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Abstrakt

Ačkoliv se vyhledáváńı informaćı na webu stalo standardem a často obĺıbeným
zdrojem pro hledáńı informaćı již před mnoha lety, úloha hledáńı relevance
dokument̊u k danému uživatelskému dotazu má stále mnoho slabých mı́st,
které je zapotřeb́ı zlepšit. Tato práce se snaž́ı nalézt takové textové př́ıznaky,
které by zlepšily výsledky full-textového vyhledáváńı, a t́ım i spokojenost
uživatel̊u, za využit́ı dataset̊u od společnosti Seznam.cz. Za prvé jsou v
rámci této diplomové práce analyzovány hlavńı LTR algoritmy, evaluačńı
mı́ry a běžně použ́ıvané textové signály známé z literatury. Za druhé byl
navržen a naimplementován systém pro testováńı a evaluaci nově přidaných
textových signál̊u a nakonec byly tyto nově přidané signály porovnány s an-
onymizovanými signály, které v současnosti použ́ıvá Seznam.cz, prostřednictv́ım
velké sady experiment̊u.

Kĺıčová slova Učeńı se řadit, AdaRank, Seznam.cz, Full-text, vyhledáváńı,
př́ıznaky
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Abstract

Although web search has become a standard and often favored source of in-
formation finding many years ago, the task of searching relevance documents
to given user query has still a lot of weak spaces need to be improved. This
thesis is trying to find new text relevance signals to improve full-text search
and user satisfaction via datasets provided by Seznam.cz. First of all, there is
analyzed and evaluated major LTR algorithms, evaluation metrics and com-
monly used text signals known from literature. Second, system for testing and
evaluation of new signals was designed and implemented and finally bunch of
experiments over the new text signals were conducted and results were com-
pared with anonymized baseline signals provided by Seznam.cz.

Keywords Learning to Rank, AdaRank, Seznam.cz, Full-text, search, text
signals
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Introduction

As recently as the 1990s, studies showed that most people on the Internet
preferred getting information from other people rather than from information
retrieval systems. [1] Nevertheless at these times peoples also preferred to use
human travel agents to book their travel or to use paper train schedule, so this
fact was not surprising at all. However, information retrieval has undergone
many changes and optimizations so now people are satisfied with results of
web search most of the time. Web search has become a standard and often
favored source of information finding. Actually nowadays search is still one of
the most important applications for Internet users at all.

Nevertheless the task of searching relevance documents to given user query
has still a lot of weak spaces need to be improved. To successfully solve the
problem, machine learning models have to be applied and good signals for
relevancy ranking algorithms have to be found.

This whole area is called information retrieval (IR) that in general is the
activity of obtaining information resources relevant to an information need
from a huge collection of information resources. Moreover, to fully cover user
needs is required to sort the relevant document by its relevancy. We can
assume that if the most relevant document will be at the top of the search,
user will be the most satisfied as well.

Searches can be based on meta-data or on full-text [1] (or other content-
based) indexing. An information retrieval process begins when a user enters
a query into the system. Queries are formal statements of information needs,
for example search strings in web search engines.

Schema of the search engines for Information retrieval

The task of the search starts when a user identifies his need for information,
then it involves searching and locating of an information resource and it ends
when the information is retrieved and delivered to the user in a demanded
form and the information need of the user is eventually satisfied. As shown

1



Introduction

Figure 0.1: Traditional Information Retrieval model

on the Figure 0.1 - nowadays, the modern IR deals with data storage, analysis
and retrieval of documents, algorithms etc. and it is a very sophisticated
process. In this work, we focus only on the part of search model, that means
to ranking model, learning algorithms and especially training model which
covers different types of signals used to train the models for more relevant
result pages.

Goals

This work follows several milestones. Complete assignment is attached to the
beginning of this work so we are going to mention just the key goals here.

First and the most importantly we are trying to find new text relevance
signals (features) improvement for full-text search, that means we want to find
such signals, which would be able to help with better learning to sort the search
models in terms of user satisfaction. Text signals are mentioned across all this
work; from research and analysis in Chapter 1 to experiments in Chapter 4.
Second we want to create system for testing and evaluation of new signals
so there will be possible to test arbitrary new signals and compare it with

2



Goals

the other ones. These part of work is described mainly in Chapter 2 and 3.
To create such a system includes a selection of Learning to Rank algorithms,
evaluation measure and different types of preprocessing phases. Therefore
another no less important goal is to make research about LTR algorithms,
evaluation metrics, etc. which is included primarily in Chapter 1.
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Chapter 1

State-of-the-art

Although this work tries to find the best text signals, it is necessary to use
proper algorithms and evaluation metrics as well.

First this chapter is going to review and analyze major Learning to Rank
algorithms, which are the keys to sort set of web documents by a document
relevance, second, analyze and describe evaluation metrics for relevancy rank-
ing, that make it possible to evaluate and compare relevance sorting results
and finally review the commonly used text signals known from literature.

1.1 Learning to Rank algorithms

Learning to Rank (LTR) [2] is a relatively new field in which machine learning
can be effectively applied to solve the task of creating a ranking model in
Information Retrieval (IR). It helps solving IR problems such as document
retrieval, collaborative filtering, sentiment analysis, computational advertising
etc. LTR method aims at learning a model that given a query and a set of
candidate documents finds the appropriate ranking of documents according
to their relevancy.

LTR is a supervised machine learning method. A typical setting in learning
to rank is that feature vectors describing a query-document pair are construc-
ted and relevance judgments of the documents to the query are available.
Given a training dataset of queries, documents and evaluations of how relev-
ant the documents are, a LTR algorithm constructs a ranking model. The
ranking model is then usually used to assign ranking scores to a new set of
documents with unknown relevance. The ranking scores are finally used to
order the given documents. The evaluation of the model’s performance can
be accomplished by a chosen performance measure.

There are plenty of algorithms available to solve Learning to Rank prob-
lems. The differences among them are not often significant because some of
them differ only in loss functions (e.g. while one algorithm uses logistic loss
function, the other algorithm uses hinge loss function).

5



1. State-of-the-art

1.1.1 General framework for Learning to Rank

The process of learning to rank can be described as follows. A training set is
typically based on query-document pair. The necessity for using the query-
document pairs as the training samples comes from the fact, that many fea-
tures are based on the relation between query and document.

Training samples with relevance labels (with respect to a given query),
a particular evaluation measure and eventually a validation dataset come as
an input to the LTR algorithm. The algorithm uses the training dataset to
construct a model which is then used to sort a set of testing samples and
the ranking performance of the model is then evaluated by given performance
measure. The aim of the learning is generally minimization of a loss function,
or eventually maximization of a training performance measure.

More theoretically, let Q = {q1, q2, . . . , qn} is set of queries, where n de-
notes the number of queries and there is a set of documents:

di = {di1, di2, . . . , dim(qi)
}

associated with each of the queries qi. Then there is also a list of labels yi =
{yi1, yi2, . . . , yim(qi)

} connected with particular document-query pairs, where

m(qi) denotes the number of documents given for the query qi, y
i
j repres-

ents the label of the jth document dij of the ith query qi. A feature vector

~xij ∈ X is specified for each query-document pair (qi, d
i
j), i = 1, 2, . . . , n; j =

1, 2, . . . ,m(qi). Finally, we can define training dataset as a set:

Strain = {(qi, di, yi)}ni=1

The objective of learning is to create a ranking function f : X 7→ <, such
that for each query the elements in its corresponding document list can be
assigned relevance scores using the function and then be ranked according to
the scores. Specifically, we create a permutation of integers π(qi, di, f) for
query qi, the corresponding list of documents di, and the ranking function f .

The learning process turns out to be that of minimizing the loss function
which represents the disagreement between the permutation π(qi, di, f) and
the list of ranks yi, for all of the queries.

1.1.2 Categorization of Learning to rank algorithms

There are several approaches to learn the Learning to rank algorithms. Ac-
cording to the [2] and talks at many leading conferences the LR algorithms
can be categorized into three groups by their input representation and loss
function.

This section will slightly describe all the three category and will show main
representatives of these categories. The biggest attention will be focused on
list-wise algorithm AdaRank (see 1.1.2.6) since it will be chosen for imple-
mentation and further extension and experimentation.

6



1.1. Learning to Rank algorithms

Point-wise approach

Point-wise approach handles the problem by transforming ranking into regres-
sion or classification of single objects. The model then takes only one sample
at a time and either it predicts its relevance score or it classifies the sample
into one of the relevancy classes (e.g. a class of slightly relevant documents).

In this case it is assumed that each query-document pair in the training
data has a numerical or ordinal score. Then LTR problem can be approxim-
ated by a regression problem given a single query-document pair, predict its
score. A number of existing supervised machine learning algorithms can be
readily used for this purpose. Ordinal regression and classification algorithms
can also be used in point-wise approach when they are used to predict score
of a single query-document pair, and it takes a small, finite number of values.

1.1.2.1 Random forest

Random forests are an ensemble learning method for classification, regres-
sion and other tasks, developed by Breiman and Cutler [3], that operate by
constructing a multitude of decision or regression trees at training time and
outputting the class that is the mode of the classes (this is for classification) or
mean prediction (this is for regression) of the individual decision or regression
trees so each of the trees in the ensemble votes for the output value. The final
output is then determined by all the trees in the ensemble.

Bagging is used to reduce the correlation between each pair of random
trees in the ensemble. Unlike single decision or regression trees which are
likely to suffer from high Variance or high Bias (depending on how they are
tuned) Random Forests use averaging to find a natural balance between the
two extremes.

1.1.2.2 Rc-Rank

RC-Rank is an algorithm provided by Seznam.cz. Since not all the details are
publicly available, we can provide only a brief basic description of RC-Rank.
RC-Rank belongs to the category of methods applying point-wise approach.
To the best of our knowledge and according to [4] , the algorithm works on
the similar basis as MART algorithm, i.e. it is a boosting algorithm that is
using the idea of multiple additive trees. However, the major difference is in
the type of decision trees that are used by the algorithm. While MART uses
regression trees, RC-Rank makes use of oblivious decision trees.

1.1.2.3 MART

MART (Multiple Additive Regression Trees, a.k.a. Gradient boosted regres-
sion tree) [5] is an approach utilizing a boosted tree model in which the output
of the model is a linear combination of the outputs of a set of regression trees.

7



1. State-of-the-art

MART can be trained to minimize any general cost (classification, regression,
ranking), however, underlying model upon which MART is build is the least
squares regression tree.

Since MART belongs to the family of boosting algorithms, it runs a several
rounds of boosting and in each step there is a regression tree added and its
weight is determined. The final scoring (ranking) function is defined as follows
in (1.1), where N denotes number of trees, αi denotes weight of the i-th tree
and fi( ~xj) represents output from the tree to given input.

FN ( ~xj) =
N∑
i=1

αifi( ~xj), (1.1)

Pair-wise approach

In this case Learning to rank problem is approximated by a classification
problem learning a binary classifier that can tell which document is better
in a given pair of documents. The goal is to minimize average number of
inversions in ranking.

For each pair of documents, it returns a label determining relative relevance
of the pair, whether the first document should be ranked above the second
one or vice versa.

1.1.2.4 RankNet

RankNet, proposed by [6], employs a simple probabilistic cost function (relat-
ive entropy), as a loss function and gradient descent as an algorithm to train a
neural network model. They use the idea of [7] (RankSVM) to train the model
on pairs. However, the trained ranking function maps to reals, since it would
be computationally slow to rank items on the pair basis. It means, that docu-
ment pairs are used as learning instances but then only single documents are
evaluated during the ranking process. The approach can be used with many
underlying algorithms. [8] used neural networks because of its flexibility ([9]
claims that two layer neural network can approximate any bounded continuous
function) and efficiency in a test phase (compared to kernel methods).

Let (A,B) be a pair of samples, P̄AB a target probability of sample A
being ranked higher than sample B, oi = f(xi) and oij = f(xi) − f(xj), the
cross entropy cost (loss) function is then defined in (1.2).

Cij = C(oij) = −P̄ij − (1− P̄ij) log(1− Pij) (1.2)

Mapping from the outputs to probabilities is provided by a logistic func-
tion (1.3).

Pij =
eoij

1 + eoij
(1.3)

8



1.1. Learning to Rank algorithms

And thus resulting function Cij becomes

Cij = −P̄ijoij + log(1 + eoij ) (1.4)

This cost function (slightly modified for the neural net purposes) is then
optimized by the means of neural networks, i.e. back-propagation and forward-
propagation. The ranking model is then represented by a vector of weights
(parameters of a neural net) which have been learned.

Herbrich et al. [10] approach the problem as ordinal regression, i.e. learn-
ing the mapping of an input vector to a member of an ordered set of numerical
ranks (intervals on real numbers). The loss function used in their method de-
pends on pairs of examples and their target ranks. It is complicated to find
the interval thresholds, though.

1.1.2.5 RankSVM

RankSVM (also called RankingSVM) is an application of Support vector ma-
chine proposed by [10], which is used to solve certain ranking problems.

It is another algorithm applying pair-wise method, classifying pairs of doc-
uments and determining their relative relevance. RankSVM approaches the
ranking as ordinal regression and therefore the thresholds of the classes have
to be trained as well. RankSVM employs minimization of hinge loss function.
It also allows direct use of kernels for non-linearity. RankSVM was one of the
first algorithms with pair-wise approach to the problem.

List-wise approach

List-wise algorithms are similar to pairwise, however they consider a list-wise
structure of the ranking, trying to minimize some loss function which looks at
the ordering of all query-document pairs and not just pairs.

List-wise handles the problem directly, by considering a whole document
list as a learning sample. For example, by using all the relations among all
the documents belonging to one particular query and not only by comparing
pairs or single samples. The advantage is that the approach is natural and
straightforward and it employs all information about the documents including
their position in a particular list. The disadvantage is that it is challenging
and complicated to optimize a function defined on the whole list.

1.1.2.6 AdaRank

AdaRank is a boosting algorithm based on AdaBoost method introduced by
Jun Xu and Hang Li [11] in 2007. The algorithm repeatedly constructs so
called ’weak rankers’, trained on the re-weighted training data and finally
linearly combines to make ranking predictions.

9



1. State-of-the-art

Boosting

Boosting (see figure 1.1) is a general technique for improving the accuracies
of machine learning algorithms. The basic idea of boosting is to repeatedly
construct ’weak learners’ ht at each round t by re-weighting over the training
queries and form an ensemble of weak learners such that the total performance
of the ensemble is ’boosted’. Freund and Schapire [12] have proposed the first
well-known boosting algorithm called AdaBoost (Adaptive Boosting).

Figure 1.1: Boosting model

AdaRank is also one that tries to directly optimize multivariate perform-
ance measures, but is based on a different approach. AdaRank is unique in
that it utilizes an exponential loss function based on IR performance measures
and a boosting technique.

Algorithm

In this section, the algorithm AdaBoost, which can optimize a loss function
based on the Information Retrieval performance measures, will be introduced.

The objective of the algorithm is to maximize the ranking performance
measure on the training data (see Algorithm 1), where E represents any gen-
eral performance measure (MAP, NDCG, WTA).

10



1.1. Learning to Rank algorithms

input : S = {(qi, di, yi)}ni=1, and parameters E and T;
output: Output ranking model: f(~x) = fT (~x);
Initialize P1(i) = 1

m ;
for t = 1, . . . , T do

• Create weak ranker ht with weighted distribution Pt on training data
S;

• Choose αt

αt =
1

2
ln

∑m
i=1 Pt(i){1 + E(π(qi, di, ht), yi)}∑m
i=1 Pt(i){1− E(π(qi, di, ht), yi)}

• Create ft

ft(~x) =

m∑
i=1

αkhk(~x)

• Update Pt+1

Pt+1(i) =
exp{−E(π(qi, di, ft), yi)}∑m
j=1 exp{−E(π(qj , dj , ft), yj)}

end
Algorithm 1: AdaRank

AdaRank takes a training set S = {(qi, di, yi)}mi=1 as input and takes the
performance measure E (in this case NDCG) and the number of iterations T
as parameters. The algorithm runs T rounds and at each round it creates a
weak ranker ht(t = 1, . . . , T ). Finally, it returns a ranking model f which is a
linear combination of the weak rankers.

At each round, AdaRank maintains a distribution of weights over the quer-
ies in the training dataset which is denoted at round t as Pt and weight on
the ith training query qi at round t as Pt(i). In the very beginning, AdaRank
sets equal weights to the queries. At each round, it increases the weights of
those queries that are not ranked well by the model created so far, denoted as
ft. As a result, the learning at the next round will be focused on the creation
of a weak ranker that can work better on the ranking of those ’hard’ queries.

1.1.2.7 LambdaMART

LambdaMART [6] is a method combining two different approaches. Firstly
MART (section 1.1.2.3) that is based on boosted regression trees, and LambdaRank
that uses Neural nets, gradient descent method and the idea of λ’s.

Lambdas (λ’s) can be understood as rules defining how to change the ranks
of documents in a ranked list in order to optimize the performance. This is

11
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different from other approaches that just define how to change the ranks of
documents based on the performance measure (which can be a problem using
certain measures, e.g. WTA).

According to [4] the LambdaMART is considered as state-of-the-art LTR
algorithm.

1.2 Evaluation metrics

In order to measure the quality of a search engine, some evaluation metrics are
needed. Similarly to other machine learning problems, it is necessary to decide
how the performance of the final model will be evaluated. In many machine
learning methods, the objective function which is being optimized during a
learning phase is the same as the final measure evaluating the resulting model.
For example, Mean squared error (MSE) can be used in both cases, as an
objective function during the training of a regression model and when the
performance of the resulting model is being evaluated.

Unfortunately, Learning to Rank is not the same case. Since a LTR per-
formance measure involves sorting and it is non-smooth, it cannot be differen-
tiated and thus it is very challenging to optimize the measure directly. Only
a very few algorithms actually optimize the performance measure directly.
Therefore, it is important to distinguish between an objective function and a
performance measure in LTR.

Furthermore, ranking web documents is very subjective task so it is almost
impossible to correctly determine which document permutation is better than
another. Let us take a look on the short example. Consider we have two
different rankings of four documents d1, . . . , d4. First ranking (document per-
mutation) is defined as follows:

π1 = ((d1, 0); (d3, 1); (d4, 1); (d2, 0))

and second one:

π2 = ((d1, 1); (d3, 0); (d4, 0); (d2, 1))

Second position in the tuple denotes document relevance (0 means irrelevant,
1 means relevant). For the first sight we can consider the task as a very
difficult even for human because we do not know if it is more important to
have relevant document at the first position in the ranking list, however to
have relevant document at the last position as well (π1 case) or it is better to
have relevant documents at second and third position (π2 case).

Part of evaluation models can handle with multi-graded relevance, part of
them can handle just with a binary relevancy. Nevertheless there are two main
category of the evaluation (performance) models with different approaches.
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1.2.1 Position model

Position-based model assumes that user interacts (clicks) with the document
(URL) in the list under two conditions: first, it is relevant and second, it is ex-
amined, where the examination probability is dependent only on the position
on the document in the ranked list (it is not influenced by any other document
in the list). It means that it is more likely that the first document in the list
will be clicked than the eleventh document because the probability of exam-
ination is much lower at 11th position. The position model is implemented,
for example, by NDCG or MAP measures.

1.2.1.1 Winner Takes All (WTA)

Very simple and clear evaluation measure is WTA measure which is defined
as follows:

WTA(f ;D,Y ) =

{
1 : the top document of the list is relevant
0 : the top document of the list is irrelevant

where f is the ranking function, D is a set of documents and Y is a set of
relevance labels corresponding to the documents in the set D. There are only
two possible outcomes of WTA. Either it is 1 or 0. The value depends only
on the document that is ranked as the very first document in the ranked list.
If the first document is relevant, the value of WTA is 1. It is 0, otherwise.

1.2.1.2 NDCG

Normalized Discounted Cumulative Gain (NDCG) measures the performance
of a recommendation system based on the multi-graded relevance of the re-
commended entities. It varies from 0.0 to 1.0, with 1.0 representing the ideal
ranking of the document–query pair. NDCG has got following rules:

DCG(f,D, Y ) =

m∑
i=1

G(y(dπf (i)))disc(i) (1.5)

where G is a increasing function called the gain function, disc is a
decreasing function called the position discount function, and πf is the
result of ranking list given ranking function f .

IDCG(f,D, Y ) = max
π

m∑
i=1

G(y(dπf (i)))disc(i) (1.6)

NDCG(f,D, Y ) =
DCG(f,D, Y )

IDCG(f,D, Y )
(1.7)
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The most common implementation of the gain function G is set to
G(z) = 2z − 1 and discount function (disc) is set to

disc(z) =
1

log2(1 + z)

if z ≤ C, and disc(z) = 0 if z > C (C is a fixed integer).

1.2.2 Cascade model

The cascade model is an extension of the position model. The cascade model
assumes a user scans through ranked search results in order, and for each
document, evaluates whether the document satisfies the query, and if it does,
stops the search.

Apart from position model, the probability of interaction with the docu-
ment di also depends on the documents that have been ranked above di and
the relevance grades of those documents. It means that if there is a perfect
match on the first position of a retrieved list of documents, it’s not fully im-
portant how relevant the document on the further positions are, because the
needs of the user would be satisfied by the top ranked document and the
probability of further examination is rapidly decreasing. On the other side, if
there are not really relevant results at the top of the list then the importance
of the ranking on further positions is increasing.

1.2.2.1 Expected Reciprocal Rank (ERR)

ERR is a state-of-the-art performance measure developed by [13]. First, we
need to model how likely it is that a given document will satisfy a given user
query. Let we have 6 different grades from 0 to 5, with 0 meaning irrelevant
and 5 meaning highly relevant. These are translated into probabilities of the
document satisfying the search by mapping a grade k to:

G(k) =
2k − 1

2kmax
(1.8)

Expected reciprocal rank is just the expectation of the reciprocal of the
position of a result at which a user stops. Suppose for a query q, a system
returns a ranked list of K documents d1, . . . , dK , where the probability that
document k satisfies the user query is given by the transform of the editorial
grade G(k) (1.8) assigned to the query-document pair. If we let s be a random
variable denoting the rank at which we stop, the metric is the expectation of
1
s ,

ERR :=
K∑
k=1

1

k
G(k)

k−1∏
i=1

(1−G(i)). (1.9)

14



1.3. Commonly used (text) signals

Chapelle showed in [13] that ERR can be easily adjusted to be computed
in O(n), even thought a naive way how to compute ERR has complexicity of
O(n2).

1.2.2.2 Seznam Rank (SR)

SR is a performance measure used by Seznam.cz company. The measure
takes into account only the top 20 documents for each query, i.e. it is SR@20
by default (see 1.2.2.3). The performance score for each query is given by
following equation:

SR = min

(
1,

20∑
k=1

wpos(k) · wrel(y
(
dπf (k)

)
)

)
, (1.10)

where wpos(k) is the weight given by the position k (specifying that top

document are more important than bottom documents), y
(
dπf (k)

)
is a rel-

evance grade of the document ranked at the kth position and wrel(y) is the
weight according to the relevance grade y. The values given by (1.10) are
summed over the top 20 documents and the lower value is saved - either 1 or
the result of the summation. The weights wpos and wrel are secret constants
provided by Seznam.cz in range < 0.0; 1.0 >.

1.2.2.3 Top K documents (@k)

There are measures (e.g. ERR, NDCG) that can be computed based only on
top k elements of the ranked list. This type of setting can be marked by @k
at the name of the measure, specyfing that measure will be computed based
just on the first k elements.

That makes sense for the particular tasks. For example, if we know the
exact number of displayed ranked documents in advance so it is pointless to
evaluate such documents are not visible at the result page.

1.3 Commonly used (text) signals

In this section we will discuss the state-of-the-art signals for full-text relevancy
search. First of all we will define and describe main category of the full-text
relevancy signals, and then we will focus just on the text signals for the rest
of this work.

Unsurprisingly the signals (features) are very important part of the task of
learning LTR algorithms with meaningful evaluation metric value (i.e. NDCG,
ERR, etc.). The signals are kind of secret spices for a lot of research teams
around the world, such as Google, Microsoft, Facebook or Seznam (in the
Czech republic). Therefore it is very difficult to collect at least part of them.

15



1. State-of-the-art

The best opportunity how it is possible to get some intuition into the signals
are public competitions provided by big companies.

For example Yahoo! Learning to Rank Challenge [14] gave to the com-
petitors just an overview of the features released in these datasets. They
could not gave specifics of how these features were computed (because of
above-mentioned reasons), nevertheless they provided a high-level description
instead, organized by feature type.

Within this research we have divided the features, according to [14], into
the main following categories with very brief introduction, although we will
analyze and experiment only with the text signals afterwards.

Web graph These features tries to determine the quality or the popularity
of a document based on its connectivity in the web graph. A famous example
is PageRank [15] introduced by Co-Founder of Google, which is basically based
on the web graph propagation with the number of inlinks and outlinks. Other
example could be features that include distance or propagation of a score from
known good or bad documents.

Document statistics This type of features is dependent only on the doc-
uments itself. It includes some basic statistics of the document such as the
number of words in various fields. This category also includes characteristics
of the url, title or headers.

Document classifier Several classifiers which are applied to the document,
such as language, main topic, quality, type of page (e.g. navigational). Main
goal is to classify document in these fields and then the results compare with
query result.

Query Features that help in characterizing the query type: number of terms,
frequency of the query and its terms. These features are dependent only on
the queries.

Text match The most important and the biggest type of features, which
is also used in this work. Text match uses for one thing content from the
document and for another thing content from the query and try to find a
matches between them. The basic features are computed from different section
of the document (title, body, headers or url).

The match score can be either just a counts (e.g. number of occurrences in
the query, the number of missing query terms or the number of extra terms)
or can be more complex such as BM25.

Finally, there are also included proximity features try to quantify how far
in the document are the query terms, or how far is the whole document and
query (e.g. in the cosine similarity).
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Topical matching These features find similarity between query and doc-
ument list at the topic level, instead of the aforementioned word level. This
can be done for instance by classifying both the query and the document in a
large topical taxonomy.

Click Click features are kind of different approach try to employ the user
feedback, most importantly the clicked results. For a given query and docu-
ment, there are computed different click probabilities (i.e. probability of click,
first click, last click, long dwell time click, etc.) If the given query is rare, these
clicks features can be computed using similar, but more frequent queries.

1.3.1 Text signals

Since the work deals just with text signals, we will describe just the text signals
in the following section. That means only the signals that were computed
either from document texts or query texts, or, especially from both at once.

1.3.1.1 Google text signals

Google is considered as a state-of-the-art among web search engines so there
is an assumption that its signals for full-text relevance are state-of-the-art as
well. Unfortunately there is not complete, or even confirmed list of features
used by Google so a lot of researchers tried to predict at least some of them.
According to [16], where it is published list of 200 potential relevance signals,
we will describe the most promising and such that satisfy above-mentioned
definition of text signals:

• Query Token in Title Tag

• Query Token Appears in H Tag

• Query Token is Most Frequently Used Phrase in Document

• Content Length

• Query Token Density

Denotes how many words from document matched with query tokens
divided document content length.

• Latent Semantic Indexing Query Token in Content (LSI)

LSI keywords (see 1.3.1.4) help search engines extract appropriate mean-
ing even from words with more than one meaning.

• LSI Query Tokens in Title and Description Tags

• URL Length
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• Query Token Appears in URL

Notwithstanding the above list there is no doubt that Google also uses the
following advanced techniques as a text signals.

1.3.1.2 Vector space model

Vector space model (VSM) is very often used for document and query rep-
resentation in information retrieval and other tasks of natural language pro-
cessing thanks to its simplicity. In this algebraic model there are documents
or queries represent as points in n-dimensional space, where every dimension
means one word from dictionary. That means we have K n-dimensional vec-
tors di = (w1, w2, . . . , wn) for K documents in corpus.

Values in the n-dimensional vector can be set to just binary values in order
to presence word in document, or it can represents more complex information
(e.g. TF (term frequency) - in this case we can call this model bag-of-words,
TF-IDF (see 1.3.1.3)), etc.)

This document representation has obviously many drawbacks, first it does
not take into account orders of document in this model , second there is
a lot of zeros in the vector, because average document contains reasonably
smaller number of words than size of dictionary, and finally it is very difficult
to compare query and document in such a high dimensional space (that is
phenomenon called curse of dimenzionality 1).

Signals from VSM In order to create signal from the query and document
representation in vector space model is needed arbitrary distance function
to compute query - document similarity. Value of the signal then represent
distance from the query and document. There is an assumption that closer
vectors in VSM are more similar than farther ones.

Suitable distance function for this task is the cosine similarity since we
want to measure angle between two vectors instead of Euclidean distance
which would not work for different sized document and query. Cosine simil-
arity S(d, q) between document d and query q is defined as follows:

S(d, q) =
d ∗ q
‖d‖‖q‖

(1.11)

There is a lot of models based on VSM. In the same manner can be created
signals from more sophisticated VSM model such a LSI or LDA. The only one
condition on the same dimensionality of document and query is required to
be done.

1Curse of dimenzionality refers to fact that with growing dimension grows exponentially
length of the space in which the document are and therefore all documents are separated by
the same distance.

18



1.3. Commonly used (text) signals

1.3.1.3 TF-IDF

TF-IDF [1], short for term frequency-inverse document frequency is a weight-
ing scheme assigns to term t a weight in document d given by:

tf -idft,d = tft,d ∗ idft (1.12)

where tf denotes term frequency and idf denotes inverse document fre-
quency. The weight has following properties:

• highest value when t occurs many times within a small number of doc-
uments (thus lending high discriminating power to those documents);

• lower value when the term occurs fewer times in a document, or occurs
in many documents (thus offering a less pronounced relevance signal);

• lowest value when the term occurs in virtually all documents.

1.3.1.4 Latent semantic indexing

Latent Semantic Indexing [17] is a technique that projects queries and docu-
ments into a space with latent semantic dimensions. In the latent semantic
space, a query and a document can have high cosine similarity even if they do
not share any terms, that means LSI overcomes two of the most problematic
constraints of classical bag-of-words VSM: (I) synonymy 2 and (II) polysemy
3. Synonymy is often the cause of mismatches in the vocabulary used by the
authors of documents and the users of information retrieval systems.

We can look at LSI as a similarity metric that is an alternative to word
overlap measures like TF-IDF. The latent semantic space that we project
into has fewer dimension than the original space. LSI is thus method for
dimensionality reduction.

Latent semantic indexing is the application of a particular mathemat-
ical technique, called Singular Value Decomposition or SVD, to a word-by-
document matrix. SVD (and hence LSI) is a least-squares method. The
projection into the latent semantic space is chosen such that the representa-
tions in the original space are changed as little as possible when measured by
the sum of the squares of the differences.

We can represent each dimension at the new vector space as a linear com-
bination of the word from dictionary. For example dimension di could be
represented as (2.4∗”car”+1.8∗”bus”+1.3∗”motorbike”+ . . .) which would
stand for a vehicle topic.

LSI assumes that there is some underlying or latent structure in word
usage that is partially obscured by variability in word choice. A truncated

2syntactically different words that have similar meanings
3syntactically the same words that have more than one meaning
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singular value decomposition (SVD) is used to estimate the structure in word
usage across documents. Retrieval is then performed using the database of
singular values and vectors obtained from the truncated SVD. Performance
data shows that these statistically derived vectors are more robust indicators
of meaning than individual terms.

1.3.1.5 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA), presented by David Blei et al. [18], is
a generative model trying to automatically discover topics that documents
contain. In more detail, LDA represents documents as mixtures of topics
that produce words with certain probabilities. It assumes that documents are
produced in the following manner that we decide on the number of words N
according to Poisson distribution and choose topic mixture for the document
according to Dirichlet distribution [19] (let us consider there are two different
topics and we pick vehicle topic with 1

4 probability and animal one with 3
4

probability).

Assuming this generative model for a collection of documents, LDA then
tries to backtrack from the documents to find a set of topics that are likely to
have generated the collection. [20]

1.3.1.6 Semantic Hashing

Figure 1.2: Semantic hashing

Semantic hashing, developed by G. Hinton researcher team [21], is another
approach to create signals with latent (semantic) representations. Basic in-
tuition about semantic hashing describes following Figure 1.2. Documents
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are mapped into memory addresses in such a way that semantically similar
documents are located at nearby addresses. Documents similar to a query
document can then be found by simply accessing all the addresses that just
slightly differ with define similarity function.

Semantic hashing is based on Deep learning algorithms, especially Stacked
Denoising Autoencoders (SDA) (see 1.3.1.6), transform high dimensional word-
count vector (for instance TF-IDF vector bag-of-words) to latent dimensional
vector with lower number of dimension.

The main advantage of this approach is used nonlinear transformation, so
there is not such restriction as in case LSI, which is linear method so it can
only capture pairwise correlations between words.

Stacked Denoising Autoencoders (SDA) First for definition of SDA
we have to describe principle of Autoencoders. Autoencoder [22] is a three-
layer neuron network 1.3 trying to encode and then subsequently decode input
through hidden (middle) layer to the same output as input. There is a one
condition that input layer and output layer has to have got the same size.

Figure 1.3: Model of Autoencoder

The key point of this approach is that the middle layer has less number
of neurons than I/O layers so the neural nets has to find some hidden repres-
entation that does not loss any information during the encoding / decoding
stage.

Second the idea behind ”Denoising” Autoencoders (DA) is simple. In
order to force the hidden layer to discover more robust features and prevent
it from simply learning the identity, we train the Autoencoder to reconstruct
the input from a corrupted version of it. That means the DA is a stochastic
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version of the Autoencoder. Intuitively, a denoising Autoencoder does one
extra thing in addition to classic Autoencoder: try to undo the effect of a
corruption process stochastically applied to the input of the auto-encoder.

Finally Stacked Denoising Autoencoders is a neural network consisting
of multiple layers of sparse Autoencoders in which the outputs of each layer
is wired to the inputs of the successive layer. Following this manner we can
create very deep neural network which is able to encrypt arbitrary input vector
to meaningfully smaller dimension size.

1.3.1.7 Simhash

Simhash [23] is completely different approach from the Semantic Hashing (sim-
ilar name is just a coincidence), which is currently commonly used to detect
near-duplicate web documents during web crawling. Although the algorithm
itself is based on hashing functions that are generally built so that identical
files or blobs of data share the same hash and arbitrarily different blobs create
entirely different signature, simhash tries to make different approach and it
assumes that similar documents will have also similar hashes (that’s why it is
called simhash).

Principle of Simhash is essentially very simple. Given list of words from
document D = {w1, w2, . . . , wn} we create hash by arbitrary hash function
H (e.g. MD5 128b) H(D) = {H(w1), H(w2), . . . ,H(wn)} so we have every
single word represented by 128 bit hash. Then we iterate over all particular
bits through the words from given list and then set 1 if there is more words
which has 1 at the particular position, or set 0, otherwise. Figure 1.4 shows
intuition about creation of Simhash for three different documents with 7 words.
Dark square denotes one-bit, white square denotes zero-bit.

Figure 1.4: Principle of the Simhash creation
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Chapter 2

Analysis and design

This chapter describes the complete analysis and design of a system for the
creation of new text signals for full-text relevance. First of all we will provide
description of available datasets (2.1), second we introduce our feature quality
evaluation system (2.2), from the very beginning phase of creating features
through evaluation to the final stage printing results. Third we will describe
created text signals (features) (2.3) that were evaluated afterwards. Finally
we will describe design of our query expansion system (2.4).

2.1 Datasets

Datasets for information retrieval, as well as for other machine learning tasks,
are used for training and evaluation machine learning model. In this case
we use private datasets provided by Seznam.cz to find and evaluate new text
signals and publicly available dataset LETOR [24] to compare own imple-
mentation of the AdaRank with other LTR algorithms.

2.1.1 Seznam Datasets

We have divided Seznam datasets to two different category. First one is called
feature dataset that contains query–document lists with baseline signals used
by Seznam.cz. Second dataset is more text buffer than classic dataset and it
contains just text information about the documents from feature dataset.

2.1.1.1 Feature dataset

Format of the feature dataset is displayed in a well arranged way on a Figure
2.1. Every single row in the dataset represents query–document pair which has
assigned relevancy label and feature vector. Specifically every row r respects
standard structure of SVM light [25] format:

r := <relevance label> qid:<qid_value>
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<key_1>:<val_1> ... <key_n>:<val_n> # <query_tokens>

<doc_url> <doc_hash> <doc_age> <query_doc_id>

Dataset provided by Seznam.cz contains circa 45 thousands of queries and
more than 2 millions of query-pair documents. That means that average
number of documents per query is equal to 33.45 which corresponds to the
other different public dataset.

Figure 2.1: SVM light format

Every query–document pair contains list of anonymised feature set that
serve just as the baseline for comparison with the new ones. One reason why
we have only anonymised feature set is obviously for the security purposes.
Another reason is that Seznam.cz did not want to have any influence on our
own research.

Table 2.1: Baseline signals provided by Seznam.cz

Description Number of features ID ranges

Query signals 55 100 - 163; 894 - 924

Main link signals 9 600 - 608

Document signals 41 609 - 649

Feedback signals 14 758 - 771

Text signals 11 773 - 783

Mixed signals 25 733 - 757

Other signals 249 650 - 732; 784 - 893; 925 - 979

All 404 100 - 979

Used 130 100 - 649; 758 - 783; 894 - 924

Nevertheless Seznam.cz ensures description for feature ranges so we do
know approximately type of each signal with given ID. The Table 2.1 intro-
duces these types and its basic statistics. We can see that there were total
of 404 signals, however we use just 130 - category ”Other signals” contains
experimental and redundant signals which were not recommended to use by
Seznam.cz.
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The most important section are the text signals since the main goal of this
work is to improve full-text relevance by the text signals so we want compare
our new signals especially with these. The values of ID ranges are important
for experimental results in Chapter 4, as it serves to identify the individual
baseline signals.

Query statistics We have performed some computations over the dataset
and focused also on the queries. Following graph 2.2 shows query length
distribution at the dataset so we can see that queries are relatively small.
Average query length is equal to 2.41 and there is more than 10 thousands
queries with just one token.

Figure 2.2: Query length distribution

Feature dataset proprocessing Within preprocessing of the feature data-
set we have removed experimental and duplicated signals from the dataset as
mentioned above so we worked with 130 different baseline signals provided by
Seznam. Complete preprocessing process is showed at Figure 2.3. The stage
called ”Preprocessing” includes the signal selection and normalization to zero
mean and unit variance. Subsequently there were created three baseline fea-
ture dataset; first one with all used signals, second one with just eleven text
signals and last one with all non-textual signals - that means complement of
the text dataset.

2.1.1.2 Content dataset

Content dataset contains metadata and text data from the web document with
total size of 600 GB and millions of documents. Structure of the dataset is in
Google Protocol Buffer [26] format which provides fast read even very huge
data. The dataset includes connections between web document via inlinks
and outlinks in addition to the texts from document content.
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Figure 2.3: Schema of feature dataset preprocessing

Nevertheless for the purposes of this work we have focused only on these
(meta)data:

• textual content from the document

• average word length for given document paragraph

• average anchor text length for given document paragraph

• number of divs before given paragraph

• number of tags inside a paragraph

• number of tags before before a paragraph

• document size

Content dataset preprocessing Within content dataset preprocessing
was needed to select only the documents for which we had baseline signals at
the feature dataset. Pre-selection phase was particularly important because
of computation time and memory requirements.

On these pre-selected documents we have gathered information from doc-
ument content, title, headers (that means text from H tags ), url and com-
bination all together. These data are really important because it serves to
compute a lot of new signals.
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Moreover for every texts were applied sets of text preprocessing methods.
This means that for every above-mention section (i.e. content, title, . . .) from
document were applied stemming (two-phase) and lemmatization, which led
to the fact that several text sources were created. We prepared 20 differ-
ent textual sources to create new signals from the document (variation of 4
preprocessing methods and 5 document sections).

2.1.2 LETOR dataset

LETOR [24] is a package of benchmark data sets for research on LEarning
TO Rank, which contains standard features, relevance judgments, data parti-
tioning, evaluation tools, and several baselines.

Specifically, LETOR contains two main datasets. The first one LETOR3.0
was released in 2008 and it uses Gov web page collections and older OHSUMED
data collections. While second one LETOR4.0 is totally new release. The
datasets respects the same format as the dataset from Seznam.cz therefore it
is really easy to use both with the same process schema.

Unlike the Seznam datasets, we use LETOR to compare own implement-
ation AdaRank LTR algorithms with others and do not use to create new
features. This is because we do not have content dataset for this query -
documents.

2.2 Feature datasets evaluation

Feature datasets evaluation is designed that it is easy to test and add new
text signals to datasets. Figure 2.4 visualize all concept and schema of the
evaluation system and following paragraphs describe particular stages deeply.

Figure 2.4: Feature quality evaluation schema
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Append new features is a phase in which a set of given new features
is appended to the base dataset. The dataset can be every dataset which
respects SVM light format. In our case the base dataset denotes one of the
aforementioned preprocessed feature dataset provided by Seznam.cz. Due to
the structure of the SVM light format it is really easy to provide it and the
only one requirements for a new feature is to respect the same SVM format
(which is defined as follows pair separated by dash <key>:<val>).

Dataset preprocessing covers classical normalization to zero mean and
unit variance and also dataset division to train, validation and test dataset
in the ratio of 60:20:20. Moreover there is a dataset file conversion to binary
format for faster evaluation in the following system stages.

Evaluation is the most interesting and the most important part of this fea-
ture evaluation system. At this stage there is carried training set of Learning
to rank algorithms, specifically was designed follows:

• LambdaMART

According to the [4], it is state-of-the-art LTR algorithm

• RcRank

Algorithm which is used by Seznam.cz.

• AdaRank

Own modificated implementation.

Every LTR algorithm is design to run in parallel and use all three (train,
valid, test) dataset in standard machine learning manner. After the train these
model there is evaluation phase that includes following evaluation measure:

• NDCG@10

Representant of the Position model evaluation measure.

• ERR@10

Representant of the Cascade model evaluation measure.

• SR@20

Evaluation measure currently used in Seznam.

Visualization phase serves just to show what kind of distribution the new
signals have.
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2.2.1 Signal importance

Thanks to the aforementioned evaluation model we are able to determine if
the new dataset is better or worse than baseline. Nevertheless we would not
be able to determine which new signal from the dataset is the most important
and has the most discriminative power.

This task is typically treated by decision trees. The relative rank (i.e.
depth) of a feature used as a decision node in a tree can be used to assess the
relative importance of that feature with respect to the predictability of the
target variable.

Let us consider following assumption that features used at the top of the
tree are used contribute to the final prediction decision of a larger fraction of
the input samples. The expected fraction of the samples they contribute to
can thus be used as an estimate of the relative importance of the features.

Hovewer this approach using decision trees has meaningful drawbacks.
Let there are two signals s1 and s2. It may indeed happen that signal s1
never occurs in any split because it leads to splits that are slightly worse, and
therefore not selected, than those of some other variable s2. Nevertheless, if
we remove s2 and construct new tree, s1 may now occur prominently within
the splits and the resulting tree may be almost as good as the original tree
with signal s2. This is called masking effect [27].

Random forest are able to overcome the problem of masking effect by its
principle. The algorithm is briefly described in Chapter 1, nevertheless the key
point is that during the construction of the decision tree, in every split, the
set of signals is subsampled in a random manner. Thanks to randomization,
masking effects are reduced within forests of randomized trees. Even if there
are two very similar signals s1 and s2 as in the case above, there is still a
chance for slightly worse signal s1 to be chosen as a split if s2 is not selected
within the signal subsampling.

2.3 Used signals

This section describes designed signals we test and compare in our implemen-
ted evaluation system. We divide the signals to three main category. First
category is called handcrafted features and covers features mainly inspired by
meta-data from content dataset and also by publicly available Google text
signals for information retrieval. Second one is based on Vector space model,
which was transformed to different spaces, especially TF-IDF, LSI and LDA.
The signals are then created as a cosine distance between query vector and
document vector. The last category covers ”semantic” features which was
experimentally designed and based on Deep learning and Simhash algorithms.
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Name Type

Average length of anchor texts through all paragraphs Document

Average number of DIVS in front of every paragraph Document

Document length Document

Average number of tags through all paragraphs Document

Average number of words through all paragraph Document

Average length of the words Document

Average number of tags in front of every paragraph Document

Query token is the most frequent word from document Query / Document

Query token is the most frequent word from document content Query / Document

Query token is the most frequent word from document title Query / Document

Query token is the most frequent word from document URL Query / Document

Query token is the most frequent word from document headers Query / Document

Query token is in TOP 5 frequent word from document Query / Document

Query token is in TOP 5 frequent word from document content Query / Document

Query token is in TOP 5 frequent word from document title Query / Document

Query token is in TOP 5 frequent word from document headers Query / Document

Query token is in TOP 5 frequent word from document URL Query / Document

Query token is in TOP 10 frequent word from document Query / Document

Query token is in TOP 10 frequent word from document content Query / Document

Query token is in TOP 10 frequent word from document title Query / Document

Query token is in TOP 10 frequent word from document headers Query / Document

Query token is in TOP 10 frequent word from document URL Query / Document

Number of query tokens in document Query / Document

Number of query tokens in document content Query / Document

Number of query tokens in document title Query / Document

Number of query tokens in document headers Query / Document

Number of query tokens in document URL Query / Document

Inverted best match token in document Query / Document

Inverted best match token in document content Query / Document

Inverted best match token in document title Query / Document

Inverted best match token in document headers Query / Document

Inverted best match token in document URL Query / Document

Query token density in document Query / Document

Query token density in document content Query / Document

Query token density in document title Query / Document

Query token density in document headers Query / Document

Query token density in document URL Query / Document

Table 2.2: Handcrafted signals
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2.3.1 Handcrafted signals

We provide list of all handcrafted signals at Table 2.2. The first seven hand-
crafted signals in the table are dependent only on the document metadata that
means it does not matter on particular query. These signals are directly taken
from metadata content dataset. Nevertheless, rest of handcrafted signals is
crafted from lemmatized document content itself and it is dependent on query
and on document as well.

All these signals are self-explanatory except Query Token Density and In-
verted Best Match Token in Document that require at least a brief description.
The first mentioned signals is computed as follows. Let cd is a document word
count and qd is a number of the words from document that are occurred in
query as well at the same time. Query token density QTD is then equal to:

QTD =
qd
cd

(2.1)

Inverted Best Match Token IBMT is computed for given query q =
{q1, . . . , qn} with n query tokens and document d = {d1, . . . , dm} with m
document tokens sorted in descending order by its frequency as follows:

IBMT =
1

minm1,...,mmdm ∈ q
(2.2)

2.3.2 Vector space model features

The entire process of generating signals is quite complicated so the best way
how to introduce this process it is its visualization to the scheme. The scheme
(see Figure 2.5) covers six different stages from crafted document text from a
content dataset to creation of new signal.

First there is text processing which covers such a preprocessing method
as tokenization (provided by Seznam), lower casing, lemmatization and stem-
ming. From the preprocess text we create dictionary from different positions
of document (content, URL, title, headers, all together) that it is pruned to
different sizes. Main reason why we prune these dictionaries is that some al-
gorithms and transformations need to have input with lower dimension (e.g.
neural networks or LSI/LDA). Pruning also serves as a removing stop words
thanks to filtration of over-frequent words. Subsequently we create corpus
via each document parts and dictionary size. The corpus has bag-of-words
structure that means that for each document we have list of word ID (crafted
from dictionary) and its frequency.

Corpus transformation covers transformation typically from bag-of-
words model to more complex vector space models. List of transformations is
follows:

• TF-IDF
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Figure 2.5: Scheme to create new VSM signals

• LSI

We perform different transformation with different number of topics.

• LDA

We perform different transformation with different number of topics.

After the transformation we are able to compare these document vectors
with given query vector for instance in cosine similarity measure therefore we
create so called similarity matrix representing distance between query and
document. We assume that closer vectors are more similar.

2.3.3 ”Semantic” signals

Group of these signals covers both Semantic hashing and Simhash. On the
one hand VSM signals and ”Semantic” signals overlap each other because
both groups are kind of semantic signals and try to find some latent space of
document and queries. Nevertheless Semantic hashing and Simhash requires
different preprocessing and treatment in general, so we decided to create spe-
cial category.
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2.3.3.1 Semantic hashing

It is designed and proposed several variants of the signals produced by Se-
mantic hashing. The main problem that needed to be resolved is a very
high dimension of query / document vectors. It is impossible to learn such a
high-dimensional input layer of deep neural networks. The way to tackle this
problem is to reduce input dimension on the acceptable value in thousands.

First option how to reduce the dimension of document / query vectors is
to prune its dictionary. Original paper, which introduces Semantic hashing,
describe dictionary pruning to TOP 2000 the most frequent word in docu-
ments. This variant has a major drawback that we loose a large part of the
information.

Another approach how to reduce vector space dimensionality is so called
Word Hashing [28] and so called ”average Word2Vec” [29] which we describe
in following paragraphs.

Word Hashing is an efficient way how to reduce the dimensionality of
the bag-of-words term vectors. It is based on letter n-gram. Given a word
(e.g. wood), we have to first add starting and ending marks to the word
(i.e. #wood#) and consequently we break the word into letter n-gram (e.g.
letter 3-grams: #wo, woo, ood, od#). Finally, the word is represented using
a vector of letter n-grams.

There is obviously problem with collision; that means two different words
have the same vector of letter n-grams. Nevertheless the collisions are pretty
rare and according to [28] there is negligible collision rate of 0.0044% for
sample dictionary with dictionary size equal to 500 thousands and letter n-
grams with n = 3. Moreover they were able to reduce the dictionary to
dimension equal to 30 thousands which means almost 16 times lower dimen-
sion.

Average Word2Vec This approach to reduce dictionary dimensionality is
based on Word2Vec algorithm. Word2Vec was developed by Mikolov as his
dissertation [30] in 2013. Mikolov found out that synaptic weights between
input and hidden unit in the neural net, which is trying to predict following
word for given sequence of words, represent n-dimensional vector with inter-
esting properties. For our task the most important one it is that if there are
two words with relatively similar meaning there is relatively small distance in
between as well. Another interesting property is that we can specify dimension
size of word2vec algorithm in advance.

Therefore we can interpret each word in document with arbitrarily large
dimensions. The paper [29] shows that we can interpret even whole document
just by averaging all words word2vec representation from document with reas-
onable results.

33



2. Analysis and design

Finally we get low-dimensional representation for each document in corpus,
moreover with predefined size n.

2.3.3.2 Simhash

Principle of Simhash signals is simply based on Simhash algorithm. We pre-
process both the documents and queries and then for each query and document
create appropriate simhash. Due to the use MD5 hash algorithm we repres-
ent all documents and queries by 128 dimensional space and therefore the
resulting simhash has dimension equal to 128 as well. Finally we compare
simhash of document and query by cosine similarity measure which is used as
our feature.

2.4 Query expansion

In the context of web search engines, query expansion involves evaluating a
user’s input (what words were typed into the search query area, and sometimes
other types of data) and expanding the search query to match additional doc-
uments. Query expansion involves techniques such as (I) finding synonyms of
words, (II) finding all the various morphological forms of words by stemming,
(III) fixing spelling errors and automatically searching for the corrected form
or suggesting it in the results and (IV) re-weighting the terms in the original
query.

At this work, we focus only on finding synonyms part. Considering the
fact that average query has 2.4 query tokens, it is reasonable idea to somehow
expand these queries to make the query vector more dense. There is an as-
sumption that if we will be able to represent each query with multiple tokens
we would be able to more precisely predict its similarity with respect to a
given set of documents.

As already mentioned in the paragraph about Word2Vec, the vector rep-
resentation is able to find semantically similar words to arbitrarily given word.
We try to train the Word2Vec model on our document corpus and then for
each token from query find TOP5 the closest ones. Our hypothesis is that the
set of closest vectors (tokens) should be semantically the most similar words
which corresponds with finding synonyms.
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Chapter 3

Realization

This chapter provides a detailed description of the means that were used
during implementation. First we briefly describe used computational external
resources, second we provide information about used programming languages
and external libraries and finally we provide insight into the implementation
details of our work.

3.1 Used computational sources

Due to the fact that we had available data on the order of gigabytes, it was
more than practical to use some external computation sources. For the pur-
pose of this work we use MetaCentrum [31] resources. MetaCentrum Virtual
Organization operates and manages distributed computing infrastructure con-
sisting of computing and storage resources owned by CESNET as well as a lot
of co-operative academic centers within the Czech Republic.

3.2 Used programming languages

3.2.1 Python

For implementation was used programming language Python which is com-
monly used in the data mining algorithm field. Furthermore, Python provides
a lot of libraries for very easy and efficient computations over the matrices,
especially Numpy, that provides comparable time efficiency with the pure im-
plementation in C language. Moreover it is ideal programming language for
prototyping and experimenting.

3.2.2 Bash

We use interpreted programming language Bash to create jobs on Meta-
Centrum. Jobs are relatively small scripts that work as controllers. Common
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structure of these jobs is follows:

1. it allocates appropriate computational resources (CPUs, RAM, HDD)
to a given python program;

2. it copies input files from storage to assigned computational node;

3. it runs appropriate program itself;

4. it copies output files from the computational node to the user storage

3.3 Used external libraries

Scikit-learn [32] is an open source machine learning library for the Python.
It provides various classification, regression and clustering algorithms and its
use is extremely straightforward. We use this library to compute and visualize
signal importances, its implementation of the regression trees used in our
AdaRank and many other utils functions.

RankPy [33] provides efficient implementation of the LambdaMART al-
gorithm, which is the state-of-the-art LTR algorithm. We use this library
also to read traditional SVM-light dataset format and convert it to query -
document objects.

RankLib [34] is a library of learning to rank algorithms implemented in
Java. Currently several popular algorithms have been implemented, we use
implementation of RankSVM, ListNet and classic version of AdaRank.

Gensim [35] is very useful open-source tool for topic modeling, text trans-
formation and computing document vs query similarity developed by Řeh̊uřek
as part of his PhD thesis. Gensim includes implementation of TF-IDF, LSI,
LDA, deep learning with Google’s word2vec and much more algorithms using
in natural language processing.

Theanets [36] package provides tools for defining and optimizing several
common types of neural network models. It uses Python for rapid devel-
opment, and under the hood Theano provides graph optimization and fast
computations on the GPU. Usage is similarly straightforward as in case of
Scikit-learn library.
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3.4 Implementation

During the whole implementation we used Gitlab repository which is based on
GIT and provided by our university. It served as a distributed revision control
system and private backup storage as well. We were able to share our code
in different places, for example in different local computers, MetaCentrum
storage discs, etc. which was a huge advantage of this system.

The biggest part of our implementation is dataset preprocessing itself,
which covers several separate scripts. Most scrips is composed of two files.
First is script itself and covers script functionality, second one is so called
”run script” containing CLI 4 for interaction with the external environments
and launch the script.

3.4.1 Feature datasets evaluation system

The purpose of this system is to measure dataset quality and compare it with
other datasets. Whole system is represented by benches of bash scripts which
are configured to run on MetaCentrum with arbitrary parameters. To run
example script test new signal we can use for instance these command:

qsub -v BASE=base_text_features,STANDARDIZE="-s",

SIGNALS_DIR=handcrafted,TYPE=all test_new_signal.sh

Qsub command executes a new job on the MetaCentrum and parameter v
defines the input variables for the script. BASE denotes base dataset, STAND-
ARDIZE sets whether we want to standardize the new tested signal, SIG-

NALS DIR defines directory containing the tested signals in format <key>:<val>,
and finally TYPE determines in which mode we want to run the script.

The script itself has three different modes:

• prepare

Due to the fact that the dataset evaluation by individual LTR algorithms
takes even tens of hours, there is a possibility to run only part of the
process. This mode creates a new extended dataset with new signals,
normalize signals, transform dataset to binary form and finally computes
signal importance by the Random Forests.

• eval

This mode evaluate the extended dataset on set of LTR algorithms. We
assume that we ran Prepare mode before, so all prerequisites are already
created.

4Command line interface
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• all

This mode combines both previous. It internally runs prepare mode first
and then runs eval mode.

3.4.1.1 Evaluation measures

Within the implementation of our evaluation system we use the NDCG evalu-
ation measure provided by Rankpy library, nevertheless we had to implement
own ERR and SR measure. Our implemented version of these measures were
then integrated into the library as well for better usage. Moreover, we obtain
secret parameters from Seznam to adjust SR measure which is not publicly
available.

3.4.1.2 Provided results

Each test of the new signals provides several result files for each LTR algorithm
separately. First type of these files is so called ”configures” files that contains
all parameters defined for particular algorithm in particular test. Second there
is saved the LTR model itself to re-use the same model for different signal test.
Third we provide output file for each evaluation test that contains particular
training phases, training and evaluation errors for each round and the test
error at the end of this output file. Finally there is signal importance files
that is described in following paragraph.

3.4.1.3 Signal importance

Signal importance is implemented as a python run script with CLI using
RankPy library to import input dataset with given tested signals to standard
object query / document form and regression random forests, implemented
in scikit-learn library, to compute signal importance. Within the script there
are two different outputs. First, output in the form of a tabular listing and
secondly graphic output in graph form.

3.4.2 Semantic hashing

Implementation of Semantic hashing is divided to two stages. First stage
is preprocessing which are implemented word hashing and average word2vec
methods. Second one covers implementation of Semantic hashing itself.

3.4.2.1 Preprocessing

To preprocess high dimension corpus to the lower one we implement two
types of preprocessing. Within these preprocessing we use lemmatizated cor-
pora. Implementation of average word2vec and word hashing is located at the
same scripts. We use Gensim word2vec implementation which is optimized
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in Cython 5 and parallelized for faster execution. There is also easy scalab-
ility and several adjustable parameters such as number of iteration, size of
word2vec vectors and minimal word count which reduces the words that are
almost absent in the training corpus.

3.4.2.2 Algorithm

To implement semantic hashing, especially to construct stacked denoising au-
toencoders, we use theanets library. It simply allows to adjust several para-
meters such as the size and structure of the neural network, the possibility of
adding noises, etc.

Our script has several adjustable parameters:

• number of layers (int)

This parameter represents the depth of the created network. The depth
is measured from the input layer to the middle layer.

• middle layer (int)

The size of the middle layer, this parameter practically features the size
of latent output representation.

• hidden noise (float)

The level of noise added to the hidden layer of the created network.

• input noise (float)

The level of noise added to the input layer of the created network.

• batches

The batch size to accelerate the training phase.

• optimize

Inner parameter of theanets library. It defines what type of neural net-
work learning will be chosen. Layerwise is a default option, that means
the neural nets is learned layer by layer by RmsProp sequentially.

The RmsProp method uses the same general strategy as Stochastic
Gradient Descent (SGD), in the sense that all gradient-based methods
make small parameter adjustments using local derivative information.
The difference here is that as gradients are computed during each para-
meter update, an exponential moving average of gradient magnitudes is
maintained as well.

5Cython is a compiled language that generates CPython extension modules. These
extension modules can then be loaded and used by regular Python code using the import
statement. It is actually a Python to C source code translator that integrates with the
CPython interpreter on a low level.
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Due to the fact that theanets library handle with dense numpy matrix
it is impossible to train all data at the same time. We have implemen-
ted ”batch” training which divides the input data into smaller chunks
and provides sequentially several training phases that means the neural
network is continuously updated.

3.4.3 Simhash

We implemented own Simhash algorithmus according to [37]. Unless the ori-
ginal Simhash which uses just TF weighting for each word in document, we
use TF-IDF weighting implemented by Gensim library. To hash every single
word to MD5 128b structure we employ standard python hashlib library that
provides several hashing functions.

3.4.4 Query expansion

Implementation of query expansion use Gensim’s word2vec algorithm and try
to find the TOP 5 closest word to a given token from query. Within text
preprocessing the query tokens are lemmatized. The script is parallelized by
dividing the input file into several smaller parts - chunks. Each chunk is
placed into a queue to be processed sequentially by individual threads. This
functionality is covered by joblib python library.

Output of this script is a feature dataset, which is extended by the word2vec
”synonyms”.

3.4.5 AdaRank

We have implemented own modified version of AdaRank algorithm which we
prepared for the extension of the RankPy library.

Principle of the algorithm is already described in the research chapter,
nevertheless unless the classic implementation of AdaRank algorithm where
is used just basic linear weak ranker, this implementation introduces shallow
regression trees as the weak ranker. We use regression tree implemented in
the scikit-learn library.

Moreover, within this work were implemented two approaches of updat-
ing data distributions P . The first one is updated by dataset re-sampling
according to a weighted distribution Pt+1 every boosting round t. The second
implementation weights the dataset over the queries more straightforwardly
through the parameter weight samples from Scikit-learn library during a
learning the weak ranker each round t.
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Chapter 4

Experiments

In this chapter we show our experimental results. First we compare our im-
plementation of AdaRank algorithm with the other LTR algorithms. Second
we provide evaluation results of designed signals - how good the features are
in comparison to baseline signals provided by Seznam.cz.

4.1 AdaRank experiments

It has been conducted several experiments to compare our implemented AdaRank
performance with another learning to rank algorithms. One of the compared
algorithm is state-of-the-art – according to Yahoo! Learning To Rank chal-
lenge, LambdaMART, that combines regression boosting tree and neural net-
work approaches. Most of the best results were achieved by using LambdaM-
ART algorithm in this competition. Furthermore, these experiments present
AdaRank performance results in compare to different tuning parameters which
are based on our implemented regression trees as a weak ranker. Table 4.1
shows all the parameters and its testing values.

Table 4.1: Tuning parameter set for the MQ2007 dataset

parameters values

max depth 1, 2, 3, 4, 5, 6, 7
min samples split 2, 4, 6, 8, 10, 12, 14, 16
max leaf nodes None, 2, 4, 6, 8, 10, 12, 14, 16
NDCG cut off 1, 5, 10

4.1.1 Experiment Settings

As already mentioned, LambdaMART was selected as baseline in the exper-
iments, because it is the state-of-the-art learning to rank method. Further-
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more, for the lowest bound of ranking documents was chosen so-called ’Ran-
domRank’ which represents basically random documents shuffling. Thanks to
this algorithm we can see how many times is our implementation better than
random ranking of documents.

For AdaRank, the parameter T was determined automatically during each
experiment. Specifically, when there was no improvement in ranking accuracy
in terms of the performance measure during a x rounds, the iteration stops
(and T has been determined). The parameter x can be chosen dynamically by
one of the input parameter. Another parameters (see Table 4.1) for Regression
tree weak rankers have been manually chosen depending on the dataset.

4.1.2 Experiments with the MQ2007 dataset

In this experiment, the dataset MQ2007 has been used. MQ2007 is only one
part of the LETOR4.0 datasets [24] that is provided by Microsoft research
group. The MQ2007 consists of 1700 queries and 70k documents (approxim-
ately 40 documents per query), but the dataset is divided to the 5-fold cross
validation partitions. Each partition consists of training dataset, validation
dataset and test dataset. These experiments were conducted for all 5 folds
and compared afterwards.

Every row in the dataset represents a query-document pair and its struc-
ture is classical SVMlib format. The first column is relevance label of this
pair, the second column is query id, the following columns are features, and
the end of the row is comment about the pair, including id of the document.
The larger the relevance label, the more relevant the query-document pair is.
A query-document pair is represented by a 46-dimensional feature vector.

First part of the experiments is focused on the AdaRank tuning paramet-
ers, such as maximal depth of regression tree, minimal count of samples

to split tree nodes, maximal number of leaf nodes created during the training
phase and the last one is cut off in evaluation measure, in this case NDCG
measure.

(a) Maximal depth (b) Maximal leaf nodes

Figure 4.1: AdaRank - parameters - NDCG evaluation measure

The results reported in Figure 4.1a shows meaningful dependency between
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accuracy and max depth parameter. More complex tree (our weak ranker)
through deeper structure of tree means better results. We can see the biggest
gap between depth equals to 1 and depth equals to 2, that is relatively evident
because a tree with depth equals to 1 provides only linear separability.

Figure 4.1b shows very similar correlation, in this case complexity of tree
is represented by maximal leaf nodes parameter, now it is evident that tree
with more leaf nodes is more complex.

Figure 4.2: NDCG on the test set for different values of NDCG cut off para-
meter

Another experiments prove that the smaller cut off parameter (cut off
means we are interested just in the first k items from ranked list) provides
worse results. The experiments result is given in Figure 4.2.

Figure 4.3: Number of iterations depending on the NDCG cut off parameter
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Very interesting results are given in Figure 4.3 and 4.4. We can see that
number of iteration is quite small in compare to results in AdaRank which
has been implemented by Jun Xu and Hang Li [11]. This implementation
converged up to 60 iteration independently on the NDCG cut offs. In the
Figure 4.3 we can see slight growth for smaller cut off, but it is not considerable
gap. In the implementation of Jun Xu and Hang Li is presented learning curve
with over than 300 iterations, that means growth over than 4 times more. It
could be consequence of using different weak ranker since they use really trivial
one.

Figure 4.4: Learning curve of AdaRank algorithm

Experiment results which are showing the AdaRank results for different
folds of the MQ2007 dataset are given in Figure 4.5. For this results there
was chosen AdaRank configuration according the previous experiments which
gives the best results on this dataset. We can see that results for cut off NDCG
equals to 1 gives unexpectedly high results. It could happen as a result of the
unstable nature of NDCG@1. AdaRank algorithm consists a lot of random
effects and during NDCG@1 is really important every change in ranking set
- because we are interested only in the value of first document. Nevertheless,
the results show that there is practically no difference between NDCG@1 and
NDCG@5 in the cross validation fold of dataset. Furthermore, the results for
NDCG@10 are far higher than the others.

The last experiment compares a few learning to rank algorithm with
AdaRank algorithm on the cross validate fold of the MQ2007 dataset. Results
of an algorithm RandomRank (represents really naive approach) is provided
only for comparison with real (non trivial) rankers. We can see that results
of particular rankers are almost the same for this dataset.

We investigate the dependencies between particular parameters of weak
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Figure 4.5: AdaRank NDCG results for different folds of MQ2007 dataset

Figure 4.6: Comparison of ranking accuracies for the MQ2007 dataset

ranker and NDCG measures and prove that more complex regression tree as
a weak ranker of AdaRank algorithm provides two main benefits compare to
trivial weak ranker. The first one is the higher speed of convergence (a smaller
number of iterations) and the second one is the better results measured in
NDCG evaluation measure. Nevertheless it is expected that the same results
will be given for another evaluation measure, specifically for the MAP or ERR
measure.

We also show (see Figure 4.6) that choice of the learning to rank algorithm
is not the key aspect for ranking documents. Much more important seems to
be the feature selection from the documents and datasets itself. The following
section will pursue the testing of analyzed and designed new text signals.
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4.2 Baseline signal datasets experiments

As already mentioned in chapter 2, we divided the feature dataset with baseline
signals provided by Seznam.cz into the three subdatasets. First dataset con-
tains just text signals, second one only non-text signals and the last one in-
cludes all baseline signals.

In this experiment we compare the quality of those subdatasets via several
evaluation measures, especially NDCG@10, ERR@10 and SR@20, and via
several LTR algorithms (RcRank and LambdaMART).

(a) RcRank (b) LambdaMART

Figure 4.7: Signal dataset comparisons

In the figures 4.7a and 4.7b we can see there is just a negligible quality
gap between non-text signal dataset and all signal dataset in the all of tested
evaluation metrics. That means that text baseline signals do not bring any
improvement to relevance ranking. Moreover we can observe significantly
worse evaluation results for text signals itself in compare to non-text or all
signals.

4.2.1 Baseline signal importance

The all baseline signals are anonymized therefore we do not know the exact
meaning of particular signals. Nevertheless as we already provided in Table
2.1 we know at least approximate signal type for given ID ranges.

Signal type Number of signals

Query signals 2

Main link signals 1

Document signals 2

Feedback signals 8

Text signals 7

Table 4.2: Representation of groups in TOP 20 the most important signals

Following result tables and graphs will contain only the ID of the indi-
vidual baseline signals. First graph in 4.8 shows relative importances across
the all 130 baseline signals. We can see that there are three really important
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signals, however, at least about half of the signals has considerably high im-
portances as well. Table 4.2 provides frequency representation for each signal
groups. Surprisingly we can see that seven of them are text signals neverthe-
less according to signal dataset comparisons it do not bring any improvements
by any evaluation metrics. That means text signals are compensated with dif-
ferent signals, the most likely with feedback signals, such as signals crafted
from click stream and user behavior.

Figure 4.8: Baseline signal relative importances

4.3 Global settings for signal experiments

Since next sections will provide results of experiments over the text signals we
mention general settings for these experiments.

4.3.1 LTR configurations

To evaluate text signals we use three different LTR algorithms with the fol-
lowing configuration:

• LambdaMART

These settings are recommended by rankpy library for its implementa-
tion of the LambdaMART algorithm.

– estimators = 10000

The number of regression tree estimators that will compose this
ensemble model.
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– estopping = 100

The number of subsequent iterations after which the training is
stopped early if no improvement is observed on the validation quer-
ies.

– shrinkage = 0.08

The learning rate (also known as shrinkage factor) that will be
used to regularize the predictors (prevent them from making the
full (optimal) Newton step.

– max depth = 4

The maximum depth of the regression trees.

• AdaRank

AdaRank settings have been adjusted according to previous experiments
in section 4.1.

– iteration = 100

The number of boosted rounds (iterations).

– max leaf nodes = Inf

The maximum leaf nodes in the regression trees.

– max depth = 7

The maximum depth of the regression trees.

– min samples split = 2

The minimal number of samples to split tree node.

• RcRank

To perform evaluation experiments with Seznam’s RcRank we gave the
binary executable file with the algorithm and recommended settings
which provide optimal results for given evaluation tasks. For reasons
of security we do not post these parameters publicly.

4.3.2 Evaluation configurations

For experiments with the text signals we use three different evaluation meas-
ures which evaluate all the above mentioned algorithms LTR algorithms.

1. NDCG@10

Representative of the positional model evaluation measures with cut-off
equal to 10.

2. ERR@10

Representative of the cascade model evaluation measures with cut-off
equal to 10.
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3. SR@20

Evaluation measure implemented and used by Seznam.cz. They provide
appropriate parameters.

4.4 General structure of the experiments

Since we have conducted several experiments over the all of aforementioned
text signals in Chapter 2 and each of them have very similar structure, in this
section we describe the general structure for most following experiments.

First before every experimental results we provide list of tested signals
with assigned IDs. Each extended signal is numbered from 1000 so it is easy
to determine whether the signal ID is within the baseline or it is extended
one.

Second there are showed signal importance results performed by regres-
sion random forest to compare discriminative strength of individual signals in
compare to baseline signals.

Finally, due to the large number of experiments there are displayed eval-
uation metric results with different LTR algorithms only if we found out that
the new tested signals are strong sufficiently. Moreover if the computed signal
importances are low for given set of new signals, we can assume that the values
of evaluation metrics in extended datasets by these signals do not increase at
all.

4.5 Handcrafted signals experiments

Within the experiments we divided handcrafted signals to three different
groups.

Table 4.3: Handcrafted I signals

Signal ID Signal name

1000 avgAnchorTextLength
1001 avgWordCount
1002 avgDivsBefore
1003 avgWordLength
1004 avgTagsBefore
1005 bodySize
1006 avgTagsInside

4.5.1 Handcrafted I signals

List of the signals from first group is presented in Table 4.3. The handcrafted
I signal importance are depicted in Figure 4.9, where it can be seen that
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the strongest signal represents document body size. Another good signals
according to the results from random forest seem to be average number of
tags before each paragraph in document and average number of tags inside
each paragraph in document.

Figure 4.9: Handcrafted I - Relative signal importances

Table 4.4: Handcrafted II signals

Signal ID Signal name

1000 tokens are in top 1
1001 tokens are in top 5
1002 tokens are in top 10
1003 tokens are in doc
1004 number of tokens in doc
1005 inverted best match

4.5.2 Handcrafted II signals

The second group is called Handcrafted II signals 4.4 that represents signals
dependent both on documents and on queries. Figure 4.10 shows relative im-
portance for the tested signals in compare to text baseline ones. The strongest
signal is inverted best match 2.2 and the second is number of tokens in doc.
We can see the rest of tested signals has just negligible value of importances
since it strongly correlates each other.

We conducted several other tests for this group of signals and computed
the same signals for different part of documents, such as URL, headers, titles,
content and all together. The results given in Table 4.5 show, especially for
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Figure 4.10: Handcrafted II - Relative signal importances

Number of Tokens in Doc and Inverted Best Match signal, that it is the best
choice to combine all parts from document together. In other words, the bigger
text content, the better relative signal importance we got.

Table 4.5: Handcrafted II - Comparison of signal quality crafted from different
parts of documents

Document part 1000 1001 1002 1003 1004 1005

All 0.42% 0.28% 0.24% 0.13% 1.91% 4.71%

Content 0.31% 0.26% 0.24% 0.24% 1.67% 3.99%

Title 0.45% 0.23% 0.14% 0.14% 1.61% 2.60%

Headers 0.36% 0.26% 0.22% 0.23% 1.49% 2.39%

URL 0.38% 0.26% 0.20% 0.21% 1.19% 2.12%

4.5.3 Handcrafted III signals

The last batch of tests was conducted over the Handcrafted III signals 4.6
that cover only one type of signal - Query token density in document 2.1. We
provide several experiments with different types of documents as well as for the
previous group of signals. The experimental results in Table 4.7 confirm that
the combination of all available text data gives the best relative importance
results.

Furthermore, we can see that the Query token density signal has the
highest relative importance in comparison with text baseline signals. The
graph 4.11 shows relative importances compared with all baseline signals. We
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Table 4.6: Handcrafted III signals

Signal ID Signal name

1000 Query token density

can observe that our tested signal is eleventh strongest signal according to
random forest method.

Figure 4.11: Handcrafted III - Relative signal importances compared with all
baseline signals

Table 4.7: Handcrafted III - Comparison of signal quality crafted from different
parts of documents

Document part 1000

All 10.22%

Content 7.62%

Header 5.57%

Title 5.52%

URL 4.50%

4.5.4 Complete Handcrafted signals

The final group of tests focus on all handcrafted signals and compares their
importance to each other. The results are given in Figure 4.12 on which we
can see dominance of the Document body size and Document Token Density
signals.
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Table 4.9 shows evaluation performance for several LTR algorithms learned
by different sets of signals. Text baseline dataset gives significantly better
results for all LTR algorithm and each evaluation metrics, nevertheless we
can see that our handcrafted signals have considerably better results than
results given by RandomRank that just sorts document in utterly random
order so there is an evidence that handcrafted signals can improve document
ranking as well.

For each tested LTR algorithm was monitored usage of signals during the
learning phase, so it is possible to determine the importances of individual
signals even for specific LTR algorithm. We can observe signal importances
computed for AdaRank in Table, for LambdaMART in Table and finally for
RcRank in Table. Seznam’s RcRank has own signal importance metric called
nutricity that represents how often a signal is used inside the algorithm and
how well divides documents. Seznam uses also potential which is similar
to nutricity, nevertheless unlike nutricity it describe potential value of
nutricity if the signal would had been used.

Table 4.8: Complete handcrafted signals

Signal ID Signal name

1000 tokens are in top 1
1001 tokens are in top 5
1002 tokens are in top 10
1003 tokens are in doc
1004 number of tokens in doc
1005 inverted best match
1006 doc token density
1007 avgAnchorTextLength
1008 avgWordCount
1009 avgDivsBefore
1010 avgWordLength
1011 avgTagsBefore
1012 bodySize
1013 avgTagsInside

4.6 Vector space model signals experiments

In this section we provide exhaustive results from experiments with Vector
Space Model signals, such as TF-IDF, LSI and LDA. Individual experiments
were grouped by specific models, nevertheless each tested dataset respects the
same structure of extended signals. For each experimental test we modeled
signals from different parts of documents. Specific structure is depicted in
Table 4.10.
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Figure 4.12: Comparison of Handcrafted relative importance signals

Table 4.9: Handcrafted signals evaluation results

LTR Algorithm Signal dataset NDCG@10 ERR@10 SR@20

AdaRank Text baseline 0.58062648 0.33272698 0.44164857

AdaRank Handcrafted 0.4688737 0.27236293 0.424339

AdaRank
Text baseline +

Handcrafted
0.580423 0.33423424 0.44353423

LambdaMART Text baseline 0.59855354 0.34760549 0.45648788

LambdaMART Handcrafted 0.47786243 0.27104893 0.430321

LambdaMART
Text baseline +

Handcrafted
0.59634342 0.34235239 0.45634526

RcRank Text baseline 0.59139023 0.3096874 0.43420696

RcRank Handcrafted 0.4746935 0.27685408 0.500645

RcRank
Text baseline +

Handcrafted
0.5945345 0.304534636 0.43986342

RandomRank - 0.386 0.20236293 0.392123

Table 4.10: VSM signals

Signal ID Signal name

1000 all
1001 content
1002 header
1003 title
1004 URL
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Moreover, for each VSM we found the combination of parameters bringing
the best results. There were tested parameters such as size of dictionary,
preprocessing type and (only for LSI and LDA models) number of topics.

4.6.1 TF-IDF

First experiment with the VSM TF-IDF signals is presented in Table 4.11 and
shows signal relative importance dependency on chosen pre-processing type.
We computed each preprocessing on corpuses with the same dictionary length
equal to one million words. We can observe that none pre-processing gives
the best results, further observation is that lemmatization gives better results
than both variants of stemming.

Table 4.11: VSM Signal TF-IDF - Preprocessing dependency on relative signal
importance

Preprocessing type 1000 1001 1002 1003 1004

Aggressive stemming 2.47% 1.91% 1.73% 2.29% 1.94%

Stemming 3.34% 2.51% 2.25% 3.09% 2.66%

Lemmatization 5.46% 3.10% 2.49% 3.31% 3.97%

None 6.49% 3.19% 2.19% 2.84% 4.47%

Due to the results from previous experiment we did not chose any pre-
processing method and further, we focused on the importance of the signal
depending on the size of dictionaries from which was created test corpora.
Results from this experiment are proposed in Table 4.12 and show that the
larger dictionaries then 500k words have negligible effect on the value of signal
relative importance, notwithstanding the size of dictionary is really important
parameter as signals crafted from small dictionaries have practically no relative
importance.

Table 4.12: VSM Signal TF-IDF - Dictionary size dependency on relative
signal importance

Dictionary size 1000 1001 1002 1003 1004

100k 0.07% 0.08% 0.00% 0.00% 0.00%

500k 5.38% 3.04% 2.48% 3.31% 4.00%

1M 5.47% 3.11% 2.50% 3.31% 3.96%

2M 5.49% 3.13% 2.49% 3.31% 3.95%

Figure 4.13 shows relative importances of our TF-IDF signals compared
with text baseline ones. We set the best configuration of parameters according
to previous experiments.
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Figure 4.13: VSM TF-IDF - Relative signal importances compared to text
baseline signals

4.6.2 LSI

Table 4.13: VSM Signal LSI - Preprocessing dependency on relative signal
importance

Preprocessing type 1000 1001 1002 1003 1004

Aggressive stemming 4.39% 3.91% 3.49% 4.00% 4.09%

Stemming 4.20% 3.79% 3.61% 4.33% 4.43%

Lemmatization 6.56% 4.89% 4.74% 5.83% 5.83%

None 7.92% 5.10% 4.99% 6.03% 6.41%

As in the case of TF-IDF signals we conducted several experiments for
LSI signals. First one, showed in Table 4.13, represents dependency on pre-
processing type. There is an evidence that the best pre-processing to use in
case of LSI is none pre-processing or lemmatization. Second one, showed in
Table 4.14, describes dependency on dictionary length. We can observe the
highest value of relative importances for dictionary size equal to 2 millions,
nevertheless the quality gap between 500 thousands and 2 millions dictionary
is just negligible.

The Table 4.15 refers to experiment that focuses on the dependency between
signal importance and number of topics in LSI spaces. In our experiment we
can see that the more topics gives slightly higher importance, however import-
ance gap is very small and number of topics cannot be considered as significant
parameter. There is an assumption that in the document text is much less
than 50 discriminative topics.
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Table 4.14: VSM Signal LSI - Dictionary size dependency on relative signal
importance

Dictionary size 1000 1001 1002 1003 1004

100k 0.07% 0.08% 0.00% 0.00% 0.00%

500k 5.38% 3.04% 2.48% 3.31% 4.00%

1M 5.47% 3.11% 2.50% 3.31% 3.96%

2M 5.49% 3.13% 2.49% 3.31% 3.95%

Table 4.15: VSM Signal LSI - Number of topic dependency on relative signal
importance

Dictionary size 1000 1001 1002 1003 1004

50 7.65% 5.12% 4.96% 6.06% 6.41%

100 7.92% 5.10% 4.99% 6.03% 6.41%

200 8.14% 5.17% 4.94% 6.08% 6.36%

Figure 4.15 shows relative importances of our LSI signals compared with
text baseline ones. We set the best configuration of parameters according to
previous experiments.

Figure 4.14: VSM LSI - Relative signal importances compared with text
baseline signals

4.6.3 LDA

First experiment given in Table 4.16 depicts dependency between pre-processing
type and relative importances of tested signals. The best results are provided
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by none pre-processing as in previous experiments with TF-IDF or LSI spaces.

Table 4.16: VSM Signal LDA - Preprocessing dependency on relative signal
importance

Preprocessing type 1000 1001 1002 1003 1004

Aggressive stemming 2.48% 2.12% 1.46% 2.11% 1.68%

Stemming 3.19% 2.54% 1.97% 2.89% 2.30%

Lemmatization 5.20% 3.67% 3.15% 4.49% 3.35%

None 6.30% 4.06% 2.71% 3.21% 0.70%

Table 4.17 shows signal importances for different size of dictionaries. There
was reached the same results as in case of TF-IDF or LSI signals, therefore it
is very small quality gap between dictionary size equals to a half million and
2 millions. As the best results we can then considered dictionary size equal
500k.

Table 4.17: VSM Signal LDA - Dictionary size dependency on relative signal
importance

Dictionary size 1000 1001 1002 1003 1004

100k 4.05% 4.05% 3.73% 2.95% 3.12%

500k 6.26% 5.48% 4.74% 5.88% 4.63%

1M 6.26% 5.48% 4.78% 5.87% 4.73%

2M 6.25% 5.45% 4.77% 5.91% 4.74%

Table 4.18: VSM Signal LDA - Number of topic dependency on relative signal
importance

Dictionary size 1000 1001 1002 1003 1004

50 6.80% 5.89% 4.68% 4.53% 2.86%

100 6.30% 4.06% 2.71% 3.21% 0.70%

200 6.60% 3.83% 2.60% 3.11% 0.45%

Figure 4.15 shows relative importances of our LDA signals compared with
text baseline ones. We set the best configuration of parameters according to
the previous experiments.

Table 4.19 describes results for given evaluation metrics and LTR al-
gorithms. We can see that our VSM signals with the best configurations
do not outperform text baseline signals, nevertheless our VSM signals help to
LTR algorithm to rank the documents much better than it would have been
just ranked in random way.
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Figure 4.15: VSM LDA - Relative signal importances compared with text
baseline signals

Table 4.19: Vector Space Model signals evaluation results

LTR
algorithm

Signal dataset NDCG@10 ERR@10 SR@20

AdaRank Text baseline 0.58062648 0.332727 0.441649

AdaRank VSM signals 0.4563223 0.272342 0.423435

AdaRank
Text baseline + VSM

signals
0.582312 0.325465 0.442345

LambdaMART Text baseline 0.59855354 0.347605 0.456488

LambdaMART VSM signals 0.462324 0.273435 0.435234

LambdaMART
Text baseline + VSM

signals
0.59212324 0.342326 0.452322

RcRank Text baseline 0.59139023 0.309687 0.434207

RcRank VSM signals 0.47123154 0.269834 0.472342

RcRank
Text baseline + VSM

signals
0.59234234 0.310234 0.434234

RandomRank - 0.386 0.202363 0.392123

4.7 Semantic signals experiments

In this section we provide several experiments over the last group of extended
text signals. As mentioned above, within this text signal group we have created
Simhash text signals and Semantic hashing text signals.
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4.7.1 Semantic hashing

Table 4.20 assigns feature ID to semantic hashing signal. For the initial ex-
periments, in which we are finding the ideal settings of neural networks, use
only one signal at a time.

Table 4.20: Semantic hashing signals

Signal ID Signal name

1000 Semantic hashing

In Table 4.21 we can observe several tests with different parameters of SAE
neural networks. We experimented with different input unit size, different level
of noise at input and hidden layers, number of layers (counted from the input
layer to the middle (latent) layer) and size of middle units (result hashed
vector). After a series of measurements we can observe that letter 3gram
with vector input size equals to 2000, input and hidden noise equals to 15%,
number of layers equals to 3 and latent layer size equals to 128 gives the best
relative importances to text baseline signals.

Table 4.21: Semantic hashing - Relative importance with different parameters

Type
Vector

size
Noise # layers

# middle
units

Relative
importance

Letter 3gram 2000 15% 3 128 11.55%

Letter 3gram 2000 0% 3 128 11.50%

TOP freq BoW 5000 15% 3 128 11.46%

Letter 3gram 2000 15% 3 64 11.41%

TOP freq BoW 5000 15% 5 128 11.41%

TOP freq BoW 5000 15% 4 128 11.41%

TOP freq BoW 5000 0% 3 128 11.39%

Letter 2gram 2000 15% 3 128 11.38%

Letter 3gram 2000 35% 3 128 11.24%

Letter 3gram 5000 15% 3 128 11.21%

TOP freq BoW 5000 35% 3 128 11.17%

Letter 3gram 10000 15% 3 128 11.10%

Avg W2V 2000 15% 3 128 8.84%

Top freq TF-IDF 2000 15% 3 128 8.67%

Further it can be observed need to add at least a small amount of noise
during the neural network training phase. However, too much noises bring
worse results then none noise. Regarding the size of the input vector it can
be seen the best choice of size about 2000. Higher dimension of input vectors
brings worse results.
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We also have tried to reduce the size of the latent (middle) space to 64,
nevertheless the value of relative importance went down.

Figure 4.16: Semantic hashing - Relative signal importances compared to text
baseline signals

On the Figure 4.16 are displayed Semantic Hashing signal quality meas-
ured by relative importances (the best configuration according to previous
experiments) compare to text baseline signals while Figure 4.17 shows results
with semantic hashing signal in compare to all baseline signals.

Figure 4.17: Semantic hashing - Relative signal importances compared to all
baseline signals
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Following graphs show relative importances according to individual LTR
algorithms. We can see that AdaRank results (see Figure 4.18) are not so
good in compare to LambdaMART (see Figure 4.19), where our signal is fifth
strongest signal.

Figure 4.18: Semantic hashing - Relative signal importances compared to text
baseline signals according to AdaRank LTR algorithm

Figure 4.19: Semantic hashing - Relative signal importances compared to text
baseline signals according to LambaMART LTR algorithm

Figure 4.20 depicts relative importances according to Seznam’s RcRank
LTR algorithm. They use special own measures to determine which signal
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is stronger than another one. Nutricity is the real measure, which indicates
how often and how well the signals were selected during training phase of
RcRank algorithm. Potential is just a potential measure, which represents a
hypothetical signal quality if the signal would be used inside the RcRank.

Figure 4.20: Semantic hashing - Relative signal importances compared to text
baseline signals according to RcRank LTR algorithm

4.7.2 Simhash

This section is focused on the Simhash signal testing and evaluation. Table
4.22 shows Simhash signal mapping to the specific ID for better comprehens-
ibility in following charts and result tables.

Table 4.22: Simhash signals

Signal ID Signal name

1000 Simhash

Simhash signal is third strongest signal in compare to text baseline signal
with more than 11 % relative importances (see Figure 4.21) and ninth strongest
signal in compare to all 130 baseline signals (see Figure 4.22).

Table 4.23 provides evaluation results for both Simhash and Semantic
hashing signals. We computed several experiments over the AdaRank, LambdaM-
ART, RcRank and RandomRank (which is basically sorting in random man-
ner) and evaluated via several evaluation LTR measures. We can observe as
well as previous groups of signals that semantic signals do not outperform
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Figure 4.21: Simhash - Relative signal importances compared with text
baseline signals

Figure 4.22: Simhash - Relative signal importances compared with all baseline
signals

the results of the baseline. Nevertheless there is reached significantly better
results rather than trivial random ranking documents.
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Table 4.23: Semantic signals evaluation results

LTR
algorithm

Signal dataset NDCG@10 ERR@10 SR@20

AdaRank Text baseline 0.58062648 0.332727 0.441649

AdaRank Semantic signals 0.4761423 0.298534 0.435663

AdaRank
Text baseline +
Semantic signals

0.581234 0.32834 0.44023

LambdaMART Text baseline 0.59855354 0.347605 0.456488

LambdaMART Semantic signals 0.472345 0.288242 0.436264

LambdaMART
Text baseline +
Semantic signals

0.599432 0.347235 0.450455

RcRank Text baseline 0.59139023 0.309687 0.434207

RcRank Semantic signals 0.473245 0.278342 0.46894

RcRank
Text baseline +
Semantic signals

0.5902359 0.309845 0.43356

RandomRank - 0.386 0.202363 0.392123

4.8 Comparison of all generated signals

This section describes results with all generated signals in one dataset to-
gether. There were chosen just couples of the best signals (with the best
configuration) from each aforementioned signal groups and its description is
given in Table 4.24.

Table 4.24: Complete list of generated signals

Type Signal ID range

Handcrafted 1004 - 1010; 1012 - 1018

VSM 1001 - 1003

Semantic hashing 1000

Simhash 1011

We can see that the the newly added signals are re-numbered from 1000, we
added just one signal created by Simhash and Semantic hashing, three signals
from VSM, such as LSI, LDA and TF-IDF and finally several handcrafted
signals.

Figure 4.23 shows mutual relative importances of all extended signals. Ac-
cording to the graph we can consider first four signals as the most important.
It is a Simhash signal, Semantic hashing and two Handcrafted signals, more
specifically Document Token Density and Document Body size signal.

Unlike the previous figure, following ones depict relative signal importance
in compare to the different baseline signals. (See 4.24, 4.25, 4.26)
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Figure 4.23: Text signals - Relative mutual importances

Figure 4.24: Text signals - Relative mutual importances in compare to text
baseline

In the Figure 4.24 we can observe different order of importance for exten-
ded signals than was given in Figure 4.23. In compare to text baseline signals
seems to be the most important VSM LSI signal. It is because of baseline text
signals correlates with handcrafted and semantic signals.

The Importance of extended signals is relatively high in comparison to all
baseline signals (see 4.26) and without text baseline signals (see 4.25). We
can see the LSI signal in TOP 5 the most important signal ever, nevertheless
Simhash and Semantic hashing signals have relatively high importance as well.

Table 4.25 describes evaluation results over several LTR algorithms and
evaluation metrics. We can see, as in previous measurements, that our sig-
nals do not outperform provided baseline by Seznam.cz. Nevertheless a little
improvement by combining all the extended signals was reached, especially

66



4.9. Query expansion experiments

Figure 4.25: Text signals - Relative mutual importances in compare to without
text baseline

Figure 4.26: Text signals - Relative mutual importances in compare to all
baseline

NDCG@10 and ERR@10 measures have increased in comparison to just VSM
models in Table 4.19, Handcrafted in Table 4.9 and Semantic signals in Table
4.23.

Unfortunately adding our extended text signals to the baseline signals do
not increase any of tested evaluation measure. That means we could not find
any uncorrelated text signals to provided Seznam’s baseline signal dataset.

4.9 Query expansion experiments

The experimental results with query expansion are provided in following sec-
tion. As above mentioned, we have tried to expand individual queries by
Word2Vec model. We assumed that the closest vectors to given word com-
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Table 4.25: All extended signals evaluation results

LTR
algorithm

Signal dataset NDCG@10 ERR@10 SR@20

AdaRank Text baseline 0.58062648 0.332727 0.441649

AdaRank Extended signals 0.49362333 0.297134 0.43019

AdaRank
Text baseline +
Extended signals

0.58065162 0.333833 0.442523

LambdaMART Text baseline 0.59855354 0.347605 0.456488

LambdaMART Extended signals 0.50553207 0.286831 0.433017

LambdaMART
Text baseline +
Extended signals

0.59745315 0.345288 0.460368

RcRank Text baseline 0.59139023 0.309687 0.434207

RcRank Extended signals 0.507241 0.2872352 0.4409134

RcRank
Text baseline +
Extended signals

0.5924235 0.31053154 0.4329641

RandomRank - 0.386 0.202363 0.392123

puted by any distance measure represent semantically the most similar word
(e.g. synonyms).

Nevertheless our training dataset contained only one and half millions of
documents (our dataset from Seznam.cz). According to [38] there is needed to
use much larger corpora (billions of words) to train word2vec model for better
results.

Therefore, our trained word2vec model does not return satisfactory words.
We have tried to expand each query token on the top 5 closest words given
the word2vec space and for example for given query token ”myslivost” we got
semantically totally different words.

For these reasons our query expansion did not bring any evaluation or im-
portance improvements to particular signals. Nevertheless following Chapter
5 provides possible suggestions to improve query expansion.
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Chapter 5

Future work

In this section we will focus on the possibilities of further approaches to find
improving text signals relevance for full text search.

First of all it could be interesting try to use doc2vec [39] approach to
generate new text signals. Doc2vec (also known as paragraph2vec or sen-
tence embeddings) modifies the word2vec algorithm to unsupervised learn-
ing of continuous representations for larger blocks of text, such as sentences,
paragraphs or entire documents. Moreover, using this approach it would be
possible to compare document and query directly without any averaging (case
of word2vec).

Second, another suggestion to new text signal would be Supervised Se-
mantic Hashing (SSH). SSH defines a class of nonlinear models that are
discriminatively trained to directly map from the word content in a query-
document to a ranking score. Unlike LSI the SSH model is trained from
a supervised signal directly on the ranking task of interest, which accord-
ing to authors results [40] seems to be meaningful advantage. In other words,
SSH represents models in which every document-document or document-query
token pair represents independent signal. Each signal has assigned own weight
which is adjusted during the training phase. Result signal from SSH would
represent ranking value given for particular query and document from the SSH
model.

Third, as already mentioned in section 4.9 there is needed to use larger
dataset to learn word2vec model to return semantically similar words for given
query tokens. Although many public datasets is available, unfortunately we
need for this task czech datasets which are not publicly available.

Fourth, within this work we did not use any sophisticated query expansion
such as query correction, re-weighting the terms in the original query, etc.
There are also more sophisticated system to get synonyms for given query
tokens (e.g. WordNet [41]).

Finally, it could be also very interesting to combine Full-text search with
the document summarization task. We can consider the query as an user
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5. Future work

attempt to create a their subjective document summarization. Therefore there
is an assumption that if we create summarization for all documents then we
will be able to get better results with matching queries with these document
summarizations.
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Conclusion

In this work we have reviewed and analyzed major LTR algorithms and
furthermore, we implemented own AdaRank algorithm with different weak
ranker. Within experiments with the AdaRank algorithm we have showed
that the biggest limitations are found in used signals, not in the used LTR
algorithms.

Within the thesis we also reviewed and analyzed metrics for relevance
ranking and chose main three representatives of evaluation metrics to our
designed and implemented system for testing and evaluation of new signals.

Analysis and review were also performed over the commonly used text
signals known from literature. We focused mainly on text signals used by
Google search engine and semantic signals in general, such as LSI, LDA spaces,
Semantic hashing approach using Deep learning networks or Simhash which
is primarily used to detect the same documents in large text streams.

Although our designed and implemented system for testing and evaluation
of new signals consists several bash scripts prepared to be executed on com-
pute nodes in Metacentrum due to the large computing resources, its usage
is really simple and straightforward. To test and evaluate a new signals there
is needed just baseline dataset in the appropriate format and text signal file
in the appropriate format, everything else is fully automated. All scripts and
implementation are available for all staff and students from the university in
Gitlab server 6. For further information about the system follow the user
manual.

There were designed and implemented new text signals according to ana-
lysis which were tested and evaluated via our system afterwards. We have
conducted bunch of experiments that brought several interesting conclusions.
Since we divided our experiments to the three groups, we divide our conclusion
to the same three groups as well.

6available from https://gitlab.fit.cvut.cz/hnizdja2/diplomathesis
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Conclusion

Conclusions from Handcrafted signal experiments

• signals with non-binary values have typically higher importance

• the most important signals are Document body size, Inverted best match
2.2 and Query token density 2.1

Conclusions from Vector Space Model signal experiments

• Signals without any special pre-processing method have the best eval-
uation results, nevertheless lemmatization is meaningfully better than
stemming

• sufficient dictionary size is 500,000

• the best results was reached by LSI with 200 topics

• LSI and LDA outperform TF-IDF

Conclusions from Semantic hashing signal experiments

• TF-IDF input vectors is not suitable for Deep learning training since the
values are too small and neural networks do not train properly; simple
using of BoW vectors brings significantly better results

• letter ngram approach outperform classical approach to choose the most
frequent word in task of reducing input vector space

Final conclusion

Our extended text signals did not outperform provided baseline text signals by
Seznam, nevertheless combining all of these signals we got reasonable results
by all of tested evaluation measures. Unfortunately adding our extended text
signals to the baseline signals do not improve any evaluation results since we
could not find any uncorrelated signals with the baseline.

We also show (see Figure 4.6) that choice of the learning to rank algorithm
is not the key aspect for ranking documents. Much more important seems to
be the feature selection from the documents and datasets itself.
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[35] Řeh̊uřek, R.; Sojka, P. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, Valletta, Malta: ELRA, May 2010, pp.
45–50, http://is.muni.cz/publication/884893/en.

[36] Theanets 0.5.3 documentation. http://theanets.readthedocs.org/en/
latest/quickstart.html, accessed: 2015-04-05.

[37] Simhashing made simple. http://ferd.ca/simhashing-hopefully-
made-simple.html, Nov. 2012, accessed: 2015-04-18.

[38] Mikolov, T. word2vec - Tool for computing continuous distributed repres-
entations of words. Google. Available from: https://code.google.com/
p/word2vec/

[39] Rehurek, R. Doc2vec tutorial. dec 2014. Available from: http://

radimrehurek.com/2014/12/doc2vec-tutorial/

[40] Bai, B.; Weston, J.; Grangier, D.; et al. Learning to rank with
(a lot of) word features. Inf. Retr., volume 13, no. 3, 2010: pp.
291–314. Available from: http://dblp.uni-trier.de/db/journals/ir/
ir13.html#BaiWGCSQCW10

[41] Miller, G. A. WordNet: A Lexical Database for English. Commun.
ACM, volume 38, no. 11, Nov. 1995: pp. 39–41, ISSN 0001-0782, doi:
10.1145/219717.219748. Available from: http://doi.acm.org/10.1145/
219717.219748

76

http://is.muni.cz/publication/884893/en
http://theanets.readthedocs.org/en/latest/quickstart.html
http://theanets.readthedocs.org/en/latest/quickstart.html
http://ferd.ca/simhashing-hopefully-made-simple.html
http://ferd.ca/simhashing-hopefully-made-simple.html
https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/
http://radimrehurek.com/2014/12/doc2vec-tutorial/
http://radimrehurek.com/2014/12/doc2vec-tutorial/
http://dblp.uni-trier.de/db/journals/ir/ir13.html#BaiWGCSQCW10
http://dblp.uni-trier.de/db/journals/ir/ir13.html#BaiWGCSQCW10
http://doi.acm.org/10.1145/219717.219748
http://doi.acm.org/10.1145/219717.219748


Appendix A

Acronyms

LDA Latent Dirichlet Allocation

LSI Latent Semantic Indexing

LTR Learning to Rank

MAP Mean Average Precision

MSE Mean Squared Error

NDCG Normalized Discounted Cumulative Gain

SVD Singular Value Decomposition

SSH Supervised Semantic Hashing

WTA Winner Takes All
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Appendix B

User guide

This user guide contains brief description how to use particular scripts and it
provides a list of required prerequisites to run implemented system.

B.1 Prerequisites

There is a list of required python libraries to run our provided scripts:

• Scikit-learn

• RankPy

• RankLib

• Gensim

• Theanets

B.2 How to use

It is highly recommended to use our script via bash jobs placed in ”script”
folder (see C) on MetaCentrum server.

Please follow this instruction:

1. To run evaluation script with new text signal on MetaCentrum first you
need to clone our git repository to the your MetaCentrum folder.

git clone https://gitlab.fit.cvut.cz/hnizdja2/diplomathesis.git

2. After that you have to follow standard rule for running MetaCentrum
jobs. For further information please follow README file in enclosed
CD.
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B. User guide

There is still possible to use our evaluation system without an user account
on MetaCentrum, however you have to run the python scripts separately and
there is not provided any support.

B.2.1 Useful tips

To run GPU script based on Theanets library in MetaCentrum is needed to
use following command in bash jobs file:

module add cuda-x.x

Where x.x denotes actual version of Cuda library. The command import
appropriate module supporting GPU computations.
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Appendix C

Contents of enclosed CD

README............................the file with CD contents description
src.......................................the directory of source codes

implementation............................ implementation sources
create features................ implementation of a new signals
preprocessing.....................python pre-processing scripts
protobuf to vec......................python protobuffer scripts
scripts.............................bash jobs for MetaCentrum
semantic hashing ......................python deep nets scripts
lib............................................external libraries

rankpy...............RankPy: Learning to Rank with Python
theanets..........................deep learning python tools

thesis..............the directory of LATEX source codes of the thesis
text..........................................the thesis text directory

DT Hnizdil Jan 2015.pdf.............the thesis text in PDF format
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