
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Master’s thesis

Mobile application and API server to
store points of interest

Ing. Timur Tatarshaov

Supervisor: Ing. Josef Gattermayer

4th May 2015

Acknowledgements

I would like to thank my lovely family especially my parents, who made
their best to grow me up and gave me a chance to be here and get hight
level university degree in Czech Republic. Without their efforts I wouldn’t
be able to be who I am and where I am. Also I would like to thank people
that were close to me throughout my life, all of them made an impact on
my being and made changes to my personality.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adher-
ing to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right
to conclude a license agreement on the utilization of this thesis as a school
work under the provisions of Article 60(1) of the Act.

In Prague on 4th May 2015 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2015 Timur Tatarshaov. All rights reserved.

This thesis is a school work as defined by Copyright Act of the Czech Repub-
lic. It has been submitted at Czech Technical University in Prague, Faculty
of Information Technology. The thesis is protected by the Copyright Act and
its usage without author’s permission is prohibited (with exceptions defined
by the Copyright Act).

Citation of this thesis

Tatarshaov, Timur. Mobile application and API server to store points of
interest. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2015.

Abstract

The aim of the thesis is to develop a mobile application that will store
points of interests to a server backend. Single points of interests will be
shared among users.

Keywords Geolocation, navigation, mobile application, API

Abstrakt

Ćılem diplomové práci je vypracovat mobilńı aplikaci která bude ukládat
body na server. Bod se mu̇že přenášet mezi uživateli.

Kĺıčová slova Geolokace, navigace, mobilni aplikace, API

ix

Contents

Introduction 1
Motivation . 1
Goal of the project . 1

1 Analysis of requirements 3
1.1 Functional requirements analysis 3
1.2 Quantitative requirements 5
1.3 Server requirements . 6
1.4 Mobile requirements . 6
1.5 Comparison of required technologies 6

2 Realisation of API 21
2.1 API design . 21
2.2 API realization . 26
2.3 Build . 27
2.4 Deployment and isolation 29
2.5 Security and encryption . 30

3 Realization of mobile application 31
3.1 Application Wireframes . 31
3.2 Interface . 34
3.3 Model-View-Controller . 37
3.4 Networking . 39
3.5 Geolocation resolving . 39

4 Testing 41
4.1 Survey . 41

xi

4.2 API Unit testing . 42
4.3 Application test cases . 43

5 Further development 45
5.1 API versioning and further development 45
5.2 API abuse usage prevention 45
5.3 Extension to other platforms 46

Conclusion 49

Bibliography 51

A Terminology 53

B Acronyms 55

C Contents of enclosed CD 57

xii

List of Figures

1.1 Overview of interaction with API 5
1.2 Statistics of usage APIs protocols according to Programmable

Web by 2011 . 8
1.3 Google search trends: SOAP API and REST API 9
1.4 Total growth in number of APIs 9
1.5 Public key shared secret . 11
1.6 Growth in percentage of APIs with JSON support 14

2.1 Application structure . 27

3.1 Main application screen wireframe 32
3.2 Main application screen with details wireframe 33
3.3 List of removed places wireframe 34
3.4 Main application screen . 35
3.5 Main application screen with details 36
3.6 List of removed places . 37
3.7 Places class . 38

5.1 Multi client API interactions . 47

xiii

Introduction

Motivation

Nowadays world is a rapidly changing environment. Distances became
shorter mostly because of flights. Information is being transferring faster
because of digital copies and growth of the worlds network infrastructure.
But presence of human being in a particular place in sake of knowledge
exchange, work opportunities or traveling is still can’t be underestimated.
Consequently more and more people find oneself in completely new loca-
tions and cities with different urban architecture, lifestyle and language.

Navigation in a new foreign locations becomes difficult even for a short
time stay. Such simple tasks as finding hotel destination, parked bicycle or
cozy camping location visited previously may become a problem in unfa-
miliar areas where existing navigation solutions could be useless.

It is possible to solve those problems of mobile human with existing
technologies including hardware and complementary software. Contempor-
ary mobile devices often equipped with location detection hardware chips
and tools that provide possibilities to determine devices location even for a
third-party applications.

Goal of the project

Goal of this project is to develop system that will help users to navigate
to earlier visited places. System will consist of the mobile application and
server application with exposed API and designed with ability to be scaled.

Mobile application will serve user with geolocation positioning and in-
teractions with the server application API by means of networking compat-

1

Introduction

ibilities of the device.
Server application will serve the goal of increasing reliability of the sys-

tem and provide possibility for extension to other platforms without data
loss. To enable devices to communicate with server application will be
implemented API or universal interface for managing server data.

2

Chapter 1

Analysis of requirements

1.1 Functional requirements analysis

1.1.1 API requirements

API is a subject designed to be utilized by wide range of devices and plat-
forms. Those different clients and platforms could have different languages
and technologies they working with. Even having clients that take advant-
age of the same technology stack, this stack usually different from server
side technologies., because mobile devices by definition have less computa-
tion power and resources than servers. API should be designed to be used
for a long-term period, which means future and even not in-market devices
should be able to utilize implemented API.

Among advantages of the API as a concept is independence of realization
and exact technology stack. Once described and standardized API supposed
to be utilized by clients in the same way as time goes by even thought
implementation or separate parts could be changed.

Wide range of clients, extensibility, different technology stacks apply
set of requirements for the API implementation. According to mentioned
constraints technology chosen for implementation should be something that
exists on the market and widely used. Subject of responsibility of API is to
provide interface for managing points of interest on the server. Managing
includes operations of creation, reading, updating and deletion, so called
CRUD operations.

API should be designed able to distinct clients from each other. Points
of interest of the requesting client should be returned to it. That implies
support of authentication [1] by API technology or ability to implement
verification of user identity on top of it as at extension.

3

1. Analysis of requirements

Different Points of interest should be seen only by owner. Not authen-
ticated user or not owner of data shouldn’t be able to get it. Above re-
quirements imply support of verification that a user has rights to access a
resource or so called authorization [1] technology. API must provide means
to separate user permissions to the data, so foreigners data will not be
accessed.

Points of interest of the user should be not only secure on the level of API
resources design but also on transport layer. That means user data must
not be able to be retrieved by not the way it designed to be. API should
provide level of security by encryption or be able to support extension to
implement this measures on top of it.

API should be designed to be utilized by mobile devices. Even con-
temporary phones have limited computation power and limited resources
including memory, energy capacity, networking speed. Mobile devices con-
straints forces to use less redundant format of data used by API possible,
to be transferred over relatively slow mobile networking connections faster.
Format shouldn’t be complicated for processing implying low computation
power of mobile devices.

Mobile devices could be used in different locations where connectivity
could be low or absent. That means network connection of mobile devices
not only relatively slow but also not permanent. Once connected client
and server must not rely on constant availability of that connection and
messaging cant rely on the same state of connection between client and
server. With that said API must be stateless or be able to use stateless
principle, once reconnected client and server would be able to recognize
each other and recreate previously established state of operations.

Unreliable wireless mobile network connection should be taken into ac-
count. API technology should provide or take advantage of error prevention
technology to be assure data transferred completely and without errors.

Data related to points of interest is textual, so API technology must
be able to transfer textual data or convert data to text format and decode
from it.

API should be able to inform client about success or failure of the CRUD
operation and be able to provide message of error if any to let client to be
assure about status of the operation and state of the server data.

API is a middleware technology, which should be most general possible
to be able to be consumed by different clients.

Technology should be free to use to enable to implement cheap solution
without possible vendor limitations. Ability to develop addition functions
in existing software also important.

4

1.2. Quantitative requirements

API must enable clients to manage data related to their points of interest
on the server via Internet.

Overview of interaction with API by means of client device is depicted
on following schema.

Figure 1.1: Overview of interaction with API

1.1.2 Mobile platform requirements

Mobile application along with mobile device is a client of API that cre-
ates points of interest and interacts with server application by means of
implemented API.

Points of interest should include geolocation [2] data that determined
by mobile device. It means device should be able to resolve user location in
most accurate way possible. To be able to interact with API over network,
mobile device should support remote communication and data transferring
over the Internet by means of one of the either cellular network, Wi-Fi or
other technology. Without that client won’t be able to interact with API in
a designed client-server manner which requires at least one communication
channel.

Mobile device should be able to install third-party software and enable
developers of that software take advantages of hardware technologies of
mobile device.

Mobile application must be able to utilize chosen API technology.

1.2 Quantitative requirements

• Mobile application must be able to manage up to 1000 points of in-
terest

5

1. Analysis of requirements

• API must enable client to provide operations on up to 1000 points of
interest

• Server application must be able to store up to 100000 users

1.3 Server requirements

• Java 8

• MongoDB 3 or higher

• Ubuntu 14.10

• Docker 1.6 or higher

1.4 Mobile requirements

• iPhone 4S or newer or emulator

• iOS 8 or higher

• Swift 1.2

1.5 Comparison of required technologies

1.5.1 Comparison of available API technology
solutions

1.5.1.1 SOAP

SOAP is protocol for messaging of structured information between web
services in computer networks. SOAP can utilize different transfer protocols
for communication including but not limited to HTTP, SMTP and FTP.
Message in SOAP protocol called envelope. Data in messages should be
text-based or text-encoded.

Technology widely used for encapsulation of objects in Java language.
Not broadly supported and used by other languages.

Data is wrapped into XML-based format. That is the only messaging
format supported by SOAP which to some extend means redundancy of
the transferred envelopes and difficulty to be read by human. XML format
is more expensive in terms of computation power for processing compared

6

1.5. Comparison of required technologies

to number of other formats. Protocol is stateless or stateful depending on
transport protocol.

WSDL is often used in combination with SOAP and an XML Schema
to provide web services over the Internet. A client program connecting
to a Web service can read the WSDL file to determine what operations
are available on the server. That means available API operations could be
described in special format, which will enable clients to discover possible
API operations and way to access them.

1.5.1.2 REST

REST is a HTTP based technology that was coined by Ted Nelson in 1991
and still widely used.

RESTful [3] API supports CRUD operations by design of HTTP pro-
tocol it inherits from. Operations is represented by verbs of HTTP. Data
could be sent either in request body or query parameters. RESTful API
technology is not locked to any messaging format and support different rep-
resentations of data transferred, limited only by client and server support
of it. Such formats could be JSON, XML and plain text.

REST supports status codes inherited from HTTP. Status codes along
with status messages could provide full spectrum of information of client
about success or failure of operation and state of the server application.

Data transfered between server and client either textual or encoded to
textual. As far as technology is based on HTTP protocol, which is stateless
by design, REST inherits this property of it.

HTTP provides by it’s extension HTTPS. Security is supported by en-
cryption and packaging transfered data using TLS [7]. REST could be
utilized by HTTPS as well and be secured by it’s methods.

Authentication is supported at HTTP level enables to use different
mechanisms including following.

• HTTP Basic authentication. Username and password pair separated
by column base64 encoded. Authentication is being made in one step.

• HTTP Digest. No password transfered between a client and a server
but a hash value. Authentication is being made in three steps.

1. Client accesses a protected area

2. Server requests authentication with ’WWW-Authenticate’ header,
which contain additional data for the next step, such as quality
of protection (QoP)

7

1. Analysis of requirements

3. Client calculates a response hash by using the realm, his/her
username, the password, and the QoP and requests the resource
with authorization header

• OAuth. Users can grant access to third-party application without
exposing their users credentials. Requires existence of authorization
server and token endpoints which provide temporal tokens for access-
ing resources.

1.5.1.3 Usage statistics

Following numbers and charts based on usage statistics among protocols
could make impact on decision which of them to use for API design.

Figure 1.2: Statistics of usage APIs protocols according to Programmable
Web by 2011

8

1.5. Comparison of required technologies

Figure 1.3: Google search trends: SOAP API and REST API

Taking into account general API growth and importance of APIs in
future web increase of REST API is predictable.

Figure 1.4: Total growth in number of APIs

1.5.1.4 Choice of API technology

Several protocols have been reviewed in this chapter. Advantages and dis-
advantages of them were considered. REST for purpose of this project has
been chosen. Technology is less verbose than SOAP, let developers use any
format for messaging and supported by many languages and clients. REST
has been invented decades ago and still widely used due to it’s properties
to be general and reliable protocol. Technology fulfills requirements of this

9

1. Analysis of requirements

project completely.

1.5.2 Comparison of available transport layer
protocols

1.5.2.1 TCP

TCP is one of the main protocols communication protocols of transport
layer of the Internet. It stated to manage data transfer in TCP/IP based
networks.

TCP provides mechanism of repeated data request in case of data loss
and prevents duplicates of data. Preserve completion of transfered data
and informs sender about result.

1.5.2.2 UDP

TCP is one of the main protocols communication protocols of transport
layer of the Internet. It enables faster data transfer compared to TCP.
Speed up is caused by simplicity of protocol communications. There is no
special message for establishing communication channels. Protocol does
not ensure completeness and validness of transfered data. Widely used in
systems where error prevention is not needed or not important.

1.5.2.3 Choice of transport layer protocol

HTTP usually utilize TCP protocol, which provide error prevention mech-
anism. Having poor mobile network connectivity TCP could take care of
possible network errors. TCP is being used for this project.

1.5.3 Comparison of encryption technologies

1.5.3.1 SSL

SSL is cryptographic protocol designed to provide communications security
over a computer network. It uses asymmetric cryptography to authenticate
the counterparty with whom they are communicating, and to negotiate
a symmetric key. This session key is then used to encrypt data flowing
between the parties.

Currently SSL considered as vulnerable, outdated and suppressed by
TLS.

10

1.5. Comparison of required technologies

1.5.3.2 TLS

TLS as well as it’s predecessor is a public-key based symmetric crypto-
graphy for data transfer. In symmetric public-key cryptography each party
generates a public/private key pair and distributes the public key. After ob-
taining an authentic copy of each other’s public keys, parties can compute
a shared secret offline, which can be used as a key.

Figure 1.5: Public key shared secret

Certificate authorities and a public key infrastructure are necessary to
verify the relation between a certificate and its owner, as well as to gener-
ate, sign, and administer the validity of certificates. Certificate authority,
usually a company which charges customers to issue certificates for them.

Contents of a typical digital certificate

• Serial Number: Used to uniquely identify the certificate.

• Subject: The person, or entity identified.

• Signature Algorithm: The algorithm used to create the signature.

• Signature: The actual signature to verify that it came from the issuer.

11

1. Analysis of requirements

• Issuer: The entity that verified the information and issued the certi-
ficate.

• Valid-From: The date the certificate is first valid from.

• Valid-To: The expiration date.

• Key-Usage: Purpose of the public key (e.g. encipherment, signature,
certificate signing...).

• Public Key: The public key.

• Thumbprint Algorithm: The algorithm used to hash the public key
certificate.

• Thumbprint (also known as fingerprint): The hash itself, used as an
abbreviated form of the public key certificate.

1.5.3.3 Own encryption algorithm

To protect data between client and API it is possible to implement and
use one of the encryption algorithms. Such an approach would not require
validation by third-party authority and public key infrastructure. User of
encryption does not need to pay to certificate authority for their service.
More over certificate authorities could be a weak point from a security
standpoint.

Implementation of the own encryption algorithm will be more time and
money consuming. It will require additional agreement between client and
the server about way of encryption. So server can’t be assure about ability
of the client to reuse the same encryption algorithm.

1.5.3.4 Choice of encryption technology

TLS protocol has been chosen. Even thought it relies on infrastructure and
certificate authority technology is standardized and widespread supported.
HTTP that is foundation of project REST API enabled to use TLS by
design.

1.5.4 Choice of authentication mechanism

HTTP supports different build-in authentication mechanisms mentioned
earlier. Among them:

12

1.5. Comparison of required technologies

• HTTP Basic authentication. Username and password pair separated
by column base64 encoded. Authentication is being made in one step.

• HTTP Digest. No password transfered between a client and a server
but a hash value. Authentication is being made in three steps.

1. Client accesses a protected area

2. Server requests authentication with ’WWW-Authenticate’ header,
which contain additional data for the next step, such as quality
of protection (QoP)

3. Client calculates a response hash by using the realm, his/her
username, the password, and the QoP and requests the resource
with authorization header

• OAuth. Users can grant access to third-party application without
exposing their users credentials. Requires existence of authorization
server and token endpoints which provide temporal tokens for access-
ing resources.

Taking into account required persistence of encryption between client
and server and absence of the third-party applications that could need ex-
istence of OAuth technology, HTTP Basic authentication has been chosen.

1.5.5 Choice of messaging formats

Format should not be verbose to be rapidly transferred by relatively slow
mobile network. Format should be easy to process in terms of computation
power to be parsed by resource strict mobile devices. Format should be
convertible to other formats for ability to be scaled and consumed by other
clients.

Two most common formats for API messaging is JSON and XML. More
suitable in terms of named earlier conditions is JSON. It’s easy to parse and
less verbose, transferred data will be less redundant and will travel faster
across network with the same value compared to XML. This implies from
format design.

Probably because of mentioned qualities JSON become dominated over
the years on API market.

13

1. Analysis of requirements

Figure 1.6: Growth in percentage of APIs with JSON support

Two out of number of possible data transport formats have been re-
viewed. According to projects requirements most suitable format decided
is JSON. It less verbose, easy to be processed and will work faster on rel-
atively slow mobile network.

1.5.6 Comparison of available database systems

There are several solutions on the market related to data storage, manage-
ment and maintenance. Class of database management system will be in
charge of data storage of the project.

1.5.6.1 Oracle Database

Oracle software package contain wide range of the functions for develop-
ment on Java, access of the data over the Internet and simultaneous access
optimization. One of the main disadvantages of this DBMS is a complexity
of management and administration.

Among general properties of DBMS there are following

• Hight reliability

• Ability to split large databases to partitions(large-database partition)

• Existence universal mean of information security

14

1.5. Comparison of required technologies

• Effective methods of minimization of time for data querying

• Indexes for binary representations

• Paralleling operations in querying

• Existence of wide spectrum of tools for development, monitoring and
administration

• Web technologies friendly

Orientation on web technologies is one of the main directions of the
Oracle’s movement. Related to that could be mentioned following pack-
ages. interMedia for processing of data in multimedia formats and Jserver
– embedded tool for integration of Java language with relational databases.

1.5.6.2 MySQL Server

MySQL is a free DBMS. MySQL is a property of Oracle Corporation since
Sun Microsystems, has been bought by it. MySQL released under GNU
General Public License and under commercial license. Developers imple-
ment new features by request of users with commercial license, because of
this mechanism even in early versions replication mechanism was realized.

MySQL is a good solution for small and medium applications. Usually
MySQL is used as a server to which local and remote clients connect but also
in distributive included solution for embedding databases into applications.

Flexibility of DBMS is enabled by support of relatively wide amount of
storage engines: MyISAM that supports fulltext search as well as InnoDB
that supports transactions on a level of separate records. Because of open
architecture and GPL license new types of storage engines appear.

1.5.6.3 Redis

Redis is an open source key-value data store. Redis store it’s data in memory
and includes mechanism of snapshots and journaling system for persistent
storage. Datastore supports messaging pattern publish-subscribe, which
enables clients to create channels, push messages to them and subscribe to
channels. Redis supports master-slave data replication and transactions.
Data store belongs to so called NoSQL databases. In contradiction to pre-
vious DBMSes which are relational databases that supports SQL querying,
NoSQL is a simple store that doesn’t support complicated queries. Those
properties makes Redis faster and more reliable.

15

1. Analysis of requirements

NoSQL databases rely on BASE paradigm. That means storage is Basic-
ally Available Soft-state and Eventual consistent. Those kind of databases
put Availability on the first place.

1.5.6.4 MongoDB

MongoDB is document driven schemaless database system. As Redis Mon-
goDB is a NoSQL DBMS, which means it doesn’t support SQL queries.
But in contrast to Redis MongoDB is not a key-value store, it supports
simple and complex querying based on comparison of querying statements
to stored data.

MongoDB is released under open source license. DBMS supports rep-
lication for data protection in case of emergency. In addition MongoDB
supports one special kind of index that don’t support mentioned kinds of
databases out of the box. That special index related to approximate query-
ing of geolocation data and called 2D index. It allows to find records that
contain position information in two-dimension space near given position
with some approximation faster than just calculating difference with come
other tools.

Relational SQL solutions such as MySQL and Oracle supports complic-
ate relations between data entities. Querying of such data is performed by
complex queries such as SQL.

Those kinds of databases are suitable for complex data relations storage.
Mostly Relational databases comply with ACID principle.

Relational databases usually require strong schemas of stored data to be
able to make relations determinant and query relational data properly. Usu-
ally provides solutions for scalability and recovery from errors as MySQL
and Postgre

NoSQL databases relies on BASE paradigm. That means storage is
Basically Available Soft-state and Eventual consistent. Those kind of data-
bases puts Availability on the first place.

In general NoSQL databases is second generation of databases that take
advantage of increased computation power and resources of new hardware
systems.

Even relatively recently developed NoSQL systems proven it’s work in
many fields of enterprise usage.

Usually those databases have build-in solutions for redundant data stor-
age for scalability and crash recovery. For instance MongoDB has full spec-
trum of replication solution that comes in default package.

MongoDB has additional support for so called 2D indexes that used for
2D queries. Geolocagion data of Points of interest could take advantage of

16

1.5. Comparison of required technologies

those indexes for making queries based on approximate geo-position.

MongoDB is open source database licensed under GNU AGPL.

This project doesn’t have complex data to be stored so it doesn’t forced
to use relational model. NoSQL solutions are usually more lightweight and
scalable.

1.5.6.5 Choice of the database system

All of the mentioned database systems have tools technologies to fulfill
requirements. Relational database systems is more suitable for complex
data which is not in the requirements. Redis and MongoDB is a reliable
solutions that could be chosen for project task. Due to addition means of
querying data, support of 2d index that could be used for the system and
free open source license MongoDB is chosen for current project.

1.5.7 Comparison of available programming
languages

Backed application should use on of the technologies for API realization.
Chosen technology must be able to implement mechanisms decided to be
used for API, including REST principle and messaging formats.

There are number of stacks suitable for this purpose.

1.5.7.1 Ruby

Ruby on Rails(RoR) is a framework for programming language Ruby. RoR
utilizes MVC principle for web applications. Framework enables developer
to implement web based server applications, including REST services with
less code.

Ruby on Rails provides tools for simplification of development of au-
thorization and authentication, database handling and others.

1.5.7.2 JavaScript

NodeJS is a server-side technology that use JavaScript as language for it’s
applications. It’s lightweight and event driven, but has number of draw-
backs. Spread of server-side JavaScript is new and not widely used. Con-
sequently there are some number of libraries and tools but that number are
not that large and usually of not needed quality as soon as technology is
not widely used for enterprise applications.

17

1. Analysis of requirements

Express is a server JavaScript framework for quick development of JavaS-
cript Web applications. Express provides toolkit for development of REST
applications as additional functionality for Authorization and Authentica-
tions, encryption, etc.

NodeJS and Express stack doesn’t have build in tools for deployment
and monitoring applications.

NodeJS has package management tools for enabling extra functionality
by use of third party libraries. Code is executed by NodeJS server applica-
tion.

1.5.7.3 PHP

PHP one of the most popular programming languages for the web (along
with Java and languages of ASP.NET) because of it’s simplicity, execution
speed, rich functionality, cross-platforming and open source PHP license.

PHP was originally designed for development of web applications. It
includes build-in tools for handling HTTP requests including parts of it
such as cookies, HTTP headers, session handling, authentication, handling
file upload, etc.

PHP has several comprehensive frameworks for complex web applica-
tions development such as CodeIgniter and Symphony. They include tools
for object mapping, database connectivity, MVC paradigm implementation
and others.

One of the biggest sites that use PHP are Facebook, Wikipedia, VK.

1.5.7.4 Python

Python is a high-level programming language of general purpose. Python
phylosophy emphasizes code readability and minimization, syntax allows
developers to use fewer lines of code for the simillar tasks compared Java
or PHP.

Python supports multiple programming paradigms, including object-
oriented, imperative and functional programming. Python applications run
using Python interpreters which are available for many operating systems.
Python runs on server by use of Python interpretator and Web Server such
as Apache.

Python first appeared in 1991 and wasn’t designed to implement web
applications. There are number of frameworks such as Django and Flask
developed for Python, they enables developers to implement web-based
applications and services easily and enables to use extra functionality for

18

1.5. Comparison of required technologies

handling databases, authorization and authentication, encryption and so
on easily.

Python has package management tool that provides convenient way of
external libraries usage.

1.5.7.5 Java

Java is an object-oriented programming language developed by Sun Mi-
crosystems and acquired by Oracle Corporation. Applications written in
Java usually translated to special byte-code which runs on Java Virtual
Machine(JVM). That way of application execution makes programs almost
in depended of hardware architecture it runs on.

Java is used by enterprise sector frequently. Consequently Java has vast
collection of tools and libraries for handling huge majority of problems.

Compiled Java code could be executed on different Java Web Servers as
well as standalone using JVM only.

Java developers could take advantage package managing and project
build with dependence handling using different tools including Maven and
Gradle.

Java applications could be scaled and monitored with support of differ-
ent Java Web servers and Service Buses. One of the is Oracle Web Service
Bus, which provides extra features for deployment, monitoring, scaling and
other advantages.

Spring MVC is a contemporary framework for development Web ap-
plications using Java language. It supports operations for implementation
REST services. Object mappers supports Java object translation to differ-
ent formats for messaging between client and server.

Spring MVC could take advantage of existing Java libraries to enable
different kinds of functionality such as Authorization, Authentication, en-
cryption, monitoring and different databases support.

1.5.7.6 ASP.NET

ASP.NET is a server-side Web application framework designed for Web
development to produce dynamic Web pages. It was developed by Microsoft
to allow programmers to build dynamic web sites, web applications and web
services.

1.5.7.7 Choice of programming language

All of the mentioned solutions are suitable for the project tasks. Named
technologies relatively similar in terms of abilities they provide for de-

19

1. Analysis of requirements

velopers. Java has been chosen as programming language for this pro-
ject along with Spring MVC framework. Java and Spring framework are
released under open source license have comprehensive documentations.
Spring MVC have set of tools for faster development of the web services.

1.5.8 Choice of mobile platform

1.5.8.1 Android OS and compatible devices

Android operation system potentially supports whole spectrum of opera-
tions with hardware needed to get project implemented including but not
limited to geolocation, networking, data processing.

Android OS has developers SDK that provides possibility to develop
third party application and supports number of different languages of ap-
plication development e.g. Java, C and C++.

Even thought required options are possibly supported devices compat-
ible with Android OS must not to have needed hardware components, which
neglect goals of this project.

1.5.8.2 iPhone and iOS

iPhone 4S or newer has build in hardware modules for fast and precise geo-
location recognition compared to other devices. iPhone has two chips for
location recognition AGPS and GLONASS. Combined they make geoloca-
tion determination more accurate and fast.

iPhone has communication options of latest technologies, which enable
it to utilize API over Internet, and use contemporary technologies for faster
data transfer.

Device has relatively strong computation power and resources that make
it suitable for generation and processing required data.

iOS as an operation system of iPhone devices have developers SDK
which enables developers to use whole spectrum of hardware parts needed
for this project including geolocation, networking and data processing to
develop third party application.

1.5.8.3 Choice of mobile platform

Due to strong computation power guaranteed persistence of required hard-
ware options, existence of developers SDK makes it possible to develop
third party applications using this hardware, iPhone is chosen as platform
for Points of interest creation and as API client.

20

Chapter 2

Realisation of API

2.1 API design

To provide interactions based on client-server model API should enable to
manage two kinds of objects which are:

1. Points of interest or places is main subject of communications. Stores
geolocation data and additional info for the user.

2. User object to enable authentication and authorization for the clients.

API must support full spectrum of CRUD operations of points of interest
for authorized clients. API must support operations of creation and reading
of user objects to be able to distinguish data of different clients.

2.1.1 General structure

Service provide four operations on places for user ’create’, ’read’, ’delete’,
’update’.

Operation ’create’ adds place to users places:

• input: a place object

• output: text informing that place was added to user supplemented
with created place object

Operation ’read’ returns places of the user

• input: place id or nothing

• output: places objects

21

2. Realisation of API

Operation ’delete’ removes place from users places

• input: place id

• output: none

Operation ’update’ updates place for user

• input: place id

• output: none

Service provides ’create’ operation on users
Operation ’create’ adds user to users collection

• input: none or user object

• output: text informing that user created supplemented with created
user object

Service provides ’read’ operation of events places.
Operation ’read’ returns places of the event

• input: event id

• output: places objects

2.1.2 Response codes

HTTP supports response codes to acknowledge client about requested oper-
ation status. Some of them supported only by some operations, for instance
code 201 means that entity is created and couldn’t be used in response of
GET request.

Current project requires CRUD operations support and following codes
will be needed to provide client information about operation status.

• 200 is OK will be returned in case requested operation succeeded.
That could be usual data retrieval or operations of updating or delet-
ing of data.

• 201 is Created will be returned in case requested operation of object
creation is succeeded.

• 400 is Bad request will be returned in case of undocumented set of
data in request

22

2.1. API design

• 401 is Unauthorized will be returned when client tries to get data
which is not belong to him.

• 404 is Not found will be returned when requested data doesn’t exists.

2.1.3 Resources

Following resources for designed API were determined.

• /places is a container of all ’places’ for current user

• /places/place-id is a place with id ’place-id’

• /users - is a container for all ’users’ in the system

• /events/event-id/places is a place with id ’place-id’

2.1.4 Request and response structure

Data transfered between API and client is structured in the following way,
depending on requested resource.

− / p l a c e s − l i s t o f a l l p l a c e s
− / p l a c e s /{ place−id } − one p lace

− t i t l e − name o f the p lace
− l a t i t u d e − geog raph i ca l l a t i t u d e
− l ong i tude − geog raph i ca l l ong i tude
− a l t i t u d e − a l t i t u d e
− hor i zonta lAccuracy − h o r i z o n t a l accuracy

o f p o s i t i o n determinat ion
− ve r t i c a lAccuracy − v e r t i c a l accuracy

o f p o s i t i o n determinat ion
− date date o f c r e a t i o n

− / events /{ event−id }/ p l a c e s − l i s t o f event p l a c e s

− / us e r s − only f o r POST r e q u e s t s to c r e a t e new user
− id − unique id used f o r u s e r s Author i zat ion

2.1.5 Resource representations

According to requirements analysis and possible messaging formats com-
parison representation of the resources defined in JSON.

23

2. Realisation of API

2.1.6 API usage

2.1.6.1 Users

To create new ’user’

POST to / us e r s

P o s s i b l e s t a t u s codes

− 201 − Created (user added to u s e r s c o l l e c t i o n)

2.1.6.2 Points of interest

To add ’ place ’ to u s e r s p l a c e s

POST to / p l a c e s

P o s s i b l e s t a t u s codes

− 201 − Created (p lace added to u s e r s p l a c e s)
− 400 − Bad reques t (wrong data)
− 401 − Unauthorized (wrong or absent user c r e d e n t i a l s)

To update ’ p lace ’ with id place−id o f user

PUT to / p l a c e s /{ place−id }

P o s s i b l e s t a t u s codes

− 200 − OK (p lace in fo rmat ion updated)
− 400 − Bad reques t (wrong data)
− 404 − Not found
− 401 − Unauthorized (wrong or absent user c r e d e n t i a l s)

To d e l e t e ’ p lace ’ with id place−id o f user

DELETE to / p l a c e s /{ place−id }

P o s s i b l e s t a t u s codes

24

2.1. API design

− 200 − OK (p lace removed from u s e r s p l a c e s)
− 400 − Bad reques t (wrong data , p lace not found)
− 404 − Not found
− 401 − Unauthorized (wrong or absent user c r e d e n t i a l s)

To r e t r i e v e ’ p laces ’ o f user

GET to / p l a c e s

P o s s i b l e s t a t u s codes

− 200 − OK
− 400 − Bad reques t
− 401 − Unauthorized (wrong or absent user c r e d e n t i a l s)

To r e t r i e v e ’ p laces ’ o f the event with id event−id

GET to / events /{ event−id }/ p l a c e s

P o s s i b l e s t a t u s codes

− 200 − OK
− 400 − Bad reques t (wrong data)
− 404 − Not found

To r e t r i e v e ’ p lace ’ with id place−id o f user

GET to / p l a c e s /{ place−id }

P o s s i b l e s t a t u s codes

− 200 − OK
− 400 − Bad reques t (wrong data)
− 404 − Not found
− 401 − Unauthorized (wrong or absent user c r e d e n t i a l s)

2.1.7 API call example

In response of get saved places request server returns data similar to the
following

25

2. Realisation of API

[{
” t i t l e ” : ” Cycle parking ” ,
” l a t i t u d e ” : 43 .1256 ,
” l ong i tude ” : 12 .5314 ,
” a l t i t u d e ” : 12 ,
” i con ” : ” c y c l e ” ,
” date ” : ”2015−03−11 12 :57”

} ,
{

” t i t l e ” : ” Hotel ” ,
” l a t i t u d e ” : 42 .1256 ,
” l ong i tude ” : 12 .5214 ,
” a l t i t u d e ” : 15 ,
” i con ” : ” house ” ,
” date ” : ”2015−03−10 10 :07”

}]

Response could be different depending on data stored for particular
user. Structure of the response defined in respected section ”Request and
response structure” (2.1.4)

To prevent attacks based on capturing of traffic between client and server
encryption must be present by use of TLS certificate. Authentication is
enabled by HTTP authentication technology Basic HTTP Authentication.

2.2 API realization

2.2.1 Model-View-Controller

Server application will use MVC principle.

2.2.1.1 Models

Application uses only two classes. First is Places for description Points of
interest. This class is used as well as data model for database storage and
represent message message structure of respected API request.

Second class belongs to Users for identifying Places with users and for
Authentication.

Models are mostly represented by classes. Models for database will
consists some extra parameters for handling databases queries and proper

26

2.3. Build

storage objects in data store. Such parameters mostly used for proper work
of indexes and additional formats of the data store.

Application structure is represented on the following picture

Figure 2.1: Application structure

UserCredential class is a class that implements build-in Spring MVC
UserDetails interface. This interface is used for implementation classes that
responsible for Spring authentication and authorization mechanisms.

2.2.1.2 Views

Views are automatically generated by converting objects to JSON format
by Spring MVC using Http Message Converters.

2.2.1.3 Controllers

Controllers are responsible for routing requests to particular endpoints.
Each function in respective Spring REST controller is responsible for one
or several type of requests. Each controller is responsible for particular
resource type.

2.3 Build

Widespread Java infrastructure requires addition solution for building pro-
ject. Projects have to be build and deployed. There are number of solutions
that perform this task. Several of the number of such solutions are Maven
and Gradle. Those build systems are quite similar and suitable for general
purposes and requirements of the project.

27

2. Realisation of API

Maven is used for this project. Typical maven requirement is presence of
pom.xml file which describes dependences of the project and could contain
code like following.

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<p r o j e c t xmlns=”http :// maven . apache . org /POM/ 4 . 0 . 0 ”

xmlns : x s i=”http ://www. w3 . org /2001/XMLSchema−i n s t ance ”
x s i : schemaLocation=”http :// maven . apache . org /POM/ 4 . 0 . 0

http :// maven . apache . org /xsd/maven−4 . 0 . 0 . xsd”>
<modelVersion >4.0.0</ modelVersion>

<groupId>org . springframework</groupId>
<a r t i f a c t I d >gs−spr ing−places−api</a r t i f a c t I d >
<vers ion >1.1.0</ vers ion>

<parent>
<groupId>org . spr ingframework . boot</groupId>
<a r t i f a c t I d >spr ing−boot−s t a r t e r−parent</a r t i f a c t I d >
<vers ion >1 . 2 . 3 .RELEASE</vers ion>

</parent>

<prope r t i e s>
<java . ver s ion >1.8</ java . ver s ion>

</p rope r t i e s>

<dependencies>
<dependency>

<groupId>org . spr ingframework . boot</groupId>
<a r t i f a c t I d >spr ing−boot−s t a r t e r−web</a r t i f a c t I d >

</dependency>
<dependency>

<groupId>org . spr ingframework . boot</groupId>
<a r t i f a c t I d >spr ing−boot−places−api</a r t i f a c t I d >
<scope>t e s t </scope>

</dependency>
</dependencies>

<bui ld>
<plug ins>

<plugin>

28

2.4. Deployment and isolation

<groupId>org . spr ingframework . boot</groupId>
<a r t i f a c t I d >spr ing−boot−maven−plugin</a r t i f a c t I d >

</plugin>
</plug ins>

</bui ld>

</pro j e c t>

Dependences mentioned in respected section automatically downloaded
and included in the project by Maven.

2.4 Deployment and isolation

Application is stated to be scalable and easy to be deployed. That require-
ment comply with principle of microservices architecture. Such an archi-
tecture takes care of libraries environment required software versioning and
separate component isolation and independance of those requirements.

That principle from development to production mirrors how cargo was
shipped prior to the invention of intermodal shipping containers. At the
origin, cargo was manually loaded one piece at a time onto the truck or train
that carried it to the port. At the port of origin the cargo was unloaded
onto the dock.

Containerization dramatically changed the ship. All non-bulk cargo is
now packed into standard shipping containers, which can be carried by
truck, trains and ships. The contents of the container are never touched in
transit. In other words, the shipping container encapsulates its contents. It
has become the standardized API of cargo.

One of the solutions of the containerization principle in software is
Docker. Docker is a new way to containerize applications that is becom-
ingly increasingly popular. It allows you to package a microservice in a
standardized portable format thats independent of the technology used to
implement the service. At runtime it provides a high degree of isolation
between different services.

Docker runs natively on Linux with kernel 3.10 or higher which is used
as production environment for this project.

To run deploy and run implemented API application following Docker
configuration could be used.

FROM d o c k e r f i l e / java : o rac l e−java8
EXPOSE 8080
CMD java −j a r app . j a r

29

2. Realisation of API

ADD t a r g e t /app−api −1.0.1−SNAPSHOT. j a r data /app . j a r

During build required Java environment will be installed. Target com-
piled application file will be copied. When container is started target ap-
plication will be run and required port will be exposed.

Another container needed to be run for proper work of API application
is official MongoDB container which doesn’t require tuning.

Alternatively software could be run without containerization using JVM
and MongoDB daemon.

2.5 Security and encryption

For prevention Man-in-the-Middle attacks, security encryption between server
and client could be used so data enabled by API is meaningless even cap-
tured by hacker.

To make use of TLS server could use certificate for messages exchange.
The client and server agree on various parameters used to establish the
connection’s security. Basic procedure for that establishing is following.

The handshake begins when a client connects to a TLS-enabled server
requesting a secure connection and presents a list of supported cipher.

From this list, the server picks a cipher and hash function that it also
supports and notifies the client of the decision.

The server usually then sends back its identification in the form of a
digital certificate. The certificate usually contains the server name, the
trusted certificate authority and the server’s public encryption key.

The client may contact the server that issued the certificate and confirm
the validity of the certificate before proceeding.

In order to generate the session keys used for the secure connection, the
client encrypts a random number with the server’s public key and sends the
result to the server. Only the server should be able to decrypt it, with its
private key.

From the random number, both parties generate a ’master secret’ and
then negotiate a session key for encryption and decryption.

Security encryption established by installation of the TLS certificate.

30

Chapter 3

Realization of mobile application

3.1 Application Wireframes

Wireframing is a technology which dramatically increases speed of interface
development on early stages. Moreover it downs coast of any changes made
in the beginning of design.

That’s why firstly wireframes of mobile application have been developed.
They do not contain exact proportions of elements and screen but make it
possible to overview elements position.

31

3. Realization of mobile application

Figure 3.1: Main application screen wireframe

32

3.1. Application Wireframes

Figure 3.2: Main application screen with details wireframe

33

3. Realization of mobile application

Figure 3.3: List of removed places wireframe

3.2 Interface

After detailed sketching of application interface it could be implemented in
colors or in interface builder of development environment.

Following screenshots are actual images of the interfaces of the applica-
tion.

34

3.2. Interface

Figure 3.4: Main application screen

35

3. Realization of mobile application

Figure 3.5: Main application screen with details

36

3.3. Model-View-Controller

Figure 3.6: List of removed places

3.3 Model-View-Controller

Mobile application takes advantage of MVC principle. Model is represen-
ted mostly by classes. Classes are similar to server-side classes. Client-side
application contain class Places, which represent user’s data containing geo-
location and meta information.

37

3. Realization of mobile application

Figure 3.7: Places class

Most of the data that Place class stores make use of location object,
which is instance of Location class representing geolocation in iOS de-
velopers SDK.

c l a s s Place {

var l o c a t i o n : Locat ion = Locat ion ()

var l a t i t u d e : CLLocationDegrees {
r e turn l o c a t i o n . l a t i t u d e

}

var l ong i tude : CLLocationDegrees {
r e turn l o c a t i o n . l ong i tude

}

var coord ina te : CLLocationCoordinate2D {
r e turn CLLocationCoordinate2D (l a t i t u d e : l a t i t u d e , l ong i tude : l ong i tude)

38

3.4. Networking

}

func setCoord inate (newCoordinate : CLLocationCoordinate2D) {
s e l f . l o c a t i o n . l a t i t u d e = newCoordinate . l a t i t u d e ;
s e l f . l o c a t i o n . l ong i tude = newCoordinate . l ong i tude ;

}

var date : NSDate {
r e turn l o c a t i o n . date

}

}

3.4 Networking

Networking technologies For network communication build-in libraries ex-
ist. For making development faster third-party libraries could be used for
solving particular tasks.

3.5 Geolocation resolving

iPhone has build in hardware and software for determination of device’s
location. Native libraries could be used for this task.

To resolve user location object of class CLLocationManager initialized.
To respond to locations updates delegate of the created object complied
with CLLocationManagerDelegate interface must be assigned. And actions
required to be performed on location updates must be implemented in re-
spective functions.

39

Chapter 4

Testing

4.1 Survey

4.1.1 Personas

Representative group of potential users picked. Each separate personality
called persona. Let’s consider three of them.

• Persona 1: male, 26 years, student of Masters program of CTU in
Prague

• Persona 2: female, 23 years, student of CTU in Prague, hiking person

• Persona 3: male, 35 years, manager, traveler

All of the participants has iPhone what make them target group.

4.1.2 Questionnaire

1. Would this application be useful for you?

2. What would you add or remove from the application?

3. Will you suggest application to somebody else?

4.1.3 Answers

Persona 1
Q1: Yes
Q2: Searching and adding position by address

41

4. Testing

Q3: Probably
Persona 2
Q1: Yes, definitely
Q2: More precise position recognition
Q3: Yes
Persona 3
Q1: Probably
Q2: Coordinate system universalization
Q3: Yes, to friends
As seen most of the answers are positive related to use of software.

It is expected as soon as personas were collected relatively different but
interested in that piece of software to some extend, what rely on their
lifestyle. Even though all of the participants are users of the iPhone there
could be similar answers of users of different platforms, because use case is
based on personality and shouldn’t be affected by user device type.

4.2 API Unit testing

Unit testing is a process in application development, that allows developers
to check validness of separate modules of source code of the application.

Ideology of unit testing is to develop tests for each non-trivial function of
the application. That allows to check does or does not forthcoming changes
of the source code would break functionality.

In case of possible future refactoring of the source code, unit tests ensures
developer that application modules work as expected. Main principle of unit
testing is calling methods and functions and check of the result for expected
properties.

For instance response to the following request should contain error with
code 404, meaning that requested place is not found.

GET / p l a c e s /10000

Unit tests of the current project would cover most of the request of ex-
posed API call. Spring MVC could use different libraries for test evaluation
and by default uses JUnit.

4.2.1 Unit tests development

Example of unit test for user creation represented below.

@Test
pub l i c void c rea teUser () throws Exception {

42

4.3. Application test cases

S t r ing userJson = json (new User ()) ;

t h i s . mockMvc . perform (post (”/ u s e r s ”)
. contentType (contentType)
. content (userJson))
. andExpect (s t a t u s () . i sCreated ()) ;

}

In the depicted example created post request to the resource /users.
Response is checked for status containing information that object has been
created, which represented in HTTP response codes by 201.

4.3 Application test cases

User test cases are developed in sake of testing user behavior and assurance
of proper work of the application. They are not applicable for API so
developed for mobile application only.

4.3.1 User test cases

Test case 1
Test case name: Location determination
System: Mobile Application
Designed by: Ing. Timur Tatarshaov
Short description: Location determination
Pre-conditions:
The User looks at main screen of application
The User has accessed it by installing application on the mobile device
The mobile device has access to geolocation service
Step 1
Action: Launch of the Application
Expected system response: The application displays map and current

Users location on it by representing blue circle with lighter outer circle.
Test case 2
Test case name: Location storage and remove
System: Mobile Application
Designed by: Ing. Timur Tatarshaov
Short description: Location storage and remove
Pre-conditions:
The User looks at main screen of application

43

4. Testing

The User has accessed it by installing application on the mobile device
and launching application from mobile device launch screen.

The mobile device has access to the Internet
The mobile device has access to geolocation service
Step 1
Action: Tap on ”Save” button on application main screen
Expected system response: The application displays icon on the map

representing stored user location.
Step 2
Action: Tap on just created icon
Expected system response: The application shows callout above stored

place with additional information and ”Actions” button
Step 3
Action: Tap on ”Actions” button of the callout
Expected system response: The application shows actions sheet.
Step 4
Action: Tap on ”Delete” button of the appeared actions sheet
Expected system response: Previously created icon will be removed from

the map.
Step 5
Action: Tap on ”More” button on the left top corner of the application

represented
Expected system response: The Application shows left side-bar with list

of removed earlier locations.

44

Chapter 5

Further development

5.1 API versioning and further

development

Even though functions and technologies behind API implementation could
change once designed, described and documented API functions shouldn’t
be changed to preserve compatibility with already implemented clients.
New functions and methods could be added to implementation and doc-
umentation.

There is possibility that API will be completely redesigned according to
new philosophy or major changes. In this case API must preserve existing
clients and assure their proper work. To solve this problem newly developed
API URIs becomes prefixed with ’v’ and version number. For instance next
version of API could be hosted at URI started with.

p ro to co l : // host : port /v1/

Such an approach widely used by big API providers such as Google,
Facebook, Twitter, etc...

5.2 API abuse usage prevention

Even though communication between client and API is protected by en-
cryption it’s still vulnerable for abuse usage. API could be abused by
undocumented access and filling up server recurses by spamming it with
creation requests. That means hacker could access API in a not regular
way and generate redundant traffic on API that normal client would never
produce.

45

5. Further development

Prevention from filling up server resources by abuse creation requests
could be reached by installation of limits of such requests per user or per
host.

Another type of abusing server application and API is denial of ser-
vice(DoS) attack. It reached by frequent requests of the service and com-
plete utilization either of server resources or communication channel capa-
city.

Those kinds of attacks could be prevented by installation system that
catch suspicious traffic, filters it and install constrains and limitations for
those kinds of clients.

That could be reached by installation and proper optimization Nginx
web server, which could work as a proxy between web server and client.

5.3 Extension to other platforms

Even though one mobile platform has been used in project API is designed
to be used by any number of various platforms and not tied to any particu-
lar. Among selected Android devices also often have required hardware for
project implementation. Another class of mobile devices support Windows
OS or Blackberry OS suitable for fulfilling requirements.

There is one possibility to implement application for all of the mentioned
devices at once. Such an approach utilizes devices ability to support web
development technologies including JavaScript, HTML5 and CSS3. Ap-
plications developed using stated stack of technologies run in browser-like
environment. One of the obvious advantage of such approach is cross-
platform solution that developed only once and decreases costs of develop-
ment for other platforms. Another advantage is compatibility with devices
that has not been released yet will support mentioned stack and will need
only browser-like environment to run application.

PhoneGap is en open source framework that enables developers to im-
plement cross platform mobile application using JavaScript, HTML5 and
CSS3. PhoneGap compiles developed application to native application
package for each supported mobile OS.

One of the drawbacks of such approach is slower application execution
compared to natively developed application due to properties of used tech-
nologies. Another disadvantage of solution is that developed application
could not take advantage of some hardware and software features provided
by native development SDK.

Another way for implementation developed application on other plat-
forms is usage of native SDK and languages of each platform. Such an

46

5.3. Extension to other platforms

approach will dramatically increase time of development. More over stack
of technologies needed to be known by developers will be much wider. Each
of the mentioned platform uses it’s own language and framework for native
application development.

Advantages of native development are in contradiction of the PhoneGap
development. Implemented application will run faster and user interactions
will be more satisfiable due to it’s speed. Application could take advantage
of different tools special for each OS and platform. Some of this tools are:

• Live tiles of the application on the launch screen for Windows OS

• Widgets for Android OS, that allows to control application from the
main screen

• Background run of the application for Android OS

Implemented API is generalized and simple to use. That enables de-
velopers of many of the products to implement API clients for other plat-
forms.

In such a case several client types would interact with the same API
over the Internet.

Figure 5.1: Multi client API interactions

47

Conclusion

In result of this project software solution was created. It aimed to remark-
ably ease process of the navigation of the unsettled places. Software system
has increased reliability, which is reached by synchronization of the data
with remote server.

Advantages of the system are:

1. Cheap server side software required for system run

2. Scalable architecture of the server-side software

3. Designed and implemented API is suitable for different clients

4. Increased maintainability by usage of containerization

Disadvantages of the system are:

1. Low level of protection against server-side attacks

2. Low level of protection against API abuse

3. Low level of protection against third-party software usage

Information system completely fulfills requirements of the thesis. Use
of the system is simple and intuitive. Implemented software solution can
be useful for people who travel, used to have rest actively or have problems
with orientation in space.

49

Bibliography

[1] Tomas Vitvar, Authorization and Authentication lectures of MIE-W20.
Available at: http://humla.vitvar.com/slides/w20/lecture7.html

[2] Ruizhi Chen and Robert Guinness, Geospatial Computing in Mobile
Devices, Artech House, 2014

[3] George Reese, The REST API Design Handbook, Kindle, 2012.

[4] Leonard Richardson, Mike Amundsen, RESTful Web APIs, O’Reilly
Media, 2013.

[5] THIJSSEN, Joshua and others. The RESTful CookBook [online]. 2012-
2014 [cit. 2014-10-23]. Available at: http://restcookbook.com/

[6] Leonard Richardson,Sam Ruby, RESTful Web Services, O’Reilly Media,
2007

[7] Transport Layer Security protocol specification. Available at: https:

//tools.ietf.org/html/rfc5246

[8] iOS https://www.apple.com/ios

[9] Swift https://developer.apple.com/swift/

51

http://humla.vitvar.com/slides/w20/lecture7.html
http://restcookbook.com/
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://www.apple.com/ios
https://developer.apple.com/swift/

Appendix A

Terminology

User User of mobile aplication holder and creator

Point of interest, Place Data created by user and belonged to him, ob-
ject of management using API

Client Mobile device, property of user. Consumer of API. User interacts
with API by means of the client

Server Remote machine providing API entry point and API implement-
ation. Includes set of technologies e.g. operation system, network
stack, database to let API implementation work properly.

Database or data store System for persistent storage of data on the
server.

53

Appendix B

Acronyms

XML Extensible markup language

SOAP Simple Object Access protocol

JSON JavaScript Object Notation

CRUD Create Read Update Delete

API Application Programming Interface

HTTP Hypertext Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

TLS Transport Layer Security

SMTP Simple Mail Transfer Protocol

PHP Hypertext Preprocessor

SHA1 US Secure Hash Algorithm 1

GNU GNUs Not UNIX

GNU AGPL GNU Affero General Public License

JVM Java Virtual Machine

ACID Atomicity, Consistency, Isolation, Durability

BASE Basically Available Soft-state and Eventual consistent

JSON JavaScript Object Notation

55

B. Acronyms

OS Operation System

SDK Software Development Kit

DBMS Database Management System

WSDL Web Services Description Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

56

Appendix C

Contents of enclosed CD

readme.txt.....................the file with CD contents description
bins..................................the directory with executables
src the directory of source codes

spring the directory of API source codes
Spotty Finder.......the directory of iOS application source codes
thesis the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf........................ the thesis text in PDF format
thesis.ps........................... the thesis text in PS format

57

	Citation of this thesis
	Introduction
	Motivation
	Goal of the project

	Analysis of requirements
	Functional requirements analysis
	API requirements
	Mobile platform requirements

	Quantitative requirements
	Server requirements
	Mobile requirements
	Comparison of required technologies
	Comparison of available API technology solutions
	Comparison of available transport layer protocols
	Comparison of encryption technologies
	Choice of authentication mechanism
	Choice of messaging formats
	Comparison of available database systems
	Comparison of available programming languages
	Choice of mobile platform

	Realisation of API
	API design
	General structure
	Response codes
	Resources
	Request and response structure
	Resource representations
	API usage
	API call example

	API realization
	Model-View-Controller

	Build
	Deployment and isolation
	Security and encryption

	Realization of mobile application
	Application Wireframes
	Interface
	Model-View-Controller
	Networking
	Geolocation resolving

	Testing
	Survey
	Personas
	Questionnaire
	Answers

	API Unit testing
	Unit tests development

	Application test cases
	User test cases

	Further development
	API versioning and further development
	API abuse usage prevention
	Extension to other platforms

	Conclusion
	Bibliography
	Terminology
	Acronyms
	Contents of enclosed CD

