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Peterka, Tomáš. Machine Learning in Astroinformatics Using Massively Par-
allel Data Processing. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2015.



Abstrakt

Moderńı astronomie a ostatńı oblasti př́ırodńıch věd se potýkaj́ı s exponenciál-
ně rostoućım objemem dat. Tento fenomén vedl k pr̊uniku poč́ıtačových věd do
oblasti těchto čistě př́ırodńıch věd. V př́ıpadě současné astronomie hovoř́ıme
o takzvané astroinformatice.

Tato práce je přehĺıdkou nejmoderněǰśıch paralelńıch algoritmů strojového
učeńı a jejich použit́ı na astronomických velkých datech. Sestrojili jsme klasi-
fikátory založené na hlubokých neuronových śıt́ıch schopných běžet na grafi-
ckých procesorech za použit́ı Caffe frameworku. Vyvinuli jsme efektivńı vs-
tupńı vrstvu pro Caffe modely, která je schopná pracovat s obecnými tex-
tovými soubory a má velmi intuitivńı konfiguraci. Za použit́ı klasifikátoru
jsme natré-novali dva modely podle vzorových dat. Model pro spektra je
dvouvrstvá konvolučńı śı̌t s přesnost́ı klasifikace přes 99% a pr̊uměrnou pro-
pustnost́ı 1440 MB/s.

Zdrojové kódy klasifikátoru jsou dostupné na github https://github.com/
vodev/vocloud-deeplearning a big data layer pro framework Caffe na https:
//github.com/atheiste/caffe/tree/big_data_layer

Kĺıčová slova strojové učeńı, klasifikace, hluboké neuronové śıtě, GPU,
astroinformatika, caffe
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Abstract

Modern astronomy and all natural sciences are dealing with exponentially
increasing amounts of data. This phenomena resulted in the penetration of
computer science into pure natural sciences. In the case of contemporary
astronomy, this led to the creation of a new field called astroinformatics.

This thesis is a case study of modern parallel machine learning algorithms
and their usage on astronomical big data. It resulted into deep neural network
classifiers running on graphical processors and built on top of Caffe framework.
An efficient input layer was added into Caffe so it is possible to use standard
flat files for big data. The classifier comes with two pre-trained models to fit
tabular and raw spectral data. The model for raw spectra is a two layered
convolutional network whose accuracy is over 99% and average dataflow 1440
MB/s.

The source code of our classifier is available on github https://github.com/
vodev/vocloud-deeplearning and the big data layer for Caffe framework at
https://github.com/atheiste/caffe/tree/big_data_layer

Keywords machine learning, classification, deep neural networks, GPU, as-
troinformatics, caffe
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Introduction

Motivation and objectives

Contemporary astronomy is facing a phenomena called “Data Avalanche”.
New astronomical devices measure in more complex manners than the previous
ones and thus creating more data than current techniques can cope with. This
presents a new problem when the knowledge hidden in data is sparse and can
be obtained only by sophisticated techniques. Therefore a new kind of research
methodology of contemporary astronomy was founded – astroinformatics. It is
based on systematic application of modern informatics and advanced statistics
on huge astronomical data sets. The modern approach of knowledge extraction
and data understanding, which astroinformatics tackles, is sometimes being
presented as the Fourth Paradigm[1].

Many Sky Surveys release their data to public such as Sloan Digital Sky
Survey (SDSS). Its latest dataset DR121 contains 4.3 million spectra out of
which 2.4 million are galaxies, 0.5 million quasars and 0.8 million are stars.
Every release of a new dataset is cumulative and the latest contains obser-
vations until July 2014. Another sky survey is provided by Large Sky Area
Multi-Object Fiber Spectroscopic Telescope (LAMOST), which is able to mea-
sure 4000 spectra in a single exposure because of its multi-fibre spectrograph.
LAMOST has released 4.1 million spectra in its latest data release DR22.

Of course there are new, more powerful and bigger telescopes being built.
One of them is the Large Synoptic Survey Telescope (LSST)3, set to become
operational in 2019. This telescope is expected to produce 800 panoramic
images per night, the equivalent of 30 TB of data per night. Its catalogue
should contain 50 trillions of records for a total size of 50 PB.

1www.sdss.org/dr12/scope/
2http://www.lamost.org/public/dr2?locale=en
3http://www.lsst.org/lsst/about
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Introduction

Problem statements

The recent breakthroughs in deep machine learning opened up to new possi-
bilities in classification of very complex data. Those learning methods were
improved to such a state that they are able to take advantage of modern
GPGPUs. This became possible because the (GP)GPUs are now capable of
computing with sufficient floating point precision and even contain synchro-
nization routines. Since astronomical data are very complex in their nature,
a new-type classifier could deal with them gracefully and provide both high
performance and throughput of modern GPUs.

Two common astronomical classification tasks were chosen on which we
will try new machine learning algorithms. It is necessary to select the appro-
priate machine learning algorithms which will fit the data. The first task is
celestial object categorization into galaxies, quasars and stars based on their
differences of magnitudes in several spectral filters. It is a classical machine
learning problem dealing with a small dimensional space which has been solved
by many methods so we will have comparison for accuracy. The second task is
classification of Be stars based on their spectrum. The second problem is less
explored area – high-dimensional space classification which resembles image
classification. Since the data are very specific, the amount of models which
are able to handle those data is limited.

Our aim is also to provide an efficient and versatile classifier with respect to
complexity and big amounts of data in astronomy. The resulting application
should be deployable in cloud and highly configurable so it is usable by any
observatory willing to classify their own big amounts of data.
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Chapter 1

Survey of massive parallel
machine learning algorithms

In this chapter we provide a state-of-the-art overview based on the most recent
conference proceedings and science publications. Many current applications
are using specialised FPGA chips but that is not the aim of this thesis. Our
goal is to use general purpose graphical processing unit (GPGPU) for classifi-
cation so that our methods can be reused. We will omit using massive parallel
technologies like MPI because machine learning tasks usually requires huge
data flows which is a weak spot of distributed computations.

Our survey of literature is summarised in figure 1.1 and shows dates of
publications of GPU implementations of ML algorithms. There was a tremen-
dous increase of interest in this area starting in 2005. It might be linked to
the unveiling of CUDA technology (officially) in 2006.

    2004                                  2008                                2011                              2015

Multilayer Perceptrons (forward-phase)
Oh and Jung

Self-Organizing Maps
Campbell et al.
Luo et al.

Fuzzy ART neural networks
Martnez-Zarzuela et al.

Genetic Algorithms
Wong et al.
Yu et al.

Back-Propagation (two layer)
Steinkrau et al.

Convolutional Neural Networks
Chellapilla et al.

Spiking Neural Networks
Bernhard and Keriven

Belief Propagation
Brunton et al.
Yang et al.

K-Means Clustering
Shalom et al.

Recurrent networks
Trebatický and Pospíchal

Decision Trees and Forests
Sharp

Genetic Algorithms
Langdon and Banzhaf

Neural Network based text detection
Jang et al.

linear Radial Basis Functions
Brandstetter and Artusi

Deep Belief Networks Sparse Coding
Raina et al.

Back-Propagation (three layer)
Guzhva et al.

Support Vector Machines
Catanzaro et al.

K-Nearest Neighbor
Garcia et al.

Spiking Neural Networks
Nageswaran et al.

Multiple Back-Propagation
Back-Propagation
Lopes and Ribeiro

GMPUMLib (BP, MBP, NMF and RBF)
Lopes and Ribeiro

Recurrent Neural Network
Weninger, Bergmann, Schuller

Non-negative Matrix
Factorization
Lopes and Ribeiro

Convolutional neural networks
Krizhevsky, Sutskever and Hinton

Markov Clustering
Stijn van Dongen

Caffe (convolutionalNN)
Jia, Yangqing and Shelhamer

cuNN
NVIDIA

date of publication

closed source

open source

Figure 1.1: Dates of GPU implementation of ML algorithms
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1. Survey of massive parallel machine learning algorithms

Following list is a summary of feasibility of ML algorithms for paralleliza-
tion. The most suitable algorithms appear first in the list.

1. Particle swarm optimization – Parallelism is achieved through propa-
gating global best solution slowly through neighboring particles. Even
then there is approx. 300 times speedup [2].

2. Genetic algorithms – Island model has the highest speedup factor (cca
55) [3] over CPU and scales linearly with number of GPUs.

3. Neural networks – Ease of parallelism depends on interconnection be-
tween layers, the bottleneck is the learning of fully-connected layers [4].

4. Self organizing maps – They suffer from all-to-all communication in
learning phase which can be partially suppressed by using batch learn-
ing. It will move the communication at the end of every batch resulting
in 44 times speedup [5].

5. SVM – It is possible to learn SVM in smaller batches with an iterative
version of Newton SVM algorithm. The speed-up achieved with this
technique was about 45 times [6].

6. Random forest – It is hard to efficiently implement parallel learning for
general purpose trees [7].

7. Clustering – Markovian chains and graph transformations are leading
approaches in clustering but both are hardly decomposable.

1.1 Genetic algorithms

GAs are algorithms for local search in a huge state space. The principle is
that we encode the solution of a problem into a “genome” of a gen and then
mutate gens between each other and keep only the best solutions found so far.
The algorithm consist of three phases:

• crossover – select two random genes and perform a genetic crossover
• mutation – select a random gene and mutate random parts of its genome
• evaluation – compute fitness for each gen (distance from the good solu-

tion)

As one can see GA has great potential for massive parallelization. There are
three basic types of parallel genetic algorithms [8], [9]:

• Master-slave – One single processor performs the genetic operations and
uses other processors for evaluation of individuals only. This model is
useful when dealing with a small number of processors or with compu-
tationally intensive evaluations.

4



1.2. Particle Swarm Optimization

• Island model – In this model, every processor runs an independent evo-
lutionary algorithm (EA) using a separate sub-population. The pro-
cessors cooperate by regularly exchanging migrants (good individuals).
The island model is particularly suitable for computer clusters, as com-
munication is limited.

• Diffusion model – Here, the individuals are spatially arranged, and mate
with other individuals from the local neighborhood. When parallelized,
there is a lot of inter-processor communication (as every individual has
to communicate with its neighbors in every iteration), but the commu-
nication is only local. Thus this paradigm is particularly suitable for
massively parallel computers with a fast local intercommunication net-
work.

One of the functional and general purpose implementation is done in
project GAME[10]. The genetic algorithm in GAME can be used as a stan-
dalone model or can be incorporated into MLP as a support function for
finding the best coefficients for links between neurons.

1.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is naturally decomposable local search
algorithm. The main idea is that we introduce multiple agents (particles) and
put them randomly in our state space. Those particles are evaluating the state
they are at and they keep moving with some velocity in the state space. The
direction is randomly set at the beginning but it is constantly forced towards
the best solution found so far. One can see that this forces synchronization
into the algorithm. Fortunately the synchronization can be weak here without
any harm to the speed of convergence to the best solution.

All locals searchers can be unsynchronized and still follow the latest max-
imum as it is shown in work [2] which compares CPU and GPU implemen-
tations. There are too many limitations of the traditional von Neumann ar-
chitecture which prohibit effective parallel implementation. Fortunately the
GPU architecture suits this algorithm well.

New improvements to the original PSO algorithm [11] include the notion
of unhealthiness to describe swarms or sub-swarms stuck at local optima, then
applying random mutations to the unhealthy particles’ positions.

Almost all recent GPU implementations assign one thread to each particle
which, in turn, means that fitness evaluation has to be synchronized after every
iteration. The latest version of GPU PSO algorithm brings two improvements
on how to speedup the computation. First is allocation of a thread block per
particle, each of which executes a thread per problem dimension. This way
every particle evaluates its fitness function and updates position, velocity, and
personal best for each dimension in parallel. Second is removal of the need to
store and maintain the global best in global memory. Every particle checks

5



1. Survey of massive parallel machine learning algorithms

its K neighbours’ personal best fitnesses, then updates its own personal best
in global memory only if it is better than the previously found personal best
fitness. This can speed up execution time dramatically [2].

1.3 Neural networks

Neural network can be viewed in two ways. The first one is as many nested
(non)linear functions. The second one is that neural network is a sequence
of matrices multiplications. Both views are valid and both suggest different
ways of parallelization of the problem. There is one common obstacle for
both views and that is the necessity to synchronize the results of previous
operation. This requirement is indeed weakened by “interconnection” of the
levels of computation but in the most common case there is full connection
which means that the following phase has to wait for all results from the
previous phase.

Today, most of neural networks are at least multi layer neural networks.
Only this type of network is able to solve the XOR and harder problems.
Neural networks are good candidates for massive parallelization since there has
to be as many neurons as the inputs which are usually (nearly) fully connected
to neurons in subsequent layer. The complexity of the whole structure grows
exponentially with number of hidden layers that we usually suppose to be up
to three fully-connected hidden layers.

There are many possibilities of implementing the parallel training phase
which is the most computationally demanding one. We will describe basic
ideas of parallelization mostly proposed by Krizhevsky and Yann Le Cun.

Recently there was a big boom of publicly available GPU implementations
of convolutional networks which are practically a synonym of deep neural
networks. This can be stated because the convolutional network is required to
have more types of layers than just the convolutional one. Usually there is a
max-pooling layer which de-noise feature maps and then there is always one or
more non-linear transformations in order to scale the data properly followed
by fully-connected layer to produce the right amount of outputs. Therefore
improving convolutional networks mean improving all types of neural networks
too.

The number of open source projects has increased together with popular-
ity of the deep neural networks around 2011. The most advanced technolo-
gies now are NVIDIA cuDNN, Caffe, cuda-convnet2, Torch, NervanaSys and
Facebook’s fbfft. We describe most of them in greater detail in Section 1.11.
The main leaders of research in this area are Yann Le Cun, Yoshua Bengio,
Ilya Sutskever, Alex Krizhevsky and Geoffrey Hinton.

In the scientific area there are few GPU enabled solutions. One of them
is DAME environment developed by Università di Napoli Federico II. They
have implemented an MLP using GPU with speedup value around 8 over a

6



1.4. Association analysis

sequential CPU version of similar computational category [12]. The resulting
application is called DameWare which is a whole platform for data discovery
with web UI interface, scheduler and many implemented machine learning
algorithms including the previously mentioned one.

Another interesting and brand new area (1996) of neural networks is spik-
ing neural networks [13]. They are called the 3rd generation of neurons. Those
networks do not have per-layer synchronization as classical artificial neural
networks but their neurons “fire” whenever they have enough input. Obvi-
ously this approach resembles more the real brain and therefore it is claimed
to have better accuracy in classification and decision making. Moreover spik-
ing networks take time into account and therefore it can decide on more kinds
of problems than artificial neural network. Since there is no synchronization
involved then modelling of such networks is quite straightforward either using
simple electrical circuits or GPUs.

The recent parallelization approaches are distinct for every type of layers.
The layers are viewed as separate models. The parallelization techniques are
discussed more in detail in chapter 2.

1.4 Association analysis

The association rule learning was the first data mining area that has been
implemented on special- purpose hardware (probably because it is very useful
in client classification in banking and marketing area). Unfortunately this
algorithm is not useful in our case.

1.5 Clustering - unsupervised classification

The basics of clustering algorithm is to search for similarities between the
data. That implies a lot of communication since every new unit has to be
compared with all the other pieces of data we already have.

There are many theses and articles claiming parallelization of basic SCAN
algorithm [14]. The SCAN algorithm is a clustering algorithm using core-
nodes which are well defined by two parameters ε and µ where the first one
stands for a maximal radius to search for nodes and the later one expresses
how many nodes has to be in the neighbourhood for a node to be considered
a core- node. The way to scale this algorithm is to sort edges definitions for
core-nodes labelling and then use sub-trees in the graph for actual clustering
called “linking” in case of SCAN algorithm. This algorithm supposes a graph
structure as its input. There are indeed new methods of transforming any
input data into a graph structure. We describe those in details in the sections
bellow.

7



1. Survey of massive parallel machine learning algorithms

Markov Clustering is a decomposable clustering algorithm mainly used
in bioinformatics. MCL uses two simple algebraic operations, expansion and
inflation, on the stochastic (Markov) matrix associated with a graph. The
Markov matrix M associated with a graph G is defined by normalizing all
columns of the adjacency matrix of G. The clustering process simulates ran-
dom walks (or flow) within the graph using expansion operations, and then
strengthens the flow where it is already strong, or weakens it where it is already
weak using inflation operations. The application of expansions and inflations
creates regions with strong internal flow (clusters) separated by boundaries
within which flow is absent [15].

K-Means as the original algorithm was recently extended in k-means++

by Arthur and Vassilvitskii [16]. Since their work enable parallelization and
streaming processing, many practical implementations follow. There were also
custom hardware implementations which were, for example, clustering colours
in images in realtime by generating the kd-trees dynamically on the FPGA.
Finally, Ma et al. [17] proposed a processing structure especially for GPUs
that can be efficiently utilized in a wide range of data mining algorithms, like
k-means clustering or EM clustering [18].

1.6 Classification and Regression Trees

This approach seems to be very popular in past few years. The first attempts
towards parallelization of the decision tree induction led to the proposal of
two efficient software-based solutions[18]:

1. SPRINT which handle massive datasets by changing the CART [19]
algorithm’s nature

2. SLIQ which is trying to change the way the data are stored in the mem-
ory

The SPRINT algorithm implemented the same split selection method as
the one utilized in the CART algorithm, and it is considered to be the successor
of the SLIQ algorithm. The SPRINT and the SLIQ algorithms achieved an
almost linear speedup with respect to the number of CPUs and the sample
size.

1.7 Random forest

Random forest is a classifier consisting of a collection of tree-structured clas-
sifiers {h(x,Ωk), k = 1, ...} where the {Ωk} are independent identically dis-
tributed random vectors and each tree casts a unit vote for the most popular
class at input x [20].

8



1.8. Self organizing maps

Random forests can be parallelized as shown in [21] even though the author
does not precisely follow the “random approach”. He uses dynamic sub-tree
partitioning for higher throughput. It is usable for a random forest or a tree
with high degree. Random forest is a model of many trees trained using
sub-samples of the training data such that each sub-sample contains subset
of input attributes. Thanks to this approach we obtain mostly uncorrelated
trees which we put together using ensemble method bagging. There is a lot
of active research around this method, mostly at Microsoft and Bell labs.

Parallel version of random forests has been already tried with success on
the same data as we have [22].

1.8 Self organizing maps

SOM allow sampling of a n dimensional set in a topological map of lower
dimensionality which keeps in its topology similarities between data.

The map is constituted of a set of n-dimensional structures that are called
neurons. A set of data with same dimensions (weights) as the neurons is pre-
sented to the map one by one intending to be grouped. For each showed input,
two distinct steps are made, the first is where we compute a function around
the map to discover the most similar neuron with the input according to this
function. We call this most similar neuron the Best Matching Unit (BMU).
A common function to be applied is the Euclidean distance. The second step
is where we propagate the input characteristics on the neighbourhood of the
BMU. On every neuron of the map equation 1.1 is applied

wi(t+ 1) = wi(t) + hci[x(t)− wi(t)] (1.1)

where wi is the weights vector of the neuron, x(t) is the presented input at time
t and hci is a function that decays exponentially in function of the distance
between winner neuron and the updating one. This function also depends
on a learning rate which decays at each iteration. After a group of inputs is
presented, the map should converge to the existing clusters on the data set.
In addition, the more similar clusters should also stay closer [5].

Parallel version of SOM was implemented on the same data by a bachelor’s
thesis [Lukáš Lopatovský]

1.9 Support Vector Machines

Very popular method for classification of single class (either accept or reject
the class). SVM can use linear separator of the state space or use kernel trick
to use more complex separation of the space (e.g. spherical separation). Since
the learning of SVM model requires computation of distance to each training
sample it is easy to parallelize. The input can be split into smaller chunks
which are evaluated independently and after that a reduction function is used.

9
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There are interesting parallel approaches such as using iterative learning in
order to reduce memory consumption or Newton SVM which optimize dif-
ferent than QP function as shown in work [6]. This implementation showed
performance as much as 100 times faster than sequential LibSVM.

1.10 MapReduce Framework

Finally, there are certain papers that combine software frameworks, such as
MapReduce, and hardware platforms, such as FPGA and graphical process-
ing unit (GPU), for the acceleration of data mining algorithms. It provides
programming abstraction, hardware architecture, and basic building blocks
to developers. A Rankboost algorithm was implemented in this framework,
which is an effective ranking algorithm and it is widely used in applications
which involve data mining tasks. The implementation achieved approximately
30 times better performance when compared to the performance of a CPU-
based implementation [18].

Unfortunately this technology is limited in complexity of executed code so
it would not make sense to use it on more complicated models. However the
underlying technology of distributed computing can be used to further expand
data throughput but not data parallelism.

1.11 Available technologies

We are considering only open source implementations of ML algorithms ideally
backed up by some academic publication.

1.11.1 MLlib

Increasingly popular library developed by UC Berkeley for Distributed Ma-
chine learning running on Apache Hadoop and Spark. It contains most of
the machine learning algorithms. It uses Fortran binaries to increase its per-
formance and so far it is tightly bounded to CPU architecture. This library
is in its early stage of development. It is getting popular mostly because of
industry shift to concurrent data-crunching platforms such as Spark.

1.11.2 GPUMlib

A new library still under active development. The inception of the library
was at academical grounds of Portugal in 2011 by the paper [23]. As they
claim in the paper there is no standard and easy-to-use library providing
GPU implementation of the most known machine learning algorithms. The
aim of this project is to become such a standard library. The library is written
using newest standard C++11 in combination with the latest CUDA toolkit.
The library already contains many popular models like Radial basis function,
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Restricted Bolzmann machine, SVM and many more. Nevertheless it lacks
more complicated models so there is still a lot of space for improvement.

On that note we can justify our decision not to use this library as one of
our building blocks since in our opinion the project of GPUMlib will never go
into areas of deep learning since there are many specialized frameworks for
that such as Torch, Caffe, cuDNN, NervanaSys etc.

1.11.3 cuda-convnet(2)

It’s a single purpose library implementing convolutional networks in NVIDIA
CUDA framework. It uses pure C for the model but the data feeder is written
in Python. In my opinion the documentation of data loading is insufficient
so it is hard to start with the library. After initial struggles one can find out
that there are three evolutions of the implementation. Every evolution contain
many important optimizations by Alex Krizhevsky who won many times an
international competition with this implementation.

This library is used by important CUDA machine learning frameworks
such as Caffe and Torch. There are two important sources of code. First,
the original by Alex Krizhevsky4 and its improved version5. There is a fork6

promoted by NVIDIA. It enhances the original with dropout layer and many
standard CUDA libraries.

1.11.4 NVIDIA cuDNN

The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU accel-
erated library of primitives for deep neural networks. It emphasizes perfor-
mance, ease-of-use, and low memory overhead. cuDNN is designed to be in-
tegrated into higher-level machine learning frameworks, such as the popular
Caffe, Theano, or Torch software frameworks [24].

NVIDIA claims that cuDNN accelerate Caffe convolutional layer by factor
of 1.2 – 3. They give example of AlexNet Layer 2 where the forward phase
had: 1.9x faster convolution, 2.7x faster pooling using cuDNN over their native
implementation [25].

1.11.5 Torch

An academic framework built in Switzerland. The underlying concept is Lua-
JIT which is compiled into C/CUDA code in the end. This framework contains
many machine learning functions and models and therefore it is widely used
by professionals such as Yann LeCun. The framework implements models
such as neural networks, deep convolution networks, energy-based models and

4https://code.google.com/p/cuda-convnet/
5https://code.google.com/p/cuda-convnet2/
6https://github.com/dnouri/cuda-convnet
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numerical optimization routines just to name a few. However, a substantial
amount of models are still the original implementations in C/C++ with light
wrapper around them. Torch is mainly used by Facebook for their own AI
research with NN implementations such as fbnn, fbcunn and fbfft.

1.11.6 Theano

It is a Python framework built on top of NumPy and cuDNN. Theano is an open
source project primarily developed by a machine learning group at the Uni-
versité de Montréal. Its primary aim is to compile mathematical expressions
in Python into machine code. This combines the convenience of NumPy’s
syntax with the speed of optimized native machine language [26].

The most famous Theano user is the team behind site deeplearning.org7

which promotes deep learning since 2006. We decided not to use it for its
python bindings. If we are going to implement a parallel model we need a
fine control over memory and how the parallelism is done. We would need to
change the core of Theano rather than just tweaking bits of code.

1.11.7 Caffe

Caffe provides multimedia scientists and practitioners with a clean and modi-
fiable framework for state-of-the-art deep learning algorithms and a collection
of reference models. The framework is a BSD-licensed C++ library with
Python and MATLAB bindings for training and deploying general-purpose
convolutional neural networks and other deep models efficiently on commod-
ity architectures. Caffe is maintained and developed by the Berkeley Vision
and Learning Center (BVLC) with the help of an active community of con-
tributors on GitHub [27].

Many machine learning applications are based on this framework. It is not
because of its speed, being overall average. It is because of its nice design and
ease of incorporation into existing applications. We can choose few examples
as NVIDIA DIGITS or “Brain simulator” by Keen Software House. NVIDIA
is surprisingly active in development of this framework.

Caffe started as a PhD thesis and it was released to public in September
2014. It claims to have high performance convolution and that was its main
focus – convolutional neural networks. The latest update (release 2) brought
fully-connected and recurrent layers, contrast normalization and many im-
provements to convolutional networks. The following update has promised
multi-GPU support (backed by NVIDIA itself) which makes Caffe a safe bet
for the future.

Even though it might seem that current lack of support for multi GPU is
a deal breaker it is not so. The only disadvantage is that if we want to use
many GPUs we need to write the application in distributed manner. Or even

7http://deeplearning.net
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parallel implementation is sufficient. The code on CPU side will get more
complicated but the result will be very similar as if it ran on many GPUs
natively.

1.11.8 NVIDIA DIGITS

The NVIDIA Deep Learning GPU Training System (DIGITS) is a software
built on top of cuDNN and Caffe and released to public on 14th of March 2015.
It provides user interface for controlling, monitoring and analysing model’s
runtime and structure. The biggest advantage is realtime monitoring of loss
function and accuracy, which makes it perfect for testing out new network
architectures. The other useful feature is visualisation of intermediate layers.
This feature is mostly intended for convolutional layers but can be useful in
any type of layer.

The key features are

• Visualize DNN topology and how training data activates your network
• Manage training of many DNNs in parallel on multi-GPU systems
• Simple setup and launch
• Import a wide variety of image formats and sources
• Monitor network training in real-time
• Open source, so DIGITS can be customized and extended as needed

On the other hand DIGITS is strongly bound to image data and therefore
it is of no use for us. NVIDIA claims to support generic type of data in the
future but is has not been released during writing of this thesis.

1.11.8.1 DAMEWARE Application

DAME is a data mining infrastructure specialized for mining massive data
sets. It offers complete toolset of machine learning algorithms. The main
entry point to the application is an web application called Web Application
REsource of DAME (DAMEWARE8). It can handle common astronomical
data formats such as FITS and VOTable files. In release 1.0, the first paral-
lel implementation of a machine learning model, fast multi-layer perceptron
(FMLPGA), was added. The implementation is based on the GPGPU+CUDA
environment, enabling a speedup of about 8 times. This algorithm extended
already broad collection of machine algorithms which contains

• MLP + Back Propagation
• MLP + Quasi Newton
• MLP-LEMON (Levenberg-Marquardt Optimization Network) for clas-

sification/regression
• Random Forest – for multivariate classification and regression
• Support Vector Machines (SVM)
• K-means model (through KNIME engine)

8http://dame.dsf.unina.it/dameware.html
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• CSOM (Clustering Self Organizing Feature Map) – Unsupervised Image
segmentation
• GSOM (Generic Self Organizing Feature Map) – (Clustering) based on

customized SOFM model
• SOM (feature selection) + autoPostProcessing, K-means, Two Winners

Linkage (TWL) or U-matrix with Connected Components (UmatCC)
• ESOM Evolving SOM for clustering
• Probabilistic Principal Surfaces (PPS) – feature selection

The application itself is not freely installable because it is bound to clus-
ter architecture on which it runs. There are, however, possibilities of own
extensions via pluggable user data mining models known as dmplugin client
application. We aim to create such a plug-in from our own implementation of
one or two models. This would add the second massively parallel algorithm.

We were in contact with its key developer Dr. Massimo Brescia who was
improving the application so it fit our needs. During the period of writing
this thesis DAME’s import procedure was enhanced so it accepts more than
500 columns. Furthermore the manual for MLP model has been extended
with point 18 which is necessary for successful usage of the model9. There are
ongoing improvements such as realtime error output and few more.

1.12 Performance measurements

First we would like to point out some performance metrics measured by
NVIDIA itself. We expect those metrics to be slightly optimistic but still
providing a good overview. The tested hardware was K40c which has follow-
ing configuration.

GPU 2880 cores, clocks from 745 MHz up to 875 MHz (boost)
Memory 12 GB of GDDR5 3.0 GHz, 288 GB/s, 384-bit interface
Socket PCI-E Gen3., 8 GT/s, 985 MB/s per line (total 16 lines)

CUDA Toolkit comes together with optimized libraries for mathematical
operations. Table 1.2 shows computational power and compare performance
of the libraries. The tests of CUDA libraries in version 6.5 were performed on
graphic card NVIDIA Tesla K40c, ECC ON and input data were divided into
28M– 33MB elements, input and output data were already on the device and
we exclude time necessary to create “plans”. The CPU used for the test was
Intel IvyBridge single socket 12-core E5-2697 v2 @ 2.70GHz and MKL library
in version 11.0.4.

Facebook did performance analysis of publicly available implementations
of convolutional networks. The performance report is available online[28] and
we enclose their results here for relative comparison of frameworks.

9http://dame.dsf.unina.it/dameware.html#mlpqnaman
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library problem single precision double precision

cuFFT 1D,complex 700 GFLOPS 300 GFLOPS

cuBLAS gemm 3000 GFLOPS 1200 GFLOPS

MKL gemm - 200 GFLOPS

Figure 1.2: Performance metrics by NVIDIA

implementation time forward backward

NervanaSys-16 97 30 67

NervanaSys-32 109 31 78

fbfft 136 45 91

cudaconvnet2 177 42 135

CuDNN (R2) 231 70 161

Caffe (native) 324 121 203

Torch-7 (native) 342 132 210

Figure 1.3: Showcase of relative performance of NN implementations

Our testing device, provided by Astronomical Institute of the Academy of
Sciences of the Czech republic, is an one-blade server with GeForce GTX 980
installed.

GPU 2048 cores, clocks from 1126 MHz up to 1216 MHz (boost)
Memory 4 GB of GDDR5 3.0 GHz, 224 GB/s, 256-bit interface
Socket PCI-E Gen3., 8 GT/s, 985 MB/s per line (16 in lines in total)
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Chapter 2

Scalability analysis

The only two possibilities in scalability are model parallelism and data paral-
lelism. All other options result in higher throughput but they won’t scale the
computation.

• model parallelism – different workers train different parts of the model

• data parallelism – different workers train on different data examples

In model parallelism, whenever the model part (subset of neuron activities)
trained by one worker requires output from a model part trained by another
worker, the two workers must synchronize. In contrast, in data parallelism
the workers must synchronize model parameters (or parameter gradients) to
ensure that they are training a consistent model [4].

2.1 Terms and facts

Parallelism is when the same part of a code is executed by more processing
units on one logical piece of data at the same time with implicit synchroniza-
tion of the data. Parallel processing can be achieved using threads (MPI),
OpenMP or natively on GPU. Shared memory is the most desirable state but
in case of OpenMP we can work on distributed memory as well. We can say
that parallelism is a special case of concurrency.

Concurrency (distributed computing) is the case of one or more pro-
grams processing one logical piece of data but with explicit synchronization
by messages passing. There is no implicitly shared memory, everything has to
be explicit. Indeed, concurrency can be running the same code for logically
separated data or running two different codes because it is still executing two
tasks at once but without any synchronization, which is not a requirement
for concurrency. The most common architecture is multiple services running
in distributed manner and exchanging information over (UNIX) sockets. The
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approach that is most used is MapReduce framework and its implementation
by Apache Hadoop.

Neural Networks is a sequence of (non)linear layers connected to their
successor. The connection has to be both ways because we use forward con-
nection in classification phase and backward connection in the learning phase.
The connection transmits value and multiplies it with a weight associated to
the connection. There are many types of neurons, layers and weights-update
strategies which we are going to be described briefly in the following para-
graphs.

Deep Neural Network is the most recent form of neural networks. The
term deep neural network is vaguely defined but for our purposes we will use
the definition: “Deep neural network is a sequence of layers where there are at
least two hidden layers of a different type”. Deep networks introduce special-
ized layers such as convolutional layer, dropout layer and pooling layers. Since
the best known new-type layer is the convolutional layer, then deep networks
are quite often called convolutional networks. Those two terms have vaguely
the same meaning. The old-type multilayer neural network consisted of neu-
rons with non-linear activation functions connected by weighted connections to
other neurons. Deep networks consider a layer as the smallest computational
unit and therefore connections between neurons in the old sense do not exist.
Any computation has to be done inside a layer (even weighting of inputs) and
therefore connections between layers are direct and without weights.

Fully connected layer is a layer implementing weighted connections in
deep neural networks. It creates a fully connected bipartite graph between
its input and output layers. Since every layer has to wait for the previous

Figure 2.1: Fully connected bipartite graph

one in both passes (forward or backward) the parallelization is hard. There
were many experiments to overcome the synchronization problem but non
of them was successful. The only working solution is to feed the data in
batches. Parallelization of the model is impossible because every neuron has
to communicate with all neurons from the previous layer. We have to play
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with implementation to make the communication as less resource-consuming
as possible.

Convolutional layer resembles retina in human’s eye and therefore is mainly
used in image recognition. It can deal with rotation and translation of fea-
tures in images because they are searched for separately. The main idea is to
create small classifiers for every feature and then tile this classifier all over the
image in a way that it doesn’t matter where a learned feature appears in the
image. We can even rotate the small classifiers in order to recognize not just
translation but even rotation. That would indeed lead to greater complexity
of the output. Therefore pooling layers were introduced. We describe them in
the following section 2.1. In order to teach the small classifiers, a technique
called weight-sharing is used.

The convolution itself is defined in one-dimensional space by Formula 2.1.
The formula defines output of a convolution o[n] as a multiplication of a vector
f [n] with a convolutional vector g of size M where n is a spatial index and
f [n] a slice of data from vector f centred around the index n and having the
same size as g.

o[n] = f [n] ∗ g =
M∑
u=0

f [n+ (u−M/2)]g[u] (2.1)

For example, when a convolutional network is trying to recognize faces, it
looks for eyes, nose, mouth and other facial features independently and then
combine findings of those separate elements. The combination procedure is
usually implemented as max-pooling layer. In our example in figure 2.2 the
network should obtain neural triggers for two eyes, nose and mouth which are
positioned as they form a face. If it finds such an alignment it triggers a neuron
for face at the position, which is usually implemented by fully-connected layer.
Convolutional layer’s features can be used in many ways. It does not need to
be separate elements but for example different lighting or angles of an object.

To give a better image of how the convolutional layer works we have to
consider that one feature is looked up in the whole input image. For example,
if we have an input image of size N×N and a feature of size k×k, the resulting
feature map will be of size (N − k + 1) × (N − k + 1) in case of stride = 1.
Every feature produces one feature map which has to be connected further so
it creates many parallel networks.

Therefore there are many parallel implementations from which the best
know is cuda-convnet2 by Alex Krizhevsky. Parallelization of convolutional
layer is easier than fully- connected layer because we train the same layer with
different data. There is necessary communication when the layer synchronizes
weights which is negligible compared to the computation needed for obtaining
the weights.
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Figure 2.2: Example of possible features and their maps

The convolution produces massive amount of new data. Therefore stride
was introduced to tackle this problem. Stride controls in what distant steps is
the convolution applied. For example if the stride is equal to the feature size
then two following convolutions will not overlap. If the stride is equal to 1
(which by default it is) then the convolution is moved by one pixel each time
thus overlapping as many times as the feature size.

Pooling layer is a simple layer which takes maximal/average/minimal value
from all neurons in a block. The main purpose of this layer is to denoise the
data and scale them down. Pooling is mostly used after convolution because
convolution multiply data by the factor of number of features. The variables
in settings of this layer are kernel p and stride s. Kernel defines the pooled
block size and stride the shift of kernel per step. The inputting data are scaled
down from size (X,Y ) to ((X − p)/s, (Y − p)/s).

Dropout layer randomly prevents some values from further propagation.
It is mainly an enhancement for learning and should not be used in the recog-
nition phase. The purpose is to avoid overfitting of the trained model on
trained data.

2.2 Parallelism by Alex Krizhevsky

A good example of optimizing throughput is usage of batch processing. This
approach together with very clever model parallelization is implemented in
cuda-convnet2 by Alex Krizhevsky who was leading benchmarks of convolu-
tional networks for a long time. The optimizations, he is using, are described

20



2.2. Parallelism by Alex Krizhevsky

in following sections. Those optimizations are not included directly in any
other implementation of neural networks (such as NVIDIA cuDNN or Caffe)
but the cuda-convnet2 itself is a part of Theano and Caffe frameworks so
one can benefit of that indirectly.

2.2.1 Fully connected layer

This layer is indeed the most used and the most demanding for communication.
During learning and recall phase it was observed that only 5 − 10% of the
time is actually spent on computing, while the rest of the time is used on
communicating the results. In order to scale the model we will count with
K workers (let’s say K=32) and batch processing of data in batches of size
N (e.g. N=128). Therefore we rely on model parallelism here – all workers
process the same batch of the data on different parts of the network. When
the outcome (either activation value or gradient) is computed, there are two
ways of communicating it.

• One of the workers sends its last-stage (computed on a batch of 128
examples) to all other workers. All workers then compute the outcomes
from the broadcasted last-stage and begin to backpropagate their gradi-
ents for these 128 examples (in case of training) back to the sender. In
parallel with this computation, the next worker sends its last-stage. The
main consequence of this is that much (i.e. (K−1)/K) of the communi-
cation can be hidden – it can be done in parallel with the computation
of the fully-connected layers. This seems fantastic, because this is by far
the most significant communication in the network.

• This solution is very similar to the previous one. Each worker has com-
puted the last-stage for 128 examples. This 128-example batch was
assembled from 128/K examples contributed by each worker, so to dis-
tribute the gradients correctly we must reverse this operation. The rest
proceeds as in the previous solution. This one’s advantage is that the
communication- to-computation ratio is constant in K. In the previous
solution it was proportional to K therefore it was always bottlenecked
by the outbound bandwidth of the one worker that had to send data at
a given “step”. This solution enables the use of many workers for this
task. This is a major advantage for large K.

We are free either to update the fully-connected weights during each of
the backward passes, or to accumulate a gradient and then update the entire
net’s weights after the final backward pass.

2.2.2 Convolutional layer

This optimization is very similar to the one right above but with modifications
to fit the more independent nature of convolution.
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Figure 2.3: Illustration of a convolutional layer meeting fully-connected layers

When training convolutional nets in parallel, we rely heavily on data paral-
lelism because convolutional layers communicate their intermediate outcomes
straight to one area instead of to all neurons in the following layer as the
fully-connected ones. Data parallelism means that we split the input data
between workers so that every worker has different data but trains the same
layer. Parallelization was done mainly by Krizhevsky in his papers [29] and
[4].

Again we will count with parallelization using K workers and bath pro-
cessing of size N data per batch. The ideas come from the same source as
in the fully-connected layer optimization. The convolution layer is easier to
parallelize because there is no inter-communication during computation, only
during weight update phase. The workers must also synchronize the weights
(or weight gradients) with one another so that:

1. Each worker is designated 1/Kth of the gradient matrix to synchronize.

2. Each worker accumulates the corresponding 1/Kth of the gradient from
every other worker.

3. Each worker broadcasts this accumulated 1/Kth of the gradient to every
other worker.

2.2.3 Softmax layer

A softmax layer normalizes its output values accoding to the maximal value.
The definition of softmax function is given in equation 2.2 and shows that in
order to compute the output value o at index j, the softmax function accesses
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all its input data x thus creating a synchronization point.

oj(xj) = exj/
N∑
i

exi (2.2)

To overcome the synchronization penalty, N independent logistic units,
specially trained to minimize cross-entropy, can be used to replace this layer.
This cost function performs equivalently to multinomial logistic regression but
it is easier to parallelize, because it does not require a normalization across
classes. The synchronization penalty is not an important bottleneck with only
1000 classes, but with tens of thousands of classes, the cost of normalization
becomes noticeable.

2.2.4 Asynchronous Stochastic Gradient Descent

Asynchronous SGD is an example of data parallelism. The original (non-
stochastic) gradient descent is a way to update parameters of a classifier in
such a way that it minimizes the error produced by a network. The error
function is also called loss (or energy) function 5E(Wt) where Wt are network
parameters at time t. The loss function is usually computed by a specialized
layer such as EuclideanLoss layer. Equation 2.3 describes the update of the
parameters with respect to the values of the parameters from the previous
iteration and to the learning rate α.

W(t+1) = Wt − α5 E(Wt) (2.3)

The loss function is computationally demanding and therefore we rather ap-
proximate it from a random sample of training data. Suppose we select N
random samples of n elements each. The stochastic gradient descent is com-
puted as

W(t+1) = Wt − α5 En(Wt) (2.4)

whereE(Wt) =
N∑
n=1

En(Wt) (2.5)

The asynchronism can be introduced by split those samples into mini-batches
and run those in parallel.
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Chapter 3

Design

We have designed a general purpose classifier using CUDA technology. First,
we planned to implement the classifier from scratch because there were no
publicly available implementations of parallel deep neural networks. There-
fore sections 3.6 and 3.5 contain brief description of CUDA and thorough
description of many types of neurons and layers. Due to current fast progress
in the field of deep learning a new thesis emerged and brought an efficient
implementation of cNN on GPUs called Caffe library, developed by Computer
Vision Group, Berkeley University, California[27]. Their design is very elegant
and we will describe it the following sections. We decided to build our clas-
sifier on top of Caffe as a mature technology, recently adapted by NVIDIA,
with bright future.

Our classifier is required to read various file formats and support many
types of input data. It ought to be easily deployable in cloud and scheduled
with VO-Cloud (section 3.3) job scheduler. Another important feature is a
flexible definition of neural networks. Every model has to be adjusted to fit
its input data so the classifier is also required to have either fully automatic
adoption to inputting data or really simple manual configuration.

3.1 Used technologies

One requirement is implementation using NVIDIA CUDA toolkit which fol-
lows standard C99. C++11 was chosen as the application language. It offers
modern features, speed and direct communication with CUDA routines so it
is possible to fine-tune the resulting classifier.

The solution should be platform independent. Since our technological
demands are very humble, we can get by with boost and standard libraries,
which will be merged together in C++14 specification.

The build system should be platform agnostic too. We chosen CMake
partially because it is used by Caffe itself. We even introduced the same build
flags as Caffe has, so the build configuration of both products is the same.
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3.2 Application architecture

We need to be able to seamlessly access many input formats such as CSV,
VO-tables and FITs files. Since we are using parts of Caffe library we are
designing a thin wrapper which will make deployment in cloud possible. In
order to follow “loose coupling and high cohesion” we split application into
three modules where every module exports a factory function.

Figure 3.1: Class diagram of future application

This architecture gives us the opportunity to easily extend input routines
by adding for example new source for HDFS if the application will be success-
ful.

The class Source does not need to be optimised because it is purely an
utility class to unify all possible sources. The high demands will be put on
Feeder and Solver. Feeder has to be able to handle huge input files (possibly
terabytes). Solver has to be able to efficiently update model’s parameters and
therefore implemented at least partially in CUDA.
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3.3 VO-Cloud

The final application is expected to work inside VO-Cloud. That dictates
usage of JSON configuration files and eventually implementing a deployment
script which will register our service into a master server.

VO-Cloud is a scheduling server with web interface currently being devel-
oped by a small team of students of informatics lead by Dr. Petr Škoda at
Ondřejov observatory[30]. It aims to become a whole processing pipeline for
astronomical spectra obtained from external archives using protocols specified
by Virtual Observatory standards. At the end of the transformation pipeline,
there will be a choice to select a machine learning algorithm for building a
prediction model.

3.4 Neural Network Architecture

Learning rate decay is a useful feature against overfitting of a network. It
lowers the learning rate with time. There are many ways how to implement it
but the simplest, which we are using, is called step LR decay meaning that
in every N steps the learning rate is multiplied by a factor γ < 1.

Regularisation (a.k.a. weight decay ξ ) is another technique which
prevents model from overfitting by lowering complexity of layer’s weights.
The main idea is similar to Occam’s razor in adding a constraint in order
to cut out unwanted complexity. The regularisation is performed by adding
transformed weights to the error function as shown in equation 3.1. Thereafter
the model tends to keep its weights low because they are increasing the error
function.

~Ei = ~Ei + ξ ∗ ||~w|| (3.1)

where||~w|| =

{
L1 ||~w|| = |wi|
L2 ||~w|| = w2

i

where i denotes i-th layer, ~Ei vector of partial errors.

Learning momentum helps to overcome local minima in loss function.
The network needs to keep track of historical changes to weights and take
those into account with strength s ∈ (0, 1).

Batch processing is a technique for speeding up and possibly parallelizing
the whole network. When a batch of data is sent to the network, the pa-
rameters update happens only when the batch is finished propagating. The
gradient is computed for every datum from the batch but the application of
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the gradient happens only once. That allows the gradients to be computed
asynchronously. More importantly, some layers can operate on one datum
identically as on a batch of data because there are no dependencies between a
value and the neighbouring values. For example sigmoid, hyperbolic or ReLU
transformation are simply applying their own function on a value no matter
what the value means. It can even be implemented as a in-place transforma-
tion.

Weights initialisation is commonly known to not be very important. The
default form of weights initialisation is by using a random numbers generator.
If we imagine weights as a matrix then its eigenvalues has to be close to 1.
If the eigenvalues differs greatly from 1 then the information from input will
either disappear or exponentially increase leaving nothing but noise [31].

Error contribution is a solution to the biggest problem of deep neural
networks – gradient decay. Gradient decay describes the fact that error, which
is back-propagated through layers, slowly disappears. It is caused by dividing
the error between many neurons in every layer. Caffe indeed has implemented
a solution to this problem that any layer can act as a loss contributor with
a certain ratio. Hence it is possible to train even very deep networks and
ensure that the gradient will not decay in the first few bottom layers. In the
configuration file, it is controlled by the parameter loss weight∈ [0, 1].

3.5 Neurons

Neuron is an object holding activation function and input and output value.
The types of neurons do not distinguish just by their activation function but,
as a consequence, by the method of learning and therefore capability of clas-
sifying.

3.5.0.1 Terms

Indices i, j refers to two subsequent neurons where j is the later one. Index j
can be viewed as an output neuron and i as a neuron in the hidden layer.
t is the expected output of a neuron.
y is an output of a neuron (result of it’s activation function).
x is an input of a neuron from one other neuron therefore xj is equal to yi.
wik,jl is a weight of a connection which transports value yi from the k-th
neuron to the l-th neuron in the higher level
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zjl is a total input to the l-th neuron given by

zjl =
∑
n∈N

win,jlyin

=
∑
n∈N

win,jlxjl

The first kind of artificial neuron is known as McCulloch-Pitts neuron
developed around 1943. It takes into account bias b when producing its output
z as

z = w0nb+
∑
n∈N

win,jlxjn

and has a non-differentiable binary activation function

y =

{
0 ifz < 0

1 otherwise

Learning method for this type of neuron is updating weights by input values.

∆~w = sgn(t− y) ∗ ~x

The learning method guarantees that the weights are getting always closer to
the desired weights. The McCulloch-Pitts neurons are still in use because of
how fast they can learn even with huge amount of inputs. Therefore companies
like Google are still using them.

Perceptron It is a neuron with linear, differentiable activation function
which is simple weighted sum of it’s inputs

y =
∑
n∈N

~wT~x (3.2)

with lower bound .

The learning method is based on minimising residual error E = t−y which
uses input value to update weights

∆wi = ε xi(t− y) (3.3)

where ε << 1 is a learning rate.

The formula 3.3 is a specific case of the generic backpropagation formula.
The learning method guarantees that the output is getting always closer to the
desired output. The expressibility of a network compounded by linear neurons
is unfortunately very limited. It can’t do more than a linear regression model
since the whole network can be described as a linear combination of inputs.
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Non-linear neurons They use weighted sum as input to their activation
function but the result is everything but linear. The most common functions
are

• Logistic (a.k.a. Sigmoid) o(x) = (1− e−x)−1

is the most common neuron in all networks. There are two disadvantages
compared to the others. First is that it is computationally demanding
(learning and evaluating) and the second is that it might become easily
saturated.

• Hyperbolic o(x) = tanh(x)
was introduced because it learns faster in certain cases when the data
are really distinct (for example contrasting images).

• Rectified Linear Unit (ReLU) o(x) = max(0, x)
were introduced because of their performance. They are several times
faster than ordinary logistics neuron and yet bring similar nonlinearity
into the system. Those units were introduced by Nair and Hinton [32]

• Softmax o(x)j = exj ∗ (
∑

i e
xi)−1

is mostly used as the last layer for the final output. The main reason for
that is that since it is defined as a sum the derivative of this expression
is complicated

• Dropout blocks some values from random neurons so they won’t con-
tribute to the final result. It is used to mitigate over-fitting and it is
getting on popularity.

For better reasoning about the nonlinear units we add a plot of two the most
common ones.

−4 −2 0 2 4

−
1.

0
0.

0
1.

0

input value

ac
tiv

at
io

n

sigmoid

tanh

Figure 3.2: Plot of sigmoid and tanh activations
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3.6 CUDA

Architectures of CUDA enabled cards changes with time. NVIDIA in-
troduced 4 architectures so far: Tesla (2008), Fermi (2010), Kepler (2012),
Maxwell (2014). Every architecture brought a new technology; Tesla – atomic
operations, Fermi – synchronisation routines and 3D grid of thread blocks,
Kepler – unified memory programming (pinned memory with automatic man-
agement from the side of GPU which, if necessary, transfers the memory back
and forth), Maxwell – Dynamic Parallelism (nested threads, when a device
thread can launch new threads so the thread grid can become heterogeneous).

Threads, Warps and Blocks are computational units which are controlled
by the programmer. The biggest and physical computational unit of device
is the streaming multiprocessor (SM) which accommodates usually few hun-
dreds of cores and possesses small memory called shared memory. The next
computational unit in size is a block, which is a virtual unit. There are up
to 16 blocks per SM. A programmer can demand his code to run on up to
216 − 1 blocks. The smallest units are threads. There is maximum of 1024
threads per block. Threads are scheduled in warps – 32 threads together by a
warp-scheduler. Warp share instruction counter so if one thread takes different
execution path then it has to NOP through instructions when it does not do
anything. Until all 32 threads has the same execution path, the performance
is optimal. Since Fermi architecture, there are 2 (and further architectures
have more) warp schedulers without any dependency checking between two
running warps.

Global memory is a built-in RAM in the graphic card. Fermi architecture
offers up to 6 GB of RAM with 6 lines (64b each) for reading. It is the main
and largest memory on the device. The trade-off is the speed of the memory
because it is the slowest memory on the device.

Shared memory is the own memory of each core which is used to make in-
termediate load/store operations faster. Since the third generation of NVIDIA
devices (Fermi architecture), the shared memory size is 64KB per SM. This
amount of memory is divided between running blocks so the actual available
size can be 4 – 32 times smaller. The 64KB can be split in ration 48-16
between actual shared memory and L1 cache.

Constant memory read only memory of size 64KB. Read operation from
this memory can be broadcast to group of 16 threads. We should try to
serialise any classification model into this memory. Also since it is constant
memory it is heavily cached.
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Local memory is on per-thread level. The size ranges up to 512kB.

Streaming Two independent queues that stack memory and computational
operations. We will heavily use this technology because the copy and compute
operations might take about the same time. In order to be able to use this
feature of graphical cards we need to have access to pinned memory so we can
use direct memory access.

3.7 Google Protocol Buffer

Google’s protocol buffers are serialisation format with bindings to many pro-
gramming languages. The serialised data can be stored as textual or binary
files known as protobuf files. Textual representation of the data is very similar
to JSON except it is statically typed and all relations, attributes and com-
pound types have to be declared in a definition file. The main advantage is
that parsing files according to a precompiled definition is simple thus fast. The
precompiled definition is what made efficient binary format possible. As the
name of the library suggests, it was primarily designed for protocol definitions
and therefore the basic class is called Message. The whole documentation is
available online10. Currently supported languages are C++, Go and Python.

Caffe takes advantage of protobuf’s textual and binary formats. The tex-
tual files are used as configuration files. We follow this concept and therefore
our classifier requires every model and solver to be defined in this standard
format. We keep those configurations separate from our application’s configu-
ration so it stays framework agnostic. In order to be fully framework agnostic
we have moved some options (such as running mode and numbers of iterations)
from Caffe solver definition to out application configuration. The binary files
are used for serialization of models and solvers from which we use only the
model serialization.

3.8 Caffe

Caffe is primarily a library which provides implementation of many different
layers of neural network in two codes – CPU and GPU. The biggest advantage
is that switching between those two implementations is done in runtime. No
recompilation is needed. Considering that this is such a huge advantage, this
framework was hence selected for further use. Caffe indeed comes with a few
types of solvers which can be used for training or testing but they lack the
ability to classify unknown data. A third state would be needed in addition to
TRAIN and TEST. We call the missing phase GUESS internally within our
application.

10https://developers.google.com/protocol-buffers/
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The following section describes the implementation details of the Caffe
framework. It is essential that those details are understood in order to use
and continue in developing of our classifier.

3.8.1 Caffe Blob and Synced Memory

Synced Memory is the bedrock of Caffe’s design. It provides seamless ma-
nipulation of GPU and CPU memory by implementing lazy synchronization
so it mitigates any unnecessary memory movements until the memory is not
actually needed.

Figure 3.3: UML class diagram of Net - Memory relation

Figure 3.3 shows how Blob and SyncedMemory are positioned in Caffe’s
design. As we mentioned earlier, every blob is defined by a quadruple (num,
channel, height, width) where every element is called an axis so we can think
about it as a 4 dimensional object. The underlying implementation is a simple
one dimensional array where data are continuous in width and therefore a
position of an element is computed as

((n ∗ channels + c) ∗ height + h) ∗ width + w (3.4)

where the one-letter variables denote the position of the element and the words
are constants for a given Blob.

The primary aim of blobs is to hold image data. For our data we are using
blobs of shape (N, 1, 1,W ) where W is maximal width of spectra and N is
number of spectra per training batch. N should be optimized such as it fits
into memory of all GPUs. The maximal memory consumption on GPUs is
defined by a constant in the compilation phase of Caffe.
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3.8.2 Caffe Layers

We will start from memory handling. Every layer keeps its parameters (as
the Caffe developers call it) in caffe::Blobs within the layer itself. Those
parameters are stored in a vector called blobs but a developer rarely touches
them. This is the only thing which gets serialized and restored from a layer
so it has appropriate definition in a proto file.

Even though there are “bottom” and “top” blobs mentioned in the layer’s
definition, the layer does not own them. Those blobs have to have unique
names and that is set within layer definition in config file by attributes bottom
and top. The connection between layers is then deduced from the blob names.
If a layer B defines its bottom blob with the same name as some other layer
A defined its top blob, then a connection A-¿B is created. Moreover, the
result of a layer can be broadcast to many layers. In the implementation, the
layers do not posses their top and bottom blobs. Those blobs are owned by
the wrapping caffe::Net object and passed to layers when doing forward or
backward pass.

There are no weighted connections between layers as one would expect.
Caffe’s solution is that the full connection is implemented as a special layer
caffe::InnerProductLayer. This solution greatly simplifies the implemen-
tation of generic layers and wrapping caffe::Net class as well.

When a layer is instantiated by a caffe::Net object it reports its top and
bottom blob names. Those blobs are then allocated in the Net and referenced
as possible top and bottom blobs. If there is no bottom blob that would make
use of a top blob then the top blob is marked as output blobs and can be
accessed via function caffe::Net::output blobs.

The network structure is usually described by a graph of layers and data.
Here we show the simplest neural network defined using Caffe.

The label object which goes directly from input layer to the output layers
is a blob of size (batch size, 1, 1, 1) therefore the label is put into one
neuron as it is and all the output layers will encode it to one-hot encoding.
On the contrary, which does make sense, the output of a network is expected
to be a blob of size (N,C, 1, 1) where N is the batch size and C is a number
of distinct classes.

The labels and data are produced by <Something>Data layers and are
expected to be in separate Blobs. By implementation the ordering matters
here – data first, labels last. Having more blobs in forward and forward
functions is made possible by the parameters to those functions which are
vector of blobs.

MemoryData layer is one of the possible input layer of our application. It is
expected to have 2 top blobs as any other ¡Something¿DataLayer. The setup
phase expect to have MemoryDataParameter protocol buffer message as an
input. This message doesn’t do anything but specify the shape (batch size,
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Input layer

Input data

Label dataInner product layer

Soft-max loss layer

Guess data

Figure 3.4: Graph of very simple neural network defined using Caffe

channels, height, width). We spare the user of specifying those and we
compute them automatically.

Internally the label Blob has shape (N, 1, 1, 1) where N is number of sam-
ples for the neural network. The important note is that batch size which we
know from the protobuf configuration file for neural network (not solver) fine-
tunes how much data will get transferred to GPU memory. Therefore, there
is a crucial condition mod (N, batchsize) == 0 in the official version which
can not be omitted. We have implemented shrinkage of the source data in the
last batch but it turned out that convolutional layers require the batch size
to be constant.

InnerProduct Layer is the name for what widely known as fully connected
layer. In this and convolutional layer we can define a weight initialization
algorithm which has been proven as significant part in constructing neural
networks. The reason is that we have to initialize weights in such manner
that no information (input) gets amplified or muted. Therefore if we take
the weights as matrix, then its eigenvalues should be close to 1. This layer is
often the last one in the prediction part because it transforms any shape into
(batch size, num outputs, 1, 1) where num outputs is a parameter of the
network. If the layers is the one providing final prediction then num outputs

has to be equal to the number of classes in the prediction.

Accuracy Layer is intended as output layer. It expects two bottom blobs
– label and 1hot encoded prediction. Suppose we have C distinct classes
therefore the prediction has to be in shape of (batch size, C, 1, 1). The
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layer takes optional parameter top-k so it returns a success if the correct label
appears in the top-k results.

3.8.3 Caffe Net

The network object is a container for layers. It possesses the data flowing
through the network and moves them from one layer to another. Moreover,
it offers interface to access layers and blobs by their name and function (for
example output blobs).

3.8.3.1 Caffe Solver

Solver is the component updating weight thus using the gradients in the net-
work. Not all layers have parameters to update but they still provide gradient
values. The update rule differs between solvers. The basic solvers are SDG

(stochastic gradient descent), Nesterov and AdaGrad. All of the solvers are
using common basic parameters such as momentum µ and learning coefficient
α. The basic weight update is

Wt+1 = Wt + (µ∆Wt + α∆Wt+1)

where ∆Wt is weight update at time t.

A good strategy for deep learning with SGD is to initialize the learning
rate α to a value around α ' 0.01 = 10−2, and dropping it by a constant fac-
tor (e.g., 10) throughout training when the loss begins to reach an apparent
“plateau”, repeating this several times. Generally, the momentum should be
close to 1 in order to decay the learning rate slowly. Usually a good value
is µ = 0.9. By smoothing the weight updates across iterations, momentum
tends to make deep learning with SGD both stabler and faster. This was
the strategy used by Krizhevsky et al. in their famously winning CNN entry
to the ILSVRC-2012 competition. Note that the momentum setting µ effec-
tively multiplies the weights updates by a factor of 1

1−µ . It is a recommended
technique to decrease the learning rate α meanwhile increasing µ [33]

Our case of classifying spectral shapes is a problem of searching for exactly
one out of K exclusive classes. Therefore the end of our network has exactly
K neurons followed by a Softmax loss layer which is a multinomial logistic
regression and transforms variadic values into probabilities.There are more
possible loss functions such as

• Sigmoid Cross-Entropy Loss – predicts K independent values in range
of (0, 1)
• Euclidean Loss – regressing real-valued labels (possibly infinite classes

distributed in continuous space) (−∞,+∞)
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3.9 Application usage

The application is configurable via JSON files with sections designated to
surrounding server. We provide a commandline interface with few arguments.

./vodigger --train <repository>

./vodigger --test <model-snapshot> <repository>

./vodigger --time <repository>

./vodigger --dump <model-snapshot> <repository>

The mandatory argument for all parameters is the repository in which the
classifier operates. It has to be a folder with a configuration file named
config.json by default.

{

"name": "classifier_name",

"parameters":

{

"mode": "GPU",

"solver": "solver.prototxt",

"model": "model.prototxt",

"test_iters": 1,

"bench_iters": 20

}

}

Figure 3.5: The minimal configuration file of our classifier

The parameter model and solver are very similar. They contain names of
a model and solver definition files, respectively. Both files has to be proto files
following the requirements for Caffe model and solver definition, respectively.
There are two differences. First is, that we set up the running mode (either
CPU or GPU) directly in this config file (by parameters.mode) and not in a
solver. The reason is simply that the solver is not always needed and therefore
it should not be responsibility of a solver to set up the mode. Second difference
is that we have two test iteration values – one in solver and second in config file.
The one in solver says number of test iterations while training a network (for
validation). The test iter parameter in the config file determines a number
of iterations when the classifier is running in --test mode. If the networks
outputs ArgMax layer in testing phase the classifier creates a confusion matrix
out of it. Last parameter bench size denotes how many iterations of forward-
backward pass (in training mode) should be done in order to benchmark given
model.
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Implementation

In this chapter we describe our contributions to Caffe framework by imple-
menting a generic input layer. The layer was not merged into the official
version of Caffe11, but we plan to send a pull request when the testing is done
so we have a better chance for accepting our pull request.

4.1 Caffe BigData Layer

We have developed a general purpose input layer for Caffe framework to allow
bigger data to be easily classified using deep learning. There are two problems
with contemporary input layers from the general-purpose point of view. The
first one is that they require “efficient” storage formats such as leveldb,
lmdb, HDF5 or other uncommon data formats. The second is that the input
layers takes batch size as input parameter which is not intuitive. Solution
to the second problem is straightforward – we introduced input parameter
batch size which represents number of megabytes sent to a model every
iteration. This parameter practically controls how much data is send to GPU
when the model runs in GPU mode. Solution to the second problem is either
to create utilities to convert any data into one of the efficient storages or to
develop an efficient layer for handling big text files from scratch. We decided
that utilities would add only more complexity and therefore we built a new
input layer.

The layer provides cyclical read from its source file. Therefore during
testing we can’t go through a file once. Instead we need to set up the number
of iterations so it matches the number of data. To our defence we can say that
“going through data once” is not possible with any input data layer in Caffe.
It is given by Caffe’s design decisions.

In order to speedup reading of inefficient CSV format the layer is using
more threads and furthermore it transform data into binary files and store

11https://github.com/BVLC/caffe
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them along with the original text files. This transformation is performed
meanwhile reading the textual format so no preprocessing is needed. When
we reach end of CSV file we automatically switch to reading the binary file.
The binary file is not deleted at the end so it can be reused next time. Changes
in model (concerning batch size or other than BigData layer) won’t invalidate
the binary file.We wanted to cache the data in memory but since we are
supposed to handle huge data we can not fit them all in RAM. However, if
the file is smaller than the batch size then we do cache the file.

4.1.0.2 Performance

Figure 4.1 shows relative performance of BigData Layer compared to HDF5

input layer which is bundled within standard distribution of Caffe. The test
was performed using CPU and 0.5MB chunks of data. Data, solver and model
were identical. The measurements are average values from 4 repetition of
the same experiment. The performance is linear with respect to chunk sizes.
The BigData no cache reads plain text CSV and transforms it into binary
file called cache meanwhile. The noticeable increase of performance happens
when the layer finishes reading from a flatfile and in the next iteration it
starts reading from the transformed binary file. The round trip time is the
time needed for the forward and backward pass of a whole network (in this
case it is the simple MLP network).
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Figure 4.1: Performance of BigData Layer compared to HDF5

Another optimization was added in order to lower disk usage. If the chunk
size is greater than the size of a source file then the data stay in memory and
are not read from a disc over and over again.
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4.1.0.3 Configuration

Our BigData layer can be added to standard model definition as shown in
Figure 4.2. It has many default values and therefore the only required are
source, chunk size and all data indices. The source can omit label index
which tells the network that data are to be classified.

layer {

name: "traindata" # name can be arbitrary

top: "data" # first layer will be used for data

top: "label" # second layer for labels

type: "BigData"

big_data_param {

source: "spectra.train.csv"

chunk_size: 1.5 # value in MB

separator: " " # separator is "," by default

newline: "\n" # newline is also "\n" by default

header: 0 # skips # lines, by default 1

# following indices are always inclusive and 0-based

label: 0 # column index of label

data_start: 1 # column index of data start

data_end: 1863 # column index of data end

}

}

Figure 4.2: Example configuration of BigData layer

There are few rules to the data format. Labels has to be integers from
interval < 0, N > where N is number of classes. The layer suppose 1D input
data and therefore constructs blobs where all data are put into width part of
Blobs.

4.1.0.4 Memory consumption

Unfortunately implementation of Caffe’s GPU parallelism prevents us from
putting really big data on the graphic card. Caffe is using, in some layers,
parallelism of such a degree that every column/pixel is assigned one thread. If
we take into account constraints imposed by CUDA 3.x then we can have only
216 blocks and 210 threads per block. That means we can send a maximum
of 64 MB in one batch. Newer graphic cards offer higher number of blocks so
any model will work even on bigger chunk of data than 64MB. Nevertheless
we should count with the worst case.

64MB does not seem much but we have to take into account expansion
of data. Every layer allocates storage for its results so basically we have to
multiply input data by number of layers. We elaborate more precise memory
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consumption in equation 4.1. The equation shows overall memory consump-
tion M based on size of inputting data. In the following computations, we
suppose that average depth of deep network is between 5 and 10 layers.

M = Sinput ∗ Ce ∗D + Sweights (4.1)

M = 64 ∗ 2.5 ∗ (5, 10) + Sweights

M = (800, 1600) + Sweights

where Sinput is the input data size in megabytes (MB), Ce is a network ex-
pansion coefficient which we discuss later, D is depth of network for which we
used a vector of two values for usual min and max and Sweights is negligible
memory needed for storing weights of connections. Note that average desktop
graphics card has 3GB of global memory. So if we instantiate Sinput with
our limiting 64MB of data we will end up with memory consumption between
1GB and 1.5GB based on the depth of our network.

All the participants in equation 4.1 are obvious except the network expan-
sion coefficient Ce. We estimated that number of neurons per layer is in aver-
age 2.5 times more than neurons in the input layer. The estimated value 2.5 is
based on LeNet and few other standard networks. For example LeNet expan-
sion coefficient is ≈ 3.2 based on layer sizes [1.0, 14.7, 3.7, 4.1, 1.0, 0.6, 0.6, 0.01].
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Chapter 5

Performance and Precision

In this chapter we describe development of two models based on deep neural
networks. The models were build to match the given datasets. The first
model is a proof of concept to create a simple functional neural network and to
measure its performance on CPU and GPU. The other model is a convolutional
network which unleash the possibilities of deep networks.

5.1 GPU Multi-Layer Perceptron

We tested a simple multi-layer perceptron model on standard astronomical
dataset SDSS DR12 and compared our results with classification performed
by the authors of scikit-learn[34]. We used the same download method as
described at astroML12. The dataset is designed for classification of stars and
quasars based on multiple features from which were selected magnitudes in
standard SDSS filters. The dataset is kindly offered by Sloan Digital Sky
Survey (SDSS)13.

5.1.1 SDSS Quasar-Star dataset

We followed data preparation described by scikit-learn[34]. The dataset comes
in two separate files – for every category one file. Table 5.1 shows brief statis-
tics of the dataset and another one, which was used for the naive bayes clas-
sifier.

All classifiers except the Naive Bayes were tested on the same dataset as
our model. Naive Bayes, however, uses data from the same source (SDSS) but
of a different size. Its dataset is a mixture of 700,000 objects out of which
500,000 is used for training and the ratio of stars and quasars approximately
14:1.

12http://www.astroml.org/user_guide/datasets.html
13http://www.sdss.org/
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Total Stars (S) Quasars (Q) S/Q ratio
Training 390,040 294,814 95,226 3:1
Testing 43,003 32,446 10,557 3:1

Naive Bayes (train) 500,000 - - 14:1

Figure 5.1: Brief statistics of the quasar-star datasets.

Both datasets are tabular values of magnitudes in a few different filters
altogether with labels. Magnitudes are scalar values which denote radiation
flux relative to a reference object. The Figure 5.2a shows a spectrum of an
object (in our case Vega) and as a background there are filters in different
wavelengths.

(a) Filters (b) Redshift of spectra

Figure 5.2: Filters and redshift explanation

The filters, used in SDSS, are ultraviolet(u), green(g), red(r) and infra
red(i, z). In order to get magnitude we need to compute photon flux I first.
It is an integral of object spectrum multiplied by filter’s throughput as shown
in equation 5.1. Since we compute photon flux for every filter, we denote it
by its filter sign (eg. Iu).

Ix =

∫ ∞
0

fx(λ)Sν(λ)
dλ

λ
(5.1)

where x ∈ u, g, r, i, z or other set naming filters used for observation, fx(λ)
is the filter value at wavelength λ and Sν(λ) is the photon flux at the wave-
length λ. Equation 5.2 shows the final transformation of a flux value into
magnitude m1

m1 −mref = −2.5 log10(
Ix
Iref

) (5.2)

Magnitude is a historical relict which is still used. It is defined as negative
logarithm so it has actually lower value for brighter object than a reference
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object. It is sometimes called an apparent brightness. The astronomers use
star Vega as the reference object. Following this point of reference, the Moon
is given a magnitude of -13, while Venus -5 and Sirius -1.5.

Different groups of objects usually have a different redshift due to different
cosmological distances. For example galaxies has lower redshift than quasars.
A redshift moves the spectral line on the x-axis. It doesn’t introduce any
changes in the shape of spectra as shown in Figure 5.2b.

We constructed two different feature sets. First dataset consisted from
unprocessed magnitudes - therefore having 5 columns of features. The second
dataset was constructed based on domain knowledge of differences between
quasars and stars in their spectra. The features were subtractions of mag-
nitudes from the subsequent filters (u − g, g − r, r − i, i − z). The difference
between following features identifies the positioning of a spectra according to
the filters thus it can guess the overall redshift. This is the best known feature
selection with this dataset. We are using the second dataset most of the time
so we can compare with astroML results.

5.1.2 Model

We constructed a simple multi-layer perceptron network for comparison with
other classifiers which were used on the same dataset. This implementation
also provides a baseline for performance and accuracy testing for our other
models.

The first version has only one layer. We didn’t introduce any scaling
nonlinearities because the classes are distinct based on difference between in-
tensities in subsequent filters so any scaling down would damage the accuracy
of the classification.

The first fully-connected layer with 10 dimensional output showed as suf-
ficient. Best practices published by the DAME team [12] say that number
of neurons should descend with layers and the starting value, which is equal
to the number of neurons in the second layer, should be 2N − 1 where N is
number of input neurons so we are very close to the recommended value which
would be in our case 7. Our data are separable by a polynomial of first degree
in 3D space.

5.1.2.1 Accuracy

We were building the model incrementally from the input layer. The accuracy
was measured after every step and we ended up with architecture shown in
figure 5.3b. With only one hidden layer and no non-linearities in the network
we were able to achieve 96.3% accuracy with loss=0.3. Additional linear layers
did not improve average result. However additional non-linearity was able to
improve the loss down to 0.1 and accuracy up to 98.59%. More surprisingly a
ReLU unit improved average result more than a hyperbolic-tangent unit.
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Solver
iterations 10,000
learning rate 0.3
step interval 300
gamma 0.9
batch size 5,000

(a) Simple MLP solver for QS prob-
lem

data label

fully-connected (30 neurons)
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(b) Simple MLP model for QS problem

Figure 5.3: Simple MLP network configuration

Star Quasar Accu.

Star 33,766 180 99.5%
Quasar 456 10,598 95.9%

(a) 2-layer network with total accuracy
98.59%.

Star Quasar Accu.

Star 33,751 195 99.4%
Quasar 215 10,839 98.1%

(b) 3-layer network with total accuracy
99.1%.

Figure 5.4: Confusion matrix of simple QS model. Rows denote true class,
columns output of the network.

With the addition of another layer we noticed an increase in accuracy up
to 99%. The accuracy was always around this level and with fine-tuning of
the weights and number of outputs we were able to increase up to 99.1%. The
network with more layers is able to distinguish between more classes while the
simple 2-layer network was more precise with one class. Any other additional
layer worsened the result. There are two possible explanations. The first
is that the gradient dissolves in too many layers. The second is that more
layers bring higher dimensionality in which the data might not be that easily
separable.

With the introduction of another layer we switched to the first dataset
because the second dataset is produced as a linear combination of the first
one. But we never reached the precision of the second dataset. Even with
a dropout layer and uniform weights initialization in a wide interval such as
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(−3,+3) the net wasn’t able to produce the correct linear combination.
We compared our multi-layer perceptron classifier with Gaussian Naive

Bayes whose results are available online14 and with classifiers originally used
by scikit-learn on this dataset. The values in the table 5.5 are the best
obtained from a few iterations.

Classifier Stars QSOs Total

Decision tree 99% 100% 99%
kNN 98% 100% 99%
our GPU MLP 99% 98% 99%
GMM Bayes 75% 100% 75%
Naive Bayes 99% 14% 94%
Logistic regression 75% 0% 75%

Figure 5.5: Comparison of accuracy of different classifiers

The skew in Naive Bayes’ dataset explains relatively bad metrics of the
classifier. The skew in training data is forcing the model to put more stress on
one class. There are ongoing debates if training samples should have homoge-
neous distribution of classes with sacrifice of training data. The results show
that even bigger amount of data did not save the model from biasing. Our
and some other astromML’s models handle smaller skew in the data gracefully.
The results show that two bottom-line models could not handle the skew well.

5.1.2.2 Performance

First we investigated how the performance changes with respect to amount of
data in one batch. The results show that both CPU and GPU implementations
scale linearly with different coefficients. We computed those coefficients and
put them into an equation which shows time demand based on batch size SB
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Figure 5.6: Performance based on
chunk size.

TCPU = 55 ∗ SB
TGPU = 6.2 ∗ SB

Since our network accommodates
most of the common layers (fully-
connected, ReLU, tanh) we can say
that those coefficients approximate
GPU speed-up over CPU. Thus we
can state that GPU implementation
of a simple MLP network is about 9
times more efficient than CPU imple-
mentation.

14http://www.astroml.org/sklearn_tutorial/classification.html
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Linear scale with respect to block
size shows that Caffe does not use CUDA streams. CUDA streams are way
of asynchronous data transfer and computations. If CUDA streams were in-
volved then we would get sub-linear time with special case where the time of
data transfer is equals to computations and in this case the time should stay
constant for small range of chunk size.

In order to further investigate performance differences between CPU and
GPU implementations we present a breakdown by layers, implementations
and phases in table 5.7.

Layer phase CPU[ms] GPU[ms]

train
F 3.10 2.65
B 0.00 0.00

ip1
F 13.70 1.37
B 20.88 3.03

relu1
F 5.02 1.28
B 10.26 1.12

ip2
F 10.70 1.32
B 19.26 3.22

tanh1
F 17.40 1.36
B 1.51 1.25

ip4
F 7.43 1.27
B 14.27 3.13

loss
F 197.73 12.30
B 3.81 0.17

Figure 5.7: Time breakdown by layers and implementation. Phase specifies
further the run, if it was F resp. B forward resp. backward run.

In terms of classification of unknown object we have measured average
throughput 11,400 objects per millisecond which is equal to dataflow of 760
MB/s. This value is for forward pass exclusively and therefore it states only
the classification throughput, not the performance while training.

We were about to compare performance of our MLP model with DAME.
Despite immense help by Dr. Massimo Brescia we were unable to load our
data into DAMEWARE and perform any benchmarks. DAME offers massive
parallel version of MLP model with optional quasi newton algorithm (QNA)
which would be great for comparison. We did try again for our next convolu-
tional model with slightly better result.

5.2 GPU Convolutional Network

We introduce a new technique for classifying astronomical spectra. The idea
comes from image classification where the convolutional networks are heavily

48



5.2. GPU Convolutional Network

used. Convolutional networks were already used for classification of spectra
[35] with accuracy over 90% but with a very expensive preprocessing phase.
The preprocessing they used was to convert spectra into 60x60 pixel images.
Those images were fed into standard LeNet-5 and the network achieved ac-
curacy 96.5%. However, we cannot compare our accuracies because they used
a different dataset. In order to put this classification method to a practical
use we have built a model which can deal with spectra in the form as they are
available through Virtual Observatory tools. We imagine the spectra as 1D
images where we already have brightness of pixels. The brightness, which is
represented by flux, needs to be normalized to continuum but that is usually
done in spectra processing pipeline. Therefore our model is able to classify
massive amounts of continuum normalized spectra obtained from standard
sources without any further preprocessing.

5.2.1 Ondřejov’s Be-stars dataset

The classical Be stars are non-supergiant B type stars whose spectra have
or have had at some time, one or more emission lines in the Balmer series
[36]. In particular the Hα emission is the dominant feature in spectra of these
objects. Characteristic for Be stars are the single or double-peak profiles and
sometimes so called shell lines deep absorptions in centre of the emission.
Figure 5.8 show spectral shapes of two example objects for each category.
The upper half of every image is a complete spectra ranging from 6200 to
6800 Ångström. The bottom half shows the interesting part in greater detail.
The y-axis is normalized flux.

Our dataset contains 1696 spectra samples of stars divided into 5 classes.
The distribution of classes is shown in table 5.9 in row “Total”. All classes
except #2 are Be stars. Each spectrum composes from approximately 2000
flux values aroundHα line (656.28 nm = 6562.8 Å ). The spectra in our dataset
were binned into 0.15 Å wide bins which unifies all spectra with respect to
x-axis. There is no need for wavelengths to be stored in the data so every
record is only 1 dimensional array of flux values.

There is clear dominance of class #2 in the raw dataset because this class
is assigned to generic absorption stars which are not Be stars. The model
tends to put more weight to the class thus skew the results of classification. It
is always better to sacrifice some data in favour of homogeneous distribution of
training samples. We redistributed the classes for training and testing samples
as shown in table 5.9.

5.2.2 Model

The base for this model was taken from the previous multi-layer perceptron.
We have constructed two cNN models. First model has one wide convolutional
layer and the second has two narrow convolutional layers. In both cases it
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(a) Be star with emission,
class #0

(b) Be star, double peak
emission, class #1

(c) Be star, absorption in-
side emission, class #3

(d) Be star, chaotic emis-
sion, class #4

(e) Ordinary absorbing stars, class #2

Figure 5.8: Example spectra lines

records #0 #1 #2 #3 #4

Total 1,696 178 172 1,159 56 131
Training 663 163 152 180 52 116
Testing 94 15 20 40 4 15

Figure 5.9: Ondřejov’s datasets class distributions

was necessary to put a hyperbolic tangent layer right in front of the output
layer otherwise the output grew too high and made its loss function to diverge.
Hyperbolic tangent scales any number between (−1, 1) so it is ideal for scaling
data before computing a loss.

Convolutional layer is usually followed by a pooling layer to sharpen feature
map by removing partial fit of features. We have chosen max-pooling layer
which works similarly to convolution but instead of a convolution matrix it
uses max function over a region of neurons.

As in the previous MLP model, it was necessary to introduce some non-
linearity. We have used ReLU unit which is preferred over other non-linear
units for its speed. A non-linear unit is usually placed between last pooling
layer and before first fully-connected layer. We followed this practice. The
resulting network is depicted in figure 5.10b.

50



5.2. GPU Convolutional Network

Solver
iterations 10,000
learning rate 0.3
step interval 300
gamma 0.9
batch size 5,000

(a) Solver used for convolutional net-
work
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fully-connected (30 neurons)
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convolution with 10 features
(kernel width 100 resp. 20 )

TanH

a
d

d
iti

o
n

a
l l

a
ye

rs

pooling max
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convolution with 10 features
(kernel width 10)

pooling max
(kernel width 5 )

fully-connected (2 neurons)

(b) Architecture of convolutional network for classifying
spectra.

Figure 5.10: Convolutional network configuration

5.2.2.1 Accuracy

During training, we experienced that convolutional networks are very sensitive
to initial learning rate. Convolutional networks require smaller initial learning
rate and slower decay. The experiments show that 0.1 is optimal initial value
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Figure 5.11: Progress of loss function based on learning rate.

The kernel size is very important factor in optimization of a convolutional
layer. The most complicated spectral profile of any Be-star is double peak.
If a convolutional network should match the important features it needs to
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overcome the small disturbing waves which are presented, for example, in
spectra of class #2. The ideal width of kernel is wide enough to smooth
turbulent waves but narrow enough to capture the top “saddle” point between
two peaks. Convolutional layer should match any possible shape so one of
those shape can be the saddle. The figure 5.12 shows the dependency between
kernel width and a loss function. It confirms for one layered convolutional
networks that kernel has to be rather bigger than smaller in order to overcome
jitter.
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Figure 5.12: Progress of loss function based on kernel size

The reason for having wider kernels in one layered cNN is that we can
not say in advance how wide the features will be. It is better to let the
convolutional layer to extract the important knowledge by itself. Figure 5.13
shows one of the feature maps which was yielded by our convolutional network.
This feature matches negative slope in spectral shape.

Figure 5.13: A smaller feature from two-layer convolutional network

The most successful kernel of width 100 had accuracy 94.7% with confusion
matrix presented in table 5.14. This value seems to be the limit for one layer
convolutional network on our data. If we train the network further it starts
to overfit.
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guess: #0 #1 #2 #3 #4

true #0 95 0 0 0 13
true #1 0 128 0 0 7
true #2 0 0 272 0 0
true #3 0 0 7 21 0
true #4 0 7 0 0 94

Figure 5.14: Confusion matrix for one-layered cNN after 1500 iterations. Ac-
curacy 91.32%

The patterns in spectra are simple – a classifier should learn few shapes
like slops up and down, flats and saddle points. Therefore it is crucial not to
make the search space too complex. During training, we observed that ideal
number of convolutional features is between 10 and 20.

As we said earlier, it is vital to let the convolutional network converge
slowly. During our experiments it took more than 1500 iterations for two-
layers cNN to find the right features. The simpler one-layered cNN converged
before 1500 iterations where it achieved its maximal accuracy and since then
it was slowly overfitting.

After 2000 iterations convergence was almost final and we obtained 99.07%
accuracy with only one misclassified spectrum as shown in confusion table 5.15.

guess: #0 #1 #2 #3 #4

true #0 16 0 0 0 0
true #1 0 25 0 0 0
true #2 0 0 42 0 1
true #3 0 0 0 6 0
true #4 0 0 0 0 18

Figure 5.15: Confusion matrix for two-layered cNN after 2000 iterations. Ac-
curacy 99.07%

5.2.2.2 Performance

We are interested in how convolutional layer performs under bigger data sizes
and with different parameters. As we did in the previous section, we measured
performance based on chunk size. It turned out to be linear again but with
different coefficients.

TCPU = 61.0 ∗BS
TGPU = 0.95 ∗BS

In order to see why the coefficients changed we measured performance of
every layer separately. The results are shown in table 5.16. The table con-
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firms that convolutional layer is the heaviest for computation. The computed
coefficients are valid only for this network architecture with one convolutional
layer. Having more convolutional layers than the fully-connected ones will
bring less synchronization points thus the theoretical speedup can reach up
to 110 times. The overall speed-up by using GPU for the particular network
shown in table 5.16 is around 55 times.

Layer phase CPU[ms] GPU[ms]

train
F 2.39 2.29
B 0.00 0.00

conv1
F 186.47 0.61
B 138.71 1.24

pool1
F 32.45 0.83
B 24.97 0.76

relu1
F 0.02 0.02
B 0.05 0.02

ip1
F 0.45 0.04
B 0.84 0.07

hyp1
F 1.02 0.02
B 0.05 0.02

ip2
F 0.40 0.04
B 0.59 0.08

loss
F 0.79 0.20
B 0.01 0.06

Figure 5.16: Time breakdown of convolutional network.

The average throughput of the two-layered cNN is 192 spectra per mil-
lisecond which is equal to 1440 MB/s.

We tried to benchmark performance with DAME again, using MLP model
with QNA optimization. After few modifications to DAME, performed by Dr.
Massimo Brescia, we were able to load our data to the application. Unfortu-
nately any MLP used model gave us estimate of 3 months to finish. DAME
implementation is not suitable for such a multicolumn data.
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While this thesis was being written a PhD thesis [27] was published, and
contained objectives that came out to be very close to this thesis’ aims: devel-
oping a massive parallel classifier which was following the most active field of
classification – deep neural networks. As a consequence, it was decided that
duplicating the results was not a viable option. The PhD thesis outcome was
a framework called Caffe and it met exactly our requirements. The reason
underlying the use of Caffe, and going against the initial plan, resides in its
efficient design of layers. Caffe conceptualizes layers as matrices, operations as
matrix multiplications and connections between layers as just another layer.
One of the outcomes of our pre-Caffe phase is a thorough summary of the
latest achievements and techniques in neural networks in general.

However, Caffe’s input layers were not as generic as required for this thesis
and therefore we have developed BigData layer which allows the classifier to
load generic and big files in CSV format. Since most of big data applications
either directly work with CSV or are able to export into them, we decided
to use this format as the common ground. Until now, Caffe was more of an
academical framework with a very narrow focus on images. Further develop-
ments of BigData layer could bring multi-file support or even the ability to
communicate with distributed file system to fully unleash the possibility of
working with unlimited big data.

Two deep networks were designed for benchmarking. The first one was
a multi-layer perceptron network designed for standard tabular astronomical
dataset. Its accuracy was slightly above average in comparison with many
other classifiers used for the same dataset. Our main objective was to develop
performing classifier for bigger data suitable for practical use. No comparable
works on performance were found in the literature therefore the outcomes of
our current experiments remain the only data available. Our throughput was
11,400 objects per millisecond which is equal to 760 MB/s on GeForce GTX
980, using SSD discs. The size of the input file is theoretically unlimited.
The second model was aiming to prove applicability of convolutional networks
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for raw astronomical spectra classification. The model was successful, having
a higher accuracy than a similar master’s thesis model [35] which focused
solely on classification of stellar spectra using convolutional networks. We
planned to compare the performance of the model with DAME models but
we were unable to even load our data into the application. With the help
of Dr. Massimo Brescia, the most active DAME developer, who proceeded
into making changes to the application for the sole purpose of this thesis, we
were able to push further our experimentation. In the end, we succeeded in
using DAME for our purpose. Unfortunately the DAME models do not allow
classification of raw spectra and therefore we do not have any performance
comparison. Our performance was measured as 192 spectra per millisecond
which is equal to 1440 MB/s. The higher throughput of the second model is
caused by smaller fully- connected layers and bigger data per record resulting
in less synchronization points.

The first dataset we were given is not well suited for deep neural networks.
Deep neural network is a unique model which can find patterns in very com-
plex data. The more complex the data are, the more layers has to be added.
Classifying such a tabular data, which were in the first dataset, with neural
networks was expected to yield lower accuracy than decision trees, which was
confirmed. The reason for lower accuracy is that deep networks has potential
to solve complex problem and cannot match witch simpler models who are
designed to decide from simple tabular data. Since the astronomers know the
approximate operations to obtain the labels from the data, it would be more
efficient to build a specialized classifier with this domain knowledge.
The spectra shapes, however, offer more complexity than tabular values. This
is the type of data which is tailored to neural networks. Data where the fea-
tures leading to the labels are unknown or hardly describable. In order to
find the crucial patterns for classification, it is necessary to use a convolu-
tional network. To make the problem even more challenging, we could add
another level of complexity by linking the spectra of the same object together
and provide time information to them. Such data would require very deep
networks or even a new type of networks called spiking networks. Another
very interesting direction in research would be to analyse the feature maps
yielded by convolutional networks in order to find a new knowledge hidden in
the data.

The parallelism in Caffe is rather limited at the time of writing this thesis.
According to our measurements the time demand grows linearly with data
size sent to a GPU. Ideally, the time should grow sub-linearly or be constant.
In order to improve the performance it is necessary to start using the latest
CUDA features such as streaming along with a multi-device execution. Since
we were active in the development of Caffe, we noticed that parallelization in
the way we present it is the main development effort of the core developers of
Caffe. The implementation is almost finished and is expected to be released
in a few months.
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Appendix A

Acronyms

C++11 a new standard of C++ language approved in 2011.

cNN convolutional neural network.

direct memory access a device has access to RAM bypassing CPU.

FPGA Field-programmable gate array is a chip configurable after manufac-
turing using hardware description language (HDL).

GPGPU general purpose graphical processing unit.

GPU graphical processing unit.

GT/s giga transfers per second.

ML machine learning.

MLP multi-layer perceptron.

redshift Redhift happens when a light increases in wavelength of shifts to-
ward the red end. Its value is usually represented by letter z.

Virtual Observatory Worldwide scientific organisation enabling integrated
global access to the data gathered by astronomical observatories.
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Appendix B

Contents of CD

vodigger........................................the classifier directory
readme.md....................the installation and usage instructions

caffe.....................the fork of Caffe with BigDataLayer included
doc.........................................the thesis source directory

DP Peterka Tomas 2015.tex...........the LATEX source of the thesis
DP Peterka Tomas 2015.pdf ......... the Diploma thesis in PDF format
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