and from each of them synthetic example is created. New example is obtained
by subtraction of particular feature vector from its nearest neighbor and then
multiplied with random number between 0 and 1. This result is added to
original feature vector. Oversampled data should be used only for training,
not for testing.

34SADWindowSize: 21; numberOfDisparities: 176
35Height of normalized image was derived from leg with the highest vertical length. Width

of image was derived from the widest leg after normalization in height.
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Figure 6.10: Figure (a) compares classification rates on datasets enriched by
SMOTE and original dataset. The second figure (b) presents relation between
classification rate and size of input images from which features were calculated.

For the purpose of training and evaluation of classification, datasets were
physically divided into two parts: training and validation. Parts are of ratio
80 to 20. Validation part is considered as data that are not seen by exploited
machine learning algorithm, and thus it simulates real unseen data. Evaluation
of validation part is performed after tuning parameters of algorithm. Obtained
precision and recall from validation dataset is decisive compared to evaluation
retrieved during training.

Random forests algorithm does not require36,37 cross-validation, because
each tree is built38 from different bootstrap sample of the training data. Al-
gorithm was trained on 80 % of training data and the rest was used for clas-
sification. Evaluation of classification and searching for the best parameters
of RF algorithm were performed in three steps.

In the first step, sparse grid search using RF was run on four different
datasets: regular dataset and three datasets with enriched training part using
SMOTE 100 %, 200 % and 300 %. Grid search provided39 number of trees
(denoted as n estimators in sicikit-learn) in forest from 5 to 160, where each
next number doubled, and method for measuring quality of split. Gini impur-
ity and information gain were evaluated as measure for quality of split. The
aim of this step was to find out if over-sampling of data actually improves clas-
sification performance. Figure 6.10a shows advantage of over-sampled training
minority data in comparison to regular dataset. The best result was achieved

36www.stat.berkeley.edu/∼breiman/RandomForests/
37Random forests from scikit-learn has to be run using parameters: oob score: true;

bootstrap: true
38For purpose of reproduction the same results random forests with identical parameters

were built alike.
39The rest of random forest parameters used default settings of scikit-learn.
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using 300 % over-sampling, 160 trees and split according to information gain.
These parameters were therefore employed in the second step of evaluation.

The second step finds out whether size of input image, and thus length of
feature vector, is correlated to classification performance. Images of dataset
were downsized to 80 %, 60 %, 40 % and 20 %, respectively length of feature
vectors was reduced to 360, 270, 180 and 90. Results of this experiment
are displayed in figure 6.10b. One can see that reduction of feature space
does not negatively affect classification performance. Surprisingly reduction
to 20 % and 40 % performs better than on original images, but it cannot be
considered as preferable size of input features. More important conclusion is
that reducing feature space up to 80 % does not worsen performance.

The last step explores parameters of RF more deeply and evaluates val-
idation data using final determined combination of parameters. Even though
RF provides sort of overfitting protection, there is no reason to allow con-
struction of trees with small number of samples required to split an internal
node (denoted as min samples split in scikit-learn) or creation of a new
node with small number of samples (denoted as min samples leaf in scikit-
learn). Within this step we tried to find upper limit of these parameters
while preserving good classification performance. Similarly we tried to min-
imize number of trees. Mean accuracy calculated from all tested combin-
ations is 93.7 % which stand for almost all configurations with 4 and less
min samples leaf. Difference between the highest and the lowest mean ac-
curacy using 4 min samples leaf is only 1.7 %, and therefore we decided to
select 16 min samples split as the largest tested parameter. Smallest num-
ber of n estimators, which achieved the same results as configurations with
larger numbers, was 40. After training RF on whole training dataset, we
achieved 90 % precision and 89 % recall on validation set.

6.7 Time Performance

Common goal of all systems that need to perform in real time is to achieve low
computation time. In this section we evaluate time performance of proposed
methods employed in parking assistant. At each method we measure time
spent in individual modules in order to localize bottleneck that slows down
overall time performance. Because computation time is obtained as time dif-
ference between two positions in source code, we are not able to avoid including
time that processor spent on running different processes. Hence, time duration
which we present (table 6.2) here is the lowest40 measured using appropriate
dataset.

40The lowest measured time duration of particular module is approximately the closest
estimate when only parking assistant would be run.
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6.7. Time Performance

Module Time performance [ms]

Collision avoidance system

Undistortion and rectification† 6.7

Disparity computation 192.4

Object detection 5.4

Triangulation 13.9

Curb detection

Convert to grayscale 1.2

Histogram equalization 0.7

Blur 99.5

Edge detection 4.9

Line detection‡ 33.5

Heuristics‡ 0.1

Human detection

Normalization 4.3

Distance transform 9.4

Feature extraction 7.8

Classification? 0.1

Table 6.2: Time performance of parking assistant modules.

Processing of stereo pair of images in collision avoidance system takes
about 218 ms. Collision avoidance system should be able to go through 4.5
stereo pairs per second. However, almost 90 % of that time is spent in disparity
computation module. In order to accelerate this module, one could downsize45

input stereo pair. When the size of stereo pair of images was scaled down to
80 %, 60 % and 40 %, time performance of algorithm became 111.1 ms, 53 ms
and 22 ms respectively. Downscaling of images speeds up even the other
modules.

Overall time performance of curb detection is about 139 ms, therefore it
allows to process seven frames per second. Computation of blur lasts the
longest. The reason for that is because we utilized median filter, which is
known for long time performance. Using gausian filter with similar settings
we obtained average processing time 9.3 ms. Time advantage of gaussian filter
is obvious, however it does not provide quality blurred images which preseve
edges.

†Duration consists of undistortion and rectification of both left and right image.
‡Time performance was calculated as median of measured values, because running time

of module strongly depends on particular input.
?Time performance was obtained from classification of 904 samples using scikit-learn.

45Current implementation of parking assistant does not guarantee correct performance if
input images do not have specified diemnsions.
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6. Evaluation

Human detection lasts for one object approximately 21.6 ms. It means
that for example ten objects could be classified five time per second.

If one would like to run all modules together on computer similar to one
employed for tests here, time performance would be poor. Solution could
be either use faster computer, speed up particular modules or utilize smaller
input images.
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Chapter 7

Discussion

All proposed algorithms besides curb detection are dependent on quality of
calibration. In thesis we revealed that without precise calibration algorithms
cannot work correctly. Calibration is therefore recommended to perform in
stable environment, otherwise one cannot rely on accuracy of parking assistant
modules.

Throughout practical part of thesis we employed two ordinary web cam-
eras. These cameras capture scene with narrow angle of view that does not
cover all space behind a car. To make proposed parking assistant applicable
even for real usage, more cameras or cameras with wide-angle lenses need to
be employed. In case of more cameras process of 3D scene reconstruction
does not change too much. Particular cameras that lay next to each other
would be treated the same way as described in thesis and finally their dispar-
ity maps would be stitched together. Pair of cameras with wide-angle lenses
would easily cover all space behind a car. However, because of lens shape and
its different projection density of scene to image, we cannot guarantee that
two cameras are sufficient. Therefore, we suggest further research of utilized
cameras with respect to parking assistant.

Cars with radar or laser sensor allert a driver when they approach an
obstacle. Proposed collision avoidance system is also able to detect any
obstacle using simple technique. Depth estimation is also affiliated module
of collision avoidance system. The main drawback of this module is decreas-
ing estimation accuracy by distance. There is not much we can do about it,
because it is caused by relation between disparity and depth. However, we
can set maximum trustworthy distance which can be acknowledged, or employ
size of detected object for depth estimation purposes.

Curb detection that was proposed exploits only RGB image. This ap-
proach was selected because of frequent occurrence of freckles in disparity
map. Freckles complicate understanding of scene semantics. Besides ambigu-
ity regions in images, freckles occur due to inaccurate calibration. Successful
detection rate of curb detection implementation did not reach high. It is
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7. Discussion

caused by various lighting conditions and wrong interpretation of scene. We
believe that employing quality disparity map would prevent these issues.

Human detection employs only side and almost frontal view of human
leg silhouettes. Classification algorithm performs rather well on examined
dataset. However, if captured leg does not retain curved shape, classification
most probably fails. To broaden leg positions that can be correctly classified,
spatial information could be derived from disparity map.

Created datasets helped to support and evaluate proposed methods, how-
ever the amount of images should be larger if one needs to test real parking
assistant. Datasets should be composed of thousands of images captured in
different places and their corresponding ground truth.
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Conclusion

This thesis describes methods for reconstruction of 3D scene using images
captured by web cameras. It also explains camera models and calibration
of cameras. Stereo imaging and structure from motion are thoroughly com-
pared and stereo imaging is eventually selected as more reliable method for
3D reconstruction.

Based on acquired knowledge we propose and implement parking assistant
using two stereo web cameras. Parking assistant consists of three modules:
collision avoidance system, curb detection and human detection.

Main purpose of collision avoidance system is to detect the closest object
in scene and estimate its distance. In order to evaluate object detection and
depth estimation accuracy, we create datasets for both of these demands.
System is able to detect even small objects that cover at least 1 % of image
with its area. Depth estimation RMSE is 5.6 cm for distances up to 104 cm
range. Time performance of collision avoidance system without optimizations
reaches 4.5 frames per second.

Curb detection employs only RGB input image from left camera of stereo
rig. Searching for curb is based on detection of straight lines and utilization
of subsequent heuristics. Despite challenging dataset, which is created for
evaluation purposes within this thesis, obtained successful detection rate is
81 %. One can achieve seven frames per second when using curb detection.

Module of human detection extracts features from detected and normalized
objects in disparity map. Random forests classifier is trained on positive
samples of legs and negative samples of various objects. Created dataset
of positive samples contains four different people in dozens of positions and
distances from camera. Classification precision on validation dataset is 90 %
and recall 89 %. Time performance of human detection module is 21.6 ms per
one object.

Results of experiments confirmed that cameras could be suitable replace-
ment for radar and laser sensors in cars. As benefit, it could also provide vast
amount of features, such as curb or human detection.
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Appendix A

List of Acronyms

FPS Frames per second.

RF Random Forests.

RGB Red Green Blue.

RMSE Root-Mean-Squared Error.

SAD Sum of Absolute Differences.

SfM Structure from Motion.

SIFT Scale Invariant Feature Transform.

SMOTE Synthetic Minority Over-sampling.

SSD Sum of Squared Differences.

STL Standard Template Library.

SVD Singular Value Decomposition.

YUYV Y - luminance, U - blue–difference, V - red–difference.
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Appendix B

DVD content

Datasets ..........................datasets employed within evaluation
Curb Detection

Depth Estimation Accuracy

Human Detection

Object Detection

Source.................................source codes of implementation
Thesis..................................source codes of thesis in LATEX
Readme.txt....................instructions for compilation and running
Setup.sh.........script for setup environment, compilation and running
Thesis.pdf......................................thesis in PDF format
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