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Abstrakt

Ćılem této práce je nastudovat a implementovat metody poč́ıtačové grafiky
o sledováńı paprsku. Tato práce zkoumá paralelizačńı techniky na GPU s
využit́ım programovaćıho modelu NVIDIA CUDA a jazyku C++. Výsledkem
této práce je jak funkčńı implementace raytraceru bež́ıćıho paralelně na GPU,
tak i analýza jeho výkonnosti.

Kĺıčová slova Sledováńı paprsku, NVIDIA CUDA, renderer, paralelizace,
C++, Poč́ıtačová grafika.

Abstract

The objective of this thesis is to study and implement ray tracing methods of
computer graphics. It studies GPU-based parallelization techniques utilizing
NVIDIA CUDA programming model and C++. The result of this thesis is
a working implementation of a raytracer running in parallel on the GPU, as
well as an analysis of its performance.

Keywords Ray tracing, NVIDIA CUDA, renderer, parallelization, C++,
Computer graphics.
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Introduction

Historically, there have been two main methods used for image rendering: Ras-
terization and Ray tracing. Rasterization goes from primitive to primitive (for
example triangles, curves) and computes their position on screen by applying
series of transformations to their coordinates. Ray tracing, on the other hand,
tries a different approach and goes from pixel to pixel, tracing a ray coming
through it from the eye and calculating its collisions with primitives in the
scene. By tracing subsequent reflection and shadow rays it allows for a much
more photorealistic result than rasterization. The downside is that it requires
much more processing power, because the number of pixels is high and each
pixel oftentimes involves calculating collisions for several recursively traced
rays. Luckily, graphics hardware is built with parallelism in mind, where
a single Graphics processing unit (GPU from now on) consists of hundreds,
sometimes even thousands of cores capable of collectively running thousands
of computing threads. This is perfect for ray tracing, as each pixel is inde-
pendent from every other pixel, thus giving us an opportunity to run it in
parallel very efficiently.

Overview of the thesis

The first chapter deals with the theory behind ray tracing by explaining the
fundamental methods behind it and exploring some of the optimization pos-
sibilities. In Chapter 2 we look at GPU parallelization methods and how
to structure our code to work with GPU using NVIDIA CUDA. Chapter 3
then delves into details and presents solutions to problems we encountered in
our implementation. Lastly, we analyze and compare the results we got in
Chapter 4.
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Chapter 1

Ray Tracing

Ray tracing is a rendering technique working in pixel-order, where each image
is rendered by tracing one (or more) rays through each pixel of the screen into
the scene and computing the color of the pixel by figuring out which objects
does the ray collide with and bringing their material properties, coordinates
and data from other recursively traced rays into calculation.

1.1 Ray casting

Figure 1.1: Simple scheme of ray casting. One ray is traced through every
pixel of the image.

Ray casting could be considered the basis of ray tracing and was first
developed by Arthur Appel, who used it for visible surface determination [7].
The raycaster is given a viewpoint as well as a view plane divided into grid,
where each element represents a pixel of the final rendered image. After that,
it generates a batch of primary rays, one for every pixel of the image. Each
ray originates from the viewpoint and intersects the grid in the corresponding
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1. Ray Tracing

pixel. It is then traced through the scene until the closest ray-object collision is
found, as shown in Figure 1.1. The resulting color of the pixel was determined
without any subsequent tracing of rays.

1.2 Shading

So far we have only talked about detecting whether ray hit an object and
did not really cover how the final color of the pixel is calculated. If we were
to just set the color of the pixel to a predetermined color of the object, the
image would just be a series of flat shapes, which might not even resemble
a 3D scene. The process of determining the final color of the pixel is called
shading and there are many different algorithms covering this topic.

Figure 1.2: Example of shaded and unshaded objects. Adapted from [1].

The first sphere and cube are without shading, while the shaded sphere uses Phong
shading and the cube is flat shaded.

1.2.1 Local and Global illumination

Local and global illumination represent two types of illumination models based
on which we compute the shading of an object. The difference is that the local
illumination adds direct contributions of every light in the scene towards the
color of the object, while the global illumination also takes the interactions of
the light with the other objects into account, thus creating effects like shadows
and reflections.

1.2.2 Phong reflection model

One of the most common illumination models used in computer graphics is
Phong reflection model, developed by Bui Tuong Phong in 1973 [8]. It is a
form of local illumination, thus only taking into account properties of current
object and all lights in the scene. The specific model we describe and use in
our thesis is called Bling-Phong shading, which is a modification of the Phong
shading developed by Jim Blinn. It is very similar with the only difference
being in the way it calculates the specular highlights. That approach is based
on adding three main light components to create realistically shaded results.
First is an ambient reflection, which represents all the light coming from the
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1.2. Shading

Figure 1.3: An example showing how the reflection components are combined
in Phong illumination. Adapted from [2].

environment. It is just a single uniform color and could be understood as the
base color of an object, without which all objects would be black with just
some reflections showing. The second part is the diffuse reflection, which is
calculated from the light positions, and does not take the camera position into
calculation (See Equation 1.1). It represents the light reflected from a rough
surface into all directions. The Last part is specular reflection (See Equation
1.2), which represents the light reflected with the same angle in respect to
normal (See Figure 1.5). This produces shiny spots on the surface where the
light is reflected in general direction of the viewpoint, brightest reflection being
on the point the normal is pointing towards the viewpoint [9].

Figure 1.4: Scheme to help understand Blinn-Phong Equations 1.1 and 1.2.
Adapted from [3].

L is a normalized vector from the point towards a light source
N is the normal of the surface at the point
C is a normalized vector from the point towards the camera
S is the half vector between L and C

drefl = (max[L ·N), 0]) ∗ dlight ∗ dmat (1.1)
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1. Ray Tracing

where: drefl = reflected diffuse component
dlight = diffuse component of the corresponding light
dmat = diffuse component of the material
L = vector from towards the corresponding light (Figure 1.4)
N = the normal of the surface (Figure 1.4)

srefl = (max[S ·N), 0])shmat ∗ slight ∗ smat (1.2)

where: srefl = reflected specular component
slight = specular component of the corresponding light
smat = specular component of the material
shmat = shininess value of the material
S = half vector between L and C (Figure 1.4)
N = the normal of the surface (Figure 1.4)

1.3 Whitted-style ray tracing

While ray casting worked for determining which objects were visible and by
using local illumination model like Phong illumination we could make the
image look almost photorealistic, upon looking at a more complex scenes with
more objects we would quickly see that if we do not render the relations
between them the image will look artificial. That is why Turner Whitted
expanded the algorithm in 1979 [10] to recursively trace more rays to determine
the resulting color of the pixel. The first type of ray he traced after finding the
closest primary ray collision was a shadow ray. One shadow ray is generated
for every light source in the scene and each one has its origin at the point
of collision and a direction towards a light source in the scene. In case that
the shadow ray intersects any object at a point closer than the correpsonding
light, the primary collision point is in shadow from that light. On the other
hand, if there is no collision, the light illuminates the point and its color and
intensity are added towards the final color of the pixel. This effectively creates
accurate shadows, which would not have been possible without recursive ray
tracing.

Provided that the colliding object has a reflective material, another type
of ray is generated. Reflection ray originates from collision point and angle
between its direction R and surface normal N is the same as an angle between
N and vector towards viewpoint V (see Figure 1.5 and Equation 1.3)

R = 2(V ·N)N−V (1.3)

where: R = reflected vector (Figure 1.5)
V = negative of incoming light vector (Figure 1.5)
N = the normal of the surface (Figure 1.5)
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1.3. Whitted-style ray tracing

Figure 1.5: Scheme illustrating that the angle of incidence is the same as the
angle of reflection.

The third type of ray introduced by Whitted was refraction ray, which
is used to render transparency (see Figure 1.6). Deriving the formula for
refraction vector is a bit more complex than reflection, because this time we
need to know refraction indices of the scene and object through which we want
to trace the ray. The calculation relies mainly on Snell’s law, which describes
relationship between angle of incidence and angle of refraction. For resulting
formula you can see Equations 1.4, 1.5, 1.6

Figure 1.6: Scheme of ray refraction to help understand Equations 1.4, 1.5,
1.6.

T =
n1
n2

V + (
n1
n2

cos θi −
√

1− sin2 θt) (1.4)

cos θi = −V ·N (1.5)
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1. Ray Tracing

sin2 θt = (
n1
n2

)2(1− cos2 θi) (1.6)

where: T = (Figure 1.6)
V = incoming light vector (Figure 1.6)
n1 = refraction coefficient of the first material (Figure 1.6)
n2 = refraction coefficient of the second material (Figure 1.6)
θi = angle of incidence (Figure 1.6)
θt = angle of refraction (Figure 1.6)

These three new ray types can bring a lot of photorealism to an image,
but come at a high computation cost, where reflection and refraction rays can
sometimes recursively create infinite number of new ones, which is why we
always specify the recursive depth we are willing to compute for. These in
combination with shadow rays can also create a lot of problems as shadow
rays need to also be evaluated for every point hit by reflection and refraction
rays. Quantity of lights in the scene is also a concern, as each new light brings
a large number of extra shadow rays needed to be computed.

1.4 Antialiasing

Aliasing is an imprecision which often occurs during sampling process when
a high frequency signal is sampled by a lower frequency. Since ray tracing is
a form of sampling and more often then not we are sampling high frequency
scene with lower frequency of screen pixels, aliasing can occur. It could result
in the loss of some very small details on our objects or just general jaggedness
of the image.

The simplest way to prevent that is to supersample the image by shooting
several rays through each pixel instead of one, each offset by a small amount
(Figure 1.7). However, this creates quite a significant computation overhead,
as the number of rays we need to trace grows several times.

One of the possible optimizations for this method is called adaptive sam-
pling. At first, we only trace several rays through the pixel (for example in
the corners) and if the resulting colors are too different we then generate more
rays to trace, thus creating more accurate antialiasing only in parts of the
image that need it.

1.5 Distributed ray tracing

Using recursive ray tracing Whitted introduced to us allows us to render
perfect reflections and shadows. Results gained by this method would be
photorealistic assuming all real world objects were either fully reflective or
nonreflective, or that every light source is a perfect point. This, however, is
certainly not true and in real world most objects are partially reflective and
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1.5. Distributed ray tracing

Figure 1.7: Visual illustration of antialiasing process. By tracing multiple
rays through each pixel and comparing the results, we get much smoother
and realistic looking edges in our image. Adapted from [4].

there is no such thing as a perfect point light source. Distributed ray tracing is
yet another improvement of the ray tracing algorithm, which aims to address
these issues. The way it does it is actually pretty simple and we have already
talked about antialiasing, which uses the same principle. The basic idea is to
generate additional rays for each ray we would have generated before, each
with a slight offset depending on a few parameters and averaging the results.
[11] This can be reffered to as multisampling and the specific ray we need to
multisample depends on the result we want to get. The performance hit, same
as with antialiasing, is again very big, but that is the cost of photorealism.

1.5.1 Gloss and Translucency

When an object is not perfectly reflective or perfectly transparent, it causes
the light to be reflected or refracted in more than one direction. The way
we simulate this behaviour is that we calculate the offset of rays based on
reflectivity or transparency coefficient and then generate multiple random re-
flection or refraction rays within this offset. By averaging the resulting values
we get a much more realistic result we would not have been able to get before.

1.5.2 Soft Shadows

Same as before, but this time we have to know the sizes of individual light
sources and each time we would cast a shadow ray we generate multiple of
them, each pointing towards a random point around the light within the spe-
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1. Ray Tracing

Figure 1.8: Examples showing gloss (left image), translucency (right image)
and soft shadows (both images). All of these effects can be achieved by dis-
tributed ray tracing, but are very computationally demanding.

cified size. The result may range from shadows being softer near the edges to
being almost invisible for small or thin objects, just like in real world.

1.5.3 Depth of field

An effect which causes objets that are too close or too far to be blurrier is in
photography caused by the size of the aperture within a camera. The wider
the aperture, the blurrier the photo will be. In ray tracing however, all our
rays origin from a single point, which is equivalent to having a very small
aperture through which only one photon could pass. To achieve depth of field
we could calculate an offset and generate multiple additional rays within that
offset for every pixel.

Figure 1.9: An example image showing depth of field, another effect achievable
by distributed ray tracing, rendering distant images to be blurry, simulating
photography. Adapted from [5].

10



1.6. Acceleration data structures

1.6 Acceleration data structures

One of the biggest performance drawbacks of ray tracing is the need to find
every ray object intersection in the scene, which naively involves testing every
ray against every primitive in the scene, while in most scenes, there are con-
siderably more primitives than the number of collisions found. Naturally,
finding a way to speed up this process and filter out some unnnecessary tests
became the goal of many researchers in the field. Generally, there are three
main acceleration data structure types: Grid structures, Tree structures and
Bounding volume hierarchies.
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Chapter 2

GPU Parallelization

In the past, improvement in CPUs was mainly being accomplished by in-
creasing the clock speed of invdividual processing unit. While transistors, the
basic building blocks of processing hardware, are getting smaller year by year,
the processing speeds of individual computing cores has started to plateau in
early 2000s (Figure 2.1). The main reason is that by increasing clock speeds
further, the heat production rises and we are not able to cool them easily
enough for it to be feasible option for consumer use. Instead computing hard-
ware started evolving in terms of parallelism, adding more cores to achieve
greater performance. CPUs, however have not been developed with this idea
in mind, so while they are consistently getting faster year by year, in terms
of raw performance they were overshadowed by the graphics hardware, which
has been built fundamentally for parallelism to support graphics pipeline. As
a result, modern day GPUs are significantly more powerful than CPUs, and
their computing power and memory bandwidth are improving at a faster rate
then CPUs (Appendix Figure A.1).

2.1 NVIDIA CUDA

CUDA stands for Compute Unified Device Architecture and is a programming
model introduced in 2007 by NVIDIA. Thanks to it we can now easily utilize
GPU cores for general-purpose parallel programming. This can be very ef-
fective when dealing with alogrithms that perform the same calculation many
times on different data. The downside is that it only works on NVIDIA GPUs
from G8x series onwards.

2.2 Programming model

CUDA itself involves libraries that act as an extension to widely used pro-
gramming languages, natively C/C++ and fortran, but third party wrappers
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2. GPU Parallelization

Figure 2.1: This graph shows clock speeds of individual Intel CPUs until year
2010. We can clearly see that clock speeds have plateaued at around 3.4 GHz.
Adapted from [6].

exists which add support for other common languages such as Java, Python,
Fortran or Lua.

A program utilizing CUDA involves running code on both CPU and GPU,
for which CUDA uses terms host and device respectively, which also covers
memory associated with each of them. The main responsibilities the host
has are allocating memory on the device, copying data from host to device
or device to host and launching kernel function, which is what we call the
function designed to run in parallel on the device.

Host and device source code can be mixed in the same file. The CUDA
compiler, in our case NVIDIA C Compiler (NVCC), will parse the program
and split it into parts that will run on CPU and the GPU, generating code
for each part separately. The device code is compiled with Cuda C Compiler
(CUDACC), which generates CUDA object files. Those are then linked with
CPU object files, creating an executable.

2.3 CUDA Code examples

To write a functional CUDA application, we need to understand a few main
capabilities this programming model provides us. The following sections in-

14



2.3. CUDA Code examples

Figure 2.2: Compilation of a CUDA program using NVCC.

clude some examples of CUDA constructs in C/C++ programming languages.
Altoguh CUDA provides us with many more features than the ones described
below, for our purposes these should be enough.

2.3.1 Define a kernel function

Kernel is a name for our main device function meant to be run in parallel
on many threads. To specify that function is a kernel we use the keyword

global . The kernel has to return void and can have any number of para-
meters.

g l o b a l void exampleKernel ( ) { . . . }

2.3.2 Specify whether a function is meant to run on host or
device code

Similarly to how we defined a kernel, we can mark any function in our program
as host or device function.

void hostFunctionA ( ) { . . . }
h o s t void hostFunctionB ( ) { . . . }
d e v i c e void deviceFunct ion ( ) { . . . }
h o s t d e v i c e void sharedFunct ion ( ) { . . . }

2.3.3 Allocate memory on the GPU

We do this using cudaMalloc() function, into which we pass these arguments:

15



2. GPU Parallelization

• a reference to a pointer, which will point to device memory after alloc-
ation is complete

• size of desired allocated space in bytes

int∗ d a ;
cudaMalloc(&d a , ARRAY LENGTH ∗ s izeof ( int ) ) ;

2.3.4 Move data between RAM and VRAM

As before there is a function for this called cudaMemcpy() and the arguments
are:

• pointer to target memory

• pointer pointing to memory from which we want to copy our data

• length of data to be copied in bytes

• either cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost depend-
ing on the direction we want to copy our data in.

cudaMemcpy( d a , a , COPY LENGTH, cudaMemcpyHostToDevice ) ;
cudaMemcpy( a , d a , COPY LENGTH, cudaMemcpyDeviceToHost ) ;

2.3.5 Launch the kernel from CPU on the GPU

Finally, the most important part is launching our kernel on multiple threads.
The way parallelism works on GPU, the threads are typically launched in
multiple blocks. We can launch as many blocks as we like, but the maximum
number of threads per block varies on the GPU and is typically 1024. It is
common to call cudaDeviceSychronize() after invoking the kernel to wait until
GPU has finished its computations before continuing with host code.

exampleKernel<<<NUM OF BLOCKS,THREADS PER BLOCK>>>();
cudaDeviceSynchronize ( ) ;

2.3.6 Working program example

This is a simple example of a program that adds two vectors and writes the
result into the third one. The example features all of the above principles to
showcase their use.

#include <iostream>
#include <cuda . h>
#define VECTOR LENGTH 10
using namespace std ;
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2.3. CUDA Code examples

d e v i c e void pr int Index ( int i ) {
p r i n t f ( ” Hel lo , I am thread %d\n” , i ) ;

}
g l o b a l void vectAddKernel ( int∗ a , int∗ b , int∗ c ) {

int i = threadIdx . x ;
pr int Index ( i ) ;
c [ i ] = a [ i ] + b [ i ] ;

}
int main ( ) {

// ho s t v e c t o r s
int a [VECTOR LENGTH] ;
int b [VECTOR LENGTH] ;
int c [VECTOR LENGTH] ;
// f i l l t he ho s t v e c t o r s
for ( int i = 0 ; i < VECTOR LENGTH; i++) {

a [ i ] = i ;
b [ i ] = VECTOR LENGTH − i ;

}
// d e v i c e v e c t o r s
int∗ d a ;
int∗ d b ;
int∗ d c ;
// a l l o c a t e space on the d e v i c e
cudaMalloc(&d a , VECTOR LENGTH∗ s izeof ( int ) ) ;
cudaMalloc(&d b , VECTOR LENGTH∗ s izeof ( int ) ) ;
cudaMalloc(&d c , VECTOR LENGTH∗ s izeof ( int ) ) ;
// copy data from h os t to d e v i c e
cudaMemcpy( d a , a , VECTOR LENGTH∗ s izeof ( int ) ,

cudaMemcpyHostToDevice ) ;
cudaMemcpy( d b , b , VECTOR LENGTH∗ s izeof ( int ) ,

cudaMemcpyHostToDevice ) ;
// launch the k e r n e l f o r 1 b l o c k and
// VECTOR LENGTH of t h r e a d s per b l o c k
vectAddKernel<<<1,VECTOR LENGTH>>>(d a , d b , d c ) ;
cudaDeviceSynchronize ( ) ;
// copy the r e s u l t v e c t o r back to RAM
cudaMemcpy( c , d c , VECTOR LENGTH∗ s izeof ( int ) ,

cudaMemcpyDeviceToHost ) ;
// w r i t e the r e s u t l s
for ( int i = 0 ; i < VECTOR LENGTH; i++) {

cout << c [ i ] << endl ;
}
return 0 ;

}

The resulting vector c will have VECTOR LENGTH value in every field, as
expected.
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Chapter 3

Implementation

3.1 Choosing the scope of my work

When I have been preparing to work on my ray tracer, I needed to decide
on what will it actually do and how many features I wanted to implement. I
decided to build a simple minimal viable product and build up from it. Fi-
nally I ended up with ray tracer that, on top of basic Phong shading, supports
Whitted-style ray tracing, meaning it creates shadows, reflections and refrac-
tions of rays. As for the supported objects, I only ended up implementing
spheres and planes, because collision detection with them is quite straightfor-
ward. I could have implemented triangles and supported common 3d models,
but I decided against it, because it wouldn’t help me show much more in terms
of GPU parallelization, it would only make the code more cluttered, because
of limitations CUDA places on polymorphism and virtual functions. There
was also an option of using a thrid party framework for collision detection,
but I decided against that as well, as I wanted to study the algorithm properly
and understand everything I was doing. Furthermore, the aim of this thesis is
to study differences between CPU and GPU computation, so I used simpler
scene, because it serves the purpose just as well as a more complicated one
would. I also did not implement any acceleration structures for my algorithm,
as they are mainly useful when there are thousands of triangles in the scene,
and not as much for the few objects I will be testing it on. Lastly, I ended up
implementing multisampling of primary rays, which provides an anti-aliasing
effect. I am now going to describe the structure of a program running on the
CPU and later get into pitfalls of trying to get it working on the GPU.
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3. Implementation

3.2 Basic data structures

3.2.1 Vect

A Vect class is a 3 dimensional vector used for holding coordinates and capable
of performing various operations on them. Similar type of structure is needed
for all applications dealing with graphics computations in 3d space. A class
with same basic interface as shown below was used in our implementation.

class Vect
{
public :

double x , y , z ;

double magnitude ( ) ;
Vect normal ize ( ) ;
Vect negat ive ( ) ;
Vect vectAdd ( Vect v ) ;
Vect sca larMult (double s c a l a r ) ;
double dotProduct ( Vect v ) ;
Vect crossProduct ( Vect v ) ;
. . .

} ;

3.2.2 Color

This class is very similar to Vect in terms of its interface, since it holds 3 values
as well and performs subset of operations vector does on them. However, it is
implemented separate noneteheless, because it is logically a different structure
and it also allows us to clamp its red, green and blue values between 0.0 and
1.0.

class Color
{
public :

double r , g , b ;
Color add ( Color ) ;
Color mult ip ly ( Color ) ;
Color mult ip ly (double ) ;
. . .

} ;

3.2.3 Ray

This is a very simple class that only serves as a container for two vectors, one
being the origin of the ray and the other being its direction.

class Ray
{
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3.3. Scene representation

public :
Vect o r i g i n , d i r e c t i o n ;
. . .

} ;

3.2.4 Material

This class contains all information needed to calculate the surface color of an
Object. The 3 colors ambient, diffuse, specular as well as shininess value are
needed for Phong shading calculation, while the remaining 3 real values are
needed to calculate reflection and refraction rays.

class Mater ia l
{
public :

Color ambient ;
Color d i f f u s e ;
Color spe cu l a r ;
double s h i n i n e s s ;
double r e f l e c t i v e I n d e x ;
double refract ionAmount ;
double r e f r a c t i o n I n d e x ;
. . .

} ;

3.3 Scene representation

3.3.1 Object

Object is a virtual class that all other objects inherit from. It only contains
a Material member and defines interface of 2 functions each object has to
overwrite. First is findIntersection(Ray), which takes a Ray and returns the
distance at which the ray intersects the object, or -1 if no intersection was
found. Second is getNormalAt(Vect) which returns normal vector of the object
at the given point in space.

class Object
{
public :

Mater ia l mate r i a l ;
virtual double f i n d I n t e r s e c t i o n (Ray ray ) = 0 ;
virtual Vect getNormalAt ( Vect po int ) = 0 ;
. . .

} ;
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3.3.2 Plane

Plane class inherits from Object, and in addition to declaring its own findInter-
section(Ray) and getNormalAt(Vect) methods, it contains Vect representing
the normal and double representing the distance of the plane along the normal,
which is a regular way of reperesenting plane in analytic geometry.

class Plane : public Object
{
public :

Vect normal ;
double d i s t anc e ;
. . .

} ;

3.3.3 Sphere

Similar to plane, only sphere is defined by its center and radius.

class Sphere : public Object
{
public :

Vect c en te r ;
double rad iu s ;
. . .

} ;

3.3.4 Light

The ray tracer supports point lights without direction, so all a Light needs is
a position and its diffuse and specular color values which are used in shading
calculation.

class Light
{
public :

Vect p o s i t i o n ;
Color d i f f u s e ;
Color spe cu l a r ;
. . .

} ;

3.3.5 Scene

This is just a class grouping objects and lights together. Notably, it contains
one color representing the ambient light in whole scene and a Camera.

class Scene
{
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3.4. Raytracer

public :
Camera camera ;
Color ambientLight ;
std : : vector<Object> sceneObject s ;
s td : : vector<Light> s c eneL ight s ;
. . .

} ;

3.4 Raytracer

The Raytracer class contains our class and it is where all the computation is
executed from. The ray tracing process is started by calling a public method
render(int,int,int) and passing it image width, height and a number indicating
the amount of multisampling to be done.

class Raytracer
{
private :

void traceRay (Ray , int ) ;
void mult i samplePixe l ( Vect , double , int ) ;
Color ∗ ca lcu latePhong ( Vecct , Object ∗ ) ;
. . .

public :
Scene scene ;
Color ∗ render ( int , int , int ) ;
. . .

} ;

3.4.1 Overview of the rendering process

The render method is actually quite simple. First, it cycles through every
pixel and calculates the direction of corresponding ray. Then, if we are using
multisampling, it creates multiple rays, each still intersecting the same pixel,
only in different offsets in a regular grid pattern. Then, it calls our traceRay
function which does most of the work and returns a color. After that, it writes
the color, or its fraction when using multisampling, into the corresponding
pixel in our array. Lastly, it returns the array of pixel color values.

3.4.2 Tracing the ray

The process of tracing the ray is arguably the most important part of our
program. The following pseudocode should give a good idea of how it works.
The details of how different ray directions are calculated are already covered
in Section 1.3.

traceRay (Ray ray , int depth ) {
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for each ob j e c t in scene {
i n t e r s e c t i o n = ob j e c t . f i n d I n t e r s e c t i o n ( ray )
i f ( i n t e r s e c t i o n > −1

and i n t e r s e c t i o n < min ) {
h i tObjec t = currentObject

}
}
i f ( no i n t e r s e c t i o n e x i s t s ) {

r e s u l t = black ;
} else {

r e s u l t = ca lcu latePhong ( in te r s ec tCoords , h i tObjec t )

i f ( depth < MAX DEPTH) {
i f ( h i tObjec t . mate r i a l . r e f l e c t i v e I n d e x > 0) {

−c a l c u l a t e d i r e c t i o n o f r e f l e c t e d ray
r e f l e c t e d C o l o r=traceRay (Ray( in te r s ec tCoords ,

r e f l D i r e c t i o n ) , depth+1)
r e s u l t += r e f l e c t e d C o l o r

∗ h i tObjec t . mate r i a l . r e f l e c t i v e I n d e x
}

i f ( h i tObjec t . mate r i a l . re fract ionAmount > 0) {
−c a l c u l a t e r e f r a c t i o n index based on
whether the ray i s coming from out s id e or
i n s i d e o f the ob j e c t
−c a l c u l a t e d i r e c t i o n o f r e f r a c t e d ray
r e f r a c t C o l o r=traceRay (Ray( in te r s ec tCoords ,

r e f r D i r e c t i o n ) , depth+1)
r e s u l t += r e f r a c t C o l o r

∗ h i tObjec t . mate r i a l . re fract ionAmount
}

}
}
return r e s u l t

}

3.4.3 Phong illumination calculation

We have already described how to calculate Phong illumination in Section
1.2, so we will not go into too much detail here. The only addition worth
mentioning is that our implemenation also calculates shade by creating rays
towards every light in the scene and testing if they intersect any object on the
way to the light. It then multiplies the color by the ratio based on the number
of lights illuminating the surface.
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3.5. GPU implementation

3.5 GPU implementation

The principles and constructs described above were meant to be run on CPU
and needed to be changed to be feasible for GPU computation. While the
main principle remained the same, there were some major areas where I had
to modify them.

3.5.1 Recursion

Using recursion in CUDA code usually brings some difficulties. While first
versions of CUDA did not support recursion at all, CUDA 3.1 brought dynamic
parallelism supprot for devices with compute capability 2 [12]. This allowed
to call child CUDA kernel from parent kernel and optionally synchronize on
the completion of that child kernel. It also allowed for the kernel to call itself,
thus providing recursion support. Instead, I decided to rewrite my traceRay
method to work without recursion. I found that every traced ray contributed
to the resulting color of the pixel by flat amount, only needing to know the
weight to calculate how much to add to the color. I added a new class Task to
group all the necessary information to trace any given ray and add the result
to the corresponding pixel. The drawback of this approach is that I have to
create all the primary tasks beforehand, as well as collect newly created tasks
after each wave of GPU calculations. The advantage of this method is that
instead of recursively calling traceRay, all we do is create a new task and add
it to the stack. We do not have to wait until the task is calculated, because
we already gave it enough information to be able to add the result correcltly
to the right pixel.

class Task
{
public :

int x ;
int y ;
double weight ;
Ray ray ;
int depth ;
. . .

} ;

3.5.2 Polymorphism

As of now, there is no support for polymorphism in CUDA, which meant that
the object structure of my raytracer needed to be changed. Before there was
one virtual Object class, from which objects inherited and overwrote findInter-
section and getNormalAt functions. To prevent modifying the code too much,
I created a simple wrapper CommonObject that contained both a plane and a
sphere, but acted as only one of them. This meant that our objects required
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more memory than before, but since I mainly used the program to render
simple scene with smaller number of objects, this did not present too much of
a problem.

class CommonObject
{
private :

stat ic const int PLANE IDENT = 0 ;
stat ic const int SPHERE IDENT = 1 ;

public :
Plane plane ;
Sphere sphere ;
int i d e n t i f i e r ;
. . .

h o s t d e v i c e double f i n d I n t e r s e c t i o n (Ray ray ) ;
h o s t d e v i c e Vect getNormalAt ( Vect po int ) ;
h o s t d e v i c e Mater ia l g e tMate r i a l ( ) ;

. . .
} ;

3.5.3 STL vector and queue

Formerly, my program used vector and queue from the C++ Standard Tem-
plate Library for various data management tasks. However, when I tried to call
any function on them from device code, the compiler immediately informed
me that those functions are not marked as device functions, thus it was un-
able to execute them. As I could not change the declaration of STL container
functions, I decided to make my own container with the same interface (the
part of it I was using).

3.5.4 Pointers

It is important to realize that all pointers I used on CPU pointed to host
memory. In order for GPU to work with them correctly, I would have to
move the corresponding data from host to device memory and supply device
functions with correct device pointers. Some of my classes used pointers to
data to save memory in case there was no data currently attached to it. After
thinking about it I proceeded to remove most member pointers of my classes,
as the memory tradeoff was much more acceptable than having to copy small
blocks of data individually to the GPU. This allowed me to pass most of the
data i needed to get to device as function arguments.

3.5.5 Memory management and overall flow of the render
method

While the basic render method was already described above in Section 3.4.1,
there are quite a few changes that were made when rewriting the raytracer
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3.5. GPU implementation

to run on GPU. Here is the new overview describing the steps we go through
when rendering an image:

1. Create an array of Color to represent colors of every pixel

2. Calculate the direction of each primary ray, then create and add the
corresponding Task to our tasks queue. When multisampling is enabled,
generate multiple rays for each pixel. I use a uniform square grid to
distribute rays within the pixel, which means that the number of rays
generated is always a square number.

3. Create host and device pointers and allocate space on host and device
memory for:

• Batch of tasks to be sent to GPU

• Batch of Color results that the GPU will write to

• New tasks that the traced rays will generate

4. We will proceed to iterate through the following operations until our
queue of tasks is empty.

a) Copy the previously created fields to the GPU

b) Start the kernel on the GPU. We are able to launch multiple blocks,
each containing a set number of threads. The maximum number
of threads depends on the GPU. Both the number of blocks and
threads per block are variables in our program that we will be able
to tweak and observe different results.

c) Copy the results and new tasks back from the GPU.

d) Merge the fresh results with the main pixel colors.

e) Merge the new tasks with the remaining tasks.

3.5.6 CUDA Unified memory

CUDA 6 introduced a new breakthrough in memory management called Uni-
fied memory. It allows us to create a shared pool of memory, that can be
accessed from both CPU and GPU. It is accessible by a single pointer which
is same in both the host and device code. It accomplishes this by automatic-
ally moving data between CPU and GPU so the programmer does not have
to worry about it [13]. It could be useful in our raytracer because we would
not have to copy all our tasks and result colors between CPU and GPU and
we could operate on the shared data in unified memory. However when I
tried to utilize this principle I found that the overhead that comes with access
and writing to the unified memory is actually making the overall render time
higher than what it was before. There is a possibility that unified memory
could be efficiently utilized in our program, however I decided to revert back
to copying the data manually before and after launching each batch of threads.
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Chapter 4

Results

Our raytracer has a number of different parameters that determine its per-
formance, including:

• CPU or GPU computation, as well as the specific GPU we use

• Target resolution

• Amount of multisampling

• Scene complexity

• Depth of recursive tracing of rays

• Number of blocks and number of threads per block

This chapter will deal with running the renderer on different configurations,
observing the results and trying to find analyze them. The following notations
determine which configuration was used for the test.

4.1 Available testing hardware

This section includes tests performed on three different hardware configura-
tions.

• CPU notation means that the test was measured solely on the CPU,
specifically Intel Core i7-3610QM CPU @ 2.30GHz.

• GPU1 notation marks that the test utilized NVIDIA GeForce GTX
660M GPU.

• GPU2 means that the test was performed on a different machine alto-
gether containing NVIDIA GeForce GTX 770 GPU, supported by Intel
Core i5-4670K CPU @3.4GHz.

29



4. Results

4.2 Resolution

Because every pixel is computed indepenedtly of every other pixel, it is safe
to assume that relationship between render time and number of pixels will be
linear. The tests performed more or less confirm this (See Figure 4.1). The
results can be found in Appendix Table A.1.

Figure 4.1: Chart demonstrating linear relationship between computation
time and the number of pixels needed to be rendered.

The table of results as well as the configuration for this test can be found in Appendix
Table A.1.

4.3 Multisampling

Multisampling removes the aliasing artifacts from final image by tracing more
rays in slightly different directions for each pixel. Effectively, all it does is
render the image in larger resolution and downscale the results. That is why
it is also safe to assume that the rendering time should be more or less linear
with the amount of rays multisampled for each pixel. The tests performed
also confirm this and can be found in Appendix Table A.2
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4.4. Scene Complexity

Figure 4.2: Example images generated from 4 different scene tests. We tried
changing the number of spheres, as well as their material: plastic (top left),
chrome (top right), glass (bottom left) and emerald (bottom right).

4.4 Scene Complexity

The goal of this test is to study the effect of different scene configurations
on the resulting computation time. We performed tests on 16 different scene
configurations. Our base scene contained one reflective plane that served as
floor. We then created 1, 3, 6 or 9 spheres in a row in front of the camera.
Each sphere had the same material and we measured the results based on the
combination of the number of spheres and which material we set to it (See
Figure 4.2). Each material was different from the others. The plastic was
a simple material that wasnt neither reflective nor refractive. Chrome was
only reflective and glass was only refractive. Last material, emerald was both
reflective and refractive.
The observed results summarized in Table 4.1 show us that there were not any
huge differences between plastic, chrome and glass material, while the render
time was a lot longer when we used emerald material (See Figure 4.3). There
is a noticeable increase in time when we are calculating glass, as we would
expect, but the difference between plastic and chrome calculation is very small.
Expected result would be that chrome would take some time longer, same as
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Figure 4.3: Graph showing the data from the Table 4.1.

1 sphere 3 spheres 6 spheres 9 spheres

plastic 5.163 5.274 5.435 5.489

chrome 5.487 5.581 5.799 5.742

glass 5.536 6.319 6.931 7.232

emerald 7.811 19.518 33.278 37.838

Table 4.1: Results of the tests performed on GPU1 showing differences in
render time with different scene configurations

The plastic row shows results gained when all the spheres in the scene had simple
material without any reflections or refractions
The chrome row shows results gained when all the spheres had a reflective material.
Similarly, in glass row all the spheres had glassy refractive material. In the emerald
row we set the material to be both reflective and refractive.
All of the tests were rendering an 800x600 image and utilized 4x multisampling.

it is with glass. The explanation lies in the scene we have chosen for this
test. We have laid the spheres in front of the camera in such a way, that no
reflections between spheres are visible and the only additional reflection the
chrome test has to calculate is the ground reflected on the first sphere. If we
were to set the scene up differently, for example laid the spheres out in a line
perpendicular to the camera direction, there would be a noticeable difference
in render times, as every sphere would reflect its neighbouring shperes.
Another interesting observation is the jump in render time when we set the
material to emerald. This can be explained when we take a look at the number
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4.5. Depth parameter

of rays we are generating. In the glass test, we shoot a ray into the first sphere
and it is refracted in the corresponding direction. It could then exit the sphere
and hit the second sphere to be refracted again, but the direction of the ray
always remains more or less away from the camera. In the emerald test,
however when a refracted ray exits the first sphere and hits the second one, it
could be both reflected back at the first one and refracted forward. There is
a good chance that the reflected ray now travels ”back to the camera”. If it
hits the first ray again, another two rays are generated. Because the rays now
have the potential to bounce between the spheres, the number of potential
rays reaches geometric amounts (it could also be infinite, if the scene was set
up correctly). Because of this, the computation time now depends on the
depth into which we are willing to trace the ray. The depth parameter was
set to 10 in these tests, which is way more than the potential ”heritage” of
most of the rays traced in the first 3 tests.

4.5 Depth parameter

Figure 4.4: Graph showing the performance impact depth parameter has. We
see it can significantly affect the render times. Based on data from Table 4.2

The depth test studies how does maximum allowed depth affect the render
time. The depth parameter specifies the number of ray ”generations” we are
willing to trace. For example, when depth is set to 0, even if we hit a reflective
or a refractive material, we are not alowed to create new rays to calculate
reflction. If depth is 1, we can create them, however if those new rays hit
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another reflective or refractive material, they will not spawn new rays.
The scene we used for this test is similar to the emerald tests we did when we
were testing scene complexity. It contains 5 spheres in a row in front of the
camera with material set to emerald, because this setup showed potential to
spawn a huge number of new rays.
The results shown in Table 4.2 show that if the scene is generating enough new
rays, increasing the depth parameter can significantly impact the performance.
The growth in performance depends on the rendered scene as well as the
number of pontential rays spawned on impact. In our raytracer, each ray can
only generate up to two new rays, but if we were to implement distributed ray
tracing, the performance growth would be much more severe.

Depth GPU1 time GPU2 time

0 3.954 2.852

1 5.697 4.123

4 8.371 6.001

8 18.541 12.647

12 55.378 36.509

16 204.865 132.014

Table 4.2: Result times from the depth test. Measured on both GPU1 and
GPU2 configurations.

4.6 Threads per block and number of blocks

Another parameters that can impact the performance are the number of blocks
we launch in our rendering cycle and the number of threads one block contains.
The number of threads is specific to the GPU and in our case it is 1024, but
the number of blocks can be as high as we want.
In our results (see Table 4.6 and Appendix Table A), however, we found that
the times start to plateau and even rise after a certain number of blocks and
higher numbers do not necessarily mean better speeds. The number of threads
per block seems to behave similarly, again showing us that higher numbers
could sometimes get worse results. This could be caused by the fact that cache
coherence might be better when using certain combinations, or that copying
memory back and forth between CPU and GPU might be more effective in
certain sizes and intervals.

34



4.7. Comparison of available hardware configurations

1 5 25 50 100

32 254.208 66.865 25.438 21.429 19.634

128 81.266 30.418 17.572 16.596 15.736

256 47.954 24.252 16.913 15.995 15.353

512 32.227 19.219 16.211 15.822 15.189

1024 27.593 17.926 15.586 16.037 15.845

Table 4.3: GPU1 Render times for different block and thread settings. There
seems to be a consistent improvement when going from lower values to higher,
but it seems to plateau at a certain point.

Rows indicate the number of threads per block
Columns indicate the number of blocks launched

4.7 Comparison of available hardware
configurations

We have already made a good number of tests to determine differences in
performance between our different configurations. When we look at the res-
ult tables both in this section and in the Appendix, we can clearly see that
performance differences seem to be mostly the same. We can determine that
running on GPU1 configuration is approximately 4 times faster than using
only CPU. The GPU2 and GPU1 are a little bit more variable at some
places, but GPU2 seems to be 1.3 to 1.6 times faster than the GPU1.

Figure 4.5: Graph based on our multisampling tests, comparing result times
on all 3 hardware configurations
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Conclusion

The goal of this thesis was to study the area of ray tracing, implement my own
raytracer, parallelize it on the GPU and analyze the results based on different
configurations.
I believe I have accomplished all these tasks, some better than others. I have
studied and described the basics of ray tracing techniques and even delved
into some more advanced methods.
I have implemented the raytracer using using C++ language and utilizing
NVIDIA CUDA, which has a variety of features that allows it to produce a
good array of results, but it has its limitations. One of them is the fact that
it does not support triangles and standard triangle mesh model structures,
which is also why it does not use any of the acceleration structures, which
are common for advanced ray tracing renderers. It is suitable for displaying
a small number of objects with different kinds of materials, including reflect-
ive and refractive ones, but is not designed for big object structures. It is,
however, capable of showing the benefits of GPU-based parallelization. My
GPU implementations manage to run a few times faster than the CPU ones,
depending on the GPU it is using.
I also believe that I analyzed the results thoroughly, comparing different con-
figurations and tweaking with them to reach effective speeds.

Area for future improvements

As I have already mentioned, the raytracer could be improved to support large
number of objects and triangle model structures utilizing some acceleration
structure to make searching for intersection faster. It does not implement
distributed ray tracing, meaning it does not produce soft shadows and matte
reflections and refractions. The GPU parallelization could surely be improved
as well, because I know there are existing solutions that are able to render
video frames in real time.
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Appendix A

Additional charts and tables

This section contains additional tables and charts that were not considered
important enough to be included in the main thesis.

Figure A.1: Comparison of various GPUs and CPUs over the years

Adapted from [14]
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A. Additional charts and tables

Resolution Pixel Count CPU (s) GPU1 (s) CPU pixels/s GPU1 pixels/s

640x480 307200 16.876 4.214 18203.36573 72899.85762

800x600 480000 26.235 6.273 18296.16924 76518.41224

1366x768 1049088 67.786 16.057 15476.47007 65335.2432

1440x900 1296000 76.673 19.635 16902.9515 66004.58365

1600x900 1440000 88.894 22.468 16199.06855 64091.15186

1920x1080 2073600 127.366 31.316 16280.64005 66215.35317

Table A.1: The results of testing how resolution affects render time on CPU
and GPU

This test was performed on CPU and GPU1 hardware configurations.
The scene used in this test contains 1 plane 4 spheres and 2 lights, with all types
of materials including reflections, refractions and a combination of them. Each pixel
was also multisampled 4 times.

MSAA CPU (s) GPU1 (s) GPU2 (s) CPU t/n GPU1 t/n GPU2 t/n

1 7.808 2.765 1.382 7.808 2.765 1.382

4 27.954 6.287 4.117 6.9885 1.5718 1.0293

8 62.424 14.838 9.453 6.936 1.6487 1.0503

16 109.367 24.206 16.323 6.8354 1.5129 1.0202

25 171.842 39.009 25.783 6.8737 1.56 1.0313

36 255.47 65.663 37.611 7.0964 1.824 1.0448

Table A.2: Results showing inrease of time with increasing multisampling
amount and comparing results on different GPUs

We performed this test on all available configurations (CPU, GPU1 and GPU2).
Columns are from left to right: amount of multismapling for each pixel, times for all
three configurations we tested on. Coefficients calculated by dividing the time spent
by the multisampling amount. They stay more or less the same, showing that the
relationship between multisampling amount and render time is linear.
The scene used for this test was the same as in Table A.1, rendered at 800x600
resolution

1 sphere 3 spheres 6 spheres 9 spheres

diffuse 3.932 4.08 4.181 4.214

reflection 4.231 4.318 4.278 4.378

refraction 4.151 4.747 4.997 5.151

both 7.412 17.37 22.605 24.471

Table A.3: Results of the tests performed on GPU2 showing differences in
render time with different scene configurations

The configuration is the same as 4.1, only this time the tests were performed on
GPU2.
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1 5 25 50 100

32 199.629 50.923 17.74 13.542 11.494

128 60.844 20.381 11.393 10.8 11.031

256 38.173 14.892 11.046 11.02 11.024

512 25.899 12.23 11.158 11.047 10.791

Table A.4: GPU2 Render times for different block and thread settings

Rows indicate the number of threads per block
Columns indicate the number of blocks launched

Figure A.2: An example result from our raytracer.
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Appendix B

Acronyms

CPU Central Processing Unit

GPU Graphics Processing Unit

CUDA Compute Unified Device Architecture

NVCC Nvidia C Compiler

CUDACC CUDA C Compiler

RAM Random-access memory

VRAM video RAM - GPU memory
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Appendix C

Contents of enclosed CD

readme.txt ....................... the file with CD contents description
bin ..................................... the directory with executables
results........................................the directory of results

images........................................sample result images
tests..............spreadsheets of data results from performed tests

src.......................................the directory of source codes
raytracer..................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
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