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Abstrakt

Táto diplomová práca pojednáva o non-pushy a cirkulárnych D0L-systémoch.
Poskytujeme v nej prehl’ad hlavných výsledkov týkajúcich sa D0L-systémov,
hlavne metódy popisujúcej všetky bǐspeciálne faktory v pevnom bode mor-
fizmu. Na základe analýzy tejto metódy predkladáme návrh a implementáciu
jej algoritmu v algebra systéme SAGE.

Kl’účové slová bǐspeciálne faktory, cirkulárne D0L-systémy, non-pushy D0L-
systémy, pevné body morfizmov, Sage

Abstract

This thesis deals with non-pushy and circular D0L-systems. We present a sum-
mary of the known results on D0L-systems, especially concerning the method
to describe all bispecial factors in a fixed point of a morphism. Based on
analysis of this methods we design and implement its algorithm in computer
algebra system SAGE.

Keywords bispecial factors, circular D0L-systems, non-pushy D0L-systems,
fixed points of morphism, Sage
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Introduction

Lindermayer systems (L-systems) are parallel rewriting systems that were
originally presented in 1968 as a theoretical framework to mathematically
model growth of multicellular organisms. Being determined by the initial
word (i.e. by a finite string of symbols over an alphabet) and by a finite set
of production rules that prescribe the derivation process, this formalism is
closely related to the formal grammar theory developed by Chomsky,
the difference though is reflected in the biological motivation of L-systems.
In L-system, an application of production rules proceeds in discrete time
instants in a parallel manner for each symbol, resulting in absence
of a terminal alphabet in the sense of formal grammar and thus bearing
a resemblance to cellular automata. This built-in parallelism not only has
an essential impact on its formal properties, but also makes the study
of L-systems more attractive from mathematical point of view, as change is
global over the entire word.

Consider the simple production rule a → aa applied on the start symbol
a that produces exponentially growing sequences in each step. Acquired
language is clearly {a2i | i ≥ 0}, which is not obtainable by a sequential
context-free grammar. Of course, inclusion relations between parallel
languages and main language classes of the Chomsky hierarchy were
profoundly studied. Some results on context-free L-languages can be found
e.g. in [2].

During an intensive initial study period, L-systems were also categorised
by the type of complexity of grammar rules they use, yielding a rich
hierarchy of language classes. In this work, we consider only the simplest
L-system termed D0L, signifying deterministic context-free (without
interactions) parallel systems, which roughly means that there is exactly one
production rule for each symbol which refers to that symbol only
disregarding its neighbours, as applied in the previous example.
D0L-systems, being one of the fundamental L-families, provide wide ground
for research of many interesting mathematical and computer science
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Introduction

subjects, many of which do not occur in the “classical” formal grammar
theory. We shall deal with the notion of bispecial factor, related to study
of a combinatorial structure of a language, more specifically, used as a tool
e.g. for calculating the factor complexity of a language (i.e. a function C(n)
that equals the number of distinct factors of length n for a given sequence)
and the critical exponent (i.e. the supremal number of times any consecutive
subsequence is repeated in an infinite word). The proper terminology will be
developed later in the text.

The aim of this work is to design an algorithm enumerating all bispecial
factors in circular non-pushy D0L-systems presented in [1] and then
implement it in SAGE, an open-source computer algebra system [3]. As it
has a rather extensive theoretical background, we will build mathematical
apparatus gradually in the following chapters.

This work is organized as follows: In Chapter 1 we introduce all
necessary notations and definitions. Chapter 2 provides a brief overview
of some basic properties and known algorithms to determine them, namely
we shall introduce the notion of finiteness of D0L language and the notions
of pushy and circular D0L-system. Chapter 3 summarizes needed results on
the algorithm that is to be analysed and implemented. In Chapter 4 we
analyse the results from Chapter 3 and design an algorithm that is the aim
of this thesis. Then, in Chapter 5 and 6, we deal with the implementation
and testing of our algorithm in SAGE.
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Chapter 1

Preliminaries

In this chapter we introduce the necessary notational matters and basic
terminology used in the following text. The first section is devoted to the
standard notation regarding D0L-systems. The second section deals with
basic terms from graph theory, especially with directed graphs.Formalisms
are taken from [4],[5] and [6].

1.1 Combinatorics on words

An alphabet Σ is a finite set of symbols or letters with cardinality denoted as
#Σ. A finite word w of length |w| = n, n ∈ N, over an alphabet Σ is a sequence
of symbols w = a0a1 . . . an−1 from Σ. We use alph(w) to denote the smallest
alphabet Σ′ ⊆ Σ such that w is a word over Σ′. The word of length zero is
the empty word ε. The concatenation of the word w and v = b0b1 . . . bm−1 is
the word wv = a0a1 . . . an−1b0b1 . . . bm−1.

The set of all finite words (resp. non-empty finite words) is denoted Σ∗

(resp. Σ+). If u = u0u1 . . . is an infinite sequence of ui ∈ Σ, we call it
an infinite word over Σ and Σω is the set of all infinite words over Σ.

If w = v1uv2 for some w, v1, u, v2 ∈ Σ∗ , then v1 is a prefix, u is a factor,
and v2 is a suffix of w. In this case we put (v)−1u = w and u(w)−1 = v.
By sub(w) we denote the set of all factors (subwords) of w. Analogously for
infinite words.

An infinite word u is eventually periodic if there exist words v, w ∈ Σ∗

such that u = vwww . . . = vwω; if v = ε, u is (purely) periodic. Any infinite
word that is not eventually periodic is aperiodic.

A morphism is a map ϕ : Σ∗ → Σ∗ that fulfills ϕ(wv) = ϕ(w)ϕ(v) ∈ Σ∗

for all w, v ∈ Σ∗. If moreover ϕ(a) 6= ε for all a ∈ Σ, the morphism ϕ is called
non-erasing.

Given a morphism ϕ on Σ∗, if ϕ(a) is not a suffix of ϕ(b) for any distinct
a, b ∈ Σ, then ϕ is said to be suffix-free. Prefix-free morphisms are defined
analogously. If a morphism is both prefix and suffix-free, then it is bifix-free.
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1. Preliminaries

A morphism ϕ is prolongable on a letter a if a is a prefix of ϕ(a).
If ϕ(u) = u for some u ∈ Σω, then u is a fixed point of ϕ.
If a morphism ϕ is non-erasing on Σ such that for some a ∈ Σ and w ∈ Σ+

we have ϕ(a) = aw then clearly, for all n we get

ϕn(a) = awϕ(w)ϕ2(w) . . . ϕn−1(w)

and, consequently, the infinite word

ϕω(a) = awϕ(w)ϕ2(w)ϕ3(w) . . .

is a fixed point of ϕ. A morphism ϕ on Σ is primitive if there exists k ∈ N such
that for any pair of (possibly equal) letters a, b ∈ Σ the word ϕk(a) contains
b as its factor.

Definition 1 D0L-system is a triple G = (Σ, ϕ, ω), where Σ is an alphabet,
ϕ a morphism on Σ, and w ∈ Σ+ is an initial string referred to as the axiom.

The language of a D0L-system G denoted by L(G) is the set of all words
generated from the axiom, i.e. L(G) = {ϕ(ω)i | i ≥ 0}.

D0L-system is finite if L(G) is a finite set, otherwise it is infinite.
If ϕ is non-erasing, then the system is called propagating, or shortly

PD0L.

1.2 Introduction to graph theory

A directed graph (digraph) of order n is a pair DG = (V,E) where
V = {v1, . . . , vn} is a finite set of vertices (or nodes) and
E = {eij = 〈vi, vj〉} ⊆ V × V is an ordered pair of vertices called a directed
edge, where vi is the initial and vj is the terminal vertex. An edge 〈vi, vj〉 is
said to be incident from vi and incident to vj . A directed edge 〈vi, vi〉 is
a loop. A directed multigraph is a digraph with parallel edges, i.e. E is
a multiset. A graph is called simple if it does not contain loops and parallel
edges.

The in-degree of a vertex v, denoted deg−(v), is the number of edges with
v as their terminal vertex, the out-degree of a vertex v, denoted deg+(v), is
the number of edges with v as their initial vertex.

A directed walk in the graph is a finite sequence
vi0, ej1, vi1, ej2 . . . ejk, vik. It is allowed to visit a vertex and an edge more
than once. A directed walk is a directed trail if edges do not repeat.
A directed trail is a directed path if any vertices do not repeat except for
a possibly closed directed path where the initial and terminal vertices are
the same. A directed closed path is a directed cycle. Digraph is acyclic if it
does not contain directed cycles.

A graph DG∗ = (V ∗, E∗) is a subgraph of DG if V ∗ ⊆ V and every edge
of DG∗ is also edge of DG. The transpose or reverse of a directed graph
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1.2. Introduction to graph theory

DG is another directed graph DGR = (V,ER) where if DG contains the edge
〈vi, vj〉, then DGR contains the edge 〈vj , vi〉. We say that a digraph is strongly
connected if there exists a directed path from vi to vj for every pair vi, vj ∈ V .

A maximal strongly connected subgraph, i.e. a subdigraph induced on
a maximal set of mutually reachable vertices, is a strong component of digraph.
If each strongly connected component Ci ofDG is contracted to a single vertex,
the resulting graph DGC = (V C , EC) where V C = {C1 . . . Cm} and ek,l ∈
EC ⇔ ∃v ∈ Ck, w ∈ Cl, 〈v, w〉 ∈ E; is a condensed digraph (condensation) of
DG.
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Chapter 2

Non-pushy and circular
D0L-systems

This chapter is devoted to prerequisites for functionality of the main
algorithm generating bispecial factors in a non-pushy and circular
D0L-system. Both notions are presented in the following subsections.
Because there is no known algorithm that would decide if an arbitrary
D0L-system is circular or not in finite steps, we will closely follow especially
the work of Ehrenfeucht and Rozenberg [5] containing the proof of
decidability of repetitiveness of a language of a D0L-system language. We
shall use this result, as it was shown in [1] that circularity is equivalent to
non-repetitiveness for non-pushy D0L-system with an injective morphism.

Definition 2 Let w be a nonempty finite word. Any finite prefix v of wω =
www... is a power of w. We denote this by v = wr, where r = |v|

|w| .

Definition 3 Let G be a D0L-system. If for each positive integer n there is
a word w such that wn ∈ sub(L(G)), then G is repetitive; if there is a word
w such that wn ∈ sub(L(G)) for all positive integers n , then G is strongly
repetitive.

It is shown in [5] that all repetitive D0L-systems are strongly repetitive.
The converse is obvious.

2.1 Finiteness of language of a D0L-system

It was proved already in early 1970s that finiteness of a D0L-system is
decidable. For our implementation we use a criterion proposed by Vitányi
in [7], but before stating it, let us first mention a classification of the letters
in an alphabet Σ with respect to morphism ϕ as follows:

Definition 4 Let G = (Σ, ϕ, ω) be a D0L-system and a ∈ Σ.

7



2. Non-pushy and circular D0L-systems

(i) We say that a is mortal if ϕi(a) = ε for some i ≥ 1; M is the set of all
mortal letters;

(ii) alive if a ∈ Σ \M for some i ≥ 1; V is the set of all alive letters;

(iii) recursive if ϕi(a) ∈ Σ∗a Σ∗ for some i ≥ 1; R is the set of all recursive
letters;

(iv) monorecursive if ϕi(a) ∈M∗aM∗ for some i ≥ 1; MR is the set of all
monorecursive letters;

(v) accessible from a word w ∈ Σ+ if ϕi(w) ∈ Σ∗a Σ∗ for some i ≥ 1; A(w)
is the set of all letters accessible from w.

To explain the above definition more intuitively, consider the D0L-system
G = (Σ, ϕA, ω), where

ϕA = {a→ b, b→ dc, c→ ebe, d→ de, e→ fd, f → g, g → gh, h→ i, i→ ε}

and its corresponding dependence graph in Figure 2.1(a). The dependence
graph of ϕA, denoted by DG(ϕA) is a directed multigraph of order #Σ with
loops allowed, its vertices are elements of #Σ and there exists an edge incident
from a to b only if a ∈ alph(ϕ(b)).

It is easy to see that the set of letters accessible from w can be constructed
recursively as

A1(w) = {a1 | a1 ∈ alph(ϕ(w))}
Aj(w) = Aj−1 ∪ {aj | aj ∈ alph(ϕ(b)), b ∈ Aj−1)}

and that there exists k ≤ #Σ such that A(w) = Ak(w). It suffices to notice
that ∀i > k : Ai(w) = A(w) ⊆ Σ as

k ≤ max{the length of shortest path from a to b | a ∈ alph(w), b ∈ Σ},

which gives us a halting condition for search of k and at the same time a trivial
algorithm for construction of A(w). By continually applying the morphism ϕ
on w, we can simulate a parallel graph traversal, i.e. starting from all vertices
a ∈ alph(w), until no new vertex can be visited.

Using the previous result, we can construct other sets from Definition 4.
Cycles in a dependence graph clearly represent the set of recursive letters and
so R = {a ∈ Σ | a ∈ A(a)}. A letter a is mortal if deg+(a) = 0 or if for all
edges incident from a to b, a 6= b, b is mortal: M = {a ∈ Σ | A(a) ∩ R =
∅}.The set of alive letters is V = {a ∈ Σ\M}. Finally, the set of monorecursive
letters is any strong component CMR

i of DG(G) that is a simple cycle and
considering a condensed digraph DGC(G) (see Figure 2.1(b)), if there exists
a path from CMR

i to Cj for any j, then Cj is a vertex representing a mortal
letter: MR = {a ∈ R | ∀b ∈ A(a) : ϕ(b) ∈M∗cM∗, where c ∈ R ∪ {ε}}.
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2.2. Non-pushy D0L-systems

a)  dependence graph DG(φA)

b

c

d

e f h

ia

g

(b)  condensed dependence graph DG C(φA)

rec.

rec.

monorec.b

c

d

e f g h

a i

Figure 2.1: The dependence graph DG (for morphism ϕA) and its
condensation

To conclude our example, in the D0L-system G = (Σ, ϕA, ω), where ω =
cdc, V = {a, b, c, d, e, f, g}, M = {h, i}, R = {b, c, d, e, g}, MR = {g} and
A(ω) = {b, c, d, e, f, g, h, i}.

From now on we will assume Σ to be the smallest alphabet of the language
of a D0L-system G = (Σ, ϕ, ω) as for any D0L-system G′ = (Λ, ϕ, ω) where
Σ ⊂ Λ, a /∈ A(ω) for all a ∈ Λ\Σ, hence G and G′ generate the same language.

Lemma 1 (Vitanyi [7]) A language of a D0L-system is finite if and only if
all recursive letters which are accessible from the axiom (i.e., which occur in
words in the language) are monorecursive.

Having previously found the construction method for the sets of
Definition 4, we can see that an algorithm determining if a D0L-system is
finite or not is based on set operations.

2.2 Non-pushy D0L-systems

Definition 5 Let G = (Σ, ϕ, ω) be a D0L-system. A letter b ∈ Σ has rank
zero in G if L(Gb) is finite, where Gb = (Σ, ϕ, b). We denote the set of all

9



2. Non-pushy and circular D0L-systems

letters having rank zero as Σ∗0.

Definition 6 A D0L-system G = (Σ, ϕ, ω) is pushy if sub(L(G)) ∩ Σ∗0 is
infinite; otherwise G is non-pushy.

It is obvious from the above definition that a language of a pushy system
must be infinite, as it must contain infinitely many arbitrary long factors over
Σ0. There are two types of letters according to Definition 4 that have rank
zero - monorecursive and mortal, but both of them will hardly contribute to
the growth of rank zero subsequence to infiniteness as the first will translate
to itself and the latter to ε in at most #Σ morphism applications. Now,
an inspection of production rules of alive letters other than monorecursive is
in order and we can already expect the search for rank zero prefixes or suffixes
of their production rules. This approach was formalized in [8].

Theorem 1 (Ehrenfeucht and Rozenberg [8]) It is decidable whether or
not an arbitrary D0L-system is pushy.

In the proof of the above theorem in [8], the authors propose that a D0L-
system is pushy if and only if it satisfies a so-called edge condition, i.e. if the
following holds: there exists a ∈ Σ, k ∈ N+, w ∈ Σ∗ and u ∈ Σ+

0 such that
alph(u) contains an alive letter and either ϕk(a) = wau or ϕk(a) = uaw; and
also show that the edge condition is decidable.

To detect if the edge condition is satisfied, we only need to consider two
subgraphs of D0L-system dependence graph denoted as GP (G) and GS(G).
Their vertices are elements of the set of letters having rank zero and there is
an edge from a to b with label ui if there exist ui, wi such that ϕ(a) = uibwi

for GP (G) or ϕ(a) = wibui for GS(G). Then, if there exists a cycle of length
k and suffix or prefix label contributions alph(u | uk−1uk−2 . . . u0)∩MR 6= ∅,
the D0L-system is pushy.

Let us consider the D0L-system G = ({a, b, c, d}, a→ bacba, b→ caab, c→
de, d → c, e → ε, ba) and graphs GP (G) and GS(G) in Figure 2.2, where
prefix (for GP (G)) and suffix (for GS(G)) contributions are marked as labels
of corresponding edge.

We can see that if GP (G) or GS(G) contains a cycle with a non-empty
edge label, the D0L-system is pushy. In our case, label c of edge 〈b, a〉 in
the cycle of GP (G). Analogously, G = ({a, b, c, d}, a → bacba, b → aab, c →
de, d→ c, e→ ε, ba) is non-pushy.

2.3 Repetitiveness and circularity

The first algorithm to decide if a non-pushy system is repetitive as presented
in [5] is of an unknown complexity and it consists of rather complicated
construction and examination of a finite set of special D0L-systems. See the

10



2.3. Repetitiveness and circularity

GP(G) GS(G)

a

b

  ε
c  

a

b

  ε
ε  

Figure 2.2: Detection of edge condition satisfiability

original paper for more information. We will use work [9], where authors
prove that a non-pushy D0L-system is repetitive if and only if there is
a letter a and an integer ` such that the fixed point of ϕ` starting in a is
purely periodic and also provide an algorithm enumerating all infinite
repetitions.

In the following subsections we shall briefly describe a simplified version of
this algorithm, together with finally providing a formal definition of circular
D0L-systems. Gently modified pseudocode from [9] to suit our needs can also
be found below.

2.3.1 Simplifications

Definition 7 Let Σ and ∆ be two finite alphabets, and let f : Σ∗ → Σ∗ and
g : ∆∗ → ∆∗ be morphisms. We say that f and g are twined with respect to
(h, k), if there exist morphisms h : Σ∗ → ∆∗ and k : ∆∗ → Σ∗ satisfying the
equalities f = k ◦ h and g = h ◦ k. If #∆ < #Σ and f and g are twined, then
g is called a simplification of f . If G does not have a simplification it is called
elementary.

Authors often assume that a D0L-system is elementary and thus injective
and non-erasing as for any non-injective D0L-system it is possible to construct
its elementary simplification and proceed with considering only elementary
D0L-system if the studied property of the D0L-system in question does not
change as it is in the case of e.g. repetitions; see [10]. The algorithm to
create a non-erasing and injective simplification can be found in the work of
Kobayashi and Otto [10].

Lemma 2 (Kobayashi and Otto [10]) Let f : Σ∗ → Σ∗ be a morphism
such that Γ1 := {a ∈ Σ | f(a) = ε} 6= ∅; and ∆ := Σ \ Γ1, f0 : ∆∗ → ∆∗ such
that f0(a) := π∆(f(a)), π∆ : Σ∗ → ∆∗ is the natural projection. Further, let
k : ∆∗ → Σ∗ denote the morphism defined by k(a) := f(a), a ∈ ∆.

11



2. Non-pushy and circular D0L-systems

The morphisms f and f0 are twined with respect to (π∆; k); and f0 is a
simplification of f .

The lemma implies that by simply removing all mortal letters and
respective production rules from a D0L-system with an erasing morphism,
we get a non-erasing simplification ϕ′m : (Σ \ M)∗ → (Σ \ M)∗ of
ϕm : Σ∗ → Σ∗, that is, we apply the last lemma m times, where
m = min{n | ∀a ∈ M, ϕn(a) = ε}. Morphisms ϕm and ϕ′m are twined with
respect to (πΣ\M, k

′), where k′ : (Σ \ M)∗ → Σ∗ and k′(a) = ϕm(a) for
a ∈ Σ \M. The proof of that can be found in Lemma 4.1 of [10].

In the same paper the authors also present a construction of
simplification of a non-erasing morphism, related to the defect theorem and
notions of the coding theory.

As it will be shown later that we must restrict ourselves on injective
morphisms only, let us mention a known algorithm to determine if
a morphism is injective or not.

Sardinas-Patterson algorithm [11],[12]
It is known that a morphism is injective only if the set of letter images forms
a code. To determine if a morphism is injective, we might use Sardinas-
Patterson algorithm, a classical algorithm for determining in polynomial time
whether a given variable-length code is uniquely decodable [12].

Definition 8 Let Σ be an alphabet. A code over the set Σ is a subset C ∈ Σ+

such that for any two sequences x1x2 . . . xn, y1y2 . . . ym over C (xi ∈ C and
yj ∈ C; i < n; j < m) satisfying x1x2 . . . xn = y1y2 . . . ym we have n = m and
xi = yi for ∀i ≤ n.

An element of C is called a codeword.

In other words, a set C ∈ Σ is a code if any word over C+ can be written
uniquely as a concatenation of words from C, i.e. a code has the property of
an unique decipherability, thus it never contains the empty word.

Before providing the pseudocode we must define the family of sets Cn

referred to as sets of dangling suffixes, i.e. if wi is a prefix of wj the dangling
suffix of wj is a word w−1

i wj .

C0 = {w ∈ Σ+ | c ∈ C : cw ∈ C}

Ci+1 = {w ∈ Σ+ | c ∈ C : cw ∈ Ci} ∪ {w ∈ Σ+ | c ∈ Ci : cw ∈ C}

The idea of the Sardinas-Patterson algorithm is to try to “construct
a word” that proves that the images of letters are not a code. We say
“construct a word” as algorithm itself does not keep the information about
how this word was constructed. It works with sets, thus losing dependencies
between Ci and Ci+1. The set with all the dangling suffixes of images of

12



2.3. Repetitiveness and circularity

letters is built in first step (C0), then recursively other sets are constructed
from testing if dangling suffix is a prefix of some codeword of has some
codeword as its prefix, building towards the searched “word”.

Algorithm 1 Sardinas-Patterson algorithm

Input : a morphism ϕ : Σ∗ → Σ∗

Output: True if injective; False otherwise

1: if ϕ(a) = ε, for any a ∈ Σ then
2: return False
3: C ← a image, for all a ∈ Σ
4: i← 1
5: compute C0

6: while Ci does not contain an empty word do
7: i← i+ 1
8: compute Ci

9: if there exists j < i : Cj = Ci then
10: return True
11: return False

Since all sets Ci are finite and obtaining the same set twice causes
the algorithm to stop, the algorithm must always terminate. The total
number of suffixes processed is at most equal to the sum of the lengths of all
codewords. The algorithm runs in a polynomial time as function of input
length.[12]

2.3.2 Circular D0L-systems

Definition 9 Let ϕ be a morphism with a fixed point u, ϕ injective on
L(u), and let w be a factor of u. An ordered pair of factors (w1, w2) is called
a synchronizing point of w if w = w1w2 and

∀v1, v2 ∈ Σ∗, (v1wv2 ∈ ϕ(L(u)) =⇒ v1w1 ∈ ϕ(L(u)) and w2v2 ∈ ϕ(L(u)))

We denote this by w = w1|sw2.

The above definition is not very intuitive, so we shall demonstrate its
meaning on an example.

Consider the well-known Thue-Morse substitution: ϕTM : 0→ 01, 1→ 10
and its fixed point uTM = ϕω(1) = 10010110011010010110100 . . ..

Any factors containing 0|s0 and 1|s1 can be decomposed into ϕTM -images
of letters, in this case incomplete ϕTM -images of letters 1 and 0 for 0|s0 and
0 and 1 for 1|s1. This decomposition may not always be unique, e.g. in some
cases substitution might not be suffix or prefix-free and we might not know to
which image of a letter a factor relates to. If synchronization is the same for
all such cases, a synchronizing point does exist. Considering the factor 01, it

13



2. Non-pushy and circular D0L-systems

has no synchronizing point as we can decompose it to both 0|1 and |01| and
those do not share the “common bar”.

Definition 10 A D0L-system G = (A,ϕ, ω) is circular if ϕ is injective on
sub(L(G)) and if there exists D ∈ N such that any v ∈ sub(L(G)) with |v| ≥ D
has at least one synchronizing point. This D is called a synchronizing delay.

Obviously, synchronizing delay represents an upper bound on the length
of prefixes and suffixes of all words w ∈ sub(L(G)) for which we cannot
unambiguously determine their (possibly incomplete) ϕ-images.

To continue the above example, we will show that G = ({0, 1}, ϕTM , 1)
is circular. We still have to consider the factor 0101 (and analogously 1010),
which we can decompose as 0|10|1 and 01|01. The decomposition to 0|10|1 is
not admissible as it would imply that factor 111 is in the language of L(uTM ).
Clearly, that is not true. As a result, the synchronizing point of 0101 is 01|s01,
the ϕTM -image of 00. With that we have iterated and found synchronizing
points for all admissible factors of length 4, as other cases would contain
factors 00 and 11 for which the decomposition was already shown. Now we
see that the searched synchronizing delay equals 4.

As we have previously mentioned, there is no known algorithm to
compute the minimal or at least reasonably low synchronizing delay, and
hence determine if arbitrary D0L-system is circular or not. However, we are
only concerned with non-pushy D0L-systems for which circularity was
proved to be decidable. A known algorithm is presented in the following
subsection. One more important result on circularity was presented in work
of Mossé and it states:

Theorem 2 (Mossé [13]) Any D0L-system G = (Σ, ϕ, a) with ϕ primitive
and ϕω(a) being aperiodic is circular.

We should also mention that though it is easy to determine if ϕ is injective,
to determine if ϕ is injective on sub(L(G)) we must also determine if for any
w1, w2 such that ϕ(w1) = ϕ(w2) both w1 and w2 are factors of a language of
a D0L-system. Of course, if ϕ is injective =⇒ ϕ is injective on sub(L(G)),
but the converse is not true. The injectivity on sub(L(G)) remains an open
problem. From now on, we will work with circular D0L-systems with an
injective morphism.

2.3.3 Algorithm determining if non-pushy D0L-system
is circular

In [9], the authors presented the algorithm enumerating all infinite repetitions
in a D0L-system. The algorithm uses the notion of injective simplification of
a D0L-system, as it was proved in [10] that the structure of infinite repetitions

14



2.3. Repetitiveness and circularity

remains the same and can be retroactively constructed for the original D0L-
system. The proof of the correctness of algorithm is well described in [9].

Definition 11 A non-empty word v is primitive if v = wk implies k = 1.

Lemma 3 (Klouda and Starosta [9]) Any repetitive D0L-system G contains
a finite number of primitive words v such that vω is an infinite periodic factor,
i.e. ∀k, vk ∈ sub(L(G)).

The following theorem states that non-circular D0L-systems must contain
unbounded power of some word.

Theorem 3 (Mignosi and Séébold) If a D0L-system is k-power-free (i.e.,
L(G) does not contain the k-power of any word) for some k ≥ 1, then it is
circular.

If a D0L-system is repetitive, the algorithm in [9] outputs a list of all
primitive words v such that vk is in the language for all k ∈ N. For our
purposes we only need to know if at least one such primitive word is a factor
of a language of a non-pushy D0L-system, thus if it is repetitive and as such
non-circular.

Algorithm 2 Circularity test for a non-pushy D0L-system (Σ, ϕ, ω)

Input: injective morphism ϕ : Σ∗ → Σ∗

Output: True if circular; False otherwise

1: calculate the list of rank zero letters Σ0

2: for all letters a ∈ Σ \ Σ0 do
3: find the least ` such that FirstLetter(ϕ`(a)) = a
4: if ` exists then
5: find the least s such that ϕ`·s(a) contains at least two occurrences

of one unbounded letter
6: if ϕ`·s(a) contains at least two occurrences of a then
7: v ← the longest prefix of ϕ`·s(a) with one occurrence of a;
8: if ϕ`(v) = vm for some integer m ≥ 2 then
9: return False

10: return True

We already know from Section 2.2 how to determine Σ0, both ` and s are
proved to be ≤ #Σ, which gives us an upper bound for their search (lines 3
and 5) and finally, code on lines 6-8 verifies periodicity of (ϕ`)ω(a) as it was
proved that (ϕ`)ω(a) is periodic if and only if ϕ`(v) = vm for some integer
m ≥ 2.

15



2. Non-pushy and circular D0L-systems

2.4 Circular and non-pushy test

From the previous results we get a simple test of prerequisites for the main
algorithm of this thesis that was proved to be correct and finite for non-pushy
and circular D0L-systems only. Still, we must expect morphism to be injective
as we do not know how to test injectivity on a language of a D0L-systems.

The logics of the test is depicted in the following diagram:

INPUT: D0L system G=(Σ,φ,ω), φ injective

is L(G) finite?

 YES 

is edge condition satisfied?

 NO 

pushy

 YES 

non-pushy

 NO 

is G repetitive?

non-circular

 YES 

circular

 NO 

Figure 2.3: The input test for the main algorithm
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Chapter 3

Bispecial factors in circular
non-pushy D0L languages

The method presented in [1] provides a guideline for generating all bispecial
factors of an infinite fixed point of a morphism. A morphism, in general, might
have more fixed points with the different language, so in order to distinguish
them, we treat a morphism and its particular fixed point as a D0L-system.
The aim of what follows is just to summarize the needed results of [1]. All
formalisms in this chapter are taken from [1] and [4].

Before we get to the method itself, let us provide a proper definition of
a bispecial factor.

Definition 12 Let w be a factor of an infinite fixed point u over Σ, the set
of left extensions of w is defined as

Lext(w) = {a ∈ Σ | aw ∈ L(u)}.

If #Lext(w) ≥ 2, then w is said to be a left special factor of u.

In an analogous way, we define the set of right extensions Rext(w) and
a right special factor. If w is both left and right special, then it is called
bispecial.

A few more definitions are required for an exact description of the method.
Before we proceed, let us provide its brief overview.

3.1 Brief description

The method allows us to describe all bispecial factors in an infinite fixed point
of a morphism and it is finite by its nature. The idea behind it is to find
a special mapping, refered to as fB-image, that allows us to “transform” any
bispecial factor to another one and to find a certain set of bispecial factors
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3. Bispecial factors in circular non-pushy D0L languages

from which, with a mapping found, we can generate a sequences of bispecial
factors that cover all bispecial factors in the language of a morphism. We refer
to this set as an initial set.

1. The method is proved to work and to be finite for non-pushy and
circular D0L-systems only. How to determine if a D0L-system has such
properties was already presented in the previous chapter.

2. The fB-image is specified by two graphs of left and right prolongations
(see Definition 19), built on top of left and right forky sets (see
Definition 17) defined to posses the properties allowing fB-image to be
applied repetitively.

3. An initial set is finite as a direct consequence of circularity. The proof
that by repetitively applying f -image on its elements we can generate all
bispecial factors in the language of a given fixed point, i.e in sub(L(G)),
can be found in [1].

3.2 The fB-image

3.2.1 Forky sets

The fB-image is defined not only on a bispecial factor, but it also reflects the
changes of its left and right extensions. The reason for that is if we consider
a right special factor and its image, the image does not have to be again right
special. This happens in a situation, when the images of extensions start with
the same letter. To remedy that, the longest common prefix is appended to
the end of the image of the factor, but again, if a morphism is not prefix-
free, the information about an extension is lost and we cannot determine if
the acquired factor is right special. To keep the information about extensions
after applying a morphism, we have to consider extensions longer than one
letter. The following two definitions just define a proper structure to work
with.

Definition 13 Let u be an infinite word and w its factor. The sets of left
prolongations of w is the set

Lpro(w) = {v ∈ Σ+ | vw ∈ L(u)}.

We define the set of right prolongations Rpro(w) analogously.

Definition 14 Let ϕ be a morphism over Σ with a fixed point u. Let us
denote the set of unordered pairs of distinct letters as

B1 = {(a, b) | a, b ∈ L(u), a 6= b}.

18



3.2. The fB-image

A bispecial triplet T in u is a triplet T = ((w1, w2), v, (w3, w4)), where
w1, w2 ∈ Lpro(v), w3, w4 ∈ Rpro(v) and the last letters of (w1, w2) ∈ B1 and
the first letters of (w3, w4) ∈ B1.

In case of bispecial triplet we assume that either w1vw3 and w2vw4 or
w1vw4 and w2vw3 are factors in the language L(u). The sets Lpro(w) and
Rpro(w) are generally infinite.

Definition 15 Let ϕ be a morphism over Σ and let (v1, v2) be an unordered
pair of words from Σ+. We define

fL(v1, v2) = the longest common suffix of ϕ(v1) and ϕ(v2),

fR(v1, v2) = the longest common prefix of ϕ(v1) and ϕ(v2).

The idea behind forky sets is to find a proper subset of pairs of left (BL)
and pairs of right (BR) prolongations, such that having a bispecial triplet
T = ((w1, w2), v, (w3, w4)) where (w1, w2) ∈ BL and (w3, w4) ∈ BR we can
find another (w′1, w

′
2) ∈ BL, (w′3, w

′
4) ∈ BR and bispecial triplet

T ′ = ((w′1, w
′
2), v′, (w′3, w

′
4)) where

v′ = fL(w1, w2)ϕ(v)fR(w3, w4).

As we have previously mentioned, the forky sets are the basic blocks of
the fB-image mapping that we are trying to obtain. For the mapping to
be properly defined and recursively applicable it must be ensured that any
two left or right prolongations of any bispecial factor are included in BL or BR
respectively. To help us define a good choice of BL and BR pairs, the following
definition is in order.

Definition 16 Let (w1, w2) and (v1, v2) be unordered pairs of words. We
say that

(i) (w1, w2) is a prefix (suffix) of (v1, v2) if either w1 is a prefix (suffix) of
v1 and w2 of v2, or w1 is a prefix (suffix) of v2 and w2 of v1;

(ii) (w1, w2) and (v1, v2) are L-aligned if

(v1 = uw1 or w1 = uv1) and (v2 = u′w2 or w2 = u′v2)

or

(v1 = uw2 or w2 = uv1) and (v2 = u′w1 or w1 = u′v2)

for some words u, u′.

Analogously for R-aligned pairs.
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3. Bispecial factors in circular non-pushy D0L languages

Figure 3.1: L-aligned and not L-aligned pairs of words [1]

The schematics of L-aligned and not L-aligned words is depicted in
Figure 3.1 taken from [1].

With the previous definition stated, we can finally provide the definition
of forky sets.

Definition 17 (Forky sets) Let ϕ be a morphism with a fixed point u. A
finite set BL of unordered pairs (w1, w2) of nonempty factors of u is called
L-forky if all the following conditions are satisfied:

(i) the last letters of w1 and w2 are different for all (w1, w2) ∈ BL,

(ii) no distinct pairs (w1, w2) and (w′1, w
′
2) from BL are L-aligned,

(iii) for any v1, v2 ∈ L(u) \ {ε} with distinct last letters there exists
(w1, w2) ∈ BL such that (w1, w2) and (v1, v2) are L-aligned,

(iv) for any (w1, w2) ∈ BL there exists (w′1, w
′
2) ∈ BL such that

(w1fL(w1, w2), w2fL(w1, w2))

is a suffix of (ϕ(w1), ϕ(w2)).

Analogously we define an R-forky set.

The conditions (i)− (iv) will be our “checkpoints” in the construction of
the forky sets in the next chapter.

Definition 18 Denote B = (BL,BR). The bispecial triplet T ′ in the previous
text is called the fB-image of a bispecial triplet T = ((w1, w2), v, (w3, w4)).
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3.2. The fB-image

Remark: In the following chapter we will also use the notation of f -image
instead of fB-image. By that we simply mean that corresponding sets of
pairs from BX might not map properly on BX , which is why we omit the
subscript. Apart from that, the idea of mapping is the same and applicable
not only to triplets. The f -image of e.g. (v, (w3, w4)) is intuitively
(vfR(w3, w4), (fR(w3, w4)−1ϕ(w3), fR(w3, w4)−1ϕ(w4))).

Theorem 4 Let ϕ be a morphism on L with a fixed point u = ϕω(a). If
(Σ, ϕ, a) is a circular non-pushy system, then it has finite L-forky and R-forky
sets.

3.2.2 Graphs of prolongations

The forky sets are proved to be well-defined and the condition (iv) specifies
a unique mapping form (w1, w2) to (w′1, w

′
2) for all pairs in the set, so it can be

applied repetitively as required. The uniqueness is a direct result of properties
(ii) and (iii). The “transition” form (w1, w2) to (w′1, w

′
2) can be represented

by two directed graphs.

Definition 19 Let ϕ be a morphism with a fixed point u and let BL be its
L-forky set. We define the directed labeled graph of left prolongations GLBLϕ
as follows:

(i) the set of vertices is BL,

(ii) there is an edge from (w1, w2) to (w3, w4) if (w3fL(w1, w2), w4fL(w1, w2))
is a suffix of (ϕ(w1), ϕ(w2)). The label of this edge is fL(w1, w2).

We define graph of right prolongations GRBRϕ analogously.

To generate a new bispecial triplet from a bispecial triplet
((w1, w2), v, (w3, w4)), we can simply append the label of the edge incident
from (w1, w2) to (w′1, w

′
2) to the bispecial factor v from the left and the label

of the edge incident from (w3, w4) to (w′3, w
′
4) from the right and “move” to

new vertices (w′1, w
′
2) and (w′3, w

′
4) automaton-like.

Lemma 4 Let ϕ be a morphism with a fixed point u, let BL be an L-forky
and BR an R-forky set and let T = ((w1, w2), v, (w3, w4)) be a bispecial triplet
of u. Let us denote by

(i) gL(w1, w2) the end of the edge of GLBLϕ starting in (w1, w2),

(ii) gR(w3, w4) the end of the edge of GRBRϕ starting in (w3, w4).

Then

T ′ = (gL(w1, w2), fL(w1, w2)ϕ(v)fR(w3, w4), gR(w3, w4))

is also a bispecial triplet of u.
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3. Bispecial factors in circular non-pushy D0L languages

Repeating above action n times, we get the bispecial triplet

(gnL(w1, w2), fL(ϕn−1(w1), ϕn−1(w2))ϕn(v)fR(ϕn−1(w3), ϕn−1(w4)), gnR(w3, w4)).

where gnL(w1, w2) and gnR(w3, w4) are the vertices reached in n steps from
(w1, w2) and (w3, w4) respectively. As said before, this mapping is unique
and so every forky vertex (w1, w2) of the graph of prolongations has
deg+((w1, w2)) = 1.

Having constructed graphs of left and right prolongations, we have a full
prescription of fB-image for a particular fixed point.

3.3 Initial bispecial factors

With the fB-image specified, the last thing to acquire is the finite initial set
of bispecial triplets, the minimal set of “generators” of all the other bispecial
factors in the language of a particular infinite fixed point. This notion is
connected to somehow weakened term of synchronizing point of a factor in a
circular morphism that is fitted for bispecial triplet.

Definition 20 Let ϕ be a morphism injective on L(u), where u is its fixed
point, let BL and BR be L- and R-forky sets, and T = ((w1, w2), v, (w3, w4)) a
bispecial triplet. Assume, without loss of generality that w1vw3, w2vw4 ∈ L(u).
An ordered pair of factors (v1, v2) is called a BS-synchronizing point of T if
v = v1v2 and

∀u1, u2, u3, u4 ∈ Σ∗, (u1w1vw3u3, u2w2vw4u4 ∈ ϕ(L(u)) =⇒
u1w2v1, u2w2v1, v2w3u3, v2w4u4 ∈ ϕ(L(u)).

We denote this by v = v1|bsv2.

It is clear that both left and right pairs of prolongations store an extra
information available to factor in the triplet, so v = v1|sv2 =⇒ v = v1|bsv2

but converse is not true.

Definition 21 Let ϕ be a morphism with a fixed point u which is injective
on L(u). A bispecial triplet T = ((w1, w2), v, (w3, w4)) is said to be initial if
it does not have any BS-synchronizing point.

We see the role of circularity in finiteness of algorithm, as a circular
D0L-system requires from the definition that its language contains only
a finite number of factors without any synchronizing point. Clearly, all
initial factors have to be shorter than the synchronizing delay of a respective
D0L system. The proof that a set of all initial bispecial triplets is a complete
set of generators can be found in Theorem 36 of [1]. We shall state it here
without the proof to conclude this section.
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3.3. Initial bispecial factors

Theorem 5 Let (Σ, ϕ, a) be a circular non-pushy D0L-system, BL and BR its
L-forky and R-forky set, and u = ϕω(a) infinite. Then there exists a finite set
I of bispecial triplets such that for any bispecial factor v there exist a bispecial
triplet T ∈ I and n ∈ N such that ((w1, w2), v, (w3, w4)) = (fB)n(T ) for some
(w1, w2) ∈ BL and (w3, w4) ∈ BR.
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Chapter 4

Analysis and Design

This chapter is devoted to the analysis of the needed results from [1] and
the design of algorithms for the fB-image mapping and generator of the set
of initial triplets. Consequently we design an algorithm to generate bispecial
factors in the language of a fixed point of a morphism.

4.1 Forky sets

It is shown in [1] that the construction of forky sets is simple for bifix-free
morphisms. In such case, BL and BR contain just an unordered pairs of letters
of the alphabet i.e. for an n-letter alphabet we get set with cardinality

(
n
2

)
.

We will call this set the set of initial pairs. Clearly, conditions (i) − (iv)
of Definition 17 are satisfied trivially, as combinations of letters are distinct,
none of them are L- or R-aligned and they create all possible first or last letter
extensions for any pair of factors in the language for R-forky or L-forky set
respectively. Furthermore, (ϕ(w1)fL(w1, w2)−1, ϕ(w2)fL(w1, w2)−1) is always
a pair of non-empty words and hence it always has a suffix in BL. The same
goes for (fR(w1, w2)−1ϕ(w1), fR(w1, w2)−1ϕ(w2)) and a prefix in BR.

However, for morphisms that are not bifix-free, the choice of pairs for the
forky sets is not as evident. The proof of Theorem 4, to be found in [1], shows
the construction in a direct connection to the circularity of the associated
D0L-system, as it uses the synchronizing delay to find a forky set. We will
give a method to construct the minimal forky set which may be distinct from
the one in the proof. This method starts from the set of initial pairs and then
it modifies it recursively so that it satisfies the conditions (i)− (iv).

4.1.1 Construction by example

We shall demonstrate the construction on the following example of non-pushy
and circular D0L-system with morphism:

({0, 1, 2}, ϕM : 0→ 0120, 1→ 012, 2→ 01, 0).
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4. Analysis and Design

Starting from the set of initial pairs BRinit = {(0, 1), (0, 2), (1, 2)} we see that
none of its elements fulfills the condition (iv) as

fR(0, 1)−1(ϕM (0), ϕM (1)) = (0, ε)

fR(0, 2)−1(ϕM (0), ϕM (2)) = (20, ε)

fR(1, 2)−1(ϕM (1), ϕM (2)) = (2, ε).

Prolongations cannot be determined on the spot, we have to build up to the
correct set gradually. In this case, the empty word indicates that we did not
succeed to find proper right extensions of right special factors ϕM (v)012 and
ϕM (v)01 and we have to extend both 1 and 2.

To find the relevant right extensions we need to determine the set of all
factors of length 2. The set can be determined by a simple algorithm,
presented later in this chapter, and in this case it equals {00, 01, 10, 12, 20},
hence Rext(1) = {0, 2} and Rext(2) = {0}. By replacing (0, 1) with (0, 10)
and (0, 12), and (0, 2) with (0, 20) we get the new set to test.

BR1 = {(0, 10), (0, 12), (0, 20), (1, 20)}.

Repeating the above process, we see that we have to extend 0 in the first two
elements of BR1 . 0 is extendible to 00 and 01, yielding the new quadruple
of the pairs and the set

BR2 = {(00, 10), (01, 10), (00, 12), (01, 12), (0, 20), (1, 20)}.

Though the empty word does not have a prefix in any BRi from the
definition, for other outcomes of fR(w1, w2)−1(ϕM (w1), ϕM (w2)) we have to
iterate over the set and determine the correct index of an element in a pair
to extend, if the pair does not have a prefix in BRi . From

fR(00, 12)−1(ϕM (00), ϕM (12)) = (0120, 1)

fR(01, 12)−1(ϕM (01), ϕM (12)) = (012, 1)

we see that we have to extend 12 again. As the set of all factors of length 3
equals {001, 010, 012, 101, 120, 200, 201}, the only option is 120, which brings
us to the final, R-forky set as it satisfies all defined conditions.

BR = {(00, 10), (01, 10), (0, 20), (00, 120), (01, 120), (10, 20), (12, 20)}.

It follows from the construction that satisfiability of conditions (i)− (iii)
is never disturbed as we extend to the right and include all possible letters for
that new factor is in language of the D0L-system.

Since ϕM is suffix-free, the L-forky set is

BL = {(0, 1), (0, 2), (1, 2)}.
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4.1.2 Algorithm

Using the example from the previous section, we can design an algorithm
that constructs L- and R-forky sets by simply copying the advancement of
the calculation. Clearly, we will need a function to determine the f -image
of a pair, a function to determine index of an element in pair to extend and
of course a function to determine all possible extensions of a word. In all
three cases, we have to differentiate between L-forky suffix and R-forky prefix
“search”.

We shall omit naming the above functions in pseudocode for its better
readability, providing just a word description, but we comment on them below
the code to specify their properties and the functionality. The functions can
be easily matched to the pseudocode.

Algorithm 3 Construction of R-forky set

Input : circular non-pushy D0L-system (Σ, ϕ, a) with a fixed point u
Output: R-forky set

1: B ← the set of initial pairs (u, v)
2: do
3: for all (u, v) in B do
4: ((fu, fv), fR(u, v)) ← f -image of (u, v)
5: if (fu, fv) does not have a prefix in B then
6: i ← the index of element in (u, v) to extend
7: else
8: i ← out-of-range

9: if i equals 0 or 1 then
10: new pairs ← list of extensions of (u, v) in index i
11: replace (u, v) with new pairs in B
12: while replacement occurred
13: return B

L-forky set is constructed in the same manner.

Subroutines

f-image of a pair (u, v)
Input: ϕ, pair (u, v), type=left/right
This function determines and returns the f -image of respective right or left
pair (u, v), i.e., a tuple (fR(u, v)−1(ϕ(u), ϕ(v)); fR(u, v)) denoted as
((fu, fv), fR(u, v)), analogously for the left pair. It is a straightforward
function from definition; it applies the morphism ϕ and finds the longest
common prefix or suffix according to the type of the pair.
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4. Analysis and Design

Index function
Input: pair of prolongations (fu, fv) of f -image of (u, v), the set of pairs B,
type=left/right
According to the condition (iv), for any (w1, w2) ∈ BR there exists the uniquely
given pair (w′1, w

′
2) ∈ BR such that (fR(w1, w2)w′1, fR(w1, w2)w′2) is a prefix of

(ϕ(w1), ϕ(w2)).

If a pair (fu, fv) = fR(u, v)−1(u, v) contains the empty word, the function
returns the index of the empty word in the pair. Otherwise it iterates over
the elements of B, detecting if B contains a prefix of (fu, fv). As the prefix is
unique, it is easy to find. If found, the function returns out-of-range index.

If the prefix is not in the set B, the function returns the index of the element
of the pair (u, v) to be extended. The index is determined as follows: Let (u, v)
be the tested pair and (fu, fv) = fR(u, v)−1(u, v). Assume w.l.o.g. that it
suffices to extend v to fulfil the condition (iv) for the given pair. Then either
u′ is prefix of fu and fv is prefix of v′, or v′ is prefix of fu and fv is prefix of
u′ for some element (u′, v′) ∈ B.

Analogously for L-forky set.

Extension function and the set of all factors of length n
Input: ϕ, pair (u, v), type=left/right
We have mentioned the necessity of constructing a set of all factors of
an arbitrary length to determine if a factor with an appended extension is in
the language of the fixed point. As we work with a morphism, not its
“infinite” fixed point1, we cannot use the obvious tools for construction of
a factor set, such as suffix tree, without generating the word long enough to
surely contain all factors of given length. In general, this dependence is not
known. To remove the need to generate unnecessarily long words of
unknown length, we propose the following to obtain the set of all factors of
length n that shall suffice for our test cases.

1. Find the least l such that n ≤| ϕl(axiom) |

2. Generate the word ϕl(axiom)

3. Create the set of all factors of length n as follows:

(i) S0 ← all factors of length n from the word in 2.

(ii) Si+1 ← Si∪ {all factors of length n from ϕ(w) | w ∈ Si}
(iii) if Si+1 = Si, finish.

In case of a D0L-system representing a fixed point of a morphism, 3ii can
be replaced by Si+1 ← {all factors of length n from ϕ(w) | w ∈ Si}. As

1It is a common practice not to try to store infinite words in finite memory of one’s
beloved computer
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4.2. Graphs of left and right prolongations

a morphism is prolongable in an axiom, the information from the previous set
will not be lost. This is not true in general.

Having constructed the set of all factors of length n, we can easily
determine if any word is in language or not. The extension function then
just iterates over letters of the alphabet, checking if the extended factor is in
the language.

4.2 Graphs of left and right prolongations

Graphs of prolongations are fully defined from the elements of forky sets
that are the vertices of graphs, having the directed edges specified by
the condition (iv). The algorithm for their construction uses the already
defined f-image and Index functions. Having those, we proceed according
to the Definition 19.

The f-image of (u, v) returns the information about the label of an edge
incident from (u, v). The pair that it is incident to can be determined using
the Index function, which returns out-of-range if the pair is found in the
set. We can use the one element set as input argument to determine if return
value of Index function is out-of-range for a given pair.

Algorithm 4 Construction of graph of right prolongations

Input: circular non-pushy D0L-system (Σ, ϕ, a), R-forky set BR
Output: directed graph of right prolongations GRBRϕ

1: GRBRϕ ← {}
2: vertices← all pairs (u, v) from BR
3: add all vertices to GRBRϕ
4: for all (u, v) in vertices do
5: ((fu, fv), fR(u, v)) ← f -image of (u, v)
6: edge label← fR(u, v)
7: for all (x, y) in vertices do
8: if (x, y) is prefix of (fu, fv) then
9: GRBRϕ ← edge from (u, v) to (x, y) with label edge label

10: continue
11: return GRBRϕ

Graph of left prolongations is constructed in the same manner.

For the D0L-system from the previous example with the morphism ϕM we
get the graphs in Figure 4.1.

4.3 Set of initial bispecial triplets

The notion of an initial bispecial triplet is bound to the notion of bispecial
synchronizing point. We know that a length of factor of a bispecial triplet
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(a) graph of left prolongations for φM
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(b) graph of right prolongations for φM
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Figure 4.1: GLBLϕM
and GRBRϕM

is less than or equal the synchronizing delay of circular morphism. Also, the
triplet does not have any fB-preimage. As we do not know how to efficiently
determine if bispecial factor has synchronizing point or not, we shall handle
the maximum length of all bispecial factors to generate as an input variable.
We will refer to it as delay as it is supposed to express the “safe” upper bound.

Setting the delay too high would imply generating extra triplets that are
surely not initial. Though those can be additionally removed from
the generated set, we first have to generate them by known methods which
are not efficient, thus wasting time and space resources. Even knowing
the exact value of delay, extra work has to be done as the synchronizing
delay represents an upper bound on minimal needed value and we have to
check for fB-preimage once the triplets are constructed. Setting the delay
too low, our initial set would be incomplete.

A bispecial triplet might have an empty word as fB-preimage. The empty
word is bispecial trivially for every alphabet with cardinality at least 2. Those
are usually of no interest to us and also often “roots” of the same sequence
of bispecial factors obtained from Theorem 5, so we might replace them with
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4.3. Set of initial bispecial triplets

their fB-images, thus removing the duplicates.
Returning to our ϕM with synchronizing delay 2, the initial set is

((0, 1), ε, (01, 10)), ((0, 1), ε, (01, 120)), ((0, 1),ε, (0, 20)),

((0, 1), ε, (10, 20)), ((0, 1), ε, (12, 20)), ((0, 2),ε, (00, 10)),

((0, 2), ε, (00, 120)), ((0, 2), ε, (01, 10)), ((0, 2),ε, (01, 120)),

((1, 2), ε, (0, 20)), ((0, 2), 0, (01, 120)), ((1, 2),0, (01, 120)).

After replacing the empty factors with fB-image of self, we get a slightly
smaller set:

((0, 2), 0120, (01, 10)), ((0, 2), 01, (0, 20)), ((1, 2), 0, (01, 120)),

((0, 1), 0120, (01, 10)), ((0, 2), 0, (01, 120)), ((0, 1), 0120, (01, 120)),

((1, 2), 01, (0, 20)), ((0, 2), 0120, (01, 120)).

We might notice that the only vertices that are in the cycles of the graph
GRBRϕM

in Figure 4.1(b) were preserved in the modified set. That is due to
the fact that we have generated a set of initial pairs from all combinations
of letters in an alphabet, instead of using unordered pairs from the set of all
factors of length 2. Disregarding the empty bispecial factor, the input variable
delay would no longer have to represent synchronizing delay to get a desired
set, but length of the longest factor of fB-image of bispecial triplet with the
empty word as a factor. The modified graph reads:

01
10

01
120

 0120    0120 

0
20   01 

Figure 4.2: Subgraph of GRBRϕM
for triplets with non-empty bispecial factors

4.3.1 Algorithm

Subroutines

Initial triplet generator
Initial bispecial factors have to be determined using any known method. We
can use a simple iterator over the set of all the factors of length in
range (0, delay) storing the left and right extensions in format
({a1 . . . an}, bs, {b1 . . . bm}), consequently creating pairs of extensions
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4. Analysis and Design

Algorithm 5 Initial bispecial triplets

Input : D0L-system (Σ, ϕ, a), L- and R-forky sets, delay
Output: the set of initial bispecial triplets

1: generate bispecial factors with left and right extensions up to length delay
2: create initial triplets from the output of previous point
3: append corresponding pairs from forky sets to initial triplets to create
bispecial triplets . pairing is uniquely given

4: for all bst in bispecial triplets do
5: if bst factor equals ε then
6: replace bst with its fB-image

7: for all bst in bispecial triplets do
8: if f -image of bst is in bispecial triplets then
9: mark f -image of bst for removal

10: remove marked elements from bispecial triplets
11: return bispecial triplets

followed by inspection of their existence in L(ϕω(a)). Such a procedure is
somehow lengthy, but necessary. We can avoid generating correct extensions
by simply testing all combinations of initial left and right pairs. Either way,
this algorithm is not very efficient as all known methods to find bispecial
factors have to iteratively search the factors to evaluate them.

4.4 Generator of bispecial factors

Every fnB -image of an initial bispecial triplet is synchronized and has
a unique preimage in the set of initial triplets. Still, the situation may occur
when initial bispecial triplets might generate the same sequence of bispecial
factors, resulting in duplicity as it is in case of, e.g. ((w1, w2), 0120, (w3, w4))
from the example above. From the graphs in Figure 4.1 we see that any
transition from any left pair does not contribute to left growth of factor as
labels are the empty words. The factor 0120 grows to the right only and it is
always extended by 0120. Generating bispecial factors from such graphs
would result in generating four times the same 0120k factor for all k. These
cases should be unified to diminish a redundancy. Using our example, it
suffices to keep three initial factors as from ((0, 2), 0120, (01, 10)),
((0, 1), 0120, (01, 10)), ((0, 1), 0120, (01, 120)) and ((0, 2), 0120, (01, 120)) we
would generate the same bispecial factors, and the same goes for bispecial
triplets ((0, 2), 01, (0, 20)) and ((1, 2), 01, (0, 20)) and bispecial triplets
((1, 2), 0, (01, 120)) and ((0, 2), 0, (01, 120)).

For this purpose, we need to examine cycles in graphs of prolongations for
all bispecial triplets with the same bispecial factor and remove any unnecessary
transitions and corresponding initial triplets. Then we can proceed generating
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4.4. Generator of bispecial factors

bispecial factors by “transiting” to neighbouring vertices of left and right
graphs of prolongations, prepending and appending the corresponding labels
to ϕ-image of the factor.

The set of all bispecial factors is clearly infinite, the generator must be
bounded by a number of iterations or a maximum length of bispecial factor
to obtain.

With this we have successfully analysed the method presented in [1] and
identified the main and the auxiliary functions necessary for an
implementation.
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Chapter 5

Implementation

The implementation of our algorithms is to be found on attached CD. If
the reader wishes to implement a new algorithm or improve upon what we
have provided, this chapter discusses details of our implementation and also
serves as the documentation.

5.1 Introduction to Sage

Sage, also known as Sagemath, is an open-source Computer Algebra System
with support for Linux, Solaris and Mac OSX platforms available for
download from www.sagemath.org. It was originally created to provide
a viable alternative to commercial products such as Wolfram Mathematicar

or MATLABr. The acronym originally meant Software for Algebra and
Geometry Experimentation, but today it is depreciated as Sage overgrew its
initial intentions in quite a short time. Now, it is a robust system built on
top of many existing open-source packages that unifies a wide range
of mathematical and computer science fields such as algebra, calculus,
number theory, cryptography, combinatorics, graph theory and many more.
Being a very powerful tool, it is suitable to undertake computations for
mathematical research and development.

Sage is a project of William Stein from University of Washington in Seattle,
Washington, USA that is being developed since 2004-2005. In quite a short
time Sage has been able to attract hundreds of users and developers, who have
contributed to the open source base of Sage. It is partially due to the fact
that in 2007, it was nominated for the French competition Trophées du Libre
and won the first place in Scientific Software category, getting a lot of good
publicity.

Sage has two user interfaces - interactive command line and notebook
in a web browser that connects to a local Sage installation. Notebook is
currently being modified to provide even better user experience and partially
compensate for not having a graphical user interface of its own. On top of that,
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Sage also offers a new online service for running Sage computations without
need of installing the software locally - SageMathCloud, currently in its beta
version.

The notebook and the cloud interfaces contain extra functions as far as
graphics is concerned, e.g. graph editor or currently a very popular
@interact functionality allowing to create interactive web applications with
the community of its own.

Sage attracts new users every day as in certain areas it excels even over
the commercial software as some of its algorithms are proved to be the fastest
implementations for the given problems. And, it is getting better all the time.

5.2 Programming in Sage

Sage uses Python, one of the world’s most popular general purpose scripting
languages, as the main programming language and it not only supports all
of its commands, but it also uses the syntax of Pythons. Sage, by using
NumPy (the fundamental package for scientific computing with Python) for
storing and manipulating numerical data and related packages (e.g. SciPy
for statistics and optimization, Matplotlib for graph making, Pandas for data
processing and analysis tools) gets strong scientific programming capabilities.

Besides being able to run Python scripts, Sage also features the Cython
compiler. Cython provides the option of surrendering some of the dynamic
features of Python in exchange for potentially huge speedups. Cython is
critical to the design of Sage. It makes it possible to efficiently make use of
data types and functions defined in C/C++ libraries. Basically, using Sage
means using Python with a lot of extra predefined computation functionality.

5.3 Program Modules

The data types that we deal with are not too complex. We require tools
available to manipulate sets of letters, arbitrarily large words, directed graphs
and built upon letters and words to manage higher levels of abstraction -
a morphisms. Sage, being a powerful tool already contains modules with
morphisms and directed graphs (WordMorphism and DiGraph classes), even
the abstract word class with representation of both finite and infinite words.
Here, we will shortly discuss each of the data types as well as their associated
methods that we use in our implementation of DOLSystem and FixedPointBS

classes.

5.3.1 D0L class

A set of symbols is needed to represent matters such as mortal,
monorecursive, etc., letters with respect to ϕ, the letters accessible from
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w ∈ Σ and rank zero letters. For set operations we use standard Python sets
as Sage does not provide more beneficial data types. Sage Alphabet and Set

provide an extra functionality, unfortunately only for Python’s enumerated
immutable frozenset type. Using Python’s sets allows us to use all of its
methods hence to add and remove letters, to test for difference, to test
whether two sets are disjoint or convert word to a given set, determine the
cardinality and so on, providing everything we need.

Our most important data structure is a morphism. Paired with
an alphabet and the axiom morphism becomes a D0L-system. As previously
said, morphisms have built-in support in Sage, that is since the version of
2007, but with the functionalities using more general settings than what is
needed for D0L-systems. A D0L-system can be easily represented as
morphism applied on an axiom, but in order to ensure consistency of
the data structure, as the user is not supposed to directly modify individual
attributes of an object, we isolate a D0L-system in a separate Python class,
thus creating an abstract base class for Sage objects of D0L-system using
the WordMorphism by a composition. This allows us to impose extra
restrictions we demand for input data.

DOLSystem module contains a substantial amount of our work, representing
mainly functional prerequisites for the main algorithm. As mentioned, it is
a class with a “private” attributes of alphabet, morphism and axiom. More
on input restrictions can be found in the next chapter concerned with a testing.
We do not demand alphabet to be specified as it can be easily generated from
a given morphism.

sage: DOLSystem(’0->010,1->11’,’0’)

D0L System: ({’0’, ’1’}, 0->010, 1->11, ’0’)

The details of implemented methods have been explained in Chapter 2.
The methods are rather straightforward implementation of given pseudocodes.
To familiarize reader with used naming conventions, we provide a sample of
Sage calculations. The following are the functions of a morphism only, but as
we did not intend to modify Sage source base we include them in a DOLSystem

class.

sage: n = DOLSystem(’0->1,1->1213,2->123,3->114,4->45,5->’,’03’)

sage: n.alive_letters()

{’0’, ’1’, ’2’, ’3’, ’4’}

sage: n.mortal_letters()

{’5’}

sage: n.recursive_letters()

{’1’, ’2’, ’3’, ’4’}

sage: n.monorecursive_letters()

{’4’}
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sage: n.accessible_from(’4’)

{’4’, ’5’}

For a simple input test of the main algorithm (determining if
a D0L-system is pushy and circular) we have implemented
is language finite test, is pushy test and for our purposes only, incomplete
is repetitive test based on the algorithm in [9] that can be further modified
to his full potential using the nonerasing simplification function to be
extended to injective simplification function. This test is left to raise
Python’s standard NotImplementedError in case of a morphism not being
injective.

A method to test D0L language for finiteness also allows us to determine
rank zero letters later to be used in both is pushy and is repetitive methods.
For is pushy implementation we use Sage’s DiGraph module that allows us to
not only work with labels, but it also contains all simple cycles method used
in detecting the edge condition satisfiability.

sage: n.is_language_finite()

False

sage: n.is_language_finite(’4’)

True

sage: n.is_pushy()

True

sage: n.is_repetitive()

True

sage: DOLSystem(’a->aba,b->cc,c->bb’,’a’).is_pushy()

False

sage: DOLSystem(’a->aba,b->cc,c->bb’,’a’).is_repetitive()

True

sage: DOLSystem(’a->aaba,b->b’,’a’).is_pushy()

False

sage: DOLSystem(’a->aaba,b->b’,’a’).is_repetitive()

False

To determine injectivity, we provide an implementation of
Sardinas-Patterson algorithm, as currently there is not any injectivity test
implemented in WordMorphism class of Sage. As we know, a D0L-system
must be non-erasing for a morphism to be injective, hence we also provide
is erasing method that is just redefinition of is erasing method of
WordMorphism class. The same goes for is primitive method.

sage: DOLSystem(’a->abd,b->cb,c->ab,d->dcb’,’a’).is_injective()

False

sage: DOLSystem(’a->aca,b->bac,c->d,d->c’,’ab’).is_injective()

True
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As the test for the main algorithm is incomplete (we cannot properly
test circularity) we provide it as a “private” method of D0L class, later to
be used for consistency check only. With this we restrict ourselves on cases
where circularity can be determined. This test is implemented using the listed
methods exactly as depicted in Figure 2.3.

It was not our intention to integrate D0L class into the code base of Sage,
therefore an initial version of our implementation does not contain functions
“with leading and trailing single underscores” defined for Sage, especially,
instead of repr we use Python’s standard repr and str and also we
omit latex function that can be easily defined later.

5.3.2 Fixed point of morphism class

The code dealing with bispecial factors of a fixed point of morphism is to
be found in FixedPointBS class that is a subclass of DOLSystem. Clearly,
fixed points are supposed to share all of the D0L-class functionality, but extra
restrictions must be imposed on the input. FixedPointBS is not supposed
to represent class of all fixed points. That would be unnecessary as we only
implement bispecial factors generator for non-pushy and circular D0L-systems,
representing a fixed point of morphism, with no other functionality added. We
isolate the algorithm in separate Python class for reasons of presentation of
the results in article [1].

sage: FixedPointBS(’0->01,1->0’,’0’)

D0L System: ({’0’, ’1’}, 0->01, 1->0, ’0’)

The main data to represent in this algorithm are unordered pairs for storing
the prolongations and bispecial triplets. We represent unordered pairs as
Pythons immutable but indexable type - tuple. It follows from the certain kind
of symmetry which forky sets offer that the unordered pairs can be treated as
ordered pairs. Once the set of initial pairs is generated in an ordered manner,
i.e. the elements of pairs are lexicographically ordered, prolonging extensions
preserves the lexicographic order of right pair and reverse lexicographic order
for left pair. This eases the operations of equality testing as hash of (a, b)
and (b, a) is of course different. The same goes for bispecial triplet and its
representation by tuple of 2 tuples and a word ((w1, w2), v, (w3, w4)). Of
course, f -image of a pair is no longer ordered in general, unlike fB-image of the
triplet, where pairs are obtained from the graphs. Hence, tuple representation
of a bispecial triplet has all the properties we require and we do not need to
define a special structure to represent it. Such a structure would not have
a significant meaning beyond our program.

Again, the algorithms were described in detail in Chapter 4. Our
fundamental function is a factor set that uses Sage’s factor set function
form FiniteWord class on factors of images. Sage’s factor set uses the
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linear-time online construction of a suffix-tree from ImplicitSuffixTree

module to identify all factors of a given length. The method is in language
uses the same principle. If we could determine a power of an image that
contains all the factors of length of word on input, we could modify this
function to use a suffix-tree to search for a word, thus increasing efficiency.
That would be very desirable, as those are the most frequent methods we
use, especially in get letter extensions and get word extensions, used both
in the construction of forky sets and construction of the initial set of
bispecial triplets.

As the name indicates get letter extensions and get word extensions
return extensions or extended factors specified on the input. Both of them
require an extra parameter to specify search for prefix or suffix.

sage: n=FixedPointBS(’0->0120,1->012,2->01’,’0’)

sage: n.factor_set(2)

set([word: 12, word: 20, word: 01, word: 10, word: 00])

sage: n.is_in_language(’21’)

False

sage: n.get_letter_extensions(’01’,left=False)

[word: 0, word: 2]

sage: n.get_word_extensions(’01’,left=False)

[word: 010, word: 012]

The method graph of prolongations returns graphs which together with
the morphism represent the fB-image. It uses the straightforward
implementation of the pseudocode 3 and its auxiliary functions specified in
the previous chapter. For storing graphs we use once again Sage’s DiGraph

module. The method get forky set then simply decodes the graphs into
a list of vertices.

sage: n.graph_of_prolongations(left=True)

Looped digraph on 3 vertices

sage: n.graph_of_prolongations(left=False)

Looped digraph on 7 vertices

sage: n.get_forky_set(left=True)

[(word: 0, word: 1), (word: 0, word: 2), (word: 1, word: 2)]

sage: n.get_forky_set(left=False)

[(word: 0, word: 20), (word: 00, word: 10),

(word: 00, word: 120), (word: 01, word: 10),

word: 01, word: 120), (word: 10, word: 20),

(word: 12, word: 20)]

The private method get triplet fimage uses the graphs of prolongations
and the morphism to generate fB-image of the triplets. It is used in both
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initial bs triplets and bispecial factors from fimage which is our main
generator. The initial bs triplets also requires the known generator of
bispecial factors to generate the set of initials. For that we have
implemented simple iterator over the set of all factors in range (0, delay)
that evaluates the extension function return value. This brute force method
is named bispecial factors.

sage: n.initial_bs_triplets(delay=1) # incorrect upper bound

set([((word: 0, word: 1), word: 0120, (word: 01, word: 10)),

((word: 1, word: 2), word: 01, (word: 0, word: 20)),

((word: 0, word: 2), word: 0120, (word: 01, word: 10)),

((word: 0, word: 2), word: 0120, (word: 01, word: 120)),

((word: 0, word: 2), word: 01, (word: 0, word: 20)),

((word: 0, word: 1), word: 0120, (word: 01, word: 120))])

sage: n.initial_bs_triplets(delay=2) # correct upper bound

set([((word: 0, word: 2), word: 0120, (word: 01, word: 10)),

((word: 1, word: 2), word: 01, (word: 0, word: 20)),

((word: 0, word: 2), word: 0, (word: 01, word: 120)),

((word: 0, word: 1), word: 0120, (word: 01, word: 10)),

((word: 1, word: 2), word: 0, (word: 01, word: 120)),

((word: 0, word: 1), word: 0120, (word: 01, word: 120)),

((word: 0, word: 2), word: 01, (word: 0, word: 20)),

((word: 0, word: 2), word: 0120, (word: 01, word: 120))])

The generator bispecial factors from fimage requires both the
maximum length n of bispecial factors to generate and delay to be specified
on the input.

sage: n.bispecial_factors(n=10)

[word: , word: 0, word: 01, word: 0120, word: 01200120,

word: 012001201]

sage: n.bispecial_factors_from_fimage(n=10,delay=3)

[word: , word: 0, word: 01, word: 0120, word: 01200120,

word: 012001201]

The prototype of the method bispecial factors from fimage does not
include optimization discussed in the previous chapter. We use it here just
to demonstrate its correctness compared to a brute force method, thus
unoptimized version suffices for out test cases discussed in the next chapter.
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Testing

In this chapter we describe the tests that were carried out to determine
a correctness of our algorithm. After providing a short description of how to
run our scripts we divide the tests in two categories. The first are the user
input tests and restrictions, the second are the tests based on D0L-system’s
properties according to the assignment.

6.1 Running the program

The program consists of the two Python scripts that can be loaded into Sage
from a command-line using the load(”path/to/script.py”) command. Of
course, DOLSystem superclass must be loaded first. Both DOLSystem and
FixedPointBS classes then can be used as a part of Sage’s installation as
described in the Implementation chapter.

6.2 Exception tests

For the purposes of well-defined D0L-system, we require morphism to be
recursively applicable. Hence, its codomain must be a subset of domain.
WordMorphism does not impose such restriction on its input. Also,
alph(axiom) is checked to assure existence of corresponding rules and
D0L-system is expected to be minimal. Errors in a morphism specification
are handled by WordMorphism class.

sage: DOLSystem(’a->ab,b->a’)

----------------------------------------------------------------

Traceback (most recent call last):

...

ValueError: Axiom must be specified.

sage: DOLSystem(’a->ab,b->ad’,’a’)

----------------------------------------------------------------
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Traceback (most recent call last):

...

ValueError: Production rule(s) missing in a->ab, b->ad

sage: DOLSystem(’a->ab,b->a’,’c’)

----------------------------------------------------------------

Traceback (most recent call last):

...

ValueError: Production rule(s) for ’c’ not specified.

sage: DOLSystem(’a->ab,b->a,e->e’,’a’)

----------------------------------------------------------------

Traceback (most recent call last):

...

ValueError: D0L must be minimal, ’{’e’}’ is not accessible

from axiom.

As the main algorithm was proved to be correct and finite for circular and
non-pushy D0L-systems that represent an infinite fixed point of morphism,
we impose the following extra restrictions on the input: an infinite language,
a test if D0L-system represents a fixed point, a test if D0L-system to be non-
pushy and circular. Circularity is tested in a limited form as described in
the previous chapters.

sage: FixedPointBS(’a->ab,b->’,’a’)

----------------------------------------------------------------

Traceback (most recent call last):

...

ValueError: Language is not infinite.

sage: FixedPointBS(’a->ab,b->bc,c->’,’a’)

----------------------------------------------------------------

Traceback (most recent call last):

...

ValueError: Must be non-pushy and circular.

sage: FixedPointBS(’a->bb,b->ba’,’a’)

----------------------------------------------------------------

Traceback (most recent call last):

...

ValueError: ’a’ is not a fixed point of morphism

sage: FixedPointBS(’a->bb,b->ba’,’ab’)

----------------------------------------------------------------

Traceback (most recent call last):

...

TypeError: letter (=ab) is not in the domain alphabet

(={’a’, ’b’})
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6.3 Tests of properties

We have tested our functions on numerous test cases. According to Sage’s
specification, tests are included in the corresponding source files in example
section of each public method. Also, we attach testing.py file with the test
cases for the FixedPointBS class. These are a collection of examples taken
from [1], [4] and elsewhere. As the outputs would be too long to list here
directly, we provide just a brief overview of D0L-systems tested and the sample
output of one of them.

1. Fibonacci: G1 = (Σ2, ϕ : 0→ 01, 1→ 0, 0)

2. Thue-Morse: G2 = (Σ2, ϕ : 0→ 01, 1→ 10, 0)

3. Chacon: G3 = (Σ2, ϕ : 0→ 0010, 1→ 1, 0)

4. G4 = (Σ3, ϕ : 0→ 0012, 1→ 2, 2→ 012, 0)

5. G5 = (Σ3, ϕ : 0→ 0120, 1→ 012, 2→ 01, 0)

6. G6 = (Σ3, ϕ : 0→ 012, 1→ 112, 2→ 102, 0)

7. G7 = (Σ3, ϕ : 0→ 01, 1→ 02, 2→ 1, 0)

8. G8 = (Σ4, ϕ : 0→ 020, 1→ 1032, 2→ 0201, 3→ 032, 0)2

Chacon morphism is known to be circular and not primitive. We also
provide a case of a D0L-system with the morphism injective on the language,
but not injective. The properties of the above D0L-systems are summarized
in the following table.

D0L system injective primitive synchronizing delay

1 True True 1
2 True True 4
3 True False 5
4 True True 3
5 True True 3
6 True True 3
7 True True 1
8 False True 3

As outputs of methods might be difficult to trace, we recommend
comparing output of f -image generator to the brute-force bispecial factors
method in some reasonable range.

For e.g. D0L-system (Σ3, 0→ 0012, 1→ 2, 2→ 012, 0) we get:

2This D0L-system will not be accepted on input. The current settings require specifying
an injective morphism.

45



6. Testing

sage: phi_S = FixedPointBS(’0->0012,1->2,2->012’,’0’)

sage: phi_S.get_forky_set(left=False)

[(word: 0, word: 1), (word: 0, word: 2), (word: 1, word: 2)]

sage: phi_S.get_forky_set(left=True)

[(word: 0, word: 01), (word: 0, word: 012),

(word: 0, word: 22), (word: 01, word: 2)]

sage: phi_S.graph_of_prolongations(left=False)

Looped digraph on 3 vertices

sage: phi_S.graph_of_prolongations(left=True)

Looped digraph on 4 vertices

sage: phi_S.bispecial_factors_from_fimage(n=12,delay=3)

[word: , word: 0, word: 2, word: 20, word: 012, word: 0120,

word: 20120, word: 0120012, word: 20120012, word: 012001220120]

sage: phi_S.bispecial_factors(n=12)

[word: , word: 0, word: 2, word: 20, word: 012, word: 0120,

word: 20120, word: 0120012, word: 20120012, word: 012001220120]

Sage also provides an alternative to our brute force method. Sage’s
bispecial factor is a method of the class of finite words not a morphism
method. This method is faster then brute force but still not suitable for
generating long bispecial factors.
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Conclusion

In this thesis, we have carried out a study and provide a brief overview of
various properties and known results in the area of deterministic context-free
L-systems (D0L-systems).

We have briefly surveyed computer algebra system Sage with respect to
its support for functionalities required for D0L-systems. Based on this survey
we identified relevant support features used to implement a prototype class
for a D0L-system together with an algorithm generating bispecial factors in
the language of a fixed point of a morphism. Sage currently provides a few
features already to be used with morphisms and D0L-systems, but various
algorithms are also missing.

We have provided an implementation of D0L-system class with methods
testing the mentioned D0L-system properties and implementation of bispecial
factors generator that after initial construction phase can generate all factors
in linear time. Algorithm provides a huge speed-up compared to the known
methods, but it is limited on circular and non-pushy D0L systems only.

With this implementation, we hope to lay a foundation for future work on
implementing various algorithms regarding the inspection of a D0L-language
structure. We hope that once the support of L-systems is fully integrated into
Sage, our algorithm will be included.

47





Bibliography

[1] Klouda, K. Bispecial Factors in Circular Non-pushy D0L Languages.
Theor. Comput. Sci., volume 445, Aug. 2012: pp. 63–74, ISSN 0304-
3975, doi:10.1016/j.tcs.2012.05.007. Available from: http://dx.doi.org/
10.1016/j.tcs.2012.05.007

[2] Rozenberg, G.; Doucet, P. On 0L-Languages. Information and Control,
volume 19, no. 4, 1971: pp. 302 – 318, ISSN 0019-9958, doi:http:
//dx.doi.org/10.1016/S0019-9958(71)90164-1. Available from: http://

www.sciencedirect.com/science/article/pii/S0019995871901641

[3] Stein, W.; et al. Sage Mathematics Software (Version 6.1.1). The Sage
Development Team, 2014, http://www.sagemath.org.

[4] Klouda, K. Non-standard numerations systems and combinatorics on
words. Dissertation thesis, Czech Technical University in Prague, 2010.

[5] Ehrenfeucht, A.; Rozenberg, G. Repetition of Subwords in DOL
Languages. Inf. Control, volume 59, no. 1-3, Sept. 1984: pp. 13–35,
ISSN 0019-9958, doi:10.1016/S0019-9958(83)80028-X. Available from:
http://dx.doi.org/10.1016/S0019-9958(83)80028-X
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[9] Klouda, K.; Starosta, Š. An Algorithm Enumerating All Infinite
Repetitions in a D0L System. ArXiv e-prints, July 2013, 1307.6408.

[10] Kobayashi, Y.; Otto, F. Repetitiveness of languages generated by
morphisms. Theoretical Computer Science, volume 240, no. 2, 2000:
pp. 337 – 378, ISSN 0304-3975, doi:http://dx.doi.org/10.1016/S0304-
3975(99)00238-8. Available from: http://www.sciencedirect.com/
science/article/pii/S0304397599002388

[11] Falucskai, J. Some algorithms concerning uniquely decipherable codes.
Proceedings of the 7th International Conference on Applied Informatics,
volume 2, 2007: p. 229–235.

[12] Wikipedia. Sardinas-Patterson algorithm — Wikipedia, The Free
Encyclopedia. 2014, [Online; accessed 12-April-2014]. Available from:
http://en.wikipedia.org/wiki/Sardinas-Patterson algorithm
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Appendix A

Contents of enclosed DVD

readme.txt......................the file with DVD contents description
src.......................................the directory of source codes

wbdcm ...................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
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