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Abstrakt

Vyhledáváńı řetězcových vzork̊u s použit́ım záměn je problém hledáńı všech
výskyt̊u vzork̊u v textu, přičemž je ve vzorku dovoleno zaměňovat sousedńı
symboly. Ćılem je navrhnout rychlý vyhledávaćı algoritmus, který využije
bitového paralelismu bitových instrukćı koncového stroje. Nedávno jsme nale-
zli závažnou chybu v algoritmu od [Ahmed et al.: The swap matching prob-
lem revisited, Theor. Comp. Sci. 2014], kterou detailně poṕı̌seme. Zároveň
ukážeme proč tento algoritmus nelze jednoduše opravit. Dále vyvod́ıme nový
algoritmus, který je založen na jiných principech a ukážeme jeho správnost.
Nakonec tento algoritmus generalizujeme tak, aby dokázal vyřešit problém
Wildcardového vyhledáváńı řetězcových vzork̊u s použit́ım záměn.

Kĺıčová slova Návrh a analýza algoritmů, Vyhledáváńı řetězcových vzork̊u
s použit́ım záměn, Řetězec, Wildcardové vyhledáváńı vzork̊u
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Abstract

Pattern matching with swaps problem is to find all occurrences of pattern in
text while allowing pattern to swap adjacent symbols. The goal is to design
fast matching algorithm that takes advantage of the bit parallelism of bitwise
machine instructions. We recently found a fatal flaw in the algorithm by
[Ahmed et al.: The swap matching problem revisited, Theor. Comp. Sci.
2014] which we describe in detail. Moreover we show why this algorithm
cannot be fixed in any simple way. Furthermore we devise a new algorithm
which is based on different principles and we prove its correctness. Finally we
generalize this algorithm to solve the wildcard pattern matching with swaps
problem.

Keywords Design and analysis of algorithms, Pattern Matching with Swaps,
Swap Matching problem, String, Wildcard Swap Matching problem
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Introduction

The Pattern Matching problem with Swaps (Swap Matching problem, for
short) is a variation of the Pattern Matching problem. Swap Matching prob-
lem is to find all occurrences of any swap version of a pattern P in a text
T where P and T of length p and t respectively are sequences of symbols of
an alphabet Σ. By swap version of the pattern P we mean such a sequence
of symbols that can be created from P by swapping non-identical adjacent
symbols while ensuring that each symbol is swapped at most once. Algorithm
which solves Swap Matching problem returns a set of indices which represent
where swap matches of P in T begin (or alternatively end). Swap Matching
problem is an intensively studied problem due to its use in practical appli-
cations such as text and music retrieval, data mining, network security and
biological computing.

The Swap Matching problem was introduced in 1995 as an open problem
in non-standard string matching [11]. The first result was reported by Amir et

al. [2] in 1997, who provided O(tp
1

3 log p) solution for alphabets of size 2, while
also showing that alphabets of size exceeding 2 can be reduced to size 2 with
little overhead. Amir et al. [4] also came up with solution with O(p log2(p))
time complexity for some very restrictive cases. Later Amir et al. [3] solved the
Swap Matching problem in O(t log p log |Σ|). Note that all above algorithms
are based on the fast Fourier transform (FFT) technique.

In 2008 Iliopoulos and Rahman in [10] came up with the first efficient
solution to the Swap Matching problem without using the FFT technique.
They introduced a new graph theoretic approach to model the problem. They
also presented an algorithm based on bit parallelism which runs in O((n +
m) logm) time if the pattern length is similar to the word-size in the target
machine.

In 2009, Cantone and Faro [7] presented the Cross Sampling algorithm for
solving the Swap Matching problem in O(n) time and O(|Σ|) space complexity,
assuming that the pattern length is similar to the word-size in the target
machine.
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Introduction

In the same year Campanelli, Cantone and Faro [5] improved Cross Sam-
pling algorithm using notions from Backward directed acyclic word graph
matching (BDM) algorithm and named the new algorithm Backward Cross
Sampling. This algorithm also assumes short pattern length. Although im-
plementation of Backward Cross Sampling has O(|Σ|) space and O(nm) time
complexity which is worse than Cross Sampling, it improves real world per-
formance.

In 2013, Faro [9] presented a new model to solve Swap Matching problem
using reactive automata. Author also presented a new algorithm with O(n)
time complexity assuming short patterns.

In 2014, Ahmed et al. [1] revisited Swap Matching problem using ideas from
the algorithm by Iliopoulos and Rahman [10]. They devised two algorithms
named Smalgo-I and Smalgo-II which both run in O(n) for short pattern.

Our contribution

We noticed a fatal flaw in Smalgo-I and Smalgo-II algorithms [1] and tracked
it back to the Iliopoulos and Rahman [10] which was the first attempt to solve
Swap Matching problem without the FFT technique.

First we introduce all the basic definitions in Chapter 1. Then we describe
the flaw in great detail in Chapter 2 where we also show input pattern and
text sequences which cause the flaw to happen. Next we explain why the
flaw is not repairable in any reasonable way. In Chapter 3 we show our own
algorithm which uses the model described in [10] in a new way. In Chapter 4
we present a wildcard variant of the Swap Matching problem and alteration
of our algorithm which solves it.
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Chapter 1

Notations and basic definitions

A string S over an alphabet Σ is a finite sequence of symbols from Σ. By |S|
we denote the length of the sequence S. By Si we mean the i-th symbol of S
and we define a substring S[i,j] = SiSi+1 . . . Sj for 1 ≤ i ≤ j ≤ |S|, and prefix

Ŝi = S[1,i] for 1 ≤ i ≤ |S|.

Definition 1. (See [5].) For a string S a swapped version π(S) is a string
π(S) = Sπ(1)Sπ(2) . . . Sπ(n) where π is a swap permutation π : {1 . . . n} →
{1 . . . n} such that:

1. if π(i) = j then π(j) = i (characters at positions i and j are swapped),

2. for all i, π(i) ∈ {i− 1, i, i+ 1} (only adjacent characters are swapped),

3. if π(i) 6= i then Sπ(n) 6= Si (identical characters are not swapped).

The string we are searching in is called text and the string we search for
is called pattern.

Definition 2. Given a text T = T1T2 . . . Tt and a pattern P = P1P2 . . . Pp, P
is said to swap match T at location i if there exists a swapped version π(P )
that matches T at location i, that means π(P ) = T[i,i+p−1].

1.1 A Graph theoretic model

Our algorithms are based on model introduced by Iliopoulos and Rahman [10].
In this section we briefly describe this model.

For a pattern P of length p we construct a labelled graph P ′
P = (V ′, E′, σ)

with vertices V ′, edges E′ and vertex labelling function σ : V ′ → Σ. Let
V ′ = {mr,c ;−1 ≤ r ≤ 1, 1 ≤ c ≤ p} where each vertex mr,c is identified with
an element of a grid 3× p. For each mr,c we set σ(mr,c) = Pr+c. We use [w, q]

3



1. Notations and basic definitions

to denote the vertex mw,q when it is clear that we talk about vertices on a
grid.

We set E′ := E′
1 ∪ E′

2 ∪ · · · ∪ E′
p−1 where E′

j is defined as

E′
j :=

{

(

[k, j] , [i, j + 1]
)

; k ∈ {−1, 0} , i ∈ {0, 1}
}

∪
{

(

[1, j] , [−1, j + 1]
)

}

.

Furthermore we define the graph PP := (V,E, σ) such that V := V ′ \{Q∪
{m−1,0,m1,p−1}} where

Q = {m1,i,m−1,i+1;σ(m1,i) = σ(m−1,i+1), 1 ≤ i ≤ p− 1}.

We call PP the P -Graph.

Note that p ≤ |V (PP )| ≤ 3p− 2 and (p− 1) ≤ |E(PP )| ≤ 5(p− 1)− 4 and
that PP is directed acyclic graph.

We construct P -Graph in a way so that PP corresponds to all swap per-
mutations (Lemma 2). Every path from the first column to a vertex repre-
sents a prefix of some swap permutation of P . Edge connecting two vertices
represents that labels of those vertices are symbols which are in some swap
permutation one after the other. When we find a path in P -Graph so that
labels of vertices along this path create a string π(P ) which matches T on a
position k, 1 ≤ k ≤ (t− p) we found a swap match of P in T on the position
k because some swap permutation of P matches this path. This implies that
we can use P -Graph to find swap matches of P in T (Lemma 1).

The idea behind the way the PP is constructed is as follows. We construct
the graph P ′

P and then we remove extra vertices and their incident edges to
obtain PP . We remove vertices m−1,1 and m1,p because these vertices would
represent characters from invalid indices 0 and p+1. We remove vertices m1,i

and m−1,i+1 for each 1 ≤ i ≤ p − 1 when Pi = Pi+1 because those vertices
represent swap of identical symbols which is forbidden in Swap Matching
problem. For a P -Graph example see Fig. 1.1.

−1

0

1

1 2 3 4 5 6 7

a b c b b a c

✚ a b c ✚✚b b a

b c b ✚✚b a c ✚

Figure 1.1: P -Graph PP for the pattern P = abcbbac
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1.2. Use of Graph theoretic model for matching

The P -Graph now represents all possible swap permutations of the pattern
P in the following sense.

Vertices m0,j represent pattern without any swaps. Possible swap of char-
acters Pj and Pj+1 is represented by vertices m1,j and m−1,j+1. Edges repre-
sent symbols which can be consecutive. Each path from column 1 to column
p represents unique swap pattern and each swap pattern is represented this
way which is proved in Lemma 2.

1.2 Use of Graph theoretic model for matching

Definition 3. Let T be a string. The T -Graph of T is a graph TT = (V,E, σ)
where V = {vi; 1 ≤ i ≤ |T |}, E = {(vi, vi+1); 1 ≤ i ≤ |T − 1|} and σ : V → Σ
such that σ(vi) = Ti.

a b c b b a c

Figure 1.2: Example T -Graph TT for a pattern T = abcbbac

Definition 4. For a given directed acyclic labelled graph G with vertices
s, e ∈ G, vertex labelling σ and a directed path f from s to e, path string of
f is a string S = σ(f) = σ(s) . . . σ(e).

Definition 5. For a directed acyclic graph G with vertices s, e ∈ G, maximal
path is a path f from s to e so that there exists no path from x to s where
x ∈ G, x 6= s and there exists no path from e to y where y ∈ G, e 6= y. (There
exists no longer path.)

Definition 6. Directed acyclic labelled graph G1 matches directed acyclic
labelled graph G2 at position j if there exists a maximal path f ⊆ G1 and a
path d ⊆ G2 for which σ(f)[1,p] = σ(d)[j,j+p−1].

As shown by Ahmed et al. [1] we can represent Swap Matching problem
as path finding in a P -Graph. For the sake of better understanding of the
techniques we also include the proof.

Lemma 1. (Ahmed [1]) Given a pattern P of length p and a text T of length
t, suppose PP and TT are P -Graph and T -Graph of P and T , respectively.
Then, P swap matches T at location i ∈ [1 . . . t] of T if and only if PP matches
GT at position i ∈ [1 . . . t] of TT .

Proof. Suppose we have a pattern P and a corresponding P -Graph. Vertices of
the P -Graph can be represented as elements of the grid m. At each column of
the grid m, we have all the symbols as vertices considering the possible swaps
as explained below. Each vertex in row (−1) and (+1) represents a swapped

5



1. Notations and basic definitions

situation. Now consider column i of m corresponding to PP . According
to definition, we have m−1,i = Pi−1 and m1,i−1 = Pi. These two vertices
represent the swap of Pi and Pi−1. Now, if this swap takes place, then in the
resulting pattern, Pi−1 must be followed by Pi. To ensure that, in PP , the
only edge starting at m1,i−1, goes to m−1,i. On the other hand, from m−1,i

we can either go to m0,i+1 or to m1,i+1: the former is when there is no swap
for the next pair and the later is when there is another swap for the next pair.
Recall that, according to the definition, the swaps are disjoint. Finally, the
vertices in row 0 represents the normal (non-swapped) situation. As a result,
from each m0,i we have an edge to m0,i+1 and an edge to m1,i+1: the former is
when there is no swap for the next pair as well and the later is when there is
a swap for the next pair. So it is easy to see that all the paths of length p− 1
in PP represent all combinations considering all possible swaps in P . Hence
the result follows.

We can obtain the same result with use of Lemma 2. Since every possible
permutation is uniquely represented in the graph PP with a maximal path it
is sufficient to find a maximal path f such that σ(f) = T[i,i+p] to know if P
swap matches T .

Definition 7. Strings P and T prefix match n characters on position i if
P1P2 . . . Pn = TiTi+1 . . . Ti+n.

Lemma 2. For each swapped version of P there is a maximal path f in PP

with unique labelling σ(f) = π(P ).

Proof. According to definition, any maximal path in PP has length p = |P |.
Since σ(mr,c) = Pr+c a path f in PP which includes vertices m0,i for 1 ≤ i ≤ p
represents the pattern P without any swaps. If Pj 6= Pj+1 for 1 ≤ j < p
then there exist vertices m1,j and m−1,j+1 in PP . For each swap in P on a
position i we can substitute vertices m0,i and m0,i+1 for m1,i and m−1,i+1 in
f . The substitution will not break path f because m0,i and m1,i have same
predecessors and m0,i+1 and m−1,i+1 have same successors. The substitution
ensures that π(Pi) = σ(m1,i) and π(Pi+1) = σ(m−1,i+1). The substitution
also forbids any other substitution which includes m0,i or m0,i+1 since there is
no path leading from m1,i to m1,i+1 and from m−1,i to m−1,i+1 so swaps are
always disjoint as in the swapped version π(P ) of pattern P .

Basic matching algorithm

In this section we describe an algorithm which can determine if there is a
match of the pattern P of length p in the text T of length t on a position k
using the graph PP .

To use basic matching algorithm (BMA) graph PP = (V,E, σ) has to
satisfy the following:

6



1.2. Use of Graph theoretic model for matching

• PP is directed acyclic graph,

• V = V1 ∪ V2 ∪ · · · ∪ Vp (we can divide vertices to columns),

• E = {(a, b); a ∈ Vi, b ∈ Vi+1, 1 ≤ i < p} (edges lead to next column).

BMA is designed to run on every graph which satisfies these conditions.
Since P -Graph and T -Graph satisfy these preliminaries we can use BMA for
PP and TT . For the sake of convenience we will define BMA in terms of PP

but keep in mind that this can be altered easily to be functional for any graph
which satisfies the conditions.

Definition 8. Let start vertices of PP be a set of vertices Q = V1.

Definition 9. Let accepting vertices of PP be a set of vertices F = Vp.

Initialize the algorithm by setting D′
1 := Q (step 1). D′

1 now holds infor-
mation about vertices which are end of some path f for which σ(f) possibly
prefix matches 1 symbol of T[k,k+p−1]. To make sure that the path f repre-
sents a prefix match we need to check if a label of the last vertex of the path
f matches symbol Tk (step 2). If no prefix match is left we did not find a
match (step 3a). If some prefix match is left we need to check if we already
have a complete match (step 3b). If the algorithm did not stop it means that
we have some prefix match but it is not a complete match. Therefore we can
extend this prefix match by one symbol and check if it is a valid prefix match
(steps 3c and 3d). Since we extend prefix match each step we repeat these
steps (3) until the prefix match is as long as the pattern.

1. Let D′
1 := Q.

2. Let D1 := {x;x ∈ D′
1, σ(x) = Tk}.

3. Repeat the following steps for i = 1, 2, 3, . . .

a) If Di = ∅ then finish.

b) If Di ∩ F 6= ∅ then we have found a match and finish.

c) Define the next iteration set D′
i+1 as vertices which are descendants

of Di as D
′
i+1 := {d ∈ V (PP ); vd ∈ E(PP ) for some v ∈ Di}.

d) Let Di+1 := {x;x ∈ D′
i+1, σ(x) = Tk+i}.

Having vertices in sets is not very intuitive so we present another way
to describe this algorithm. The algorithm can be easily divided into steps
(different from the steps described above). We say that algorithm is in j-th
step according to index i in step 3.

Definition 10. A boolean labelling function I : V → {0, 1} of vertices of PP

is called prefix match signal.

7



1. Notations and basic definitions

We denote value of the prefix match signal in j-th step as Ij and we define
the following operations:

• propagate signal along the edges, is a operation which sets Ij(v) := 1 if
there exists an edge (u, v), Ij−1(u) = 1,

• filter signal by a symbol c, is a operation which sets I (v) := 0 for each v
where I (v) = 1, σ(v) 6= c,

• match check, is a operation where we check if a match occurred or not.

With these definitions in hand we can describe BMA in terms of prefix
match signals as follows:

1. Let I0(v) := 1 for each v ∈ Q and filter signals by a symbol Tk.

2. Repeat the following steps for i = 1, 2, 3, . . .

a) If I (v) = 0 for every v ∈ PP then finish.

b) If I (v) = 1 for any v ∈ F then we have found a match and finish.

c) Propagate signals along the edges and filter them by a symbol Tk+i.

Example 1. Suppose we want to use the BMA to figure out if P = acbab
swap matches T = babcabc at a position j = 2.

a1 c b a4 b5

a c3 b a

c b2 a b

Figure 1.3: BMA of T[2,6] = abcab on a P -Graph of the pattern P = acbab

Example of matching in Fig. 1.3 shows how prefix match signal propagates
along the dashed edges. Exponents j above the vertices represent for which
vertices Ij = 1.

8



Chapter 2

Smalgo algorithms and why

they cannot work

In this section we discuss how algorithms Smalgo-I and Smalgo-II [1] work,
their flaw and we also show inputs which cause false positives.

But first we define Shift-And algorithm for standard pattern matching
(without swaps) on which both algorithms are based on.

2.1 Shift-And algorithm

The following definition is based on Shift-Or algorithm [8]. Shift-And algo-
rithm represents prefix matches by a bit value of 1 as opposed to Shift-Or
algorithm which does the same thing with a value of 0. This also implies that
they use different bitwise operations.

Definition 11 (Shift-And algorithm). For a pattern P and a text T of length
p and t respectively, let R be a bit array of size p. Vector Rj is the value of
the array R after text symbol Tj has been processed. It contains information
about all matches of prefixes of P that end at the position j in the text. For
1 ≤ i ≤ p,

Rj
i =







1 if P[1,i] = T[j−i+1,j],

0 otherwise.
(2.1)

The vector Rj+1 can be computed from Rj as follows. For each i such that
Rj

i = 1,

Rj+1
i+1 =







1 if Pi+1 = Tj+1,

0 otherwise,
(2.2)

9



2. Smalgo algorithms and why they cannot work

and

Rj+1
1 =







1 if P1 = Tj+1,

0 otherwise.
(2.3)

If Rj+1
p = 1 then a complete match can be reported.

The transition from Rj to Rj+1 can be computed very fast as follows. For
each c ∈ Σ let Dc be a bit array of size p such that for 1 ≤ i ≤ p,Dc

i = 1 if
and only if Pi = c.

The array Dc denotes the positions of the character c in the pattern P .
Each Dc can be preprocessed before the search. And the computation of Rj+1

reduces to three bitwise operations, LShift, | and &. Where LShift is left shift
by one, | is Or and & is And bitwise operation.

Rj+1 =
(

LShift(Rj) | 1
)

& DTj+1 (2.4)

Assuming that the pattern length is no longer than the memory-word size
of the machine, the space and time complexity of the preprocessing phase is
O(p+ |Σ|). The time complexity of the searching phase is O(t), thus indepen-
dent from the alphabet size and the pattern length.

Example 2. Run of the Shift-And algorithm for a pattern P = acbab and a
text T = acbacbabcbabaca

Table 2.1: D-masks initial-
ization

Pi Da Db Dc

a 1 0 0
c 0 0 1
b 0 1 0
a 1 0 0
b 0 1 0

Table 2.2: Shift-And algorithm execution

a c b a c b a b c b a b a c a

a 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1
c 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
b 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
a 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Since R8
5 = 1 algorithm reports a match on a position j − p + 1 which is

the position 4 for this case.

2.2 Smalgo algorithms

Both algorithms are inspired by the Shift-And algorithm which we explained
in section 2.1. They also use few terms which are mentioned next.

Definition 12. A symbol w is called degenerate when it is a set of symbols
from a finite alphabet such that w ⊆ Σ and w 6= ∅.

10



2.2. Smalgo algorithms

Definition 13. A string S is said to be degenerate, if it is built over an
alphabet of degenerate symbols.

Definition 14. Given a strings X and a degenerate string Y each of length
ℓ, we say X matches Y , if and only if Xi ∈ Yi for 1 ≤ i ≤ ℓ.

2.2.1 Smalgo-I

Smalgo-I algorithm [1] is a modification of the Shift-And algorithm for Swap
Matching problem. The algorithm uses the Graph theoretic model introduced
in Section 1.1.

First we create a degenerate version P̃ of a pattern P of length p. In the
following equation we denote σ(mx,y) by mx,y for the sake of simplicity.

P̃ = {m0,1,m1,1} . . . {m−1,x,m0,x,m1,x} . . . {m−1,p,m0,p} (2.5)

We say that a degenerate string P̃ matches a text T at a position j if
Tj+i−1 ∈ P̃i for every 1 ≤ i ≤ p.

Each symbol in P̃ on a position i represents set of symbols of P which can
swap match to that position. To accommodate Shift-And algorithm to match
degenerate patterns we need to change the way the Dc masks are defined. For
each c ∈ Σ let Dc be a bit array of size p such that for 1 ≤ i ≤ p,Dc

i = 1 if
and only if c ∈ P̃i.

Despite the definition we do not need to compute degenerate symbols of
P̃ . We already know that a symbol at a position i represents symbols which
can swap match to that position. So instead of computing P̃i we can compute
which positions is a symbol able to swap to. Algorithm for computing Dc

can be described by the following: For each 1 ≤ i ≤ p set DPi

i+k := 1 for
k ∈ {−1, 0, 1}.

Table 2.3: Masks initialization for P̃ of P = acbab

Pi P̃i Da Db Dc

a [ac] 1 0 1
c [acb] 1 1 1
b [cba] 1 1 1
a [ba] 1 1 0
b [ab] 1 1 0

Suppose we have a prefix swap match of k symbols of P and T at a position
j. This implies that we also have a prefix match of k symbols of P̃ and T at
the same position. To check whether or not we have a prefix match of k + 1
symbols we have to check if Tj+k+1 ∈ P̃k+1. But this check is clearly not
sufficient for checking the prefix swap match of P and T .
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2. Smalgo algorithms and why they cannot work

For example, P = abcde swap matches T = bacce 3 symbols at position 1.
However P does not match T 4 symbols even though P̃ matches T , because c
can not be on positions 3 and 4 simultaneously.

We can fix this issue by introducing P-mask P(x1,x2,x3) which is defined as
follows:

P(x1,x2,x3)i =































1 i = 1

1 if there exist vertices u1, u2 and u3 and edges
(u1, u2), (u2, u3) for which u2 = mr,i where
−1 ≤ r ≤ 1 and σ(un) = xn for 1 ≤ n ≤ 3,

0 otherwise.

(2.6)

Now, whenever we want to check if P prefix swap matches T k + 1 sym-
bols at position j we check for a match of P̃ in T and we also check if
P(Tj+k−1,Tj+k,Tj+k+1)k+1 = 1. This ensures that symbols are able to swap to
respective positions and that those three symbols of the text T are present in
some π(P ).

We construct P-masks by traversing the P -Graph. First we initialize each
P-mask to 10p−1. Next we traverse the P -Graph one column at a time. For
each column 2 ≤ c ≤ p − 1 we consider every path f of length 3 in the
P -Graph that starts at the column c−1. Such a path consists of three vertices
mr1,c−1,mr2,c,mr3,c+1 where r1, r2, r3 are row numbers and c − 1, c, c + 1 are
column numbers of the vertices. For each such path we set

P(σ(mr1,c−1),σ(mr2,c
),σ(mr3,c+1))c := 1. (2.7)

Notice that due to the structure of the P -Graph the maximum number of
such paths starting at one column is 8.

With P-masks completed we initialize R1 = 1 & DT1 and compute Rj+1

as follows:

Rj+1 = LSO(Rj) & DTj+1 & RShift(DTj+2) & P(Tj ,Tj+1,Tj+2) (2.8)

LSO is defined as LSO(x) = LShift(x) | 1. RShift and LShift indicate
right shift and left shift respectively, & is And and | is Or bitwise operation.

To check whether or not a swap match occurred we check if Rj
p−1 = 1.

This is sufficient because during the processing we are in fact considering not
only the next symbol Tj+1 but also the symbol after that Tj+2.

The space and time complexity of the preprocessing is O(p/w(p + |Σ|3)).
The time complexity of the searching phase is O(t(p/w)). Note that complex-
ity changes significantly if we assume that the pattern length p is similar to
the word-size w of the target machine.

12



2.2. Smalgo algorithms

2.2.2 Smalgo-II

Smalgo-II algorithm is a derivative of Smalgo-I algorithm. It improves the
space complexity from O(p/w(p + |Σ|3)) to O(p/w(p + |Σ|2)) for a cost of
more complex algorithm.

In analysis of space complexity of Smalgo-I we can see that O(p/w(|Σ|3))
space is taken by P-masks. This can be improved by making P-masks hold
information about paths of length 2 instead of 3. The change makes P-masks
take only O(p/w(|Σ|2)).

In this section we refer to Smalgo-II P-masks which are different form
P-masks in Smalgo-I. We define P-mask P(x1,x2) as follows:

P(x1,x2)i =































1 i = 1

1 if there exist vertices u1 and u2 and an edge
(u1, u2) for which u2 = mr,i where −1 ≤ r ≤ 1
and σ(un) = xn for 1 ≤ n ≤ 2,

0 otherwise.

(2.9)

To create P-masks we need to traverse the P -Graph similarly as in Smalgo-I.
First we set all P-masks to 10p−1. For each column 2 ≤ c ≤ p we consider
every path of length 2 which starts at the column c− 1 and we set

P(σ(mr1,c−1),σ(mr2,c
))c := 1. (2.10)

From the structure of the P -Graph we can see that there are at maximum
5 such paths for each considered column.

This information is sufficient to know if a swap match occurred. But it
can also match a part of the text where a swap match did not occur. This
behaviour can be clearly seen in the following example.

Example 3. Suppose we want to find matches of a pattern P = acbab in a
text T = acbbb. We build a P -Graph, P-masks, Dc for every c ∈ Σ and we
start the algorithm. This algorithm can break whenever there are the same
symbols at positions i and i+ 2 for any 1 ≤ i ≤ p− 2 as seen in Fig. 2.1.

a c b a b

a c b a

c b a b

Figure 2.1: Symbols of the P -Graph for P = acbab Smalgo-II could confuse
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2. Smalgo algorithms and why they cannot work

To fix this issue we need this algorithm to behave like the Smalgo-I algo-
rithm. To tackle this we need the following definitions:

Definition 15. A level change indicates a change of row index in the grid of
the P -Graph, having one of the following cases:

• Upward change: is from a position m1,j to m−1,j+1,

• Downward change: is from a position mi,j to m1,j+1 where i ∈ {−1, 0},

• Middle change: is from a position m−1,j to m0,j+1.

We can see that when a level change at a particular position occurs another
level change must occur at the next position. We see that the Downward
change starts a swap of two symbols, the Upward change represents the second
swapped symbol and the Middle change represents end of swap when there is
no swap immediately after. Therefore we know that:

• every Downward change is followed by Upward change,

• every Upward change is followed by Downward or Middle change.

To force these rules we need to define masks which represent which level
changes can happen on particular positions. We do the following based on the
structure of the P -Graph.

For a, c ∈ Σ and PP = (V,E, σ) we define the following masks:

• Up mask : Upa,bj = 1 if and only if an edge (m1,j−1,m−1,j) ∈ E,
σ(m1,j−1) = a and σ(m−1,j) = b exists,

• Down mask : Downa,b
j = 1 if and only if there exists at least one edge

(mi,j−1,m1,j) ∈ E, σ(mi,j−1) = a and σ(m1,j) = b for i ∈ {−1, 0},

• Middle mask : Middlea,bj = 1 if and only if there exists at least one edge
(mi,j−1,m0,j) ∈ E, σ(mi,j−1) = a and σ(m0,j) = b for i ∈ {−1, 0}.

We also need to somehow express the first symbol. We do so by setting

Down
x,σ(m1,1)
1 := 1 for each x ∈ Σ. We could also set Middle

x,σ(m0,1)
1 := 1 but

this is not necessary, since no rule applies on the Middle change.

Example 4. We create Up , Middle and Down mask for a pattern P = acbab
shown in Table 2.4.

14



2.2. Smalgo algorithms

Table 2.4: Up , Middle and Down masks initialization for P = acbab

Up Middle Down

(a, a) 00000 00000 00100
(a, b) 00010 00101 01000
(a, c) 00000 01000 10000
(b, a) 00001 00010 00000
(b, b) 00000 00001 00010
(b, c) 00100 00000 10000
(c, a) 01000 00010 00100
(c, b) 00000 00100 00010
(c, c) 00000 00000 10000

With masks prepared we alter the algorithm slightly and we get the same
results as in Smalgo-I. We change the algorithm according to the mentioned
rules as follows.

If a Downward change occurred then we have to check whether an Upward
change occurs at the next position. We can do that by saving the previous
Down mask and matching that value with the current Up mask and Rj .

If an Upward change has occurred then we have to check whether Down-
ward change or a Middle change occurs at the next position. We can do that
by saving the previous Up mask and matching that value with current Down
mask, Middle mask and Rj .

With everything ready we initialize the algorithm by setting all the masks
and R to their initial values.

PrevUp = 0 (2.11)

PrevDown = Downx,m1,1 (2.12)

R1 = 1 & DT1 (2.13)

Where x ∈ Σ. We compute Rj+1 as:

R
′j+1 = LSO(Rj) & P(Tj ,Tj+1) & DTj+1 , (2.14)

then we have to apply the rules like this:

R
′′j+1 := R

′j+1 & LShift(DownTj−1,Tj ) & UpTj ,Tj+1 (2.15)

Rj+1 := R
′′j+1 & LShift(UpTj−1,Tj ) & (MiddleTj ,Tj+1 | DownTj ,Tj+1) (2.16)

To find out whether the match occurred we have to check if Rj
p = 1.
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2. Smalgo algorithms and why they cannot work

2.3 Flaw in Smalgo algorithms

We shall see that for a pattern P = abab and a text T = aaba both algorithms
Smalgo-I and Smalgo-II give false positives.

2.3.1 Flaw description

Concept of Smalgo-I and Smalgo-II algorithms is based on the assumption
that we can find a maximal path by searching for consecutive paths of length 3
(triplets). But this means that the triplets have to be connected. By connected
we mean that two triplets x = (x1, x2, x3) and y = (y1, y2, y3) which start in
columns c and c + 1 respectively have two vertices in common: x2 = y1 and
x3 = y2. If the assumption is not true then it is possible to check for each
triplet successfully but the found substring of the text does not match any
swap version of P .

We have found such a configuration and therefore the assumption is false.
In Table 2.5, 2.6 and 2.7 we can see the step by step execution of Smalgo-I
algorithm on a pattern P = abab and a text T = aaba.

In Table 2.7 we see that R3 has 1 in the 3-rd row which means that the
algorithm found a pattern match on a position 1. This match is a false positive,
because it is not possible to match the pattern with two b symbols in the text
with only one b symbol.

The reason behind the false positive match is as follows. Algorithm checks
if the first triplet of symbols (a, a, b) matches. It can match the swap pattern
aabb. Next it checks the second triplet of symbols (a, b, a), which can match
baba. We know that baba is not possible since it did not appear in the previous
check, but the algorithm can not distinguish them since it checks only the
triplets and nothing more. Since each step gave us positive match we get a
swap match of the pattern in the text.

In the Fig. 2.2 we see that two triplets which Smalgo-I assumes have two
vertices in common.

a b a b

a b a

b a b

Figure 2.2: Smalgo-I flaw represented in the P -Graph for P = abab
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Table 2.5: D-masks for P = abab

Da Db Dx

1 [ab] 1 1 0
4 [ba] 1 1 0
5 [ab] 1 1 0
5 [ba] 1 1 0

Table 2.6: P-masks for P = abab

P(a,a,a) P(a,a,b) P(a,b,a) P(b,a,a) P(a,b,b) P(b,a,b) P(b,b,a) P(b,b,b) P(x,x,x)

1 1 1 1 1 1 1 1 1 1
2 0 1 1 1 1 1 0 0 0
3 0 1 1 0 1 1 1 0 0
5 0 0 0 0 0 0 0 0 0

Table 2.7: Smalgo-I algorithm execution for P = abab and T = aaba

- R Da P(x,x,x) R1 R Da LDb P(a,a,b) R2 R Db LDa P(a,b,a) R3

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1
3 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1
4 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
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2. Smalgo algorithms and why they cannot work

Even though Smalgo-II checks level changes it does so just to simulate how
Smalgo-I works. Therefore this flaw is in Smalgo-II as well.

2.3.2 Why the flaw is not easily repairable

Because of the flaws in algorithms Smalgo-I and Smalgo-II they can not solve
the Swap Matching problem.

To fix the flaw in the algorithms we would have to check every swap match
for correctness. This solves the issue but we have to check the swap match
by another algorithm. This can be done in linear time, but when there are a
lot of matches in the text T it slows down the algorithm significantly. This
approach has complexity O(tp) since we can find up to O(t) occurrences of P
in T and check of correctness takes O(p).

Example 5. We have a pattern P = abab and a text T = aabaabaabaa of
length t. This input has swap matches on positions {2, 5}. Both Smalgo
algorithms report swap matches on positions {0, 2, 3, 5, 6}. Now we have to
check if each of these positions represent a valid match.

We can create a text defined by a regular expression aa{baa}+ of length
t ≥ 5 which creates this worst case. Therefore time complexity of a corrected
version of the Smalgo algorithm is O(tp) even for pattern length similar to
word-size of the target machine.

Both algorithms might be useful as an oraculum for Swap Matching prob-
lem.
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Chapter 3

Our correct algorithm

In this chapter we will show an algorithm which solves the Swap Matching
problem and its correctness. We call the algorithm GSM (Graph Swap Match-
ing). GSM uses the Graph theoretic model shown in section 1.1 and is based
on Shift-And algorithm from Section 2.1.

To make concept of GSM more familiar first we present how to define
Shift-And algorithm in means of the T -Graph model and basic matching al-
gorithm (BMA) from Section 1.2 to solve Pattern Matching problem. Then we
expand this idea to Swap Matching problem by using Graph theoretic model.

3.1 Graph theoretic take on Shift-And algorithm

Let T and P be a text and a pattern of length t and p respectively. We create
a T -Graph TP = (V,E, σ) of the pattern P .

We know that the T -Graph is directed acyclic graph which can be divided
into columns Vi, 1 ≤ i ≤ p where each contains one vertex vi and that edges
lead from Vj to Vj+1. This means that the T -Graph satisfies all preliminaries
of BMA. We set start vertices Q := {v1} and accepting vertices F := {vp}.

We apply BMA to TP to figure out if P matches T at a position j. It is
clear that we get a correct result because we check if T (j+i−1) = σ(vi) = P (i)
for each 1 ≤ i ≤ p.

To find every occurrence of P in T we would have to run BMA for each
position individually. This is basically the naive approach to solve pattern
matching. We can improve the algorithm significantly when we parallelize
computation of p runs of BMA in the following way.

Algorithm processes one symbol at a time starting from T1. We say that
the algorithm is in the j-th step when a symbol Tj has been processed. BMA
represents a prefix match as a prefix match signal I : V → {0, 1}. We denote
the value of the prefix match signal I in the j-th step by Ij . Since one run of
the BMA uses only one column and therefore one vertex of the T -Graph at
any time we can use other vertices to represent different runs of the BMA. To
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3. Our correct algorithm

tackle this we define Ij(vi) in the j-th step as follows

Ij(vi) =







1 P[1,i] = T[j−i+1,j],

0 otherwise.
(3.1)

We want to represent all prefix match indicators in one vector so we can
manipulate them easily. To do that we prepare a bit vector R. We denote
value of the vector R in j-th step as Rj . We define values of Rj as Rj

i = I (vi).

First operation which is used in BMA is called propagate signal along the
edges and can be done easily by setting the signal of vi to value of the signal
of its predecessor vi−1. That means for 2 ≤ i ≤ p do the following:

I (vi) := I (vi−1), (3.2)

I (v1) := 1. (3.3)

The very same operation can be done easily using LSO bitwise operation over
R which is defined as follows:

LSO(R) = LShift(R) | 1, (3.4)

where LShift is left shift by one and | is standard Or bitwise operation.

We also need a way to set I (vi) := 0 for each vi; I (vi) = 1, σ(vi) 6= Tj+i

which is another basic BMA operation called filter signal by a symbol. We
can do this by constructing a bit vector Dc for each c ∈ Σ as follows:

Dc
i =







1 c = Pi,

0 otherwise,
(3.5)

and use this vector Dc to filter signal by a symbol c like this:

R & Dc, (3.6)

where & is And bitwise operation.

Last BMA operation we have to define is a match detection. We do this
by checking I (vp) = 1 and if so we know that a match starting at a position
j − p+ 1 occurred.

We can easily compute Rj+1 from Rj as follows:

Rj+1 =
(

LShift(Rj) | 1
)

& DTj+1 . (3.7)

Step j of the final algorithm consists of computing value of vector Rj and
checking if Rj

p = 1 and if so the algorithm reports a match.
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Table 3.1: Example of parallel execution of basic matching algorithm

a c b a c b a b c b a b a c a

a 1 4 7 11 13 15

c 1 4 13

b 1 4

a 1 4

b 4

Example 6. Example run of the algorithm on the pattern P = acbab and
the text T = acbacbabcbabaca is shown in Table 3.1 where numbers denote in
which step particular BMA started. Lines represent the pattern and at the
same time which step are different runs of BMA in. We can see that in steps
4 and 7 two different BMA runs are computed in the same step. We can also
see that the maximum number of BMA runs that can be computed in the
same step is p.

3.2 Our algorithm for Swap Matching using

Graph theoretic model

We use the idea from Section 3.1 and devise the GSM algorithm. Since all the
notions are basically the same we use very similar approach.

Let T and P be a text and a pattern of length t and p respectively. We
create a P -Graph TP = (V,E, σ) of the pattern P .

From the definition we know that basic matching algorithm (BMA) can be
used for the P -Graph. We know that the P -Graph is directed acyclic graph
which can be divided into columns Vi, 1 ≤ i ≤ p where each contains up to
three vertices m−1,i,m0,i,m1,i denoted by their positions on a grid m. We also
know that all edges lead from Vj to Vj+1. We set start vertices Q := V1 and
accepting vertices F := Vp.

We apply BMA to PP to figure out if P matches T at a position j. We
get the correct result because when we get a match we know that BMA had
to traverse the graph and that vertices which BMA traversed form a maximal
path f . Each vertex of this path had to be labelled with the symbol identical
to respective symbol in the text otherwise the signal would be filtered out.
Therefore we know that a swap version π(P ) of P matches the text at the po-
sition j because π(P ) = σ(f) = T[j,j+p−1]. This implies that P swap matches
T at the position j.

To find every occurrence of P in T we would have to run BMA for each po-
sition individually. This is basically the naive approach to solve Swap Match-
ing problem. We can improve the algorithm significantly when we parallelize
computation of p runs of BMA in the following way.
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Algorithm processes one symbol at a time starting from T1. We say that
the algorithm is in the j-th step when a symbol Tj has been processed. BMA
represents a prefix match as a prefix match signal I : V → {0, 1}. We denote
the value of the prefix match signal I in the j-th step by Ij . Since one run
of the BMA uses only one column of the P -Graph at any time we can use
other columns to represent different runs of the BMA. To tackle this we define
Ij(vi) in the j-th step as follows

Ij(vi) =







1 π(P )[1,i] = T[j−i+1,j],

0 otherwise.
(3.8)

We want to represent all prefix match indicators in vectors so we can
manipulate them easily. We can do this by mapping rows r ∈ {−1, 0, 1} of
the P -Graph to vectors RU ,RM and RD respectively. We denote value of
the vector RX in j-th step as RXj . We define values of the vectors as follows

RU j
i = I (m−1,i), (3.9)

RM j
i = I (m0,i), (3.10)

RDj
i = I (m1,i), (3.11)

where the value of I (v) where v does not exists is 0.

We define BMA propagate signal along the edges operation as setting the
signal of mr,c to 1 if at least one of its predecessors have signal set to 1.

I (m−1,i) := I (m1,i−1), (3.12)

I (m0,i) := I (m−1,i−1) | I (m0,i−1), (3.13)

I (m1,i) := I (m−1,i−1) | I (m0,i−1), (3.14)

I (m0,1) := 1, (3.15)

I (m1,1) := 1, (3.16)

where | is standard Or bitwise operation. Using LSO bitwise operation:

LSO(R) = LShift(R) | 1, (3.17)

where LShift is left shift by one, we can define propagate signal along the
edges operation like this:

RU := LSO(RD), (3.18)

RM := LSO(RM | RU ), (3.19)

RD := LSO(RM | RU ). (3.20)
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BMA filter signal by a symbol operation can be done by constructing a
bit vector Dc for each c ∈ Σ as follows:

DU c
i =







1 c = Pi−1, Pi−1 6= Pi,

0 otherwise,
(3.21)

DM c
i =







1 c = Pi,

0 otherwise,
(3.22)

DDc
i =







1 c = Pi+1, Pi 6= Pi+1

0 otherwise,
(3.23)

and use this vector Dc to filter signal by a symbol c like this:

RU & DU c, (3.24)

RM & DM c, (3.25)

RD & DDc, (3.26)

where & is And bitwise operation.
Last BMA operation we define is a match detection. We do this by check-

ing if I (m0,p) = 1 or I (m−1,p) = 1 and if so we know that a match starting at
a position j − p+ 1 occurred.

Just by combining mentioned operations we can compute values of RXj+1

from RXj as follows:

RU j+1 := LSO(RDj) & DU c, (3.27)

RM j+1 := LSO(RM j | RU j) & DM c, (3.28)

RDj+1 := LSO(RM j | RU j) & DDc. (3.29)

To simplify our notation we use Dc to denote DDc,DM c,DU c and RXj

to denote RDj , RM j , RU j . By using a specific operation on Dc or RXj we
mean use of that operation on respective vectors as defined above.

The final GSM algorithm first prepares D-masks Dc for every c ∈ Σ and
initiates RX0 := 0. Then the algorithm computes the value of vectors RXj

and checks if either I (m0,p) = 1 or I (m−1,p) = 1 and if so the algorithm
reports a match. This part is repeated until j = t.
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3. Our correct algorithm

Example 7. Let there be a pattern P = accab and a text T = acacba of
length p and t respectively. We use the GSM algorithm to find out on which
positions P swap matches T .

The algorithm first creates DX c for every c ∈ Σ. Then the main part of

Table 3.2: GSM algorithm D-masks initialization for P = accab

i Pi−1 DU a DU b DU c Pi DM a DM b DM c Pi+1 DDa DDb DDc

1 0 0 0 a 1 0 0 c 0 0 1
2 a 1 0 0 c 0 0 1 c 0 0 0
3 c 0 0 0 c 0 0 1 a 1 0 0
4 c 0 0 1 a 1 0 0 b 0 1 0
5 a 1 0 0 b 0 1 0 0 0 0

a c c a b

a c a

c a b

Figure 3.1: The P -Graph for the pattern P = accab

the algorithm runs. The LSO means use of the operation as defined in 3.20.
The run in Table 3.3

Table 3.3: GSM algorithm execution for P = accab and T = acacba

i RX0 LSO Da RX1 LSO Dc RX2 LSO Da RX3

1 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0
2 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1
3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0
4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

i RX3 LSO Dc RX4 LSO Db RX5 LSO Da RX6

1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0
2 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
3 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
4 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1

Because RM5
p = 1 and RU6

p = 1 the GSM algorithm reports matches
starting on positions 1 and 2.
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Chapter 4

Wildcard Swap Matching

We can very easily change GSM to match patterns P containing basic wildcard
symbols.

For a pattern P we define wildcard language L(P ) over an alphabet Σ as
follows.

• L(ǫ) = {ǫ}

• For any v ∈ Σ L(Pv) = {w ∈ Σ∗;w = uv, u ∈ L(P )}

• L(P?) = {w ∈ Σ∗;w = uv, u ∈ L(P ), v ∈ Σ}

• L(P∗) = {w ∈ Σ∗;w = uv, u ∈ L(P ), v ∈ Σ∗}

• L(P [v1v2 . . . vn]) = {w ∈ Σ∗;w = uv, u ∈ L(P ), v ∈ {v1, v2, . . . , vn}}

• L(P [ ! v1v2 . . . vn]) = {w ∈ Σ∗;w = uv, u ∈ L(P ), v ∈ Σ\{v1, v2, . . . , vn}}

This means that the pattern P can now contain following tokens:

• ? is any symbol,

• ∗ is any number of any symbols,

• [. . . ] is any symbol among symbols listed between brackets,

• [ ! . . . ] is any symbol of Σ which is not among symbols listed between
brackets.

The pattern P is forbidden to contain two ∗ tokens next to each other
because the same function can be expressed with one ∗ token.

Definition 16. Wildcard Swap Matching is a problem of finding matches
of S in T where S ∈ L(P ′) is a string from a wildcard language L(P ′) =
L(π1(P )) ∪ · · · ∪ L(πn(P )).
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4. Wildcard Swap Matching

Notice that the Wildcard Swap Matching is not a problem of finding swap
matches of S in T where S is a string from a wildcard language L(P ). These
two variants differ in that if the swaps are made before of after all the tokens
are substituted with the symbols.

At this moment we should address one problem which arises with use of
wildcard symbols. Swap Matching problem is defined as a pattern matching in
which we can use swapped version of the pattern π(P ) instead of the pattern
P . Definition also says that identical symbols can not be swapped to create
the swapped version of P . Since now we cannot be sure which symbol will be
used for the final match we can have difficulty forbidding swaps of identical
characters. To tackle this we define GSM for wildcard matching as follows.

For a pattern P of length p we construct a labelled graph W ′
P = (V ′, E′, σ)

with vertices V ′, edges E′ and vertex labelling function σ : V ′ → Σ. Let
V ′ = {mr,c ;−1 ≤ r ≤ 1, 1 ≤ c ≤ p} where each vertex mr,c is identified with
an element of a grid 3 × p and can be referred to as [r, c]. For each mr,c we
set σ(mr,c) = Pr+c.

We set E′ := E′
1 ∪ E′

2 ∪ · · · ∪ E′
p−1 where E′

j is defined as

E′
j :=

{

(

[k, j] , [i, j + 1]
)

; k ∈ {−1, 0} , i ∈ {0, 1}
}

∪
{

(

[1, j] , [−1, j + 1]
)

}

.

We define the graph WP := (V,E, σ) such that V := V ′ \ {m−1,0,m1,p−1}.

Note that WP is PP where vertices which were removed when adjacent
symbols were equal are left in the graph.

We call WP the W -Graph.

Now we define an algorithm which is the same as GSM except one thing -
it uses W -Graph instead of P -Graph. We call this algorithm GSM ′.

Now we prove that those algorithms give the same results and therefore
we do not care if we use P -Graph or W -Graph.

Lemma 3. For a pattern P and a text T , a run of the GSM ′ algorithm for
the pattern P and the text T gives the same results as a run of the GSM
algorithm for the same pattern P and the text T .

Proof. The only difference between GSM ′ and GSM is that the former uses
WP and the latter uses PP for creating D-masks Dc for every c ∈ Σ. The GSM
algorithm searches for a maximal path f and tries to match σ(f) = T[j,j+|P |−1]

The only difference between algorithms is that GSM ′ can create a maximal
path f ′ which leads through vertices which represent a swap. But since the
swapped vertices has identical labels then σ(f) = σ(f ′). Therefore GSM and
GSM ′ give the same results.

Now we know that it is not a problem when we use tokens in the W -Graph
since the swap of identical symbols does not cause different behaviour of the
algorithm.
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We define WGSM algorithm as an alteration of the GSM ′ algorithm.
WGSM takes into consideration wildcard symbols and it deals with each of
these tokens in the following way.

First of all we define a position i as a token position in the P . Therefore
?, ∗ and even [ ] tokens have their unique position.

We solve ? token while preprocessing. For each ? token at a position i we
set Dc

i := 1 for each c ∈ Σ. This way every symbol will match the pattern
at the position i. This alteration of the preprocessing changes worst case
performance since for each ? tokens we have to do |Σ| steps.

To solve bracket token [v1v2 . . . vn] at a position i we need to set Dc
i for

each c ∈ v1, v2, . . . , vn. For example for a pattern aba[ab]c we add 1 to Da

and Db on the position 4. Note that c is on the position 5 because the whole
bracket token is on position 4. This does not make preprocessing take longer
because each symbol is listed in the brackets so we can read them and set
D-masks appropriately.

To solve inverse bracket token [ ! v1v2 . . . vn] at position i we need to set Dc
i

for each c ∈ Σ\v1, v2, . . . , vn. For example for a pattern aba[!a]c and alphabet
Σ = {a, b, c, d} we set Db

4 := 1, Dc
4 := 1 and Dd

4 := 1. In the worst case this
preprocessing operation can take up to O(|Σ|) time for one position. As well
as for normal brackets symbols, inverse brackets are counted as taking only
one position in the pattern.

To solve star ∗ symbol we need quite a different approach then for the
other wildcard symbols. We cannot solve ∗ while preprocessing since we do
not know how many symbols will ∗match which is one of the basic assumptions
of GSM. For ∗ symbol we need to make sure that it does not only send prefix
match signal to its successors but it also maintains prefix match signal for
itself. Furthermore we need to be able to skip ∗ symbol since it can represent
0 symbols of the alphabet. To deal with all of these problems we introduce
signal bit mask S-mask.

We define S-mask S as:

Si =







1 Pi = ∗

0 otherwise.
(4.1)

Example 8. For a pattern a∗?[ba] ∗ c we get D-masks and S-mask as shown
in Table 4.1.

Now we need to define the following operations:

• propagate signal along the edges in the same step when signal arrived,

• hold signal about prefix match.

Sending signal right after getting allows the token to be skipped. We can
do that by sending signal twice. First time signal is sent normally. But the
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4. Wildcard Swap Matching

Table 4.1: Masks initialization for the pattern P = a∗?[ba] ∗ c

Pi Da Db Dc S

a 1 0 0 0
* 1 1 1 1
? 1 1 1 0
[ba] 1 1 0 0
* 1 1 1 1
c 0 0 1 0

second time it will be sent only from all vertices for which σ(v) = ∗. We can
get those vertices by using vector S. This way when ∗ receives the signal it
can propagate it further.

To hold the signal we just need to know where signal is and which vertices
should maintain that signal until next step. This can be done by using vector
S in a certain way.

To make WGSM algorithm more intuitive we first show how to solve Wild-
card matching problem using Shift-And algorithm and then we show how
WGSM solves Wildcard Swap Matching problem.
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4.1. Wildcard matching with Shift-And algorithm

4.1 Wildcard matching with Shift-And algorithm

First of all we need to change the preprocessing. We define D-masks D as
follows:

Dc
i =















































1 if token Pi is



































a symbol then c = Pi

? token then true

* token then true

bracket token then c ∈ Pi

inverse bracket token then c ∈ Σ \ Pi

0 otherwise.

(4.2)

Now we have to prepare the S-mask

Si =







1 Pi = ∗,

0 otherwise.
(4.3)

To get a prefix match signal on positions where ∗ token is we do this:

(Rj & S). (4.4)

We define a PS (propagate stars) operation, which means propagate signal
along the edges only from vertices labelled with ∗ token, as follows:

PS (Rj) = Rj | (LSO(Rj & S) & DTj ). (4.5)

Everything is now ready to begin the main algorithm. We set R0 := 0
and begin the computation of Rj for steps j = 1, 2, . . . using the following
equations:

R
′i+1 = LSO(Ri) & DTi+1 | (Ri & S) (4.6)

Ri+1 = PS (R
′i+1) (4.7)

We check at the end of each step j if there is a match by checking if Rj
p = 1.

Note that the algorithm will not return beginning of the match but the end
because it is not easy to deduce on which position the match started due to
unpredictability of how many symbols will match ∗ token.
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4. Wildcard Swap Matching

4.2 WGSM algorithm

To define the WGSM algorithm we will use notions from Section 4.1. First the
algorithm prepares the D-masks in the following way. We define D as follows:

Dc
i =















































1 if token Pi is



































a symbol then c = Pi

? token then true

* token then true

bracket token then c ∈ Pi

inverse bracket token then c ∈ Σ \ Pi

0 otherwise,

(4.8)

and since we use the W -Graph we can set D-masks as follows

DU = LShift(D), (4.9)

DM = D, (4.10)

DD = RShift(D). (4.11)

Next we prepare the S-masks in a very similar way as D-masks

Si =







1 Pi = ∗,

0 otherwise,
(4.12)

Since this mask will be used with W -Graph we will need a version for each
row of the W -Graph. We can shift this mask each step or we can prepare
mask for each row in advance as follows.

SU = LShift(S) (4.13)

SM = S (4.14)

SD = RShift(S) (4.15)

Where LShift and RShift are left and right shift by one respectively.

Next we define vectors which will hold prefix match informations as RU ,
RM and RD. For the sake of simplicity we may refer to these vectors as RX .
We denote vector value in the j-th step as RXj .

To get a prefix match signal on positions where ∗ token is we do the
following:

(RU & SU ), (4.16)

(RM & SM ), (4.17)

(RD & SD), (4.18)
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4.2. WGSM algorithm

to shorten this notation we refer to set of these operations as:

(RX & SX ). (4.19)

We define a PS (propagate stars) operation, which means propagate signal
along the edges only from vertices labelled with ∗ token, as follows:

PS (RU j) = RU j | (LSO(RU j & SU ) & DU Tj ), (4.20)

PS (RM j) = RM j | (LSO(RM j & SM ) & DM Tj ), (4.21)

PS (RDj) = RDj | (LSO(RDj & SD) & DDTj ). (4.22)

Again, to simplify our notation we may refer to set of these operations as:

PS (RXj) (4.23)

Everything is now ready for the main part of the WGSM algorithm. But
before we define the exact operations we address one problem with Wildcard
Swap Matching problem. It might not be obvious immediately but due to the
properties of the problem it can happen that some swap version of the pattern
P contains up to three ∗ tokens next to each other. This may happen when
the pattern P contains ∗ tokens on positions i, i+ 2 and i+ 4 as depicted in
4.1 and star on the position i swaps to i + 1 and star on the position i + 4
swaps to i + 3. This causes the problem because we need to be able to skip
all three ∗ tokens in the same step. We call this the star issue. We can solve
this issue in two different ways.

∗ c ∗ a ∗

∗ c ∗ a

c ∗ a ∗

Figure 4.1: The W -Graph with three ∗ tokens next to each other

The first approach to solve the star issue is that we do the PS operation
three times instead of only once. This is very easy to do, but it may do
more operations then necessary. Not every pattern contains star tokens in a
configuration which requires three PS operations.

The solution which uses the first approach of solving the star issue is
defined as follows. We set RX0 := 0 and begin the computation of RXj for

31



4. Wildcard Swap Matching

steps j = 1, 2, . . . using the following equations.

RX1
i+1 = (LSO(RX i) & DTi+1) | (RX i & S) (4.24)

RX2
i+1 = PS (RX1

i+1) (4.25)

RX3
i+1 = PS (RX2

i+1) (4.26)

RX i+1 = PS (RX3
i+1) (4.27)

Since each ∗ token has D-masks set to 1 for every symbol we can omit most of
the filter operations and do only one filter operation at the end of each step.

We check at the end of each step j if there is a match by checking if either
RU j

p = 1 or RM j
p = 1. Note that the algorithm will not return beginning

of the match but the end because it is not easy to deduce on which position
the match started due to unpredictability of how many symbols will match ∗
token.

The second approach to solve the star issue is more complicated and we
will describe just for the sake of completeness. At the end of each step we
check if there is a new signal in any vertex labelled with ∗ token. By a new
signal in a vertex v we mean that in j-th step Ij(v) = 1 but Ij−1(v) = 0. If so
we need to run PS operation and repeat this process. If not we know that all
signals of vertices for which Ij−1(v) = 1 were already sent with the last signal
propagation.

Example 9. Let there be a pattern P = ∗c∗a∗ and a text T = bca of length p
and t respectively. We use the WGSM algorithm to find out on which positions
P swap matches T . In this example the WGSM uses first approach to solve
the star issue.

The algorithm uses W -Graph 4.1 to create DX c for every c ∈ Σ and S
which are shown in Tables 4.2 and 4.3. The run of the algorithm is in Table
4.4.

Table 4.2: WGSM D-masks initialization for P = ∗c ∗ a∗

i Pi−1 DU a DU b DU c Pi DM a DM b DM c Pi+1 DDa DDb DDc

1 0 0 0 ∗ 1 1 1 c 0 0 1
2 ∗ 1 1 1 c 0 0 1 ∗ 1 1 1
3 c 0 0 1 ∗ 1 1 1 a 1 0 0
4 ∗ 1 1 1 a 1 0 0 ∗ 1 1 1
5 a 1 0 0 ∗ 1 1 1 0 0 0

In Table 4.4 we see that RU3
p = 1 and therefore WGSM algorithm reports

a match ending at position 3.
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4.2. WGSM algorithm

Table 4.3: WGSM S-masks initialization for P = ∗c ∗ a∗

i Pi−1 SU SM SD

1 ∗ 0 1 0
2 c 1 0 1
3 ∗ 0 1 0
4 a 1 0 1
5 ∗ 0 1 0

Table 4.4: WGSM algorithm execution for P = ∗c ∗ a∗ and T = aca

i RX0 LSO PS PS PS Da RX1

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0
2 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0
3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

i RX1 LSO PS PS PS Dc RX2

1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0
2 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0
3 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

i RX2 LSO PS PS PS Da RX3

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0
2 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1
3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0
4 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0
5 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 1
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Conclusion and further research

In this thesis we described recently found flaw in the Smalgo-I and Smalgo-II
algorithms for Swap Matching problem. Since the model used in these algo-
rithms is very intuitive we devised an efficient algorithm called GSM which
uses bit parallelism. This algorithm represents Swap Matching counterpart to
Shift-And for standard pattern matching. Finally we have shown that thanks
to Graph theoretic model we can easily generalize GSM to wildcards.

There is one known variant of Swap Matching problem called Approximate
Swap Matching. In this variant we search for swap matches while counting
how many swaps happened. It has been already studied in [6] where authors
gave a solution to this problem.

During the time we studied this problem we came up with some variants of
the Swap Matching problem which might be interesting for further research.

1. Swap Matching problem where only symbols which are k symbols apart
can swap. This problem can be again divided into two different variants.

a) swaps cannot overlap - symbols between swapped symbols must
not be swapped

b) swaps can overlap

2. Swap Matching problem where k adjacent symbols can swap to any
permutation

3. Swap Matching variant closely related to approximate Swap Matching
is when we are not allowed to swap only k number of times.

To solve 1b we can divide the patten into groups and run matching algo-
rithm on each of them separately. The text is distributed into each group and
when all groups give a match in a specific way we got a match.

We believe that approach through Graph theoretic model could be used to
devise algorithms for other variants of Swap Matching problem since Graph
theoretic model can be altered to given needs.
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Appendix A

Acronyms

GSM Graph Swap Matching

WGSM Wildcard graph Swap Matching

CS Cross sampling

BMA Basic matching algorithm

DAG Directed acyclic graph

FFT fast Fourier transform

BDM Backward directed acyclic word graph matching
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Appendix B

Contents of enclosed CD

On attached CD you can find a implementation of Smalgo-I algorithm and
GSM algorithm. You can try these algorithms by running the example.out

or by compiling the sources yourself with make command.
The input should consist of two strings which are made of letters a, b, c

and d. First string is the pattern and the second string is the text. To check
how Smalgo-I give false positives we recommend trying input abab aaba.

The example output shows on which positions algorithms find their matches.

readme.txt ....................... the file with CD contents description
exe ..................................... the directory with executables

example.....................GSM and Smalgo-I example executable
src.......................................the directory of source codes

example .................GSM and Smalgo-I implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
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