
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Validation of Process Diagrams in BORM

Method

Jaroslav Bambas

Supervisor: Ing. Robert Pergl, Ph.D.

10th May 2015

Acknowledgements

I would like to thank supervisor of my thesis Ing. Robert Pergl, Ph.D. for his
valuable advice and Mgr. Martin Podloucký for his time in consultations. I
also thank my family for their support throught the period of study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 10th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
© 2015 Jaroslav Bambas. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Bambas, Jaroslav. Validation of Process Diagrams in BORM Method. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2015.

Abstrakt

Tato bakalářská práce se zabývá procesńımi diagramy metody BORM. Hlavńım
ćılem je provedeńı syntaktické a sémantické analýzy ORD diagramů metody
BORM, následné definováńı pravidel pro validńı procesńı diagram a navržeńı
algoritmů obstarávaj́ıćı ex-post kontrolu dodržováńı těchto pravidel. Následná
implementace algoritmů je provedena v jazyce Smalltalk do nástroje Dy-
naCASE. Práce je zakončena manažerským vyhodnoceńım př́ınos̊u, které ex-
post validace poskytuj́ı zač́ınaj́ıćım analytik̊um.

Kĺıčová slova BORM, ORD, Validace, Procesńı diagram, Modelováńı pro-
ces̊u, DynaCASE, Smalltalk, Pharo

Abstract

This bachelor thesis deals with process diagrams of BORM method. The main
goal is to perform syntactic and semantic analysis of ORD diagrams BORM
method, then define formal fundamentals for valid process diagram and devise
algorithms ensuring ex-post control of compliance of rules. These algorithms
are implemented in Smalltalk language to DynaCASE tool. The thesis is
concluded by managerial study of benefits that ex-post validation brings to
novice analysts.

ix

Keywords BORM, ORD, Validation, Process diagram, Process modelling,
DynaCASE, Smalltalk, Pharo

x

Contents

Introduction 1

Goals of work . 1

Structure of work . 2

1 Introduction to BORM and Analysis ORD 3

1.1 Business Object Relation Modelling 3

1.2 Object Relation Diagram . 5

2 Requirements for Well-formed ORD 13

2.1 Validation feasible in the diagram editor 14

2.2 Rules requiring ex-post validation 15

3 Validation algorithms 19

3.1 Missing data flow in communication 21

3.2 Missing conditions for decision making 21

3.3 Participant without states and activities 22

3.4 Multiple process flows in diagram 22

3.5 Multiple roles of participant . 23

3.6 Unreachable states or activities 24

3.7 Communication between activities of one participant 25

3.8 Missing start or final state . 25

3.9 Blind branches . 26

3.10 Violated dependency principle 27

4 Implementation 33

4.1 Technology and DynaCASE . 33

4.2 Validation plug-in . 34

5 Tests of validation algorithms 37

5.1 Unit tests . 37

xi

5.2 Test on complex diagram . 39

6 Managerial study the benefits of validation ORD 41
6.1 SWOT analysis . 41
6.2 Methodology . 42
6.3 Results . 43
6.4 Summary . 46

Conclusion 47
Future work . 48
Personal benefits . 48

Bibliography 49

A Acronyms 51

B Samples of source codes 53

C Diagrams used in tests of complex ORD 55

D Contents of enclosed CD 59

xii

List of Figures

1.1 Gap between Business and Software Engineering 4

1.2 BORM evolution of concepts [1] 4

1.3 Symbols for participants . 5

1.4 Symbols for states . 6

1.5 Symbol of Activity . 6

1.6 Communication and Data flows between two activities 7

1.7 Transition from state Start to state Final 7

1.8 Conditional transition . 7

1.9 Roles of participants and process flow 8

1.10 Split and join part of parallel branches 9

1.11 Control flow by foreign decision . 10

1.12 Service oriented participant (left), triggered participant (right) . . 11

1.13 Sample of using input and output conditions. [2] 12

2.1 Example of Multiple roles, the participant should be divided into
three participants. 16

2.2 Constructions causing deadlocks in ORD 17

2.3 Example of correct use of input and output conditions 18

3.1 Data model of BORM ORD in DynaCASE and OpenCASE tools [3] 20

3.2 Input condition does not cover all true combinations of Output
condition . 27

3.3 Input condition cover combination that are evaluated by condition
to false . 28

3.4 Creating configurations from nodes with input conditions 29

4.1 Data model of DynaCASE [4] . 34

6.1 The SWOT analysis of BORM ORD 42

6.2 Ratio of valid and invalid ORD . 44

6.3 Distribution of bugs according to severity 44

xiii

C.1 Valid ORD used in test of complex diagram 55
C.2 Invalid ORD used in test of complex diagram 56
C.3 Selected ORD from semestral projects used in test of complex di-

agram . 57

xiv

List of Tables

6.1 Summary of representation of errors and quantity 45

xv

Introduction

The role of process management and process mapping are increasingly im-
portant activities in the middle and big companies. Mapped processes are
for example used to optimize production or to design and implementation of
information systems. Flawless capture of processes is thus necessary for the
further continuation of development.

BORM is one of the methods and notations used for mapping, analyzing
and optimizing of processes. To correctly use of this method is necessary to
have certain degree of technical knowledge and experience. If the analyst does
not have this knowledge and experience, problems often arise in the syntax
and semantics of the diagram. This situation does not facilitate the fact that
is not specified enough formal fundamentals for correct creating and validation
of process diagrams BORM method.

This problem can be reduced by defining clear rules of the diagrams and
their automated checking. Implementation of these controls to the editor of
diagrams can eliminate many potential faults and give the user feedback about
the faults and their location.

Goals of work

The main goal is the formulation of rules for ORD diagrams. On the basis of
these rules design algorithms and create a plugin providing validation to Dy-
naCASE tool. Designed algorithms and following implementation is focused
on ex-post validations that are not related to process simulation. Ex-post
validation runs on completed ORD diagram after user request.

Objective of work is not analyze in detail all techniques and tools of BORM
method, deal with validation associated with process simulation and imple-
mentation of validation feasible in editor. Specific goals of thesis are:

1. Perform an analysis of BORM ORD diagrams in terms of syntax and
semantic

1

Introduction

2. Formulate rules for well-formed ORD diagram

3. Design algorithms for ex-post validation and create a plug-in to Dy-
naCASE tool

4. Test implemented validation

5. Perform a managerial study of improvements that brings validation of
ORD diagrams

Structure of work

The thesis is structured into 5 parts:

1. Background research analyzing syntactic and semantic features of ORD
diagrams BORM method. This part is covered in chapter 1.

2. Defining a well-formed ORD diagram and description of possible bugs
based on the analysis in the first part. This part is free continuation of
the first part. This is covered in chapter 2.

3. Design and description of validation algorithms. For each algorithm is
specified its purpose, asymptotic complexity and text description. It is
in chapter 3.

4. Part focused on the implementation of algoriths and testing. Algorithms
are implemented in pure object oriented language Smalltalk. This part
is covered in chapters 4 and 5.

5. Managerial study of benefits that validation brings to teaching BORM
method and novice process analyst. This is covered in chapter 6.

2

Chapter 1

Introduction to BORM and
Analysis ORD

For a better understanding of the following chapters in this work is the first
chapter focused on the basic description of BORM (Business Object Relation
Modelling) method and detailed analysis of ORD (Object Relation Diagram)
diagrams.

1.1 Business Object Relation Modelling

The work on the method BORM started in 1993. The method was primarily
invented to provide support for the building of object-oriented software system
based on pure object-oriented languages, such as Smalltalk, together with pure
object database [1].

Due to the original purpose is BORM designed to cover all phases of soft-
ware development [5]. In comparison with the other methods, BORM takes
development process as a gradual transformation of models from business en-
gineering to software engineering and implementation. BORM starts on the
initial specification of a problem and by using a set of rules and techniques
converts task to information system solution. The result is the union of busi-
ness engineering and software engineering [6], two separate disciplines with
their own theoretical base and own terminology. Figure 1.1 shows indirect re-
lationship between business and software engineering. Between these sectors
is a gap, which BORM covers [7].

Figure 1.2 shows transformation models throughout the lifecycle. For each
lifecycle stage, BORM provides a set of terms. Together with the transforma-
tions of the model is increased level of detail.

Later use of BORM in practice was found that some of techniques and
tools, provided by this metod, are useful as a independent method of business
engineering [5]. These are OBA (Object Behavioral Analysis) method, BAD

3

1. Introduction to BORM and Analysis ORD

Figure 1.1: Gap between Business and Software Engineering

Figure 1.2: BORM evolution of concepts [1]

(Business Architecture Diagram) and ORD (Object Relation Diagram). OBA
method is used to get informations that are needed to create the first object
model and BAD is used to represent process architecture, ie. clearly shows
the links between processes and their assign to working unit. OBA method
and BA diagrams are detailed described in [6] and [5].

4

1.2. Object Relation Diagram

1.2 Object Relation Diagram

ORD diagram is a visual representation of process by using connected and
oriented graph. Informations about processes and participating objects, which
are obtained by OBA, are illustrated in simply and clearly diagram. The
diagrams do not use large amounts of symbols and terms. This makes BORM
suitable for the following groups of people:

� beginning business analysts who are learning a new notation for business
modelling

� people who are not trained in the techniques of software and business
engineering, for example, in consultation with customers

1.2.1 Syntax

To understand the syntax ORD is necessary to introduce terms and symbols
that present them. Symbols used for terms below are from OpenCASE [8]
tool and in other tools can be used slightly different. The description of terms
used in BORM ORD is based on [5] and [9]. Terms in ORD are following:

Participant - Participant performs activities in the process. There are 3
types of participants - Person, Technical participant (e.g. information
system) and Organizational (e.g. work department). In ORD is partic-
ipant represented by a rectangle with name and type in the upper part,
see figure 1.3.

Figure 1.3: Symbols for participants

State - State is the first type of process nodes. It is the point in time, when
the participant is waiting to completion of activity and transition to
the next state. States indicates gradual changes participants over time.
There are these types of states:

� Start state - start sequence of activities of any participant

� Final state - end of activities of participant in the process

� Combination of start and final state

5

1. Introduction to BORM and Analysis ORD

� Inner state

Symbols for all types of states are in figure 1.4.

Figure 1.4: Symbols for states

Activity - Activity is the second type of process nodes. It means an operation
performed by participant. Activity occurs throughout the transition
between two states. Transition to next state is completed when Activity
is finished. Symbol of Activity is rectangle with rounded corners or oval,
see figure 1.5.

Figure 1.5: Symbol of Activity

Communication and Data flow - The communication represents interde-
pendence between activities of two different participants. Only case
where the communication may be between activities of the same partic-
ipant is service oriented, who does not have states. In other semantic
types of participants, there is a problem with time sequence of activities.
Symbol of communication is arrow, which connects two activities. Di-
rection of the arrow defines who starts communication and who receives
it. Data flow is a term for information, money or another exchanged
data between two communicating activities and participants. Symbols
for communication and data flow are in figure 1.6.

Transition - The transition shows direction of change from one state to an-
other. The transition is represented by arrow from one state to another.
This states are assigned to same participant. In the middle of the arrow
is an activity, which is performed during the transition. In figure 1.7 is
example of transition between two states.

Conditional transitions and communication - Symbol for conditional
transition (communication) is same as for unconditional transition (com-
munication) but in addition there is text description of the condition and

6

1.2. Object Relation Diagram

Figure 1.6: Communication and Data flows between two activities

Figure 1.7: Transition from state Start to state Final

the arrow is crossed out. The condition determines when the transition
is valid. In figure 1.8 is conditional transition from state Start to state
Final through Activity.

Figure 1.8: Conditional transition

7

1. Introduction to BORM and Analysis ORD

In [10] is described that process is captured to ORD as connection of
states, activities and transitions. This connection is constructed by manner
”State-Activity-State” with transition, see figure 1.7. Into ORD is not possible
to add activity, which is not linked to the existing state or is not linked by
communication to another activity [10]. All states and activities must belong
to one of the participants.

1.2.2 Semantics

Semantic part of ORD diagrams is closely related to the syntax part. Connec-
tion between these two sectors is evident in transitions and communications,
where opposite drawn direction of communication changes the meaning.

As stated in the article [5], a process can be seen in two ways. First,
that each participant in the ORD diagram represents a role, which has own
specific behavior and individual activities. Each participant is actually FSM
(Final State Machine), which is described by a sequence states and activities.
If we look at the paticipants with their states and transitions as FSM, the
process is made by merging FSM [5]. The other view is that process is formed
by events of participants, ie. activities and states of each participants and
communication between the activities of participants. Event flow of process
goes across all participants, see in figure 1.9.

Figure 1.9: Roles of participants and process flow

8

1.2. Object Relation Diagram

In creating ORD diagrams are used several basic constructions. Mergers
and combinations of these constructions allows to reach of required process
diagram. Description of constructions used in ORD:

Sequence - Individual activities sequentially follow on other activity. This
flow of activities can be seen in figure 1.9, where participant Employee
performs one activity after another.

Parallel branches - Parallel branches represents two or more simultaneously
performed activities. It is used in cases, if do not matter the order
of execution activities and the activities belongs to different branches,
which do not depend on each other [11]. At the beginning of the parallel
run is split part, which it divides into multiple branches. At the end
of the parallel run is join part, where after completion of all branches
is continued by one branch, see in figure 1.10. Then it is allowed to
continue in next activities as a sequence flow.

Figure 1.10: Split and join part of parallel branches

Decision making of process flow - Split is performed based on the con-
ditions of conditional transitions. Decision making branches are two
or more and process flow continues by all branches, where conditions
are evaluated to true. At the end is again a state that provides joining
branches. In the figure 1.11 at Participant 1 you can see decision-making
process with 2 branches.

Control flow by foreign decision - Splitting of flow is based on incoming
communication from other participant. This type of split is shown in
figure 1.11, where Participant 2 is waiting for incoming communication.
According decision of the Participant 1 is performed communication,
which will determine behavior of Participant 2.

9

1. Introduction to BORM and Analysis ORD

Figure 1.11: Control flow by foreign decision

In terms of semantic, we can distinguish these three types of participant:

Full-fledged participant - It is a participant who includes start and final
state. Between these states is a sequence of inner states and activities.
In ORD must be at least one participant of this type, otherwise process
can not correctly begin and finish.

Service oriented participant - It is a participant who has stateless be-
havior, ie. for other participants provides services type request-reply.
Sample is shown in figure 1.12.

Triggered participant - Process role of participant is not started by start
state but incoming communication. Technically, there is a default start
state, which is not shown and where the participant waits until it receives
the request [12]. This semantic type of participants is completed by final
state. Sample of triggered participant is shown in figure 1.12.

1.2.3 Extension BORM ORD

To further machine processing of ORD diagram are word conditions in decision
making insufficient because it does not include the boolean logic of possible
combinations of outgoing transitions. One of the major problem is a fact
that ORD diagram is combination of Mealy automata and Petri nets [7], but
these do not cover control of pass [13]. For this reason was defined formal
automata - prefix machine [2]. This machine defines the semantics of the ORD
diagram to run and simulation. To enable complicated options of parallelism
and understand to prefix machine is necessary introduce new syntactic and
semantic terms. Articles [11] and [2] describe following terms:

10

1.2. Object Relation Diagram

Figure 1.12: Service oriented participant (left), triggered participant (right)

Output condition - Output condition of state is a boolean expression, which
specifies admitted combination of branches into which the process exe-
cution may split itself from this state [11]. Variables are outgoing tran-
sitions from the given state.

Input condition - Input condition of state is a boolean expression, which
specifies that the execution of the process cannot advance further from
the given state until its input condition is met, ie. until correspond-
ing boolean expression is evaluated as being true [11]. Variables are
incoming transitions to the given state.

Simultaneity principle - The simultaneity principle states that no partici-
pant can in fact split itself into multiple instances and actually do several
tasks in parallel [2].

Dependency principle - The dependency principle says that the task can
be completed only after completing tasks on which it is dependent [2].
For expample, to complete the join of three branches in the diagram, it
needs completed any two branches. After completion any two branches is
the input condition evaluates to true and the process flow can continue.

Using boolean expressions input and output conditions of state, consisting
of logical operators (XOR, AND, OR) and their variables, dependency princi-
ple can be deploy at parallel branches in ORD. The following check compliance
of the dependency principle and the simultaneity principle in simulation can
be done by using the prefix machine. Logical operators are assigned in input
and output conditions like pairing of parentheses. It means that if at split is
set output condition to XOR, in section join is expected in input condition
same condition. In figure 1.13 is shown use input/output conditions. The split
near the state A is output condition X xor Y, which means that process can
continue by only one branch of this two. The join is set similar conditions,

11

1. Introduction to BORM and Analysis ORD

ie. xor for incoming branches. The join in this example is made of two states
into one state without performing any activities. This is possible by using ep-
silon transitions, ie. participant can change state without making activities.
Syntactically is the join of activities in the state also correctly.

Figure 1.13: Sample of using input and output conditions. [2]

12

Chapter 2

Requirements for Well-formed
ORD

Big disadvantage of ORD is a lack of sound formal foundations which would
allow to clearly and precisely define the structure and semantics of ORD and
other concepts related to BORM [11]. To effectively validate ORD diagrams,
it must be firstly defined the requirements for well-formed diagram, ie. define
properties required for valid diagram. This is such diagram that is consistent
with all syntactic and semantic properties of ORD diagrams. If the diagram
meets the requirements described in this chapter, it is called a well-formed
or valid ORD diagram. Drawing up of the requirements for a valid ORD
diagram was based on syntactic and semantic priciples of BORM method.
Into consideration were also taken results of the works of novice users, who are
learning BORM method. Requirements for well-formed ORD are as follows:

1. Each process node (state or activity) belongs to one of participants.

2. Communications are between two activities of different participants. Ex-
ceptions are service oriented participants, there may be communication
between activities.

3. All communications are associated with data flows.

4. The transition between states is implemented in a manner ”state-activity-
state” or ”state-state” by using epsilon transition. The transition takes
place within one participant.

5. Conditional transitions and communications are labeled by text condi-
tions, in which case is the transition valid.

6. Participant corresponds to one of three semantic types, ie. full-fledged,
service oriented or triggered.

13

2. Requirements for Well-formed ORD

7. When passing through the diagram, it is possible to visit all states and
activities, ie. all states and activities are connected in process flow.

8. From all branches is reachable any final state by transitions.

9. In the diagram must be at least one start and finale state. It follows
that at least one participant must be full-fledged type.

10. Between start and final states must be a path.

11. In case of parallelism and decision making is correctly set input and
output conditions in parts split and join.

12. There is no deadlock while waiting for incoming communication.

13. Participants in one diagram communicate with each other. If not, it is
possible to divide the diagram into individual parts.

2.1 Validation feasible in the diagram editor

Some of the possible bugs in ORD can be avoided during creation in editor.
This is achieved in that during the formation of the diagram is not possible
to perform operations that are against syntactical requirements ORD. The
fact that an user is not allowed in the editor to create these bugs, it is not
necessary to validate ex-post. During editing ORD diagram can be checked:

� New state or activity is assigned any participant.

� Communication is between two activities, not between states or between
state and activity.

� Data flows are assigned only to communication, not for transitions.

� Transition takes place within one participant, ie. can not be confused
the communication for the transition.

� Transition is routed ”State-Activity-State” or ”State-State” and belongs
to one participant.

These rules can be checked in the editor because we do not need entire struc-
ture of ORD diagram and semantics. We need only information about in-
dividual elements in the diagram. For example, when an user wants to add
a state, the state can not be inserted into the diagram freely but must be
inside one of participants. Implementation of these validations to the editor
is recommendation for developers of diagram editor. Next parts of this thesis
are focused on the validation ex-post.

14

2.2. Rules requiring ex-post validation

2.2 Rules requiring ex-post validation

Rules which can not be checked in creating ORD must be checked ex-post.
Validation ex-post must be performed if we need to know the structure of
diagram and check the accuracy of semantics. Bugs, caused by violation of
the required syntactic and semantic rules of well-formed ORD, are divided
into three groups by severity; Notice, Waring and Error.

2.2.1 Notice

This type of faults is informative and ORD diagram does not contain serious
errors that could have a significant effect on the process. These violations may
make it difficult to understand the diagram.

Missing data flow in communication - This is a syntax error when com-
munication is not associated data flow. In the diagram is not described
information and data which are exchanged between participants. Pres-
ence of data flows at communications can not be guaranteed by diagram
editor because at the moment of creation diagram is not known direction
and the number of data flows. For this reason there is need to validate
ex-post.

Missing conditions for decision making - When deciding must be all tran-
sitions to branches labeled with condition when is the transition valid.
When all the branches are not labeled with conditions but only some of
them, arises a situation where it is not clear that the transition should
be used.

Participant without states and activities - Participant without activi-
ties and states can be removed from the diagram. This participant
is useless in the diagram because it does not have any effect in process
flow.

Diagram contains multiple process flows - This error is caused if some
of participants do not establish communication to the main process flow,
ie. in the diagram is captured more than one process. The solution is
divide the diagram into individual processes.

2.2.2 Warning

This is a group of warning errors that indicate possible failure in start the
process. This failure is not necessary always, but only in some cases.

Unreachable states or activities - If it is impossible pass by some states
and activities, this is due to missing transitions or communications in the
diagram. The effect of this error on the process flow is twofold. Firstly,

15

2. Requirements for Well-formed ORD

that do not performed all necessary activities, and secondly, that some
of activities are redundant in the diagram.

Multiple roles of participant - This occurs if is not fulfilled semantic type
of participant. Concretely, if one participant in the diagram presents
more roles and can be divided into several participants. Example is
shown in figure 2.1. There is the participant with three roles.

Figure 2.1: Example of Multiple roles, the participant should be divided into
three participants.

Possible deadlock in communication - The deadlock occurs if any par-
ticipant is expected incoming communication but it is not sent. For
this reason, the participant can not get to the final state. This seman-
tic error is caused by occurrence at least one of three constructs shown
in figure 2.2. They are incoming communication from service oriented
participant, sent communication only in some cases of condition and
communication that do not respect time sequence. Especially the last
one construction is difficult to detect because it can occur in the context
of communications between many participants. For this reason it is nec-
essary to detect of this error to perform the simulation of the process,
ie. test all existing path through the diagram. Simulation of ORD dia-
grams is out of scope this work. Solution of incoming communications
from service oriented participant would eliminate this problem but not
solve completely. For this reason, solution of this problem is the subject
of further works on simulation of ORD process diagrams.

16

2.2. Rules requiring ex-post validation

Figure 2.2: Constructions causing deadlocks in ORD

2.2.3 Error

These are fatal errors that do not allow correctly go through the diagram.
During simulation process captured by diagram should fail.

Communication between activities of one participant - The commu-
nication can be in one participant only in one case, if the participant
is service oriented. In other cases, it is a semantic error. The reason is
failure to comply with time sequence because referring to activities in
the future or in the past.

Missing start or final state - This syntax error occurs in two cases. The
first case is that some of the participants have start state and lacks final
state or conversely. The second case is that start or final state is missing
across the diagram. If in the diagram is missing participant with start
and final state, it is not possible to begin or finish a process.

Blind branches - This semantic error occurs if from the process node (state
or activity) is no path to any final state by transitions. This is not ap-
plicable for service oriented participants who do not include any states.
The cause of this error are missing transitions between process nodes or
absence of final state of the participant. The result of this error is blind
branches in ORD.

Violated dependency principle - To run correctly prefix machine is nec-
essary select equivalent input and output conditions for split and join
parts. This is a semantic error in branching, in which do not corre-
spond output condition and input condition. The correct method of
choice experssions input and output conditions is similar to issue nested
parentheses. Logical operators AND, XOR and OR correspond to three
types of parentheses. Example of correct application of input/output
conditions is shown in figure 2.3.

17

2. Requirements for Well-formed ORD

Input and output conditions are corresponding to each other if logical
equivalence of these condition is a tautology. This means that for all
true evaluation of output condition is input condition evaluated true and
conversely. For all false evaluation output condition is input condition
also false.

Figure 2.3: Example of correct use of input and output conditions

18

Chapter 3

Validation algorithms

This next part of the thesis is focused on algorithms providing validation. The
design of these validation algorithms with defining the requirements for well-
formed diagram is a key part of this work. These algorithms often use various
modified forms of algorithms for searching in graphs, like DFS and BFS. The
aim of the algorithms is first to get information about whether diagram is
valid or not. It is also necessary to identify the specific type of violation of
the requirements for well-formed diagram, find out how these bugs are serious
(notice, warning, error) and where in the diagram the bug arises, ie. find
concrete participant, state, activity, transition or communication. By finding
a specific type of the fault and its position, this place can be highlighted and
give the user more feedback.

Validation algorithms are designed over BORM ORD data model used in
the tools OpenCASE [8] and DynaCASE [4]. UML diagram of this model is
shown in figure 3.1. The data model corresponds exactly with the graphical
representation of ORD diagrams and their syntax and semantics described in
section 1.2, ie. ORD diagram includes participants, each participant includes
its states and activities between which there are ongoing communications and
transitions.

Each algorithm performs checking compliance exactly of one rule. The
algorithm always expects input ORD diagram for validation. For each algo-
rithm is defined its purpose, output and text description of the algorithm. For
completeness is for each algorithm also intended asymptotic time complexity,
although this is not totally critical detail because the expected size of dia-
grams is in the range of units of participants, the number of states is in the
range of several tens. Asymptotic time complexity of the algorithms BFS and
DFS was taken from [14]. Diagrams, which are roughly in this range, are not
so computationally intensive to it would showed slowing down of editor.

19

3. Validation algorithms

Figure 3.1: Data model of BORM ORD in DynaCASE and OpenCASE tools
[3]

20

3.1. Missing data flow in communication

3.1 Missing data flow in communication

The goal of the algorithm is to find communications which is associated with
no data flow. Due to the design of data model is not necessary go through
the ORD diagram by graph algorithms DFS or BFS. To perform is sufficient
just work with collections and data structures. The output of the algorithm
is a collection containing communications that associate no data flows. If the
output collection is empty, the ORD diagram does not contain this type of
bug. It is a linear algorithm with asymptotic time complexity O(n + c), n
represents total number of process nodes (sum of states and activities) and c
represents total number of communications in validated ORD. The algorithm
is as follows:

1. get list of participants in ORD

2. for each participant

a) browse each process node of the participant

b) if the process node is the activity, add outgoing communications
from this activity to list of communications

3. for each communication from the list of all communications

a) browse collection of data flows

b) if there is no data flows, add this communication to results

3.2 Missing conditions for decision making

The goal of the algorithm is to find process nodes (ie. states and activities)
whose some outgoing transitions are conditional and others are unconditional.
For this validation algorithm is not again necessary to use graph algorithms.
This is again a work with the collections from which we select required data.
The output of the algorithm is a collection of process nodes with outgoing
transitions, where it occurs this error regarding conditional transition. The
asymptotic time complexity of this algorithm is O(n + t), n represents total
number of process nodes (sum of activities and states) and t represents total
number of transitions in ORD. The algorithm is as follows:

1. get list of participants in ORD

2. for each participant

a) add process nodes of the participant to collection of process nodes
of throughout ORD, ie. get all process nodes in ORD

3. for each process node in the collection

21

3. Validation algorithms

a) find out number of outgoing transitions, where the condition is
empty

b) if the number of outgoing transitions without condition is different
than total number of transitions and the number of outgoing tran-
sitions without condition is not equal to zero, add the process node
to results

3.3 Participant without states and activities

The goal of the algorithm is to find unnecessary participants in ORD diagram,
ie. those who does not include any state or activity. This is a simple algorithm
and the output is a collection of these empty participants. The asymptotic
time complexity of the algorithm is O(n), where n represents total number of
participants in ORD. The algorithm is as follows:

1. get list of participants in ORD

2. for each participant

a) get number of process nodes of the participant

b) if the number of nodes is equal to zero, add the participant to
results

3.4 Multiple process flows in diagram

The goal of the algorithm is to find all process flows in ORD diagram. One
process flow is represented by connected component of diagram. If in the
ORD is more process flows than one, each process flow can be put into a
separate diagram. Component of diagram means maximal connected subgraph
of the ORD. Nodes in the component are states and activities, edges are
represented by transitions and communications and orientation of transitions
and communications is ignored. Counting components of ORD diagram is
performed using a modified DFS algorithm. The output of the algorithm is a
collection of process nodes that have associated component number in which
it occurs. The asymptotic time complexity of DFS algorithm is O(n + e), n
represents a number of nodes and e represents a number of edges in diagram.
In this case, edges are transitions and communications, thus e is sum of these
items. The algorithm is as follows:

1. for each participant

a) add all process nodes into array and set their flags as FRESH

2. set counter of components to zero

22

3.5. Multiple roles of participant

3. for each process node in the array with FRESH flag

a) set as OPEN, incremente the counter and execute the DFS algo-
rithm

4. return the array with numbered process nodes

The DFS algorithm is as follows:

1. assign to node number of component in which the node is, ie. actual
value of the counter

2. FRESH neighboring process nodes connected by transitions and com-
munications push into the stack and set them as OPEN

3. set the process node as CLOSE

4. if the stack is not empty pop next node and go to point 1

3.5 Multiple roles of participant

This algorithm is similar to the algorithm to finding multiple process flows in
ORD. In the previous algorithm determines the number of components in the
entire ORD diagram, in this case the number of components is determined
for each participant and communications between activities are ignored. The
goal of this algorithm is to find participants who can be divided into more
participants because it contains multiple participant roles. These participants
can be distinguished by facts that it is not a service oriented participant and
the participant contains many components of graph. One component in a par-
ticipant is the largest subgraph of process nodes of the participant connected
by transitions. The output of the algorithm is a collection of participants
that contain multiple roles. The algorithm again uses the DFS algorithm.
The asymptotic time complexity of the algorithm is identical to DFS namely
O(n + t), n represents a number of process nodes and t represents a number
of transitions. The algorithm is as follows:

1. for each non-service oriented participant

a) set the counter of participants roles to zero

b) add all process nodes of the participant to array and set their flags
as FRESH

c) for each process node with flag FRESH

i. set as OPEN, incrementing counter and execute the DFS algo-
rithm

23

3. Validation algorithms

d) if the counter of roles is greater than 1, add the participant into
results

The DFS algorithm is as follows:

1. FRESH neighboring process nodes connected by transitions push into
the stack and set them as OPEN

2. set the process node as CLOSE

3. if the stack is not empty, pop next node and go to point 1

3.6 Unreachable states or activities

The goal of this algorithm is to find process nodes that are unreachable from
any initial state. This algorithm uses the BFS algorithm, which is progres-
sively starting from all initial states. Process nodes that are not visited after
completing of all BFS are unreachable. The output of the algorithm is a col-
lection of these unreachable process nodes. The asymptotic time complexity
of the algorithm is identical to the asymptotic time complexity of BFS algo-
rithm. It is O(n + e), n represents a number of process nodes in ORD and
e is the sum of transitions and communications in ORD. The algorithm is as
follows:

1. for each participant in ORD

a) add all process nodes into array and set their flags as FRESH

2. select from the array with process nodes initials states

3. for each FRESH initial state

a) set flag as OPEN, execute the BFS algorithm

4. select from the array, which contains all process nodes, nodes with flag
FRESH and add them into results

The BFS algorithm is as follows:

1. add to the queue FRESH neighboring nodes connected by outgoing tran-
sitions and sent communications

2. set these neighbors as OPEN

3. set the node as CLOSE

4. if the queue is not empty, dequeue next node and go to point 1

24

3.7. Communication between activities of one participant

3.7 Communication between activities of one
participant

The goal of the algorithm is to find communications that are taking place be-
tween activities of one participants. If the participant is service oriented, it is
not a fault and this design of the communication is correct. The output of the
algorithm is a collection of communications that violate this rule. The asymp-
totic time complexity of the algorithm is O(n+ c), n represents total number
of process nodes in ORD and c represents the number of communications in
ORD. The algorithm is as follows:

1. get list of participant in ORD

2. for each participant

a) browse each process node of the participant

b) if the process node is a activity, add outgoing communications from
this activity to list of communications

3. for each communication

a) if owner of sending activity and owner of receiving activity of com-
munication is equal, test if the owner of the activities contains no
states

b) if it is not service oriented participant, add the communication to
results.

3.8 Missing start or final state

The goal of the algorithm is to find cases where in the ORD diagram com-
pletely missing start or final states. The second case is missing final state
in any of the participants and does not correspond to the semantic type of
participants. It is findind information on the occurence of these states. The
output of this algorithm does not say anything about whether these states are
included in the only process flow or these states are reachable. The output
is a collection of participants that are missing these states. In the case that
these states are not in whole ORD, collection includes all participants of ORD
diagram. The asymptotic time complexity of the algorithm is O(n), n repre-
sents a number of process nodes in the validated algorithm. The algorithm is
as follows:

1. set counters of start states and final states in ORD to zero

2. for each participant in ORD

25

3. Validation algorithms

a) check if the participant is service oriented, if it is, continue by next
participant

b) count start states in the participant

c) count final states in the participant

d) if the number of final states is equal to zero, add the participant to
results

e) add to counter of start states in ORD the number of start states in
the participant

f) add to counter of final states in ORD the number of final states in
the participant

3. if the total number of start or final states is equals to zero, remove all
from results and add to results all participants

3.9 Blind branches

The goal of the algorithm is to find process nodes that are part of a blind
branch. Blind branches mean sequence of states and activities connected by
transitions, from which is no path in the direction of transitions to any final
state. This algorithm is similar to the algorithm for finding unreachable states
and activities. It uses a opposite orientation of transitions in the diagram and
BFS algorithm is gradually started on all final states. Process nodes tagged as
FRESH after completing all BFS algoritms are unreachable from final states.
It follows that in the original ORD is no oriented path by transitions between
this process nodes and any final state. The output of the algorithm is a
collection of process nodes, which form blind branches in the ORD diagram.
The output does not cover activities of service oriented participants because
there is no states and transitions. The asymptotic time complexity of the
algorithm is identical to BFS namely O(n + t), n represents a number of
process nodes in ORD and t represents a number of transitions in ORD. The
algorithm is as follows:

1. for each non-service oriented participant in ORD

a) add all process nodes into array and set their flags as FRESH

2. select from the array with process nodes final states

3. for each FRESH final state

a) set flag as OPEN, execute the BFS algorithm

4. select from the array, which contains all process nodes, nodes with flag
FRESH and add them into results

26

3.10. Violated dependency principle

The BFS algorithm is as follows:

1. add to the queue FRESH neighboring nodes connected by incoming
transitions

2. set these neighbors as OPEN

3. set the node as CLOSE

4. if the queue is not empty, dequeue next node and go to point 1

3.10 Violated dependency principle

The goal of this algorithm is to check the truth tables of input and output
conditions. Dependency princip is violated in two cases. The first case is if
combination of outgoing transitions, for which is the output condition evalu-
ates to true, the input condition is evaluates to false, example in figure 3.2.
Output condition in the part split allows branching, which are evaluated to
false by input condition in the join part.

Figure 3.2: Input condition does not cover all true combinations of Output
condition

The second case is conversely. Input condition is evaluated to true for
the combination of incoming transitions that can not be sent by the states
with output condition because for this combination of outgoing transitions is
output condition evaluated to false, example in figure 3.3. The output of this
algorithm is a collection of states for which there is a conflict in the truth
tables of boolean expressions of input and output conditions.

The algorithm is based on the algorithm to derivation of output condi-
tions from the input conditions. This algorithm is described in [13] and [2].

27

3. Validation algorithms

Figure 3.3: Input condition cover combination that are evaluated by condition
to false

This algorithm is exponential and is based on BFS algorithm with backtrack-
ing. Due to backtracking is asymptotic time complexity exponential, namely
O((n−1).(2d)n+2dn) [13], n represents total number of process nodes in ORD
and d represents maximal number of outgoing transition from one state. First
part (n− 1).(2d)n represents asymptotic complexity of generating all possible
configuration from states with input condition. The second part 2dn repre-
sents asymptotic complexity of comparing truth tables of output conditions
with generated configurations.

Sample creating configurations from node with input conditions is shown
in figure 3.4. From state with input condition are constructed all possible
path through ORD. Visited process nodes during the execution the process
are marked with a number 1 (true), unvisited process nodes are marked with
a number 0 (false). The process of deriving output conditions from input
conditions is as follows. For each state with input conditions is created initial
configuration. In the initial configuration is the state with input condition
marked by number one (true) and enqueue for BFS algorithm. For each
configuration is performed modified BFS algoritm.

During the BFS algorithm may arise for dequeued process node 3 situa-
tions.

1. process node is associated with input condition

a) process node is marked by number one (true) - in the truth table
select rows with true evaluation of input condition; for each true
evaluation create new configuration which is a deep copy; neighbor-
ing process nodes (senders of incoming transitions) mark by values
of selected rows in the truth table; neighboring process nodes en-
queue and continue by BFS algorithm in new configurations

28

3.10. Violated dependency principle

Figure 3.4: Creating configurations from nodes with input conditions

29

3. Validation algorithms

b) process node is marked by number zero (false) - in the truth table
select rows with false evaluation of input condition; for each false
evaluation create new configuration which is a deep copy; neighbor-
ing process nodes (senders of incoming transitions) mark by values
of selected rows in the truth table; neighboring process nodes en-
queue and continue by BFS algorithm in new configurations

2. process node is associated with output condition

a) all predecessors are marked (receivers of outgoing transitions) -
mark the process node by evaluation from truth table of output
condition, mark identical neighboring process nodes (senders of in-
coming transitions) and enqueue them

b) all predecessors are not marked - continue BFS another node from
queue

3. process node is not associated with any condition - neighboring process
nodes (senders of incoming transitions) mark identically as the dequeued
node, enqueue them and continue in BFS

The next step is for each state with output condition compare derived
output conditions with defined conditions. In each configuration is found the
state with output condition and in its truth table is marked combination of
outgoing transitions, which is in the configuration. After marking all config-
urations is performed check if all combinations, which are evaluated to true
by output condition, are included in configurations. If in the truth table are
not marked all true evaluation, the state is added to results. For all states in
diagram must be specified output conditions equivalent to its deriving output
conditions, otherwise the diagram is not valid.

For clarity is not description of algorithm very detailed but it focuses only
on the base points, which are described above. The validation algorithm is as
follows:

1. get collection of states with input condition

2. for each state with input condition

a) create and fill in truth table for input condition

3. get collection of states with output condition

4. for each state with output condition

a) create and fill in truth table for output condition

5. for each state with input condition

a) create possible configurations

30

3.10. Violated dependency principle

6. for each state with output condition

a) perform marking of truth table according to configurations

b) perform check of truth table; if the check fails, add the state to
results

31

Chapter 4

Implementation

To use validation of ORD diagrams in practice, it is necessary perform the
implementation of designed algorithms in chapter 3 into a diagram editor that
supports BORM notation. For this purpose was selected newly developed
CASE tool for creating diagrams and models called DynaCASE. This tool is
being developed within subjects BI-SP1 and BI-SP2.

4.1 Technology and DynaCASE

DynaCASE tool is based on Pharo project. Pharo is modern open-source de-
velopment environment for the Smalltalk programming language [15]. For Dy-
naCASE has Pharo dual function, firstly function of framework and secondly
function of development environment. DynaCASE is attemping to follow in
some respect MVC architecture [4].

Base data model of DynaCASE is shown in figure 4.1. Using this model can
be DynaCASE extended by other data models of other modelling notations.
Expanding functionalities is possible by adding packages. Currently in the tool
are included packages for creating diagrams of FSM, OntoUML and BORM.
For the purpose of validation algorithms is needed only part of the model,
specifically data model of ORD diagrams shown in the figure 3.1.

To implement is used programming language Smalltalk. It is pure ob-
ject oriented language. It means that everything, with which works in the
language, is an object. This language allows to solve elegantly some of vali-
dations without complicated browsing whole diagram. This is made possible
through easy work with collections and designed BORM data model. Another
advantage of Smalltalk is its clearly and simple syntax.

33

4. Implementation

Figure 4.1: Data model of DynaCASE [4]

4.2 Validation plug-in

Validations are implemented as a extension package, which needs for its func-
tion package of BORM data model. This package include these 4 groups of
classes:

1. Class BormValidator

2. Classes represents errors of ORD

3. Classes of tests

4. Auxiliary classes for BFS and DFS algorithms

Classes of tests are described in the chapter 5. The following sections are
described the first two items.

4.2.1 BormValidator

BormValidator is the class that provides the process of the validation. This
class includes two instance variables, namely aORD, this is validated ORD
diagram, and listOfFailures, which is a collection that contains instances of
error classes described in section 4.2.2.

34

4.2. Validation plug-in

The class also includes 10 methods, which are implemented validation al-
gorithms described in the chapter 3. Samples of source codes of any validation
algorithms are given in appendix B. If any validation algorithm finds an error,
it is created instance of the error type and is added into collection listOfFail-
ures.

Due to work only on the package of validations was not possible to imple-
ment auxiliary methods in the package of BORM data model and they are
inadequately implemented in the BormValidator class. To maintain the purity
of the object code and design, it is recommended in the future to move these
auxiliary methods to package of BORM data model. These include methods
to obtain all process nodes of ORD, all communications of ORD, etc.

4.2.2 Error classes

The package with validation also include classes that represent faults against
requirements on well-formed ORD. These faults are described in section 2.2.
These classes are the output of whole process of validation. These classes
are used to output of entire process of validation and each class contains
information about its severity (notice, warning, error) and collection of items,
which are worth of faults. These classes are subclasses of existing Error class
in environment Pharo. Error classes are following:

� CommunicationInOneParticipant

� EmptyParticipants

� MissingConditions

� MissingDataFlows

� MissingStartOrFinalState

� MultipleProcessFlow

� MultipleRolesOfParticipant

� NodesOfBlindBranches

� NotCorrectIOConditions

� UnreachableNodes

In the future, after implementation of validation deadlocks, there will be
added one more class indicating the presence of this error.

35

Chapter 5

Tests of validation algorithms

Testing is inseparable part of development and extending the functionality of
software. Tests of validation algorithms is divided into 2 parts. At first are
performed unit tests to test correctness of output each validation algorithm.
Unit tests are performed in environment Pharo by using class TestCase. The
second group of tests is performed with complex diagrams.

5.1 Unit tests

In total are performed 34 unit tests. Each test is focused on one validation
algorithm and its outputs. The size of tested diagrams is about 5 process
nodes and in each ORD is only error related to testing algorithm. Unit tests
are divided into different classes, one class includes tests for just one validation
algorithm. All unit tests were done correctly. Classes of tests are as follows:

MissingDataFlowTest - The class that includes tests of the algorithm to
finding missing data flows. The algorithm is described in section 3.1.
There are 3 unit tests of the algorithm, the first is test of valid ORD,
the second is test of invalid ORD with missing data flow and the last is
test of invalid ORD that is corrected during the test to valid.

MissingConditionsTest - The class that includes 3 tests of the algorithm
to finding missing conditions in outgoing transitions. The algorithm is
described in section 3.2. Two tests are performed on valid ORD and
third testing ORD contains combination of conditional and uncondi-
tional transitions.

EmptyParticipantTest - The class of tests of the algorithm for finding par-
ticipants without process nodes, described in section 3.3. This class
includes 3 unit tests. The first test is performed on the diagram that
contains the empty participant. The second test is performed on the di-
agram where this participant does not occur and the last is the diagram

37

5. Tests of validation algorithms

when the empty participant is not included at the beginning and then
is added. After that the test is repeated.

MissingStartOrFinalStateTest - The class of tests of the algorithm to
finding missing start or final states. The class includes 4 tests of the
algorithm described insection 3.8. The first tests are performed on dia-
grams with missing final state, missing start state, missing both states
and valid diagram.

MultipleProcessFlowTest - The class of tests of the algorithm described in
section 3.4. This class includes 3 tests on ORD diagrams with 1 process
flow, 2 process flows and on empty diagram with no participants.

MultipleRolesTest - The class of tests of the algorithm described in section
3.5. The class includes total 3 tests. The first is a test on a valid diagram,
the second is a test containing the participant with two roles and finally
the last one, test on the diagram containing participant with two initial
states.

UnreachableNodesTest - It is class which includes tests of algorithms for
finding reachable process nodes described insection 3.6. There are 3
total test. One of these tests is test on the valid diagram, the second is
test on the diagram where is the activity unreachable and the last test
on the diagram with unreachable state.

CommunicationInOneParticipantTest - The class including tests of al-
gorithms to finding communication processing within one non-service
oriented participant. The algorithm is described in section 3.7. There
are total 3 tests. The first test is on the valid diagram, the second one
is on the diagram containing this error and the last one is the test on
the diagram where is the communication processing within one service
oriented participant.

BlindBranchTest - The class includes tests of algorithm to finding process
nodes that are components of any blind branch. This algorithm is de-
scribed in section 3.9. The class contains 2 tests, the first on valid
diagram and the second on diagram containing one blind branch from
which is not able to get to the final state.

ViolateDependencyTest - The class includes tests of algorithm that testing
correctness of input and output conditions. This algorithm is described
in section 3.10. The class includes total 7 tests, including tests of nesting
conditions.

38

5.2. Test on complex diagram

5.2 Test on complex diagram

Tests on complex diagrams are made on ORD diagrams in size about 30
process nodes and about 5 participants. This size is equivalent to the average
modeled process diagrams. ORD diagrams used for these tests are given
in appendix C. For each ORD used in this tests are started all validation
algorithms and controls output of all errors. For this test was made 3 diagrams.
The first diagram is valid and contains the correct use of all elements of BORM
ORD. In the second diagram are all types of errors that can be detected
by these validation algorithms and last diagram is selected from semestral
projects of subject BI-ZPI. These semestral projects are described in chapter 6.
All tests on complex diagrams were done correctly. Time of running validation
on complex diagrams is less than one second. Ex-post validation of ORD do
not limit the user during his work.

39

Chapter 6

Managerial study the benefits
of validation ORD

The final part of this thesis is focused to evaluation of benefits that brings
validation ORD diagrams for novice users and analysts. Specifically, the aim
is to determine whether validation ORD diagrams will help reduce the num-
ber of errors and improve their quality. The second goal is to verify if the
requirements for diagram and method validation ex-post, as described herein,
are corresponding to real problems that occur in the diagrams of novice users.

6.1 SWOT analysis

First is performed a brief SWOT analysis of BORM method, namely Objective
Relative Diagrams as tool of process managemet. This analysis captures the
state of original ORD without extensions described in section 1.2.3. The
SWOT analysis is way to identify these items:

� Strengths: internal properties that represent advantage over other meth-
ods used in process management

� Weaknesses: internal properties that represent disadvantage relative to
others methods used in process management

� Opportunities: external elements that could be exploited to its advan-
tage

� Threats: external elements that could have negative impact on the fur-
ther development and use of BORM method

One of the opportunities in the analysis in the figure 6.1 is the realization
of validation ORD. As part of this work has been used this opportunity and
was designed and implemented validations into real software tool DynaCASE.

41

6. Managerial study the benefits of validation ORD

Focus of further sections of this chapter is whether the realization of this
opportunity may have a positive effect on the results of novice analysts.

Figure 6.1: The SWOT analysis of BORM ORD

6.2 Methodology

Data for this part of the work has been semestral works in BI-ZPI. This
subject is taught by Ing. Robert Pergl, Ph.D. on the Faculty of Information
Technology CTU. The goals of this course are introduce students to the basics
of process modeling and the correct use of notation applied in this field of
study. This is precisely the target group of users who should validation ORD
most help. Validation provides them feedback about the type of fault and
where it occurs. The user can then respond and fix it.

42

6.3. Results

There were semestral works from years 2013 and 2014. To survey of
bugs was 13 semestral works containing a total 144 ORD process diagrams in
BORM method. These diagrams are created in editor OpenCASE [8], which
already contains checks carried out during the creation of the diagram. This
editor but contains no ex-post controls of validity. To find information about
the occurrence of errors was therefore necessary manually check each diagram.
List of controlled bugs in ORD diagrams is consistent with the well-formed
diagram and the errors described in section 2.2. The list is following:

� Missing data flow in communication

� Missing conditions for decision making

� Participant without states and activities

� Diagram contains multiple process flows

� Unreachable states or activities

� Multiple roles of participant

� Possible deadlock in communication

� Missing start or final state in ORD

� Participant contains start state but no final (or conversely)

� Communication between activities of one participant

� Blind branches

� Exist unfinished branches

Violations against the input/output conditions and dependency principle
is not included in this list because in the moment of making these semestral
works this concept was not designed and implemented in the diagram editor.

6.3 Results

During the inspection of diagrams were recorded several pieces of information
about the numbers of bugs in ORD diagrams. At first whether it is valid
diagram or diagram contains some errors which violate the definition of well-
formed diagram. Further were recorded the severity of errors, ie. according
to the division on notice, warning and error. In conclusion was in detail
recorded frequency bugs according to particular species. Results of the first
two measurements are shown in the graphs in figures 6.2 and 6.3.

As you can see in 6.2, most of the ORD diagrams in semestral works,
namely 58 %, contains a bug, which can be found using the ex-post validation

43

6. Managerial study the benefits of validation ORD

and 42 % of ORD diagrams are valid. In the second graph in figure 6.3 are
the results of comparing frequency of bugs according to severity, ie. whether
it was a bug of severity notice, warning or error. If the bug is more serious, it
can cause greater problems for future work with ORD diagram and process,
for example simulation, generation of reports, etc. Percentage representation
is 31 % for notice bugs, 20 % for warning bugs and 49 % for error bugs.

Figure 6.2: Ratio of valid and invalid ORD

Figure 6.3: Distribution of bugs according to severity

Table 6.1 shows the frequency of various types of violations against well-
formed diagram for each ORD and for each semestral work. The list of viola-
tions is identical to the list set out in part Methodology. Many ORD diagrams
contained the several bugs of same types. All these errors are recorded in table

44

6.3. Results

6.1 as one occurence of this species. For example, in the diagram is missing
three times data flow in communication. This case is recorded as one occur-
rence of missing data flow in communication in diagram and one occurrence
of this bug in the semestral work. If this bug occurred already in another
diagram of the same work, in error rate of the semestral work is recorded only
once. In case of several types of bugs in one diagram are equally recorded all
types of errors.

Many types of these bugs (especially missing data flows, missing transi-
tions, unreachable states or activities) do not arise due to ignorance of basics
terms in BORM but due to inattention and lack of feedback, which would
notify you. Other types of bugs (multiple roles of participant, participant
without final state) are a sign of unawareness of syntactic and semantic ele-
ments of BORM method.

Type of error Number of
violations
in ORD

Number of
violations
in semes-
tral work

Missing data flow in communication 22 8

Missing conditions for decision making 10 5

Participant without states and activities 0 0

Diagram contains multiple process flows 1 1

Unreachable states or activities 3 2

Multiple roles of participant 16 7

Possible deadlock in communication 3 3

Missing start or final state in ORD 8 5

Participant with start state and no final 25 9

Participant with final state and no start 5 3

Communication between activities of one
participant

1 1

Blind branches 6 4

Exist unfinished branches 8 6

Table 6.1: Summary of representation of errors and quantity

In conclusion must be said to results that in the cases of less complex dia-
grams was presence of errors exceptionally. In the case of diagrams of complex
processes containing parallelism, communication between several participants
and a large number of states and activities, the number of bugs greatly in-
creased.

45

6. Managerial study the benefits of validation ORD

6.4 Summary

From the results it is seen that bugs, which can be found using ex-post vali-
dation, are in semestral works many and most of them are a consequence of
lack of feedback. This can be deduced from the fact that some type of bugs
occurs only with one diagram in whole semestral work. If the type of bugs is
repeated periodically in almost every ORD, it indicates incomprehension or
lack of knowledge of some syntactic or semantic features BORM ORD.

Bugs with the highest severity are in almost half of semestral works. Be-
cause of these frequently fatal errors against well-formed diagram seems vali-
dation ORD as a very important due to other possible work with process and
the diagram (e.g. transformation to other models in the life cycle of BORM,
process simulation and generation reports). Due to the occurrence of deadlock
in semestral works that are not solved in this thesis, implemented validation
does not cover all types of errors that were in these works. Percentages of this
error is less than 3 % of all bugs. In spite of missing validation of deadlocks
it seems proposed that method of validation as benefical.

As is seen from the results, ex-post validation is performing control of
elements in ORD, where they produce frequently bugs. These bugs are really
found in creative work of novice analysts, who are learning the syntax of
BORM. Into teaching method BORM can validation bring easier control the
correctness of created diagrams. Another and perhaps more important benefit
is feedback for users and the possibility of verify that the diagram is correct
and valid. This point implies a reduction rate of bugs in semestral projects.

46

Conclusion

The goals of this thesis were successfully fulfilled by the following way. For-
mulation of rules for well-formed ORD diagram was made based on the back-
ground research aimed to analyze syntactic and semantic features ORD di-
agrams. Then were detected possible violations of these rules. These faults
were divided into 2 groups. The first group consists of rules that can be imple-
mented to the diagram editor. The second group consists of rules that must
be validated ex-post. Further sections of the thesis deal with ex-post valida-
tion. These faults were subdivided by severity into 3 groups (notice, warning,
error) and were described specific situations of their occurence.

For each fault detectable by ex-post validations was designed way to de-
tect this fault and get problematic element of ORD diagram. For DynaCASE
tool was developed validator plug-in, in which are implemented designed algo-
rithms. Implementation was performed in pure object oriented programming
language Smalltalk.

In part of tests of validation algorithms was found no problem and all tests
were done according to requirements and expectations. Testing was carried
out in unit tests on simply diagrams and on complex diagrams with size that
correspond to diagrams created by students in their semestral projects. In
tests on complex diagrams was found that the validation of ORD diagrams, in
range many tens process nodes, are not so computationally intensive to limit
work with DynaCASE.

The thesis is concluded by managerial study of improvements that brings
validation. This study aims to find out whether designed and implemented
validations are focused on weaknesses that are actually present in diagrams of
novice users. The intention of the study is also find out whether is realistic
eliminate these faults in future semestral projects.

47

Conclusion

Future work

Due to missing validation of possible deadlocks is needed in future work to im-
plement process simulation. This would cover all detected semantic problems.
This part could be realized in eventual master thesis.

In the future is planned further extension of DynaCASE tool by modules
used to process simulation, reporting, etc.

Further possibilities for development of BORM method and semantics of
ORD diagrams are communication conditions or nested processes [11]. This
constructs should be also studied in future works.

Personal benefits

Through this work I have acquainted in detail with BORM method, namely
about its possible use in process management. I also recognized other side
of this method and detect the reasons why it is necessary to define the term
of valid diagram and validation. I gained overview about possibilities and
potential of Smalltalk language and environment Pharo. In addition to my
branch of study I also acquainted with the most important graph algorithms
that are included in many validation algorithms.

48

Bibliography

[1] Knott, R.; Merunka, V.; Polák, J. The BORM Methodology: a third
generation fully object-oriented methodology. Knowledge-Based Systems,
volume 16, 2003: pp. 77 – 89, ISSN 0950-7051.

[2] Podloucký, M.; Pergl, R. The Prefix Machine - a Formal Foundation for
the BORM OR Diagrams Validation and Simulation. In Enterprise and
Organizational Modeling and Simulation, 2014, ISBN 978-3-662-44859-5,
pp. 113–133.

[3] Centre for Conceptual Modelling and Implementations: Internal doc-
uments, Czech Technical University in Prague, Faculty of Information
Technology. 2014.

[4] Centre for Conceptual Modelling and Implementations: DynaCASE doc-
umentation. Online, http://github.com/dynacase/.

[5] Merunka, V.; Polák, J. BORM - Business Object Relation Mod-
eling, Popis metody se zaměřeńım na úvodńı fáze analýzy I.S. In
Tvorba softwaru 99, Ostrava: VŠB-TU v Ostravě, 1999, ISBN 80-
85988-39-9, pp. 202–214. Available from: http://cev.cemotel.cz/
programovani a tvorba sw 1975-2003/1999/202.pdf

[6] Vejražková, Z. Business Process Modeling and Simulation: DEMO,
BORM and BPMN. Master’s thesis, Czech Technical University in
Prague, Faculty of Information Technology, 2013.

[7] Polák, J.; Merunka, V.; Carda, A. Uměńı systémového návrhu: objektově
orientovaná tvorba informačńıch systém̊u pomoćı p̊uvodńı metody BORM.
Praha: Grada Publishing, 2003, ISBN 80-247-0424-2.

[8] OpenCASE. BORM CASE tool. Online, http://opencase.net/.

49

http://cev.cemotel.cz/programovani_a_tvorba_sw_1975-2003/1999/202.pdf
http://cev.cemotel.cz/programovani_a_tvorba_sw_1975-2003/1999/202.pdf

Bibliography

[9] Moravec, J. Orchestrace a choreografie proces̊u v BORM. Dissertation the-
sis, Czech University of Life Sciences Prague, Faculty of Economics and
Management, 2014. Available from: http://www.pef.czu.cz/cs/?dl=
1&f=29010

[10] Merunka, V.; Polák, J.; Kofránek, J. Introduction into the
BORM Method. 2000, in the symposium of 5th Annual National
Conference. Available from: http://www.grada.cz/dokums raw/usn/

objekty2000.pdf

[11] Podloucký, M.; Pergl, R. Towards Formal Foundations for BORM ORD
Validation and Simulation. In Proceedings of the 16th International Con-
ference on Enterprise Information Systems, 2014, pp. 315–322.

[12] Pergl, R. BI-ZPI - Lecture No. 2, Czech Technical University, Faculty of
Information Technology. 2014, unpublished presentation.

[13] Zyková, A. Procesńı stroj pro metodu BORM. Bachelor’s thesis, Czech
Technical University in Prague, Faculty of Information Technology, 2014.

[14] Kolář, J. Teoretická informatika. Praha: Česká informatická společnost,
2004, ISBN 80-900853-8-5.

[15] Black, A. P.; Ducasse, S.; Nierstrasz, O.; et al. Pharo by Example.
Square Bracket Associates, Switzerland, 2009, ISBN 978-3-9523341-4-
0. Available from: http://pharobyexample.org/versions/PBE1-2009-
10-28.pdf

[16] Bergel, A.; Cassou, D.; Ducasse, S.; et al. Deep in Pharo. Square Bracket
Associates, Switzerland, August 2013, ISBN 978-3-9523341-6-4. Available
from: http://pharobooks.gforge.inria.fr/PharoByExampleTwo-Eng/
latest/PBE2.pdf

50

http://www.pef.czu.cz/cs/?dl=1&f=29010
http://www.pef.czu.cz/cs/?dl=1&f=29010
http://www.grada.cz/dokums_raw/usn/objekty2000.pdf
http://www.grada.cz/dokums_raw/usn/objekty2000.pdf
http://pharobyexample.org/versions/PBE1-2009-10-28.pdf
http://pharobyexample.org/versions/PBE1-2009-10-28.pdf
http://pharobooks.gforge.inria.fr/PharoByExampleTwo-Eng/latest/PBE2.pdf
http://pharobooks.gforge.inria.fr/PharoByExampleTwo-Eng/latest/PBE2.pdf

Appendix A

Acronyms

BORM Business Object Relation Modelling

ORD Object Relation Diagram

BAD Business Architecture Diagram

OBA Object Behavioral Analysis

FSM Final State Machine

MVC architecture Model, View, Controller

DFS Depth First Search

BFS Breadth First Search

UML Unifield Modeling Language

CASE Computer-Aided Software Engineering

BPMN Business Process Model and Notation

51

Appendix B

Samples of source codes

Source code of validation algorithm described in 3.6, which uses BFS algo-
rithm:

1 unreachableNodes
2 | DFSArray initials |
3 DFSArray := OrderedCollection new.
4

5 aORD participants do: [:each | DFSArray addAll: (self getDFSstructsForParticipant: each)].
6 initials := DFSArray select: [:each | (each getNode className = ’BormState’) and: [(each

getNode isInitial)]].
7 initials do: [:each | self doBFS: DFSArray node: each].
8 ˆ (DFSArray select: [:each | each isFresh]) collect: [:each | each getNode].
9

10

11 doBFS: DFSArray node: aNode
12 | aQueue neighbors node|
13 aQueue:=OrderedCollection new.
14

15 aQueue addLast: aNode.
16 aNode setOpen.
17 [aQueue isEmpty] whileFalse: [
18 node:=aQueue removeFirst.
19 neighbors := self getFollowsNeighbors: node Array: DFSArray.
20 neighbors do: [:each | (each isFresh) ifTrue: [aQueue addLast: each. each setOpen.]].
21 aNode setClose.
22].

Source code of validation algorithm described in 3.3:

1 emptyParticipants
2 ˆ aORD participants select: [:each | each nodes size = 0]

53

B. Samples of source codes

Source code of validation algorithm described in 3.1:

1 missingDataFlows
2 ˆ (self getCommunications) select: [:each | each dataFlows size = 0].
3

4

5 getCommunications
6 | communications nodes activities |
7

8 communications:=OrderedCollection new.
9 nodes:=OrderedCollection new.

10 activities:=OrderedCollection new.
11

12 aORD participants do: [:each | nodes addAll: each nodes].
13 activities:= nodes select: [:each | each className = ’BormActivity’].
14 activities do: [:each | communications addAll: each sent].
15 ˆ communications.

Source code of validation algorithm described in 3.4:

1 multipleProcessFlow
2 | DFSArray counter |
3 DFSArray := OrderedCollection new.
4 aORD participants do: [:each | DFSArray addAll: (self getDFSstructsForParticipant: each)].
5 counter := 0.
6

7 DFSArray do: [:each | (each isFresh)
8 ifTrue: [counter:=counter+1. self doDFS: DFSArray state: each counter: counter]
9].

10

11 (counter>1)ifTrue: [listOfFailures add: ((MultipleProcessFlow new addCollection:
DFSArray) numberOfFlows:counter)].

12 ˆ counter.
13

14

15 doDFS: DFSArray state: aState counter: aCounter
16 | neighbor |
17

18 aState setComponent: aCounter.
19 neighbor:=self getNeighborWithCommunication: aState Array: DFSArray.
20 neighbor do: [:each | self doDFS: DFSArray state: each counter: aCounter].
21 aState setClose.

54

Appendix C

Diagrams used in tests of
complex ORD

Figure C.1: Valid ORD used in test of complex diagram

55

C. Diagrams used in tests of complex ORD

Figure C.2: Invalid ORD used in test of complex diagram

56

Figure C.3: Selected ORD from semestral projects used in test of complex
diagram

57

Appendix D

Contents of enclosed CD

readme.txt the file with CD contents description
img............ images of semestral projects used for a managerial study
src.......................................the directory of source codes

BormValidator......... the directory of source codes of implemented
validations

BormModel........the directory of source codes of BORM data model
thesis..............the directory of LATEX source codes of the thesis

img images used in the thesis
text..the thesis text directory

BP Bambas Jaroslav 2015.pdf........ the thesis text in PDF format
assignment.pdf........................the assignment of the thesis

59

	Introduction
	Goals of work
	Structure of work

	Introduction to BORM and Analysis ORD
	Business Object Relation Modelling
	Object Relation Diagram

	Requirements for Well-formed ORD
	Validation feasible in the diagram editor
	Rules requiring ex-post validation

	Validation algorithms
	Missing data flow in communication
	Missing conditions for decision making
	Participant without states and activities
	Multiple process flows in diagram
	Multiple roles of participant
	Unreachable states or activities
	Communication between activities of one participant
	Missing start or final state
	Blind branches
	Violated dependency principle

	Implementation
	Technology and DynaCASE
	Validation plug-in

	Tests of validation algorithms
	Unit tests
	Test on complex diagram

	Managerial study the benefits of validation ORD
	SWOT analysis
	Methodology
	Results
	Summary

	Conclusion
	Future work
	Personal benefits

	Bibliography
	Acronyms
	Samples of source codes
	Diagrams used in tests of complex ORD
	Contents of enclosed CD

