Probabilistic Models for Symmetric Object Detection in Images

Radim Tyleček
tylecr1@cmp.felk.cvut.cz

CTU–CMP–2015–07
November 30, 2015

Available at

Thesis Advisor: Radim Šára

The author was supported by the Czech Science Foundation under Project P103/12/1578.

Research Reports of CMP, Czech Technical University in Prague, No. 7, 2015

Published by
Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University
Technická 2, 166 27 Prague 6, Czech Republic
PROBABILISTIC MODELS FOR
SYMMETRIC OBJECT DETECTION IN
IMAGES

Doctoral Thesis

Radim Tyleček

Prague, November 2015

Ph.D. Programme: Electrical Engineering and Information Technology

Branch of study: Artificial Intelligence and Biocybernetics

Supervisor: Radim Šára
CONTENTS

1.3.4.1 RANSAC .. 25
1.3.4.2 MCMC .. 25
1.3.4.3 Reversible Jump 26
1.3.4.4 Adaptive Methods 27
1.3.4.5 Population Methods 27
1.3.4.6 Hybrid Methods 27
1.3.5 Inference and Learning for Graphical Models 28
1.3.6 Notation Remarks 29
1.3.7 Probability Distributions 29
 1.3.7.1 Exponential Family Distributions 30
1.4 Thesis Goals 31

2 Weak Structure Model 33
 2.1 Introduction 33
 2.2 Overview ... 33
 2.3 Problem Description 34
 2.4 Probability Model 35
 2.4.1 Structural Prior 36
 2.4.1.1 Structural Complexity 36
 2.4.1.2 Structural Regularity 37
 2.4.2 Spatial Regularity 38
 2.4.2.1 Spatial Priors 40
 2.4.2.2 Spacing 40
 2.4.2.3 Alignment 41
 2.4.3 Size Parameters 41
 2.4.3.1 Size Prior 42
 2.4.3.2 Size Similarity 42
 2.4.4 Hyperparameters 43
 2.5 Data Model 43
 2.5.1 Image Edge Model 44
 2.5.2 Image Color Model 46
 2.6 Inference .. 47
 2.6.1 Proposal Selection 47
 2.6.2 Metropolis-Hastings Moves 48
 2.6.2.1 Size and Location Modification 48
 2.6.2.2 Component Resampling 49
 2.6.2.3 Inherit Size 49
 2.6.2.4 Switch Edge 49
 2.6.2.5 Switch Node Color 50
 2.6.3 Reversible Jump Moves 50
 2.6.3.1 Birth and Death 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.2.1 Scale Symmetry</td>
<td>96</td>
</tr>
<tr>
<td>4.4.2.2 Descriptor Symmetry</td>
<td>97</td>
</tr>
<tr>
<td>4.4.3 Universal Model</td>
<td>97</td>
</tr>
<tr>
<td>4.5 Shape Prior</td>
<td>98</td>
</tr>
<tr>
<td>4.6 Component Model</td>
<td>98</td>
</tr>
<tr>
<td>4.6.1 Component Features</td>
<td>99</td>
</tr>
<tr>
<td>4.6.1.1 Compactness</td>
<td>99</td>
</tr>
<tr>
<td>4.6.1.2 Objectness</td>
<td>100</td>
</tr>
<tr>
<td>4.6.2 Symmetry Grouping</td>
<td>101</td>
</tr>
<tr>
<td>4.6.2.1 Dihedral Group Model</td>
<td>102</td>
</tr>
<tr>
<td>4.6.2.2 Natural Parameters</td>
<td>103</td>
</tr>
<tr>
<td>4.7 Component Group Prior</td>
<td>104</td>
</tr>
<tr>
<td>4.8 Configuration Prior</td>
<td>104</td>
</tr>
<tr>
<td>4.9 Complexity Priors</td>
<td>105</td>
</tr>
<tr>
<td>4.10 Inference</td>
<td>106</td>
</tr>
<tr>
<td>4.10.1 Algorithm Overview</td>
<td>106</td>
</tr>
<tr>
<td>4.10.2 Inlier Inference</td>
<td>107</td>
</tr>
<tr>
<td>4.10.3 Complexity Proposals</td>
<td>107</td>
</tr>
<tr>
<td>4.10.4 Group Proposals</td>
<td>108</td>
</tr>
<tr>
<td>4.10.5 Parameter Proposals</td>
<td>109</td>
</tr>
<tr>
<td>4.10.6 E-step</td>
<td>109</td>
</tr>
<tr>
<td>4.10.7 M-step</td>
<td>111</td>
</tr>
<tr>
<td>4.10.8 Post-processing</td>
<td>112</td>
</tr>
<tr>
<td>4.11 Experimental Evaluation</td>
<td>113</td>
</tr>
<tr>
<td>4.11.1 Implementation Overview</td>
<td>113</td>
</tr>
<tr>
<td>4.11.2 Hyperparameter Estimation</td>
<td>114</td>
</tr>
<tr>
<td>4.11.3 Experimental Results</td>
<td>114</td>
</tr>
<tr>
<td>4.12 Conclusion</td>
<td>116</td>
</tr>
<tr>
<td>5 Conclusion</td>
<td>119</td>
</tr>
<tr>
<td>5.1 Possible Extensions</td>
<td>121</td>
</tr>
<tr>
<td>A New Facade Dataset</td>
<td>123</td>
</tr>
<tr>
<td>A.1 Image Data</td>
<td>123</td>
</tr>
<tr>
<td>A.1.1 CMP-Prague</td>
<td>123</td>
</tr>
<tr>
<td>A.1.2 CMP-World</td>
<td>124</td>
</tr>
<tr>
<td>A.1.3 ZuBuD</td>
<td>124</td>
</tr>
<tr>
<td>A.1.4 ECP-World</td>
<td>124</td>
</tr>
<tr>
<td>A.2 Annotations</td>
<td>125</td>
</tr>
<tr>
<td>A.2.1 Object classes</td>
<td>125</td>
</tr>
<tr>
<td>A.2.1.1 Z-Order</td>
<td>126</td>
</tr>
</tbody>
</table>
Abstract

This thesis deals with application of symmetry principles to computer vision problems of object detection in images. The focus is put on the ways how our prior knowledge on translation, reflection and rotation symmetries can be encoded in probabilistic models. Conceptually the position of our object-centered approach lies between general symmetry detection and strongly informed procedural modeling.

In particular we present two methods for parsing of facade images, where translation symmetry manifests in the structure of architectural elements like windows, doors and cornices. In both cases the structural model is based on local interactions between objects and the symmetry is represented in the spirit of Gestaltian grouping principles of proximity, similarity and continuity.

The initial method Weak Structure Model uses efficient random sampling to infer the most probable configuration of windows. Experimental results suggest that a simple data model accompanied with appropriate symmetry prior can outperform other methods with more specific window classifiers.

The next approach called Spatial Pattern Templates aims to learn the important relations of the facade structure beforehand rather than inferring it at inference time like in the previous case. This process is facilitated by conditional random field framework, where powerful training methods are available. We have also found that the available datasets cannot provide a number of samples sufficient for such training. We have resolved this obstacle by assembly of a rich and large CMP Facade Database, which is now available to other researchers.

The last method explores the remaining reflection and rotation symmetries. At this time the Bayesian inference is used to handle a hierarchical model extending from the low-level geometry of reflection symmetry to dihedral symmetry groups. Objectness and compactness priors are included to reduce ambiguity in the detection. The increased complexity of the model is compensated by utilization of an advanced inference method, which allows to rigorously reason about number of detected components by means of model selection. In result we show this approach improves performance on standard datasets, particularly in the case when multiple objects are present.
Anotace

Tato práce se zabývá aplikací principů symetrie na problémy počítačového vidění jako je detekce objektů v obrazech. Zaměřuje se na způsoby jakými lze do pravděpodobnostních modelů zakódovat naší znalost o translační, osové a rotační symetrii. Naš přístup založený na objektech koncepně leží mezi obecnými metodami pro detekci symetrií a silně informovaným procedurálním modelováním.

Konkrétně představujeme dvě metody pro analýzu obrazů fasád domů, kde se translační symetrie projevuje na struktuře architektonických prvků jako jsou okna, dveře a římsy. V obou případech je model struktury založen na lokální interakci mezi objekty a symetrie je reprezentované ve smyslu Gestaltovských shlukovacích pravidel pro blízkost, podobnost a návaznost.

Úvodní metoda se slabým strukturním modelem používá efektivní náhodné vzorkování pro nalezení nejpravděpodobnější konfigurace oken. Experimentální výsledky naznačují, že i jednoduchý datový model doplněný vhodným apriorním modelem může překonat jiné metody využívající specifických klasifikátorů oken.

Následující přístup založený na šablonách prostorových vzorů si klade za cíl se předem naučit významné vztahy mezi prvky fasád, narozené od předchozího, kde je toto součástí vzorkování. Učení je zprostředkováno použitím podmíněným náhodným polem, pro které jsou k dispozici účinné metody pro trénování. Přitom jsme zjistili, že dostupné daty neobsahují dostatečný počet vzorů pro trénování. Tuto překážku jsme odstranili sestavením vlastní databáze fasád, která je nyní dostupná ostatním výzkumníkům.

Doctoral Thesis

Acknowledgments

Primarily I would like to gratefully thank my supervisor prof. Radim Šára for continuous support and patience during making of this thesis. His wise guidance and critical comments have directed my research since my master thesis.

I would also like to express my thanks to prof. Vašek Hlaváč for creating and maintaining Center for Machine Perception as a friendly and inspiring environment for research. His hints towards finishing the thesis have been useful.

Many thanks go to prof. Mirko Navara, whose detailed comments significantly helped to improve the quality of the final text.

Finally this all would be hardly accomplished without the inspiration from my friends in the CMP and encouragement from my family.
Chapter 1

Introduction

“It is the harmony of the diverse parts, their symmetry, their happy balance; in a word it is all that introduces order, all that gives unity, that permits us to see clearly and to comprehend at once both the ensemble and the details.”

HENRI POINCARE (1854-1912)

Symmetry is a natural phenomenon and our visual perception system learned to use it as a guide to explain what we see. Particularly in the cases when the observed scene is ambiguous the reasoning tends to prefer explanations which follow some innate prior principles. Psychologists in their research on human perception came up, among other concepts, with principles of grouping also known as Gestalt laws (Goldstein, 2009). The observation that humans naturally perceive objects as organized patterns and objects can be then explained with a set of principles such as proximity, similarity, continuity or symmetry. When we extend the narrow meaning of symmetry from reflection and include rotation and translation isometries as in geometry, we can cover many of these principles with a single general term – symmetry.

In analogy these principles are used in computer vision, where pattern recognition methods facilitate image understanding. In this context symmetry has been applied at all levels of processing, from low-level features to 3D models, and also validated as a useful regularizer in difficult inference tasks. In this role of a prior a range of applications opens, but at the same time the mechanism encoding the prior knowledge and its seamless integration in the model become equally important.

Simultaneous symmetry detection has become a discipline of its own, where researchers foster their methods in an effort to deliver a reliable, widely usable and effective feature detection technique impacting object recognition. Although considerable progress has been made over the decades, such a universal symmetry detector is still not available today.
Chapter 1: Introduction

1.1 Overview

Rather than attempting the universal symmetry detector problem, this thesis is focused more on the regularizing aspect of symmetry to computer vision problems, particularly in object detection and image parsing.

While Bayesian framework suits the task of prior knowledge integration naturally, it has been sparsely applied to symmetry in practice, mostly in favor of approaches defining energy functions with a form suitable to a particular optimization method. With recent advances and new methods available to implement Bayesian inference we can relax our limits on the model complexity and maintain practical tractability at the same time. We will construct probabilistic models to capture the essence of symmetry in the spirit of the above mentioned Gestalt principles, and make use of the added value the Bayesian framework delivers.

More specifically we will address the problem of facade image parsing with this approach, where translation symmetry is dominant. The world of facades is sufficiently rich in complexity of structure to be challenging while reasonably limited for analysis. In particular, we will develop methods where priors act locally and allow some degree of flexibility. The Bayesian approach will help us to resolve the underlying problem of how many objects are present. The problem of variable number of objects is inherent to translation symmetry, which makes it more prominent than in general object detection.

A next task in the same area is to come up with a method which is able to learn the structure of relations between translation symmetric objects. We will also publish a new dataset which is sufficiently large and rich for training purposes.

Based on the experience gained with simpler models we will finally construct a hierarchical model to deal with ‘classical’ reflection symmetry detection both at low-level (geometry) and high-level (component and group priors). At a high level the remaining elementary 2D symmetry, rotation, will be also used to constrain the detection with dihedral groups.
1.2 State of the Art

The goal of this section is to analyze existing methods in symmetry detection and its application to regularity modeling in computer vision. We will first give a brief introduction to symmetry, its types, groups and related concepts.

1.2.1 Symmetry Concepts

From the broad range of results accumulated in symmetry theory, we will go through the basic concepts relevant to this thesis. Let us start with the formal definition of geometric symmetry (Liu et al., 2010):

Let $S \subset \mathbb{R}^n$ be an object and g be an isometric (distance preserving) mapping g. We say S has a symmetry g if and only if $g(S) = S$ (automorphism). In other words the object S has invariance under the transform g. The S can be a point set, intensity or color image, surface etc., and the symmetry is its property. Note that identity is the trivial symmetry.

1.2.1.1 Primitive Symmetry Types in 2D

A primitive symmetry of S is atomic, i.e. it cannot be decomposed as a concatenation of two non-trivial symmetries of a different type. There is a fixed set of primitive symmetry types for a given dimension and metric. In the simplest 1D case there are reflection and translation\(^1\) only. In Euclidean 2D space we add rotation and transflection to get four primitive symmetry types. Extending to 3D we get the helical and rotoreflection primitive symmetry types and there are more of them appearing in the higher dimensions. Hyperbolic spaces house similar primitive symmetry types analogical to Euclidean ones.

Since we are interested in image analysis, we will restrict ourselves to Euclidean 2D space and its four primitive symmetry types illustrated in Fig. 1.1, considering an image function $f(x)$ and a point $x = (x_1, x_2)$.

Translation symmetry is defined with

$$f(x) = f(x + \Delta), \quad (1.1)$$

where $\Delta \in \mathbb{R}^2$ is the translation vector.

Reflection symmetry (also called bilateral or mirror) is essentially defined for the case of reflection w.r.t. axis x_2 with

$$f(x) = f((-x_1, x_2)). \quad (1.2)$$

In the general case we can parameterize such transformation with

$$f(x) = f(\mu + R(x - \mu)), \quad (1.3)$$

\(^1\)Only some infinite sets are translation invariant.
Figure 1.1: Objects with primitive symmetries in 2D demonstrated on real-world examples from symmetry datasets (except d). The objects shown in the images are only approximately invariant under the specified symmetry mappings.
where $\mu \in \mathbb{R}^2$ is the axis location and $R = I - 2uu^T$ is the Householder reflection matrix for axis orientation $u = (\cos \varphi, \sin \varphi)$.

Rotation symmetry is defined similarly with

$$f(x) = f(\mu + F(x - \mu)), \quad (1.4)$$

where $\mu \in \mathbb{R}^2$ is the rotation center and

$$F = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \quad (1.5)$$

is the rotation matrix for angle $\varphi = \frac{2\pi}{n}$. The integer $n \in \mathbb{N}$ is the order (fold) of rotation.

Transflection symmetry (also called glide) is a combination of partial translation and reflection. In the case of transflection w.r.t. axis x_2 it is defined as

$$f(x) = f((-x_1, x_2 + \delta)), \quad (1.6)$$

where $\delta \in \mathbb{R}$. Contrary to the intuition this is also a primitive symmetry, because neither the given individual translation nor the reflection mapping is a symmetry of the whole object S. This type of symmetry is rare in practice and rather specific, we will not consider the transflection further.

1.2.1.2 Symmetry Groups

An interesting observation with extensive theoretical implications is that there are special symmetry sets G where symmetries $g \in G$ are compatible or complementary to each other in such a way that their compositions give the same result w.r.t. certain object $S = g(S)$.

Formally we define a **symmetry group** G of S as a mathematical group $\{G, *\}$ closed under transformation composition $(g_1 * g_2 \in G$ for all $g_1 \in G, g_2 \in G$ and by composition we mean chaining $g_1(g_2(S)) = (g_1 * g_2)(S) = g(S)$). The symmetry groups can be essentially characterized by discreteness, finiteness and invariance. These properties will be described on examples in Fig. 1.2.

Cyclic group C_n is formed by n rotation symmetries of order $n \in \mathbb{N}$, i.e. $\varphi_i = \frac{2\pi i}{n}, i = 0, \ldots, n - 1$. Non-trivial C_n is a finite discrete group with a rotation center as the invariant
point\(^2\). The degenerate case of \(n = 1\) is just identity.

Dihedral group \(D_n\) is formed by rotation of order \(n\) combined with \(n\) reflections, otherwise its characterization is the same as for the cyclic group.

Orthogonal group \(O(2)\) is the limiting case of \(D_n\) when \(n \to \infty\). It is an infinite continuous group of an unoriented disk with rotation center as the invariant point. It contains infinitely many rotations and reflections w.r.t. to a given invariant point.

An important class of crystallographic groups is found in periodic patterns repeated along some dimensions of the given space. There is a finite number of such distinct symmetry groups in any Euclidean space and there is a compositional structure (hierarchy) among them. Their invariant is a space unit delimited by the repetition period in \(\mathbb{R}^n\). There are 24 crystallographic groups in 2D and even 230 in 3D. In the 2D case relevant for us there are further two following subclasses, also see Fig. 1.3. In practice we understand images capturing finite objects as ‘cropped out’ of an infinite pattern.

Frieze groups are strip patterns repeating along one dimension in 2D. There are seven discrete infinite groups formed by compositions of 1D translation with rotation (order \(n = 2\)), reflection (horizontal or vertical) or transflection. Fig. 1.3c shows example of group called \(ml\) by crystallographers, composed of translation+reflection.

Wallpaper groups are lattice patterns repeating in two dimensions in 2D, generated by two linearly independent vectors, which simultaneously define the lattice unit and tiling. There are 17 discrete infinite groups formed by compositions of 2D translation with rotation (orders \(n = 2, 3, 4, 6\)), reflection (horizontal or vertical) or transflection. Fig. 1.3d shows an example of translation+reflection group called \(pmm\).

1.2.1.3 Symmetry in Images

Images of real-world objects captured by projective cameras are generally a result of perspective transformation. This causes objects with symmetry patterns to appear deformed in the images unless the camera is specifically restricted, i.e. when it is orthographic (or perspective) and fronto-parallel oriented w.r.t. planar surface of an observed object.

It is often sufficient to consider affine transformations only and to define skewed symmetry groups as affinely transformed Euclidean symmetry groups (Liu et al., 2010). In this affine (and also projective) space the original Euclidean symmetries are related by affine transformations and form a hierarchy.

While the symmetry patterns can be significantly deformed by perspective projections as in Fig. 1.4, there are certain characteristics called invariant features, which are not affected by the projection. Invariant features can be used for detection (Gool, 1998).

\(^2\)Precisely the case of \(i = 0\) is identity with plane invariance, but this includes the given rotation point invariance as well.
Figure 1.3: Discrete symmetry groups in 2D demonstrated on real-world examples from various symmetry datasets. The objects shown are only approximately invariant under the specified symmetry mappings.

Figure 1.4: Affine projections of wallpaper symmetry group pmm in a real-world image.
Chapter 1: Introduction

1.2.2 Symmetry Detection

Symmetry detection is an important computer vision problem (Davis, 1977), which has been used to constrain other problems such as recognition (Hayfron-Acquah et al., 2003), retrieval (Lee, 2013) and reconstruction (Yang et al., 2005; Sinha et al., 2012). A survey by Liu et al. (2010) provides background to general symmetry detection from images and reviews some related methods.

A most basic method for symmetry detection, also called direct approach, is a straightforward implementation of symmetry definition: Apply symmetry transformation g to image S and compare the result $g(S)$ with the original S, i.e. using SSD measure, and decide whether symmetry is present. When the symmetry parameters are unrestricted, the pool of tentative symmetries g has to be large, which is computationally demanding (recursive multi-resolution strategy can help). In practice this approach will work only with perfectly symmetric (artificial) images and fail in the presence of background clutter, appearance changes, partial occlusion or noise common to real-world images.

Symmetry detection methods can be characterized primarily by the scale at which they operate: Local symmetries are supported only by a subset of the image or shape, in contrast a global symmetry explains entire shape or even image. As the title of this thesis suggests we will focus on global symmetries, which can be attributed to one or more objects in the image.

1.2.3 Reflection and Rotation

The first reference to an algorithmic treatment of bilateral reflection symmetry by Birkhoff (1932) goes back even before computer vision itself was established. Over the decades a number of algorithms has been proposed for different types of symmetry, for a comprehensive overview we forward the reader to the survey by Liu et al. (2010).

Some of the more theoretical results in global symmetry detection, such as basis function (i.e. RBF) and moment-based methods (Marola, 1989) turned impractical for real-world images. A modern approach based on matching of local SIFT features proposed by Loy and Eklundh (2006) is now considered a baseline method. Recently, methods based on different features such as image edges (Wang et al., 2014) have been proposed.

The standard inference technique used for symmetry detection however remains voting in Hough or similar space, i.e. every two keypoints determine a reflection symmetry axis and if a symmetry test (geometry, similarity) is passed they cast a vote into a bin given by the axis parameters. Symmetry instances are retrieved from maximal peaks in the voting space accumulator, where thresholding and non-maximal suppression are used to avoid false positives and multiple detections. Corresponding parameters and voting space discretization choices are mostly empirical and their optimal tuning for images with multiple instances of symmetry is difficult. The discrete nature of the binning also does not allow for exact estimation of the symmetry parameters.

3Sum of Squared Differences, SSD(x, y) = $\sum_i (x_i - y_i)^2$.

The only method detecting dihedral and cyclic symmetry groups known to us was presented by Lee et al. (2008). It applies polar transformation to the image with centers at all pixel locations and efficiently analyses the obtained ‘frieze expansions’ using DFT to determine rotation order and group. This exhaustive scheme resembles direct approach, also by requiring $\approx 10 \times$ more processing time compared to Loy and Eklundh (2006).

The application of Gestalt theory for reflection symmetry detection has been investigated by Michaelsen et al. (2013), where local SIFT feature symmetries are grouped together following the continuation and proximity principles. This clustering approach however does not discard remaining local symmetries, which results in false positives when global symmetries are the goal. A general question arises from this behaviour: Where is the line between local and global symmetry and how can an algorithm distinguish them?

1.2.4 Translation

Translation symmetry detection, often found as a subgroup of repeating wallpaper patterns, is essentially described with a generating lattice (or grid in the orthogonal case). In real-world images it is usually characterized as near-regular texture (Liu et al., 2004), which allows deviations from the exact symmetry in both geometry and appearance. The lattice extraction can be formulated as higher order correspondence problem, where individual texture elements (texels) are detected using SIFT or correlation (Hays et al., 2006b), the search is however computationally intensive and sensitive to noise.

A more efficient algorithm for deformed lattice detection has been proposed by Park et al. (2009). It uses keypoints clustered by appearance to propose a pair of vectors generating the lattice, which initialize a regular MRF model for lattice element locations. The locations are estimated using mean-shift belief propagation followed by thin-plate spline warping.

Rather than seeing the image as continuously repeating texture with its element not clearly specified, we will be interested in the case when there are multiple instances of a known object distributed according to a lattice or similar regular layout, such as in the next section.

1.2.5 Facade Parsing

While the output from a general translation symmetry detector has limited direct use, we can make use of symmetry principles to constrain structured object detection by relaxing the wallpaper symmetry class constraints to reach a wider range of applications.

While facades as man-made scenes exhibit strong regularity and structure, when compared to arbitrary natural scenes, they still present a great variety of styles, configurations and appearance. The design of a general facade model that is able to cover their range is thus a challenging problem, and several methods have been proposed to deal with it.

There are two major approaches to the facade parsing problem. Top-down approach relies on the construction of a generative rule set, usually a grammar, and the result is obtained
stochastically as a word in the language best matching the input image (Simon et al., 2011). Automatic construction of a grammar has been proposed by Martinović and Van Gool (2013) but they do not generalize well outside of the style they were generated for, particularly due to recursive orthogonal splitting of the facade image. Learning is possible also for simple grammars like grid in Tyleček and Šára (2011b), but such model does not express more complex structural relations.

Bottom-up approaches instead combine weak general principles, which are more flexible and their parameters can be learned. The hierarchical CRF (Ladicky et al., 2009), which aggregates information from multiple segmentations at different scales, has been applied to facades in Yang and Förstner (2011), where binary potentials model consistency of adjacent labels within as well as across segmentations. Here neighboring segments with similar appearance are more likely to have the same label (contrast-sensitive Potts model). The three-staged method Martinovic et al. (2012) combines local and object detectors with a binary Potts CRF on pixels. The result is further sequentially processed to adjust the labels according to the alignment, similarity, symmetry and co-occurrence principles, each of them applied with a rather heuristic procedure. Additional principles are designed for a specific dataset and in fact resemble grammatical rules.

Shape grammars, as introduced in Gips (1975) and later picked up by Zhu and Mumford (2006), are the basic essence of all recent methods based on the procedural modeling to overcome the limitations of traditional segmentation techniques. The idea of shape grammars is that an image can be explained by terminal symbols (objects) obeying a set of rules. Some aspects of probabilistic approach were first discussed in Alegre and Dellaert (2004), including the use of RJMCMC. The proposed grammar is simple, based on splitting, and the results are demonstrated for highly regular facades only. In a similar fashion Müller et al. (2007) determines the structure by splitting the facade to a regular grid of individual tiles and subdividing them. Mayer and Reznik (2007) presented a pipeline for multi-view interpretation, where heuristics based on interest points were designed to detect positions of windows, and subsequently used MCMC to localize their borders. They also include rectification algorithm based on RANSAC to extract vanishing points from straight lines. Ripperda and Brenner (2007) has designed a comprehensive dictionary of domain-specific rules; the results presented on simple facades show this approach has difficulty to achieve good localization.

A method of Teboul et al. (2010) combines trained randomized forest classifiers with a shape grammar to segment Haussmannian\footnote{Architectural style widely used during the reconstruction of Paris in 19th century.} facades into eight classes. Their model assumes the windows form a grid while allowing different intervals. In the second step, positions of rows and columns in the grid are stochastically estimated by a specific random walk algorithm that does not propose dimension changes. Subsequently they proposed a new parser based on reinforcement learning to speed up the process in Teboul et al. (2011). In the same domain, the work of Chun and Gagalowicz (2011) demonstrates how a specific
segmentation algorithm can be engineered for a particular regular style.

We argue that regular texture analysis (Fig. 1.5a) is too general to understand the structure in the image, because it does not uniquely specify the image element. On the other side shape grammars, particularly split-based (Fig. 1.5b), tend to be overly domain specific and restrictive or, in other words, ‘strong’. Our interest lies therefore in investigating the gap between general and strong, which can be characterized with the adjective ‘weak’.

Recent development in the construction of virtual worlds like Google Earth or Microsoft Bing Maps 3D heads toward a higher level of detail and fidelity. The popularity of application such as Street View shows that reconstruction of urban environments plays an important role in this area. While acquisition of extensive data in high resolution is feasible today, their automated processing is now the limiting factor for delivering more realistic experience and it is a task for computer vision at the same time. In urban settings, typical acquired data are images of buildings’ facades and their interpretation can help discover 3D structure and reduce the complexity of the resulting model; for example, it would allow going beyond planar assumptions in dense street view reconstructions presented by (Micusik and Kosecka, 2009). The work of (Pauly et al., 2008) dealing directly with structural regularity in 3D data also supports our ideas. The complexity is particularly important when the representation has to scale with the size of cities in applications such as (Hohmann et al., 2009). The fresh results of Martinovic et al. (2015a) show that depth information from 3D model helps to classify the facade surface and suggest that integration of 2D and 3D features with weak rules is promising.
1.2.6 Facade Datasets

The increased interest in facade image parsing has led to introduction of several annotated datasets, which allow to quantitatively assess performance of new methods and compare their results with the previous ones. In the following we list datasets in the order they appeared and discuss their properties and relevance.

eTRIMS Dataset (Korč and Förstner, 2009) A consistent dataset of 60 non-rectified facade images was created in a dedicated project. They follow rather weak architectural principles as only sparse structure is present in the case of small houses. A small size of this dataset limits learning of structure models, which usually require more samples.

ECP Dataset (Teboul et al., 2010) A dataset of 104 Haussmannian facades from a single street in Paris (Rue Monge) is quite homogeneous. The images were rectified and background removed. This simplified setting has led to popularity among researchers and allows procedural approach to be directly applied. A revision of the initial annotation was submitted by Martinovic et al. (2012). Current methods score above 90% pixel-wise accuracy, which reaches the margin of annotation error. Recently also additional data have been captured in the same street to perform multi-view 3D reconstruction (Riemenschneider et al., 2014).
State of the Art

LabelMe Database *(Fröhlich et al., 2010)* There is a large dataset of general street images with abundance of object classes annotated *(Russell et al., 2008)*, however only a small subset of them can be used in practice due to low consistency and completeness of facade elements annotation (randomly missing windows). A subset from this dataset was selected by *Fröhlich et al. (2010)* to match ECP classes in an effort to increase the number of samples for learning, but the resulting quality is not satisfactory for translation symmetry analysis.

Graz Dataset *(Riemenschneider et al., 2012)* This small dataset is in its form similar to ECP, but the architectural styles from Graz are varied (Classicims, Biedermeier, Historicism, Art Noveau). It is rather over-simplifying as windows out of the dominant lattice are not annotated.
Chapter 1: Introduction

<table>
<thead>
<tr>
<th>Dataset</th>
<th>eTRIMS</th>
<th>ECP</th>
<th>LabelMe</th>
<th>Graz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Images</td>
<td>60</td>
<td>104</td>
<td>895</td>
<td>50</td>
</tr>
<tr>
<td>Classes</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Building, Wall</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Car</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Pavement</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sky</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Vegetation</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Balcony</td>
<td>●</td>
<td></td>
<td>○</td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chimney</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shop</td>
<td>●</td>
<td></td>
<td>○</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.6: Comparison of existing facade datasets. Incomplete annotation is marked ○.

The contents of mentioned datasets is summarized in Fig. 1.6. Their analysis shows there is no dataset fulfilling the desirable properties of variability, consistency, completeness with a number of annotated images sufficient for structure learning. In reaction to this fact a new dataset fulfilling both quantitative and qualitative demands will be presented in this thesis (Chapter 3).
1.3 Preliminaries on Probabilistic Modeling and Inference

This section will present common terminology, notation and techniques related to models and methods proposed in this thesis. These are just tools with respect to this thesis and the following text discusses most popular options and does not aim to be a comprehensive enumeration of the state-of-the-art in this area.

1.3.1 Probabilistic Model

Most of the formalism presented here follows Šára (2014) and our previously published results presented in this thesis were updated to match it.

1.3.1.1 Primitive Elements

Let $X = \{x_1, \ldots, x_n\}$ represent data in a given image I. The elements of X will be called primitive elements or primitives in short. Each primitive corresponds to an independent measurable observation specific to a given problem, such as data point, correspondence or image pixel. They represent a minimal substructure (atom) participating in the inference, like a minimal sample in RANSAC. Their set and the number n are fixed.

1.3.1.2 Components

The class of problems this thesis is concerned with aims to identify unknown number k of instances of an object in X, such as number of clusters in clustering problems. The number k will be called complexity of the model. The individual object instances $j = 1, \ldots, k$ will be called model components.

For instance, in a standard point clustering problem the components are clusters with centers and we want to find an unknown number of clusters k. The primitives $x_i \in X$ are the individual points in \mathbb{R}^d, and the probabilistic model describes a point deviation from the centers.

1.3.1.3 Configurations

We assume that data X can be explained by allocating (assigning) each primitive x_i to one of the k components or to background (clutter). The primitives assigned to some component are considered inliers, while those assigned to background are outliers. We will formally consider background as the $(k+1)$-th component indexed with $j = 0$ to simplify the notation by assigning all primitives to a component. The partitioning of the set of n primitives X into $k + 1$ component sets will be called a configuration Z with representation specific to a particular method.
Chapter 1: Introduction

1.3.1.4 Groups

A set of components can be further partitioned into subsets called *groups*, which allows to model component interaction through statistical dependencies. There are k groups in the model and allocation of components to groups is a *grouping* \tilde{Z}.
1.3.1.5 Parameters

Let $\theta = (\hat{\theta}, \breve{\theta}, \hat{\theta}, \breve{\theta})$ be model parameters, where

$\hat{\theta}$ are configuration parameters (global), e.g. component probability,

$\hat{\theta}$ are shape parameters common to all components, e.g. common cluster size, orientation etc.,

$\breve{\theta}$ are group parameters, e.g. group centers, and

$\tilde{\theta} = (\tilde{\theta}_1, \ldots, \tilde{\theta}_k)$ are component parameters, e.g. cluster centers.

Parameters θ are considered random variables. Random variables associated to primitives or components will be called attributes where appropriate.

The following table summarizes variable notation used throughout this thesis:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Domain</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>model parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\theta}$</td>
<td>common shape parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\breve{\theta}$</td>
<td>configuration parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ</td>
<td>prior hyperparameters</td>
<td>continuous</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>complexity (number of components)</td>
<td>discrete</td>
<td>k</td>
</tr>
<tr>
<td>$\tilde{\theta}$</td>
<td>component parameters</td>
<td>continuous</td>
<td>k</td>
</tr>
<tr>
<td>$\breve{\theta}$</td>
<td>group parameters</td>
<td>continuous</td>
<td>\breve{k}</td>
</tr>
<tr>
<td>\hat{k}</td>
<td>number of groups</td>
<td>discrete</td>
<td>1</td>
</tr>
<tr>
<td>I</td>
<td>image</td>
<td>continuous</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>data</td>
<td>continuous</td>
<td>n</td>
</tr>
<tr>
<td>x_i</td>
<td>primitive element of data</td>
<td>continuous</td>
<td>d</td>
</tr>
<tr>
<td>Z</td>
<td>configuration</td>
<td>discrete</td>
<td>n</td>
</tr>
<tr>
<td>z_i</td>
<td>primitive allocation</td>
<td>discrete</td>
<td></td>
</tr>
<tr>
<td>\hat{Z}</td>
<td>grouping</td>
<td>discrete</td>
<td>k</td>
</tr>
<tr>
<td>\breve{z}_j</td>
<td>group allocation</td>
<td>discrete</td>
<td></td>
</tr>
</tbody>
</table>

The concrete domain will be specified in the individual models. Some symbols will be clarified in the following text.
1.3.1.6 Features

In order to simplify the model we will sometimes define feature functions or features in short, which transform attributes \(\mathbf{x} = (x_1, \ldots, x_n) \) to a different (feature) space more convenient for desired modeling purposes w.r.t. the given image \(I \). This is particularly useful in the case when it would be oversimplifying to assume independence \(p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i) \). The general form for a discriminative feature \(\mathbf{y} = (y_1, \ldots, y_n) \) defined as the output of a transformation function \(\mathbf{f} \) is given by

\[
\begin{align*}
\mathbf{y} &= \mathbf{f}(\mathbf{x}; I) = \mathbf{f}(x_1, x_2, \ldots x_n), \\
y_i &= f_i(\mathbf{x}; I).
\end{align*}
\]

We apply the chain rule for variable substitution in a pdf by inserting the determinant of the transformation Jacobian \(\mathbf{J}_f \) to get

\[
p(\mathbf{x}) = p(\mathbf{y}) \left| \frac{d\mathbf{f}(\mathbf{x})}{d\mathbf{x}} \right|_{\mathbf{J}_f(\mathbf{x})},
\]

assuming \(\mathbf{f} \) is parametric, differentiable (smooth) and bijective. This is followed by independence assumption

\[
p(\mathbf{y}) = \prod_{i=1}^{n} p(y_i) = \prod_{i=1}^{n} p(f_i(\mathbf{x}))
\]

resulting in

\[
p(\mathbf{x}) = \mathbf{J}_f(\mathbf{x}) \prod_{i=1}^{n} p(y_i).
\]
1.3.2 Structured Models

We will understand structured models as models for a set of individual objects or components which describe interaction between the components (their structure or context). By modeling their dependencies they differ from unstructured models which assume independence of the components.

Examples of some early computer vision instances of structured probabilistic models as we understand them in this thesis are the works by Moghaddam and Pentland (1995) or Schmid (1999), where spatial coherence of sets of correspondences in recognition is modeled.

1.3.2.1 Variable Number of Parts

Problems this thesis is concerned with have a common property that the number of objects present in the image or complexity k is not known in advance and has to be inferred from the data. This is different from a class of deformable part models with a given number of specific parts, such as in human body detection or face recognition (Felzenszwalb and Huttenlocher, 2005; Girshick et al., 2011), where parts mark eye, nose, head, torso, limbs etc.

The problem at hand is to identify k instances of an object in data X, for which we will have a parametric probabilistic model. In the trivial case there can be even no object present ($k = 0$), which case is often ignored by detection algorithms, that pick up the first best object at hand, or make the decision based on thresholding of the detection score. In general this problem is similar to estimation of a Gaussian mixture with unknown number of components (Green, 1995). In the context of computer vision the problem has been encountered i.e. in motion segmentation (Weiss and Adelson, 1996) and detecting the number of model instances is still considered one of the most difficult things in model fitting (Wang et al., 2012).

1.3.2.2 Bayesian Models and Priors

The classical approach reasons about data X by directly evaluating their statistical function $p(X \mid \theta)$, formally seen as a likelihood function

$$\mathcal{L}(\theta \mid X) = \log p(X \mid \theta)$$

of the unknown parameters θ with fixed X, and expressed in logarithm for convenience. However the likelihood function is not a conditional pdf w.r.t. θ and also generally it is not considered a density. Traditionally in statistics a data sample X is a set of independent (iid) sample points (measurements). If we associate X with a given intensity image the interpretation has to change slightly because each pixel measures intensity of a different part of the observed scene and the pixels are generally not iid. The segmentation of pixels into independent parts (i.e. background/foreground) is then subject to the image data model.
We can however extend the classical observation model and invert the arguments explicitly using Bayes theorem. This requires to define a prior distribution on parameters \(p(\theta \mid \xi) \), where \(\xi \) are its own (given) parameters; these are usually called hyperparameters to distinguish them from the original model parameters. The actual inversion then proceeds with

\[
p(\theta \mid X, \xi) = \frac{p(X \mid \theta, \xi)p(\theta \mid \xi)}{p(X \mid \xi)},
\]

(1.13)

where we can identify individual terms of a parametric Bayesian statistical model (Robert, 2007) as follows:

- \(p(\theta \mid X, \xi) \) is the posterior probability (density),
- \(p(X \mid \theta, \xi) \) is the data probability (density),
- \(p(\theta \mid \xi) \) is the prior probability (density),
- \(p(X \mid \xi) \) is the data evidence, in the continuous setting this term equals the marginal

\[
p(X \mid \xi) = \int p(X \mid \theta, \xi)p(\theta \mid \xi) \, d\theta
\]

(1.14)

and can be thought as the normalizing function for the posterior.

Note that \(p(X \mid \theta, \xi) \) may serve two roles – a generative model for data \(X \) given parameters \(\theta, \xi \) or as likelihood of parameters \(\theta \) given data \(X \) and hyperparameters \(\xi \).

Priors generally allow to regularize the problem, which brings the final estimate of the parameters closer to the desired values, especially in the presence of noise and outliers. Priors are fundamental to structured models by encoding our knowledge on the structure.

A choice of appropriate priors is essential to Bayesian modeling and there is a significant body of literature which deals with this task. There are several general considerations.

When the posterior distribution is in the same family as the prior distribution we call it a conjugate prior. This convenient property is achieved when the integration (1.14) can be carried out with a closed-form result. For all exponential family distributions (Sec. 1.3.7.1) there is such conjugate prior (Gelman et al., 2003).

The hyperparameters \(\xi \) in (1.13) are considered given or fixed, but picking a single value for each of them can be suboptimal. In this case we can simply chain a new prior for these hyperparameters in our model; such prior is usually called a hyperprior. Let \(\psi \) be its hyperparameters, then

\[
p(\theta, \xi, \psi \mid X) = \frac{p(X \mid \theta, \xi, \psi)p(\theta \mid \xi, \psi)p(\xi \mid \psi)p(\psi)}{p(X \mid \xi, \psi)},
\]

(1.15)

is a hierarchical Bayesian model (Robert, 2007) with hyperparameters \(\xi, \psi \) and hyperpriors \(p(\xi \mid \psi)p(\psi) \). As suggested in (1.15) there can be naturally multiple levels in the hierarchy. Actually it is just a standard Bayesian model with a superset of parameters \(\Theta = \{ \theta, \xi, \psi \} \).
and chain rule applied to its prior \(p(\Theta) \). With respect to this observation the use of hyper-
is just a convention and there is no strict line between ‘normal’ and ‘hyper’. Theoretical
results (Robert, 2007) suggest that a fully specified hierarchical Bayesian model (1.15)
is a better estimator of the posterior distribution than one with some hyperparameters
fixed (1.13).

If there is no information about a hyperparameter, *uninformative* prior may be appro-
priate, such as for \(p(\psi) \) in (1.15). These have generally uniform distribution with no more
hyperparameters, but for unbound parameters (i.e. real) a special approach proposed by
statisticians is needed (Jeffrey’s priors, improper priors (Gelman et al., 2003)).

1.3.2.3 Graphical Models

A *Probabilistic Graphical Model* (PGM) uses a graph to conveniently represent dependencies
within a set of parameters (variables), where graph nodes correspond to the random variables
(component or configuration parameters) and edges to direct probabilistic interactions between
them (Koller and Friedman, 2009).

In the case of a directed graph we talk about a *Bayesian network*. An oriented edge \(u \rightarrow v \)
in this graph indicates conditional dependency \(p(v \mid u) \). A conditional factorization requires
 chaining of the components, which is usually not available in two-dimensional images.

In the undirected case it is called a *Markov Random Field* (MRF). It is a generalized
case of a linear Markov Chain (MC). The probability is factorized as a product of specific
potential functions, which are usually taking the exponential form in

\[
p(Z, X; \theta, \mathcal{Q}) \propto \prod_{q \in \mathcal{Q}} \exp \left(- \sum_{j \in \phi(q)} \theta_j \varphi_j(z_q, x_q) \right),
\]

where \(\mathcal{Q} \) is the set of cliques (complete subgraphs), \(\varphi_j \) are non-negative potential functions
(factors) from a predefined set \(\phi(q) \) defined for a clique \(q \). The \(\varphi_j \) is a function of all node
variables \((z_q, x_q) \) in a collection \(\phi(q) \) and its weight is \(\theta_j \). This factorization is possible thanks
to the fundamental theorem of Hammersley and Clifford (1971) which links the MRF with
Gibbs distribution when the joint density (1.16) is strictly positive. Note that potentials \(\varphi_j \)
are not expected to be probability distributions (i.e. marginal), but they are just terms in
a joint distribution \(p(Z, X) \), which need to be summed over \(Z, X \) space for normalization
of (1.16). However, any exponential family pdf (Sec. 1.3.7.1) can be embedded in (1.16).

The MRF is popular in image segmentation and classification (Gould et al., 2008)
thanks to its ability to handle high-dimensional spaces, efficient parameter inference and
availability of hyperparameter learning methods. On the other hand it requires the graph to
be fixed for a given data input, which does not leave much space to apply it to problems with
variable number of parts. We can rather cast these problems as assignment of primitives to
classes interpreted as semantic components.

A variant called *Conditional Random Field* (CRF) introduced by Lafferty et al. (2001)
models directly the conditional distribution \(p(Z \mid X) \), where \(Z \) is a configuration (Sec. 1.3.1.3) of labels and \(\theta_j \).
1.3.3 Inference Methods

A complex probabilistic model would be useless if we had no practical method to infer (estimate) its parameters from data. In this section we will mention the standard methods which can be applied to the structured models of our interest.

The process of inference of the model parameters θ from the data X can be generally expressed with

$$\theta^* = \arg \max_\theta f(\theta \mid X).$$

1.3.3.1 Maximum Likelihood Estimation

The estimation in the classical case (1.12) is known as Maximum Likelihood (ML) estimation, which is a direct maximization of the

$$\theta^* = \arg \max_\theta p(X \mid \theta),$$

(1.18)

treated as a function of θ, which is the only function we have to specify. With the assumption of independence of observations we can write

$$p(X \mid \theta) = \prod_{x_i \in X} p(x_i \mid \theta),$$

(1.19)

which conveniently translates into log-likelihood as

$$\mathcal{L}(X \mid \theta) = \sum_{x_i \in X} \log p(x_i \mid \theta),$$

(1.20)

and the estimate θ^* maximizing (1.18).

The ML estimation is usually chosen when there is no additional information on the parameters but the data observation model; as such it simply cannot be used with structured models.

1.3.3.2 Maximum a Posteriori Estimation

When we plug in a prior in (1.13) we proceed with Maximum A Posteriori (MAP) estimation

$$\theta^* = \arg \max_\theta p(X \mid \theta) p(\theta),$$

(1.21)

where we can safely drop $p(X)$ from (1.13) because it does not depend on θ. The estimate can be found similar to ML with an extra term for the prior in (1.20). However, chances to get a closed-form estimator from MAP are generally lower and a search for appropriate prior distribution can be cumbersome, which is the major point in the criticism of Bayesian approach.
In the context of models with variable number of parts we can consider complexity k as one of the parameters, $k \in \theta$, and use (1.21) to estimate them all simultaneously with MAP.

1.3.3.3 Bayesian Estimation

Both ML and MAP return only a single estimate of values θ^* for the parameters. In contrast the Bayesian estimation calculates the full posterior distribution $p(\theta \mid X, \xi)$, for which the denominator $p(X \mid \xi)$ from (1.13) must be also calculated. This further restricts the prior choice such that integration (1.14) can be carried out. However $p(X \mid \xi)$ need not to be available in closed-form, we can calculate it numerically (enumerating a discrete distribution) or it can be sufficient to estimate it (using random sampling).

The benefit of obtaining the full posterior is we can further analyze the parameter space. We can calculate the variance associated with the MAP estimate or find alternative estimates when the posterior is multimodal. We can also use it for prediction.

1.3.3.4 Model Selection and Two-Level Inference

Rather than direct estimation of complexity k hinted in Sec. 1.3.3.2 we can employ Bayesian estimation and treat the problem of the unknown number of components as a model selection problem. Following Šára (2014) we can treat complexity k not as a parameter of a single model but instead we consider multiple models with different complexity $k = 0, 1, 2, \ldots, k_m$.

This results in a hierarchical model

$$p(X, \theta, k) = p(X \mid \theta, k) p(\theta \mid k) p(k).$$ \hfill (1.22)

Two-level Bayesian inference (MacKay, 2003) is then used to perform model selection, the task of selecting a model from a set of candidate models, given data. The selection criterion in this case is Bayes factor (evidence ratio) generalized to multiple models. In the context of this thesis the goal of inference is two-fold:

1. Determine the most probable complexity k^* according to

$$k^* = \arg \max_k p(k \mid X) = \arg \max_k \int p(X, \theta, k) \, d\theta,$$ \hfill (1.23)

in which $p(k \mid X)$ is the posterior marginal from (1.22).

2. Given k^*, determine the most probable parameters θ

$$\theta^* = \arg \max_{\theta} p(\theta \mid X, k^*).$$ \hfill (1.24)

In practice the actual inference procedure usually performs both levels simultaneously. Approximate information criteria for model selection (Bayesian BIC, Akaike AIC, etc.) are overly simplifying for complex models of our interest.
1.3.4 Random Sampling Methods

One of the possible options for implementing the general approaches mentioned in the previous section is to use random sampling. Computing marginals of complex probabilistic functions typically requires a sampling method. Naive sampling methods would result in an algorithm that is too slow in practical-size problems. In this section we will review relevant sampling methods and discuss their applicability to structured models with a variable number of parts.

1.3.4.1 RANSAC

Although not probabilistic, Random Sample Consensus (RANSAC) by (Fischler and Bolles, 1981) is presumably the most popular algorithm for stochastic inference of parameters in computer vision. Its key idea is to use sampling of parameters θ from the empirical distribution of data X, which makes it efficient; we can make use of this mechanism also in the context of probabilistic sampling.

Even when the optimized ‘energy’ function can be arbitrary, we cannot directly apply RANSAC to problems with variable number of components. Greedy sequential estimation of individual components turns out to be suboptimal as discussed in (Zuliani et al., 2005), where it has been extended for joint sampling of all components but still the complexity k is considered given. This has been overcome by method of Wang et al. (2012) but the determination of k remains empirical.

1.3.4.2 MCMC

Markov Chain Monte Carlo (MCMC) is a class of advanced methods for sampling from arbitrary probability distributions, which is particularly useful for Bayesian inference (Gilks and Roberts, 1996). The major advantage over independent sampling (like in RANSAC) lies in the Markov process where a new sample is conditioned on the previous one (but not on further preceding states). The dominant sub-classes in MCMC are random walk methods, but some variants implement deterministic ‘shortcuts’ to improve convergence and efficiency (Duane et al., 1987; Roberts and Tweedie, 1996).

Gibbs sampling is a popular MCMC method (Geman and Geman, 1984) because it is formally simple, but requires marginal distributions for all parameters, which usually does not allow to apply it for complex structured models.

The universal method in the MCMC family is Metropolis-Hastings (MH) algorithm, which allows to obtain samples from an arbitrary target distribution $\pi(\theta)$ even when we cannot directly sample from it. The basic idea is that instead of direct sampling we take samples from auxiliary proposal distribution $q(\theta' \mid \theta)$ and filter them by an probabilistic acceptance algorithm. A sample is accepted randomly with acceptance probability $a(\theta \mid \theta')$. It is derived from the detailed balance condition that guarantees reversibility of MC for its stationary distribution π:

$$\pi(\theta) T(\theta' \mid \theta) = \pi(\theta') T(\theta \mid \theta'), \quad (1.25)$$
where we express the transition $T(\theta' | \theta)$ as the proposal q and acceptance-rejection a

$$T(\theta' | \theta) = q(\theta' | \theta) a(\theta' | \theta).$$

(1.26)

Together we get the acceptance equation

$$\frac{a(\theta' | \theta)}{a(\theta | \theta')} = \frac{\pi(\theta') q(\theta | \theta')}{\pi(\theta) q(\theta' | \theta)},$$

(1.27)

which a particular acceptance function must fulfill. A common choice (Hastings, 1970) is

$$a(\theta' | \theta) = 1 \land \frac{\pi(\theta') p(\theta | \theta')}{\pi(\theta) p(\theta' | \theta)},$$

(1.28)

where $a \land b = \min(a, b)$.

While in theory MH can accommodate structured models with any level of complexity, there is a price associated with this generality. In practice we are limited by our ability to design proposal distributions sufficiently close to the target distribution. If unsuccessful, the majority of proposed samples would be rejected (low acceptance rate), rendering the sampler inefficient and slowly converging. Associated performance indicator is the mixing rate describing the sampling process agility and efficiency in exploring configuration and parameter spaces; it can be loosely characterized as average correlation of consecutive states in MC.

With rapidly increasing number of random variables in computer vision models this problem is aggravated by the curse of dimensionality (Bellman and Bellman, 1961) in optimization. Most notably high-dimensional spaces are sparse and random walk must travel further to explore them because finding a tight bounding distribution is usually difficult. Also combinatoric aspect gets in the way as the number of possible explanations of the data grows exponentially.

1.3.4.3 Reversible Jump

The standard MH algorithm needs to be extended when the dimension of the parameter space $\theta \in \Theta$ is unknown, which is the case of the models with variable number of parts k. The mechanism accounting for the dimension changes in accordance with the measure theory is known as Reversible Jump (Green, 1995).

In the standard implementation of RJ a proposal only changes the complexity k by a fixed step (e.g. ±1, add/remove a component). A typical implementation involves also a pair of component split/merge proposals (Jain and Neal, 2000). Recently Pandolfi et al. (2014) has proposed a more efficient sequential multipoint proposal variant, where several sequential complexity proposals are jointly considered as candidates from which one is selected.

The simplest method to obtain $p(X | k)$ in Bayesian selection of complexity (Sec. 1.3.3.4) is a histogram of posterior samples obtained from a RJ-MCMC sampler. For each k, the sampler
also remembers the best configuration found for the particular complexity in terms of (1.22). With detailed balance and reversibility conditions fulfilled the resulting configuration is asymptotically globally optimal.

1.3.4.4 Adaptive Methods

As mentioned above in Sec. 1.3.4.2, the choice of proposal distributions is critical for practical efficiency of MCMC. The proposals are usually controlled by a set of inference parameters such as the variance of the proposed model parameter change (length of a step in random walk). For given input data it is possible to find an optimal value of such parameter w.r.t. convergence, however for a different input the value will be no longer optimal.

A solution to this problem is on-line adaptation of selected proposal distribution parameters (Rosenthal, 2011), where basically the step length in a random walk is adjusted to achieve target acceptance\(^5\). Its goal is to achieve efficient mixing (Atchadé, 2006; Shaby and Wells, 2010a). The introduction of adaptation caused a small revolution in MCMC methods and brought them closer to practical sampling and inference methods.

1.3.4.5 Population Methods

With parallel computation resources becoming available in the recent years, several approaches have been proposed to enhance MCMC methods both quantitatively (speed up by parallel sampling, (Neiswanger et al., 2014)) and more interestingly qualitatively (efficiency, convergence (Laskey and Myers, 2003)) by running a population of MH samplers simultaneously. The statistical information from a population of samplers is used to inform the proposal distributions for individual samplers in the population. Experimental results (Laskey and Myers, 2003) show that the population learns more efficiently than the individual samplers with no information exchange.

Our recent experience shows that population methods can solve harder inference problems where there are many maximizers of (1.24) that are distant in the configuration space, or in other words the alternative solutions \(\theta_1^*, \theta_2^*\), are close w.r.t. target distribution \(|\pi(\theta_1^*) - \pi(\theta_2^*)| \to 0\), but distant w.r.t. proposal distribution \(q(\theta_2^* | \theta_1^*) \to 0\).

1.3.4.6 Hybrid Methods

Several approaches have been proposed that complement the random walk in MCMC with deterministic steps (Neal, 2011; Duane et al., 1987; Roberts and Tweedie, 1996), which has led to call them generally hybrid methods.

Stochastic Approximation Expectation-Maximization (SAEM) algorithm (Delignon et al., 1999) is a modern variant of Monte-Carlo EM algorithm. From the perspective of MCMC, this technique provides a way how all the produced samples from \(\pi(\theta)\) can be stochastically averaged (expectation) to (re-)estimate the parameters \(\theta\) (maximization).

\(^5\)In Gaussian setting short steps (small changes) have higher acceptance than long steps.
Chapter 1: Introduction

The histogramming of posterior complexities for obtaining $p(X \mid k)$ mentioned in Sec. 1.3.4.3 can be replaced by a more efficient marginal estimation, e.g. using the thermo-dynamic integration (Calderhead and Girolami, 2009) and the best-sample wait can be replaced by the EM algorithm for parameter estimation.

A consistent framework for such process has been implemented in a hybrid inference method called LiSAEM (Šára, 2014), which blends several existing concepts together and not only efficiently estimates the number of components but also provides estimates for other parameters (component parameters, variance, outlier probability). To achieve computationally efficient algorithm, its inference model is constructed so that the amount of random sampling is kept to a minimum. This is achieved by combining hybrid sampling ideas with PEARL-like optimization based on a set of random labels (Isack and Boykov, 2012) and a Riemannian version (Bui-Thanh and Ghattas, 2012) of Metropolis-Adjusted Langevin algorithm (Roberts and Tweedie, 1996) as an efficient proposal mechanism for parameters θ. The engine uses many additional ideas from the literature some of which are mentioned above.

1.3.5 Inference and Learning for Graphical Models

From a vast number of methods providing inference and learning in graphical models (Koller and Friedman, 2009), we pick up a selection related to MRFs.

In general case exact inference in MRFs is not possible, but approximation techniques are available. The standard approximate algorithm is Loopy Belief Propagation (LBP), which is based on message passing over graph edges when nodes iteratively ‘vote’ for their neighbors values given their own value. Its convergence properties are however degrading with increasing complexity of the graph structure; this also holds for stochastic approximation methods (MCMC). Variants of LBP covering the original graph with subgraphs and combining the particular solutions on the subgraphs have shown better performance (Kolmogorov, 2006).

The specific cases when exact inference is possible either limit the graph topology or the choice of potential functions. If in the first case the graph is a chain or tree, message passing (LBP) converges to exact solution (in analogy to the forward-backward and Viterbi algorithms for linear chains). In the latter case if a submodularity condition on the potentials holds then max-flow algorithms (alpha-expansion, alpha-beta swapping) return exact solutions (Kohli et al., 2009).

In the case of CRF learning of weights θ (hyperparameters in this case) is possible using ML or Maximum Pseudo Likelihood (MPL) approximation to a joint distribution assuming conditional independence (Lafferty et al., 2001).

The limiting factor for application of MRFs to our problems of interest is that parameter set including complexity must be fixed prior to inference. We therefore do not discuss methods from this area in detail.
1.3.6 Notation Remarks

Vectors will be generally typeset in bold face, e.g. $\mathbf{x} = (x_1, x_2, \ldots)$ with elements x_i, and matrices in bold capitals, e.g. \mathbf{X}. The bold face does not apply to Greek alphabet.

1.3.7 Probability Distributions

We list abbreviations used throughout this thesis, along with the common parametrization for reference. Detailed explanation can be found in the most of textbooks on probability and statistics.

Continuous:

pdf probability density function

\mathcal{N} Normal (Gaussian), univariate, $\mathcal{N}(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \sigma > 0,$

\mathcal{N}_c Circular Normal (von Mises), $\mathcal{N}_c(x; \mu, \kappa) = \frac{e^{\kappa \cos(x-\mu)}}{2\pi I_0(\kappa)}, \kappa > 0,$

Exp Exponential, $\text{Exp}(x; \lambda) = \lambda e^{-\lambda x}, \lambda > 0,$

$\mathcal{I}\mathcal{G}$ Inverse Gamma, $\mathcal{I}\mathcal{G}(x; \alpha, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{-\alpha-1} \exp\left(-\frac{\beta}{x}\right), \alpha, \beta > 0,$

Be Beta, $\text{Be}(x; \alpha, \beta) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}, \alpha, \beta > 0,$

Dir Dirichlet, symmetric, $\text{Dir}(x_1, \ldots, x_{k-1}; \alpha) = \frac{\Gamma(\alpha k)}{\Gamma(\alpha)} \prod_{i=1}^{k} x_i^{\alpha-1}, \alpha > 0,$

\mathcal{U} Uniform, $\mathcal{U}(\Omega) = \frac{1}{|\Omega|}$

Discrete:

pmf probability mass function

\mathcal{B} Binomial, $\mathcal{B}(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}, p \in [0, 1], n \in \mathbb{N},$

Ber Bernoulli, $\text{Ber}(k; p) = p^k (1-p)^{1-k}$ for $k \in \{0, 1\}$.

Pois Poisson, $\text{Pois}(k; \lambda) = \frac{\lambda^k e^{-\lambda}}{k!}, \lambda > 0,$

\mathcal{U} Uniform, $\mathcal{U}(n) = \frac{1}{n}, n \in \mathbb{N}.$

These abbreviations will be used to refer to the probability density (mass) function of a given type, i.e. the fact that variable x has normal probability density function with a given mean μ and variance σ^2 will be for convenience expressed as

$$p(x) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$
where symbols after ‘;’ are fixed distribution hyperparameters. This is slightly different to the common notation

\[x \sim \mathcal{N}(\mu, \sigma^2), \]

where the symbol \(\mathcal{N} \) represents the distribution itself, we will use the both expressions. The symbol \(\sim \) is used to emphasize that \(x \) is sampled (generated) from the given distribution.

The symbol \(p \) will be used more loosely for both probability density and mass functions and likelihood, the concrete meaning is determined by the context and by the discrete or continuous domain of its arguments. We will use the simplified notation \(p(x) \) instead of \(p_x(x) \), i.e. the identity of the function \(p \) is determined by its arguments. For example \(p(x) \) and \(p(y) \) are two different functions, precisely \(p_x(x) \) and \(p_y(y) \). In the case we need to specify two different functions of the same arguments this will be denoted explicitly, i.e. \(p_1(x) \) and \(p_2(x) \). In the case of arguments with variable indices such as \(p(x_i), i = 1, 2, 3, \ldots \), we specify the same function for all \(x_i \), unless explicitly specified otherwise.

1.3.7.1 Exponential Family Distributions

An exponential family distribution can be written as

\[
p(x \mid \theta) = h(x)g(\theta) \exp \left[\sum_{w=1}^{W} \eta_w(\theta) T_w(x) \right],
\]

where \(\eta_i \) are natural parameters and \(T_i \) are sufficient statistics of the exponential-class model. All distributions given above belong to the exponential family, in some cases certain parameters must be fixed (those that change the support of the distribution).
1.4 Thesis Goals

Based on the analysis of state of the art we set the following goals:

- Try to use principles of weak grouping for symmetric object detection.
- Design a probabilistic model for image symmetries involving multiple elements.
- Propose an inference mechanism for detecting such symmetries that does not oversegment.
- Provide a good estimator of complexity for symmetries of unknown order.
- Attempt to learn important structural relations.

Each of the following chapters addresses some of these goals. The most complex model is presented in Chapter 4. The main results are summarized in Chapter 5.
Chapter 1: Introduction
Chapter 2

Weak Structure Model

“From now on we can compare our data with the model we actually want to use rather than with a model which has some mathematical convenient form. This is surely a revolution.”

Peter Clifford (1993)

2.1 Introduction

For our initial approach to symmetry detection we have chosen a level of structure complexity that allows us to solve some real-world problem while we can oversee its individual parts and analyze their impact on the overall performance. This has brought us to translation symmetry detection in the world of facades with a large pool of facade elements in different architectural styles. It has become our playground for recognition of structured images.

2.2 Overview

We will present a method for detection of windows in facade images. Given an ability to obtain local low-level data evidence on individual components (windows), we determine their most probable number, locations, size and neighborhood relation. The embedded structure is weakly modeled by pair-wise attribute constraints, which allow structure and attributes to mutually support each other. We will use a general framework of Reversible Jump MCMC (Sec. 1.3.4.3) to perform MAP estimation of component count and parameters (Sec. 1.3.3.2), which is the simplest probabilistic approach applicable to structured models with variable number of components.

We initially designed a probabilistic model based on a grid with rows and columns (Tyleček and Šára, 2011b) which also allows exceptions both in locations and structure, see Fig. 2.1.

2.3 Problem Description

We consider the problem of recognizing specific objects (facade windows), which correspond to components. In this case the primitive elements are image pixels (Sec. 1.3.1). We assume the input image is orthographically rectified, as in Fig. 2.8. This was achieved by an automatic rectification method using vanishing point detection similar to (Förstner, 2010).

Our model parameters θ consist of complexity k (the number of components), component parameters $\bar{\theta}$ (window locations and size) and configuration parameters $\dot{\theta}$ (neighborhood of components). The recognition task can then be formulated as follows: Given image data I, we search for model parameters $\theta = (k, \bar{\theta}, \dot{\theta})$ by finding the mode of the joint distribution
Figure 2.2: Hierarchy in the probability model. Term in this diagram is a product of its two child terms. The structural prior is the discrete part of the model which conditions the remaining continuous part.

\[p(I, \theta) \text{ with } \theta^* = \arg \max_{\theta} p(I \mid \theta) p(\theta), \] \hfill (2.1)

which is computed with Bayes theorem from data model \(p(I \mid \theta) \) and structural model prior \(p(\theta) \). We will decompose our probability model hierarchically as shown in Fig. 2.2 and propose pdfs specific for the task of window detection in facade images. Then we will apply stochastic RJMCMC framework (Sec. 1.3.4.3) based on random walk to find the optimal value \(\theta^* \) by effectively sampling from the space of possible combinations of parameters \(\theta \). More details on its implementation will be given in the following sections.

We will now describe individual terms in our model basically from right to left as they appear in Fig. 2.2, starting with the independent variables. The terms will be summarized at the end of this section in Tab. 2.1.

2.4 Probability Model

We design a probabilistic structural model \(p(k, \bar{\theta}, \hat{\theta}) \) in which \((k, \bar{\theta}, \hat{\theta})\) is a configuration. The model captures rules for appearance of a set of similar components in an image with a semi-regular spatial distribution. Rather than explicitly imposing a lattice or a similar global layout, the model is based on local pair-wise component neighborhood and parameter constraints. We are given a set of \(k \) components with parameters \(\bar{\theta} = (\mu, \sigma) \). The location parameters in vector \(\mu \) are defined in the unit image plane with

\[\mu = (\mu_1, \ldots, \mu_k), \ \mu_i \in (0, 1)^2 \] \hfill (2.2)

and similarly the size and shape is described with vector

\[\sigma = (\sigma_1, \ldots, \sigma_k), \ \sigma_i \in (0, 1)^2. \] \hfill (2.3)
Our neighborhood representation $\hat{\theta}$ is independent on the locations μ and it is based on a complete graph N, where nodes correspond to components and edges to neighborhood relationship between them. Our goal is to define neighbors as components that are in proximity of each other and similar to each other in size and shape, i.e. they share some parameter values.

The neighborhood is encoded with pairwise labels L on edges in N as

$$L = \{l_{uv} \in \{0, 1\}; (u, v) \in \{1, \ldots, k_m\}^2, u < v\}$$ (2.4)

that are recovered as a part of the solution of (2.1). The mutual neighborhood of two components is indicated by $l_{uv} = 1$ (active edge), otherwise $l_{uv} = 0$ when the neighborhood is suppressed (inactive edge). In other words $l_{uv} = 1$ means the components u and v are neighbors. In the following text the (u, v) will denote edges in N, i.e. component pairs from (2.4).

The prior $p(\theta)$ in our model will be specified up to a normalization term, which is difficult to obtain in closed form as a function of k due to the complex dependencies between component parameters. Instead we will fix the number of variables in the model by including terms for all possible k_m components. The set of k_m components is split in k active components and $\bar{k} = k_m - k$ inactive components. All edges from an inactive component are also inactive ($l_{uv} = 0$). The terms in $p(\theta)$ for inactive components are uniform and there are no component parameters $\bar{\theta}$ specified for them. The normalization term is then a function of fixed k_m and a constant w.r.t. the maximization in (2.1) which allows to carry out MAP inference (Sec. 2.6).

2.4.1 Structural Prior

This prior describes a class of 2D graphs that are similar to a lattice (grid) graph\(^2\), but its drawing need not be a regular tiling. The goal is to allow higher level of flexibility, which is required in practice for structures like in Fig. 2.14. The model consists of a structural regularity term $p(\hat{\theta} \mid k)$ and complexity term $p(k)$. The configuration parameters $\hat{\theta}$ represent global model structure, concretely the component neighborhood L.

2.4.1.1 Structural Complexity

The prior on the number of components is modeled by a binomial distribution

$$p(k; p_c, k_m) = \mathcal{B}(k; p_c, k_m) = \binom{k_m}{k} p_c^k (1 - p_c)^{k_m - k},$$ (2.5)

where $k_m \in \mathbb{N}$ is the maximum number of components in the model and $p_c \in (0, 1)$ models their expected count relative to k_m.

\(^2\)We will understand ‘grid’ as a regular square plane graph, which is a special case of a more general ‘lattice’.
Figure 2.3: Relative Neighborhood Graph condition. Two planar points u and v are connected by an edge whenever there does not exist a third point r that is closer to both u and v than they are to each other (in Euclidean metric). The condition defines a ‘forbidden zone’ (red).

2.4.1.2 Structural Regularity

We want to regularize the neighborhood L by introducing grid-like constraints. We have evaluated two options.

Since we are dealing with image components parameterized by their locations μ in the image plane, we can limit the edge labels $l_{uv} = 1$ in L to induce only planar subgraphs of N. The Relative Neighborhood Graph (RNG\(^3\)) is a natural choice (Tyček and Šára, 2011a) and it is defined by the condition demonstrated in Fig. 2.3. This choice defines a function $\bar{\theta} \rightarrow L$, which forces $l_{uv} = 0$ where the actual component locations μ violate the RNG constraint.

However in certain situations the RNG is too restrictive, preventing the neighborhood where it would be desirable. In Tyček and Šára (2012) we have presented the second option, which is a more general Softly Bipartite Graph (SBG) (see Fig. 2.6). A bipartite graph is two-colorable, meaning that we can assign a binary label $b_i \in \{0, 1\}$ to every node such that every edge connects nodes with different labels. This property imposes strong constraints on the structure of graph cycles. However, in our case we relax this condition by allowing edges connecting equally colored nodes but assigning them a low probability p_b (softness). For the SBG we extend $\hat{\theta}$ with a set of hidden variables $B = (b_i; i = 1, \ldots, k_m)$ and model them with a Gibbs distribution w.r.t. N in

$$p(B \mid L, k) \propto \prod_{u,v} p(b_u, b_v \mid l_{uv}), \quad (2.6)$$

where the joint distribution for a pair of binary variables b_u, b_v is given by

$$p(b_u, b_v \mid l_{uv}; p_b) = \begin{cases} \frac{1}{2}p_b, & l_{uv} = 1, b_u = b_v, \\ \frac{1}{2}(1 - p_b), & l_{uv} = 1, b_u \neq b_v, \\ \frac{1}{4}, & l_{uv} = 0 \text{ (inactive edge)} \end{cases} \quad (2.7)$$

\(^3\)RNG can be computed from Delaunay Triangulation efficiently in $O(n)$ time.
Note that the regular grid graph and its node-induced subgraphs are bipartite, but this no longer holds when some nodes are removed from the grid and the associated edges are joined in both directions. The softness of the SBG however allows for irregular lattices where odd-length cycles are present, such as in Fig. 2.14b.

The structural regularity term takes in the SBG case the form of

\[
p(\hat{\theta} \mid k) = p(B \mid L, k) p(L \mid k). \tag{2.8}
\]

The \(p(B \mid L, k) \) term was omitted for the RNG case.

The term \(p(L \mid k) \) common to both the structure priors is described next. Let \(d_c(k) \) be the number of edges in the complete graph \(N \) (the number of variables \(l_{uv} \))

\[
d_c(k) = \binom{k}{2}. \tag{2.9}
\]

The preferred number of neighbors (active edges in the graph \(N \)) is the number of edges in a regular square grid with \(k \) nodes

\[
d_g(k) = 2(k - \lfloor \sqrt{k} \rfloor), \tag{2.10}
\]

where \(\lfloor x \rfloor \) denotes the greatest integer number lower or equal to \(x \). Let

\[
q(k) = \frac{d_g(k)}{d_c(k)} = \frac{4}{\sqrt{k} (\sqrt{k} + 1)}. \tag{2.11}
\]

Then the actual number of neighbors

\[
\Sigma(L) = \sum_{uv} l_{uv} \tag{2.12}
\]

is modeled with

\[
p(L \mid k) = q(k)^{\Sigma(L)} (1 - q(k))^{d_c(k) - \Sigma(L)}, \tag{2.13}
\]

which corresponds to a binomial distribution compensated for the number of graphs with the same observed number of active edges.

2.4.2 Spatial Regularity

This part of the model describes rules for the relative location of neighboring components similar to translation symmetry in a lattice or continuity and proximity principles in Gestalt theory.

We parameterize the spatial relation of components in relative polar coordinates (see Fig. 2.4) by

\[
p(\mu \mid k, \hat{\theta}) \propto p(\rho, \phi \mid k, \hat{\theta}) p(\mu_1), \tag{2.14}
\]
where $\rho = (\varrho_{uv}; (u, v) \in N)$ and $\phi = (\varphi_{uv} \in [0, 2\pi)); (u, v) \in N$) such that for a given pair of components (u, v) the distance is calculated with

$$\varrho_{uv} = \varrho(\mu_u - \mu_v) = ||\mu_u - \mu_v|| = \varrho_{vu} \quad (2.15)$$

and the orientation (angle) of the location difference vector $\mu_u - \mu_v$ with

$$\varphi_{uv} = \varphi(\mu_u - \mu_v) = \varphi_{vu} + \pi, \quad (2.16)$$

i.e. the opposite direction ($u \rightarrow v$ or $v \rightarrow u$) is associated with the opposite angle. Note the original Cartesian coordinates μ can be recovered from relative polar coordinates ρ, ϕ up to a global offset, which can be specified e.g. by the absolute location of the first component μ_1. Its pdf $p(\mu_1) = 1$ is uniform.

In order to establish a distribution on ρ, ϕ let us introduce a line graph D dual to N, where nodes in D correspond to neighbors (active edges) in D and there is an edge between two nodes in D iff the two edges in N share a common node. There is a maximal clique (complete subgraph) in D associated with each node u from N. The corresponding local neighborhood of u will be denoted with $N(u)$ and further specified as a sorted circular list of its n_u neighbors v_i ordered by angles relative to u:

$$N(u) = \{v_i; i = 1, \ldots, n_u, l_{uv_i} = 1, \varphi_{uv_i} \leq \varphi_{uv_i+1}\}, \quad (2.17)$$

where no component is preferred as starting. Then we can implement the symmetry principles in a Gibbs distribution w.r.t. $D(N)$ in

$$p(\rho, \phi \mid k, \hat{\theta}) \propto \prod_{u,v} p(\varrho_{uv}) \prod_{u,v,w} p_s(\varrho_{uw}, \varrho_{vw}) \prod_u p_a(\varphi_{uv}; v_i \in N(u)), \quad (2.18)$$

where $p(\varrho_{uv}), p(\varphi_{uv})$ are prior terms unary w.r.t. We assume local Markov property, i.e. component parameters $\hat{\theta}_j$ are conditionally independent of all other, given its neighbors. The exponential form of the distribution following (1.16) is straightforward when the factors in (2.18) described below have the form of an exponential family distribution, which is our case. The continuous unit domain of μ guarantees the normalization of (2.18) can be carried out and the resulting partition function is fixed by k_m. As such the normalization of (2.18) is not required to perform the maximization in (2.1).

4The inverse however does not hold because there can be cliques of order three (triangles) in D, which do not correspond to to any node in N, i.e. in a triangular lattice there are also such cliques corresponding to faces (triangles) in N. We do need to identify such cases because there is a uniform model for all order 3 cliques (Sec. 2.4.2.3).
Chapter 2: Weak Structure Model

2.4.2.1 Spatial Priors

The prior assumption on the position of components is that neighboring components should be horizontally or vertically aligned parallel to axes of the rectified input image. This translates in a prior for orientation φ_{uv} preferring certain absolute angles: $-\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi$. The prior orientation is modeled with circular normal (von Mises) distribution in

$$p(\varphi_{uv}; \kappa_c) = \frac{1}{4} N_c(4\varphi_{uv}; 0, \kappa_c) = \frac{1}{4} \frac{\kappa_c \cos 4\varphi_{uv}}{2\pi I_0(\kappa_c)}, \quad (2.19)$$

where κ_c is the concentration parameter and I_0 is the modified Bessel function of order 0. Note that the prior is symmetric, $p(\varphi_{uv}; \kappa_c) = p(\varphi_{vu}; \kappa_c)$.

The prior on relative distances ϱ_{uv} is a beta distribution with pdf

$$p(\varrho_{uv}; \alpha_d, \beta_d) = \text{Be}(\varrho_{uv}; \alpha_d, \beta_d) = \frac{x_{uv}^{\alpha_d-1}(1-x_{uv})^{\beta_d-1}}{B(\alpha_d, \beta_d)}, \quad (2.20)$$

2.4.2.2 Spacing

The second assumption is that the distance ρ_{uv} between components in a neighborhood should most probably be equal. We model the assumption pairwise in

$$p_s(\varrho_{uw}, \varrho_{uv}; \beta_r) = \frac{1}{\varrho_{uw} + \varrho_{uv}} \text{Be}(\varrho_{uw} + \varrho_{uv}; \beta_r, \beta_r), \quad (2.21)$$

where $u \neq v \neq w$ are indices of two edges in N sharing a node u and β_r is the concentration parameter. We choose beta distribution in this case because it describes our knowledge on the observed data sufficiently well and matches with the rest of the model. Similar practical
Figure 2.5: Window shape template. It is parametrized by its width $w_i \in (0,1)$, height $h_i \in (0,1)$, both relative to image height I_h, and the width of the central column $t_i \in (0,1)$ relative to the window width.

reasons motivate our choices of terminal (beta) distributions also elsewhere in this model.

2.4.2.3 Alignment

The assumption for orientations φ_{uv} is that the neighbors of a given component u should be evenly distributed around it in terms of their relative angles as in Fig. 2.4. We model the alignment in a joint function of these orientations

$$p_a (\varphi_{uv}; v_i \in N(u); \alpha_\varphi) = \frac{1}{n_u} \times \left\{ \begin{array}{ll}
\text{Dir} \left(\left(\frac{\varphi_{uv2} - \varphi_{uv1}}{2\pi}, \ldots, \frac{\varphi_{uvn} - \varphi_{uvn-1}}{2\pi} \right); \alpha_\varphi \right), & n_u \geq 4,
\text{Dir} \left(\left(\frac{1}{\pi} \right)^n, \alpha_\varphi \right), & n_u \in \{2, 3\},
\end{array} \right. \quad (2.22)$$

and the factor $\frac{1}{n_u}$ is due to the free starting component. The Dirichlet pdf assigns the highest probability to configurations in which the differences between the neighbors’ angles are equal to each other, i.e. π for two neighbors, $\frac{2\pi}{3}$ for three, $\frac{\pi}{2}$ for four, etc. The cases $n_u = 3$ corresponds to the corners and sides in the case of grid structure and we fall back to the uniform distribution $U(\pi) = \frac{1}{\pi}$ for every φ_{uv_i} in the clique. The case $n_u = 1$ is covered by the prior (2.19).

2.4.3 Size Parameters

Aside from the locations μ, the appearance of components is described with size and shape parameters σ. Our components are represented by a rectangular shape template with its borders parallel to image borders. The size and shape parameters of a component is a vector

$$\sigma_i = (w_i, h_i, t_i) \in (0,1)^3, \quad (2.23)$$

its parts are described in Fig. 2.5, the central column position parameter t_i is relative to the width h_i and specific to ‘window’ components.

The shape model is a Gibbs distribution w.r.t. N with unary and binary factors

$$p(\sigma \mid k, N, \mu) \propto p_0(\sigma \mid \mu) \prod_{i=1}^{k_m} p_1(\sigma_i \mid k) \prod_{u,v} p_2(\sigma_u, \sigma_v \mid l_{uv}), \quad (2.24)$$
where we additionally specify a global non-overlapping prior by setting \(p_0(\sigma \mid \mu) = 0 \) when any two shape rectangles overlap each other (with the simplifying assumption of independence on \(p_1 \) and \(p_2 \)). The exponential form of the distribution following (1.16) is straightforward when the factors \(p_1 \) and \(p_2 \) are based on exponential family distributions, just as in the following text.

2.4.3.1 Size Prior

The unary factors are size and shape parameter priors

\[
p_1(\sigma_i \mid k) = \begin{cases}
p(t_i \mid h_i) p(w_i \mid h_i) p(h_i), & i \leq k, \\
1, & k < i \leq k_m,
\end{cases}
\]

where the term for inactive components is uniform \(U(1) \) for all size parameters. We choose to model the central column width with beta distribution

\[p(t_i \mid h_i; \alpha_t, \beta_t) = Be(t_i; \alpha_t, \beta_t).\] \hspace{1cm} (2.26)

The typical aspect ratio (rectangular window) is modeled with Beta distribution

\[p(w_i \mid h_i; \alpha_a, \beta_a) = \frac{1}{w_i + h_i} Be\left(\frac{w_i}{w_i + h_i}; \alpha_a, \beta_a\right),\] \hspace{1cm} (2.27)

where the factor \(\frac{1}{w_i + h_i} \) is due to transformation \(w_i \mapsto \frac{w_i}{w_i + h_i} \) for the beta pdf. The height prior is chosen as

\[p(h_i) = Be(h_i; \alpha_h, \beta_h).\] \hspace{1cm} (2.28)

2.4.3.2 Size Similarity

Our size constraints reflect the similarity principle, i.e. neighboring components should most probably have the same size and shape. This can be described with binary factors in

\[
p_2(\sigma_u, \sigma_v \mid l_{uv}) = \begin{cases}
p(w_u, w_v) p(h_u, h_v) p(t_u, t_v), & \text{if } l_{uv} = 1, \\
1, & \text{if } l_{uv} = 0,
\end{cases}
\]

where

\[p(w_u, w_v) = \frac{1}{w_u + w_v} Be\left(\frac{w_u}{w_u + w_v}; \alpha_s\right)\] \hspace{1cm} (2.30)

is a Beta distribution with its mode at \(w_u = w_v \), in the case of \(l_{uv} = 0 \) the distribution is uniform. Analogically we define the pdfs for \(h \) and \(t \) similarity.
<table>
<thead>
<tr>
<th>Term</th>
<th>Eq.</th>
<th>Param.</th>
<th>Description</th>
<th>pdf</th>
<th>Hyperparameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(k)$</td>
<td>(2.5)</td>
<td>k</td>
<td>complexity prior</td>
<td>\mathcal{B}</td>
<td>$k_m = 100, p_c = 0.5$</td>
</tr>
<tr>
<td>$p(b_u, b_v \mid l_{uv})$</td>
<td>(2.6)</td>
<td>$\bar{\theta}$</td>
<td>bipartite coloring</td>
<td>Ber</td>
<td>$p_b = 0.01$</td>
</tr>
<tr>
<td>$p(L \mid k)$</td>
<td>(2.13)</td>
<td>$\bar{\theta}$</td>
<td>edge count</td>
<td>\mathcal{B}</td>
<td>-</td>
</tr>
<tr>
<td>$p(\varphi_{uv}; v_i \in N(u))$</td>
<td>2.22</td>
<td>$\bar{\theta}$</td>
<td>location alignment</td>
<td>Dir</td>
<td>$\kappa_a = 10$</td>
</tr>
<tr>
<td>$p(\varphi_{uv} \mid l_{uv})$</td>
<td>(2.19)</td>
<td>$\bar{\theta}$</td>
<td>alignment prior</td>
<td>\mathcal{N}_c</td>
<td>$\kappa_o = 10$</td>
</tr>
<tr>
<td>$p(\varphi_{uv}, \varphi_{uw} \mid l_{uv})$</td>
<td>(2.21)</td>
<td>$\bar{\theta}$</td>
<td>location spacing</td>
<td>Be</td>
<td>$\alpha_d = 5, \beta_d = 20$</td>
</tr>
<tr>
<td>$p(\varphi_{uv} \mid l_{uv})$</td>
<td>(2.20)</td>
<td>$\bar{\theta}$</td>
<td>spacing prior</td>
<td>Be</td>
<td>$\beta_r = 20$</td>
</tr>
<tr>
<td>$p(w_i \mid h_i)$</td>
<td>(2.27)</td>
<td>$\bar{\theta}$</td>
<td>aspect prior</td>
<td>Be</td>
<td>$\alpha_a = 20, \beta_a = 10$</td>
</tr>
<tr>
<td>$p(h_i)$</td>
<td>(2.28)</td>
<td>$\bar{\theta}$</td>
<td>height prior</td>
<td>Be</td>
<td>$\alpha_h = 2, \beta_h = 40$</td>
</tr>
<tr>
<td>$p(t_i \mid w_i)$</td>
<td>(2.26)</td>
<td>$\bar{\theta}$</td>
<td>column prior</td>
<td>Be</td>
<td>$\alpha_t = 2, \beta_t = 40$</td>
</tr>
<tr>
<td>$p(w_u, w_v)$</td>
<td>(2.30)</td>
<td>$\bar{\theta}$</td>
<td>size similarity</td>
<td>Be</td>
<td>$\alpha_s = 3$</td>
</tr>
</tbody>
</table>

Table 2.1: Structural model parameters and their distributions.

2.4.4 Hyperparameters

In this chapter we avoid the complete specification of hyperpriors and associated hierarchical Bayesian inference. For simplicity we restrict ourselves to empirical estimation of hyperparameters. The initial values of parameters of the structural model were obtained by Maximum Likelihood fitting of the respective distributions to values computed on the annotated training image set described in Sec. 2.7. In our case this however resulted in too concentrated pdfs (low variance), which did not perform well during inference (low mixing rate).

We therefore performed grid search with several higher variance parameter values and picked up those which performed best on the training set (highest accuracy) shown in Tab. 2.1. This also helped to establish balance between individual parts of the model.

For this setting we have verified our model $p(k, \bar{\theta}, \hat{\theta})$ by constructing a random sample generator from the distribution, generating a sequence of 10^6 samples and selecting the most probable sample in the sequence. As expected, we got a regular configuration shown in Fig. 2.6.

2.5 Data Model

The input image $I = (i; i = 1, \ldots, I_w \cdot I_h)$ is defined as a set of pixels and we assume it is rectified, i.e. the window borders are parallel to the image borders, and I_w, I_h are image width and height. Although our model parameters are continuous relative to the image frame, we will discretize them to evaluate image data pixel-wise. This can be seen as allocation of pixels to components.

In the data likelihood model $p(I \mid k, \bar{\theta}, \hat{\theta})$ we express the probability of observing an image
Figure 2.6: A random sample close to the mode of a Softly Bipartite Graph. Nodes on positions μ are marked with crosses colored red or blue according to labels B. Edges with $l_{uv} = 1$ are in green, component shapes are in magenta.

I given a configuration $(k, \bar{\theta}, \dot{\theta})$. We combine two independent features: image edges J and color C in

$$p(I \mid k, \bar{\theta}, \dot{\theta}) = p(J \mid k, \bar{\theta}, \dot{\theta}) p(C \mid k, \bar{\theta}, \dot{\theta}).$$

(2.31)

We use weak color information to detect regions of interest and image edge features for precise localization of the window borders.

2.5.1 Image Edge Model

We assume that window borders correspond to edges, and use Canny detector to find them. However, this model will not fully hold in real world situations, when we obtain the input by detecting edges in a picture—there can be windows which do not have all pixels with underlying edges and vice versa, some edges do not belong to any windows at all. The latter case will typically prevail.

We use binary imaging model for window edges represented by oriented edge image $J = \{J_i \in \{0, h, v\} \mid i \in I\}$, where $J_i = h$ if pixel i belongs to a horizontal edge detected in I (foreground), resp. $J_i = v$ for vertical edge; otherwise $J_i = 0$ (background). We define $d(J) \in [0, 1]$ as a distance transform of the edge image J normalized by $\max(I_h, I_v)$, see Fig. 2.8. We use the gradient of $d(J)$ to distinguish between horizontal and vertical edges.

Similarly, we introduce edge image $R(\bar{\theta})$ rendered from the current configuration specified by $\bar{\theta}$ and the shape template in Fig. 2.5 with nearest neighbor discretization of relative
parameters θ into pixel domain I. Assuming pixel independence, we can write

$$p(J \mid \theta) = \prod_{i \in I} p(J_i \mid R_i(\theta))$$

(2.32)

where the probability of observing a pixel i in the edge image J given the rendered configuration R is given by

<table>
<thead>
<tr>
<th>$p(J_i \mid R_i)$</th>
<th>$J_i = 0$</th>
<th>$J_i = h$</th>
<th>$J_i = v$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_i = 0$</td>
<td>$p_0 = 0.8$</td>
<td>$p_n = 0.1$</td>
<td>$p_n = 0.1$</td>
</tr>
<tr>
<td>$R_i = h$</td>
<td>$p_d(d(i)) (1 - p_x)$</td>
<td>$p_d(0) (1 - p_x)$</td>
<td>p_x</td>
</tr>
<tr>
<td>$R_i = v$</td>
<td>$p_d(d(i)) (1 - p_x)$</td>
<td>p_x</td>
<td>$p_d(0) (1 - p_x)$</td>
</tr>
</tbody>
</table>

Each row in this table is a conditional probability summing to one. In the case of $R_i \in \{h, v\}$ it is a mixed distribution of explicit penalty p_x for edge orientation mismatch and a continuous Beta pdf based on edge distance $d(i) \geq 0$

$$p_d(d(i)) = \text{Be}(d(i); \beta_d = 500, 1)$$

which makes rectangles close to edges more probable and acts as a guide for directing the random walk in the inference (Sec. 2.6). The $p_x = 10^{-9}$ is the probability assigned when the edge specified by the configuration crosses an image edge in the opposite direction (horizontal \times vertical).
The edge terms can be efficiently evaluated from pre-computed integral edge images, one for each orientation h, v, yielding constant computational complexity $O(1)$ per edge; this speed-up is possible thanks to rectified images and helps make random sampling (described in Sect. 2.6) very efficient.

2.5.2 Image Color Model

We extend the simple color model from Tyleček and Šára (2011a) and model the input color image $C = (c_i \in [0,1]^3; i = 1, \ldots, I_w \cdot I_h)$ with a multivariate Gaussian mixture distribution with $m = 3$ components that targets the ‘window’ class. We use the configuration θ to partition pixels either to foreground (window) set C_f or background (non-window) set C_b such that $C_f \cap C_b = 0$. Assuming pixel independence, the probability of observing a segmented image is

$$p(C \mid \bar{\theta}) = \prod_{i \in C_b} p_b(c_i) \prod_{j \in C_f} p_f(c_j),$$ \hspace{1cm} (2.33)

where the background probability $p_b(c_i) = p_b = 1$ is uniformly constant on the unit domain and the foreground color model is expressed by

$$p_f(c_j) = \sum_{i=1}^{m} \omega_j \mathcal{N}(c_j \mid \mu_i, \Sigma_i).$$ \hspace{1cm} (2.34)

The mixture parameters $\omega_j, \mu_i, \Sigma_i$ are learned as ML estimates obtained with the EM algorithm (Dempster, A.P. et al., 1977) by fitting color of ‘window’ class pixels sampled from the annotated training image set.
Like in edge model, color is evaluated using pre-computed integral images in linear time, we query four values per component. As (2.33) suggests, we evaluate foreground pixels only.

2.6 Inference

We have chosen Reversible Jump MCMC framework (Green, 1995) that fits our task of finding the most probable interpretation of the input image in the terms of target probability \(p(\theta, I) \) in (2.1), which has a very complex pdf as it is a joint probability of both shape, locations and structure. This approach has been used by independent researchers in similar inference tasks with variable dimensions (Ripperda and Brenner, 2007, 2009). Our solution \(\theta^* \) is found as the most probable parameter value \(\theta = (k, \bar{\theta}, \dot{\theta}) \) the chain visits in a given number of samples. The result is a naive MAP estimation of the number of components by direct maximization of a posterior of variable dimension (Sec. 1.3.3.2) and the procedure requires the probabilities over terms with variable dimensions to be properly normalized in order to compare configurations with different complexity. The MAP choice has alternative in the two-level inference (Sec. 1.3.3.4) that will be applied in Chapter 4.

As suggested in Sec. (2.4) our probability model is however not fully normalized due to the Gibbs distributions in the spatial regularity part (2.18) and (2.24), which are defined up to a constant depending on \(N \), which is generally hard to estimate.

While the MH algorithm itself is simple, we need to carefully design proposal distribution \(q \) that should approximate target distribution \(p(\theta, I) \) well for the efficient sampling. We should point out that the quality of the resulting interpretation is determined by the probability model, on the other hand the time necessary to reach the solution is influenced by the proposal distributions. It turns out that by exploiting the estimated structure we can efficiently guide the random walk of our chain by repeatedly sampling the new state \(\theta' \) from the vicinity of the current state using conditional probability \(q(\theta' \mid \theta) \).

The conditional sampler \(q(\theta' \mid \theta, I) \rightarrow \theta' \) is a mixture of individual samplers such that each modifies a subset of parameters \(\theta \) based on a specific proposal distribution \(q_m(\theta' \mid \theta, I) \). The top-level sampler only chooses from \(q(m \mid \theta) \) which of the individual samplers \(m \) will be used to propose the next move. Their design must fulfill Markov Chain properties of detailed balance and reversibility of all moves (Winkler, 2003), i.e. given a move there must always exist a reverse move \(m' \), and their probability ratio must be reflected in the acceptance ratio of Metropolis-Hastings (MH) algorithm (Sec. 1.3.4.2). The chain is initialized with \(k = 0 \), then the only allowed proposal is to add a new component (Sec. 2.6.3).

2.6.1 Proposal Selection

The sampler mixture distribution \(q(m) \) is constructed hierarchically, we first choose a probability \(q_{RJ} = 0.1 \) of reversible jump proposals, from which it follows that the ordinary MH jumps have \(q_{MH} = 1 - q_{RJ} = 0.9 \). In the second step, we choose uniformly one of the jumps
Chapter 2: Weak Structure Model

from the appropriate set of proposals (either \(q(m \mid MH) \) or \(q(m \mid RJ) \)) presented in the next Sections 2.6.2 and 2.6.3.

Proposing dimension changes is expensive, therefore we adapt the proposal distribution according to the current state to achieve a speed up by reducing reversible jumps. This is done by constructing a conditional distribution

\[
q_t(RJ \mid \theta_t) = q_{RJ} + Te^{-\frac{t}{\tau}},
\]

we choose in practice \(T = \frac{1}{4}, \tau = 10^4 \). The vanishing adaptation (i.e. \(q_t(RJ \mid \theta_t) \rightarrow q_{RJ} \)) guarantees convergence of the chain even if it is no longer ergodic due to its adaptation (Andrieu and Thoms, 2008).

2.6.2 Metropolis-Hastings Moves

The moves introduced in this section perform size, shape or location modifications, thus do not modify the model complexity \(k \) and can be evaluated by a classical MH algorithm (Sec. 1.3.4.2).

2.6.2.1 Size and Location Modification

This move picks up a component \(i \sim U(k) \) from a discrete uniform distribution and perturbs some of its parameter values randomly. Additionally, these samplers can be designed to exploit image data to increase the acceptance rate. In the window detection scenario, we have implemented three variants for this type of proposals (also see Fig. 2.9):

- **Drift** - random variation of position by \(\Delta \sim \mathcal{N}(0, \sigma_\Delta) \) without changing the size,

 \[
 \mu_i' = \mu_i + \Delta.
 \]

- **Resize** - change size by randomly picking up one of four rectangle sides (left/right/top/bottom) or corners and moving it by \(\Delta \sim \mathcal{N}(0, \sigma_\Delta) \)

 \[
 \bar{\theta}_i' = \bar{\theta}_i + \Delta.
 \]

 The drift and resize both propose similar local changes and share the same \(\sigma_\Delta \) in order to reduce the number of free parameters in the method.

- **Flip** - fix one of the rectangle sides and flip the window around it, size is not changing,

 \[
 \mu_i' = \mu_i \pm w_i \text{ or } \mu_i' = \mu_i \pm h_i.
 \]

 This allows for faster exploration of the configuration space when the fixed side is matching a salient image edge (drift has small acceptance in this case).
Instead of these purely random proposals, it would be possible to implement a more advanced Langevin diffusion (Marshall and Roberts, 2012), which can be adapted for optimal performance but involves computation of the gradient of log probability (ev. also the Hessian). Particularly in the case of oriented edge model (2.32) there are some difficulties, which prevented us from using it in experiments for this problem, but it will be applied in the following chapter.

2.6.2.2 Component Resampling

This move is a more radical variant of the previous one, we pick up a component i and change of all its parameters by sampling from the prior distribution $\sigma'_i \sim p_1(\sigma_i)$ given in (2.24).

2.6.2.3 Inherit Size

This move is in spirit similar to the exchange of genes in genetic algorithms (crossover). It proposes changes to the parameter of a component according to a chose neighbor,

$$\tilde{\theta}'_i \sim q(\tilde{\theta}_i \mid \tilde{\theta}, N).$$ (2.39)

We uniformly choose a random edge (u, v) and transfer a randomly selected component parameter (μ, h, w or t) value over the edge from one component to another according to the specific constraints, resulting in proposal such as $h'_u = h_v$ or $\mu'_u = \mu_v$ (see Fig. 2.9c).

2.6.2.4 Switch Edge

A move to allow changes to the neighborhood structure picks up a random edge $(u, v) \sim q(u, v \mid \tilde{\theta})$ and changes its label $l'_{uv} = 1 - l_{uv}$, effectively suppressing or recovering the given edge.

The edge proposal $q(u, v \mid \tilde{\theta})$ is an empirical distribution on $\{\frac{1}{p_{vu}}; \ v_i \in N(u)\}$ to prefer nodes closer to each other, reflecting the idea of proximity of neighbors.
2.6.2.5 Switch Node Color

When SBG is used, this move picks up a random node \(i \sim q_b(i \mid N) \) and changes its node color to \(b'_i = 1 - b_i \). The distribution \(q_b(i \mid N) \) is constructed to prefer nodes \(i \) from a set where the two-coloring property of softly bipartite graph is violated, i.e. some of its neighbors \(u \) have the same color \(b_u = b_i \). We choose from this set with \(q_b = 0.9 \).

2.6.3 Reversible Jump Moves

An inseparable part of our task is to find the number of components \(k \) that controls the dimension of active component parameters \(\theta \). While the number of variables is fixed with \(k_m \) (Sec. 2.4) in practice the change of \(k \) means activation or inactivation of components. Activation process is however equivalent to sampling of the component parameters for a new components and we will use the standard RJ terminology including ‘dimension matching’ in the following text even when it is not precise.

The standard MH acceptance (Sec. 1.3.4.2) has to be extended for RJ with

\[
A = 1 ^{\frac{p(I \mid \theta') p(\theta')}{p(I \mid \theta) p(\theta)}} \cdot \frac{q(m \mid \theta')}{q(m' \mid \theta)} \cdot \frac{q_m(\theta \mid \theta')}{q_m(\theta' \mid \theta)} \cdot \frac{q_{\leftarrow}(u_{\leftarrow} \mid \theta')}{q_{\rightarrow}(u_{\rightarrow} \mid \theta)} \cdot J_{\rightarrow},
\]

where \(a_m \) reflects the choice of individual samplers, \(a_q \) is the proposal density ratio (\(a_q = 1 \) when the proposals are symmetric), \(a_u \) and \(J_{\rightarrow} \) are related to complexity changes in reversible jumps (described below). The proposed move is accepted with probability \(A \in (0, 1] \) (given by truncated probability ratio). In order to compare the models in (2.40) we need to define dimension matching functions \(q_{\rightarrow}, q_{\leftarrow} \) for both direct and reverse moves, where \(\rightarrow \) refers to direct move, \(\leftarrow \) to reverse move, \(u \) are dimension matching (communication) variables and

\[
J_{\rightarrow} = \left| \frac{\partial f_{\rightarrow}(\theta, u_{\rightarrow})}{\partial (\theta, u_{\rightarrow})} \right|
\]

is the Jacobian of the transformation, following the notation given in Green (1995).

There is a set of edges and neighborhood variables \(l_{uv} \) associated with each (in)activated component, concretely all edges linking a removed component are suppressed (\(l_{uv} = 0 \)) and corresponding proposal pdf \(q(u, v) \) from Sec. 2.6.2.4 must be included in the acceptance ratio. When activating a component its associated edges stay suppressed, unless otherwise specified below. If some edge is enabled (\(l_{uv} = 1 \)), its proposal pdf is also included in (2.40).

2.6.3.1 Birth and Death

By inserting a new component into our model we propose an increase of dimension \(k \mapsto k' = k + 1 \). We choose the communication variables to be \(u_{\rightarrow} = [\sigma_s, \mu_s] \), where we sample the parameters of the new component \(\tilde{\theta}_s = (\sigma_s, \mu_s) \sim q(\sigma, \mu) \) and obtain a new state where
we append them\(^5\) in \(\sigma' = (\sigma, \sigma_*)\) and \(\mu' = (\mu, \mu_*)\). The corresponding dimension matching function is
\[
f_{\rightarrow}(\tilde{\theta}, u_{\rightarrow}) = f_{\rightarrow}(\tilde{\theta}, \tilde{\theta}_*),
\] (2.42)
which inserts \(\tilde{\theta}_*\) into the set, and its Jacobian \(J_{\rightarrow} = 1\). We will use the following notation within this section: terms in \([\ldots]\) refer to communication variables and terms in \{\ldots\} to parameters.

The reverse move is \textit{death}, for which we have no communication variable \(u_{\leftarrow} = []\) (empty), only choose a component \(i\) to be removed from the set. To establish reversibility, we define inverse matching function as
\[
f_{\leftarrow}(\tilde{\theta}', u_{\leftarrow}) = f_{\leftarrow}(\tilde{\theta}', []) ,
\] (2.43)
where \(\sigma_i, \mu_i\) are the removed\(^6\) variables and \(\sigma = \sigma' \setminus \sigma_i, \mu = \mu' \setminus \mu_i\). The corresponding birth move acceptance is then
\[
a_{\text{birth}} = \frac{p(\theta', I) q(m | \theta') \cdot q(i | k')}{p(I) \cdot q(m' | \theta') \cdot q(*) | k) \cdot \frac{1}{q_{\rightarrow}(\sigma_* | \sigma)} \cdot 1},
\] (2.44)
where \(q_{\rightarrow}(\sigma_* | \sigma) = p_1(\sigma)\) is directly the prior probability of the new window (2.25), \(q(i | k') = \frac{1}{k}\) and \(q(*) | k) = \frac{1}{k}\) are the probabilities of selecting the windows \(*, i\).

By removing an existing component from the set (\textit{death}) we propose a decrease of dimension \(k \mapsto k' = k - 1\), and choose a window \(i \sim \mathcal{U}(k)\) to be removed. With an appropriate change of labeling, the derivation of death move will be the same as for birth, except for the inversion of ratios in (2.44) and corresponding reindexation.

In the basic case of \textit{birth} the new position \(\mu_*\) is sampled uniformly and the new size parameters are sampled from the prior \(\sigma_* \sim p_1(\sigma)\). The jumps detailed below are special cases of \textit{birth} that exploit the structure of the current configuration for predicting values of the new components, which can be generally described as sampling from \(\tilde{\theta}_* \sim q(\tilde{\theta} | N)\).

We designed them to sample from the marginal distributions of the structural model where possible, which is expected to have a high acceptance probability \(A\) resulting in more efficient exploration of the configuration space (mixing).

2.6.3.2 Append

In this case of the \textit{birth} jump we attempt to predict a location for the new component based on the prior information. We first choose uniformly an existing component \(i \sim \mathcal{U}(k)\) and

\(^5\)Recall that \(\sigma, \mu\) without subscripts are parameter arrays and subscripted \(\sigma_*, \mu_*\) are parameters of a single component. By \((x, x_*)\) we mean the element \(x_*) is appended after the last item in array \(x\).

\(^6\)The \(x \setminus x_i\) indicates removal of the \(i\)-th element from the array \(x\), i.e. we extend the set operator \(\setminus\) for arrays.
place the new component relatively to its position according to

\[\mu_i^* = \mu_i + \rho \nu(\varphi), \]

(2.45)

where \(\nu(\varphi) = [\sin \varphi, \cos \varphi] \), we sample \(\rho \sim p(\varphi_{uv}) \) and \(\varphi \sim p(\varphi_{uv} | l_{uv} = 1) \) from the priors (2.19) and (2.20). Its shape parameters \(\sigma_s \) are sampled relatively to \(\sigma_i \) from the marginal Beta distribution (2.29) of similarity by \(\delta \sim p_2(\sigma | N) \) and then

\[\sigma_s^* = \sigma_i \frac{1 - \delta}{\delta} \]

(2.46)

We explicitly set the edge \(l_{is} = 1 \) and the Jacobian here is \(J_{\rightarrow} = \rho \).

2.6.3.3 Replicate

This jump is similar to append, but we predict the new position based on the existing structure i.e. to add a new component to the end of an array (see Fig. 2.10). We uniformly sample an edge \((u, v)\) and set the new window position to

\[\mu_v = \mu_u + \rho_{uv} \nu(\varphi_{uv}), \]

(2.47)

where \(\rho_{uv} \) and \(\varphi_{uv} \) are taken from the sampled edge. The size is replicated by taking the mean of the two sampled components

\[\sigma_s^* = \frac{1}{2} (\sigma_u + \sigma_v) \]

(2.48)

The Jacobian is here \(J_{\rightarrow} = \rho_{uv} \).

2.6.3.4 Extend

The above introduced proposals have low acceptance when a single new component is added as the first one in a new row or column (in the regular case), because the structure prior puts a low probability on this configuration. Adding two components at a time can be more
Figure 2.11: For split first a diagonal (basic/flipped, indicated by points in corners) is chosen and then the orientation (horizontal/vertical, indicated by dotted line), resulting in four possible scenarios. The black rectangle can be split into two rectangles (red and blue), or inversely red and blue rectangles can be merged to the black rectangle (their common bounding box). In the general non-overlapping case there are four possible scenarios.

successful, so in this case we add two new components \(*_1, *_2 \) at once and connect them with edges to create a new four-cycle in the graph \(N \). We uniformly sample an edge \((u, v)\) and set the new positions to

\[
\begin{align*}
\mu_{*_1} &= \mu_u + \rho_{uv} \nu(\varphi_*), \\
\mu_{*_2} &= \mu_v + \rho_{uv} \nu(\varphi_*),
\end{align*}
\]

where \(\varphi_* = \varphi_{uv} \pm \frac{\pi}{2} \) and the sign is chosen uniformly. The size parameters are replicated from \(\sigma_u \) to \(\sigma_{*_1} \) and \(\sigma_v \) to \(\sigma_{*_2} \). The face is completed by activating edges \(l_{*_1} = l_{*_2} = l_{*1*2} = 1 \).

2.6.3.5 Split and Merge

The split move proposes increase of dimension \(k \mapsto k' = k + 1 \), where an existing component is transformed into two new ones. This move is a shortcut for an equivalent sequence of drift and birth detailed above. Split is expected to have higher acceptance than the partial moves combined, because the intermediate configurations have low probability. The same applies to the inverse move merge which shortcuts death and drift by replacing two neighboring components by their bounding box; this merging procedure has impact on the split procedure, because they have to be exactly reversible. There are four splitting scenarios corresponding to the relative position of the two split or merged components in Fig. 2.11 and we need to sample them all in order to have inverse split for any merge move and vice versa.

To simplify the calculations we will work with the component rectangles represented by upper-left and lower-right corners \(B \) (bounding box), which can be obtained from the location and size parameters \(\bar{\theta}_i = (\mu_i, w_i, h_i, t_i) \) using

\[
\begin{align*}
B(\bar{\theta}_i) &= B_i = \left[\mu_{i1} - \frac{w_i}{2}, \mu_{i2} - \frac{h_i}{2}, \mu_{i1} + \frac{w_i}{2}, \mu_{i2} + \frac{h_i}{2} \right], \\
B(\bar{\theta}) &= (B_1, \ldots, B_k).
\end{align*}
\]

We choose and fix the component \(v \in \{1, \ldots, k\} \) to be split, the split direction (horizon-
Chapter 2: Weak Structure Model

tal/vertical) and sample the split factors \(s_{ij} \in (0, 1)\), which describe locations of the two split rectangles relative to the original rectangle (bounding box), as shown in Fig. 2.12. They are sampled from the beta distribution as the communicating variables

\[
u \rightarrow = [s_{11} \ s_{12} \ s_{21} \ s_{22}] = s.
\]

The beta pdf parameters are chosen according to the given split scenario, i.e. for the horizontal scenario

\[
s_{11}, s_{12} \sim \text{Be}(\beta_{s1}, \beta_{s1}), \ s_{21} \sim \text{Be}(1, \beta_{s2}), \ s_{22} \sim \text{Be}(\beta_{s2}, 1).
\]

The corresponding dimension matching function is then

\[
f_{\rightarrow}(B, u \rightarrow) = f_{\rightarrow}(B, [s_{11} \ s_{12} \ s_{21} \ s_{22}]) = (\{B, B^*\}, []) = (B', []),
\]

which in the basic horizontal scenario modifies \(B_v = [b_{11} \ b_{12} \ b_{21} \ b_{22}]\) into

\[
B_v' = [b_{11} + s_{12}w_v, b_{12} + s_{21}h_v, (1 - s_{12})w_v, (1 - s_{21})h_v],
\]

and inserts new \(B^*\) into the set of components

\[
B^* = [b_{11}, b_{12}, s_{11}w_v, s_{22}h_v].
\]

The case for flipped or vertical orientation is derived analogically. The parameters \(B'\) for other components than \(v\) are copied from \(B\) and the Jacobian

\[
J_{\rightarrow} = \left| \frac{\partial(B', B^*)}{\partial(B, B^*)} \right| = w_v^2h_v^2
\]

is calculated given \(v\) from the variables that actually change: \(B_v \mapsto B_v'\). The other scenarios yield the same result.

The inverse move is merge, for which we have no communication variable \(u_{\rightarrow} = []\) (it is deterministic), and choose the two neighboring components \(B_v, B^\dagger \in B'\) to be merged into one. To establish reversibility, we define inverse matching function as

\[
f_{\leftarrow}(B', u_{\leftarrow}) = f_{\leftarrow}(\{B_{\sim v}, B_v', B^\dagger\}, []) = (\{B\}, s) \sim (B, u_{\rightarrow}),
\]

where \(B^\dagger\) is the removed component and \(B_v\) is the merged component, \(B = \{B' \setminus B^\dagger\}\). The split configuration is detected and ratios \(s\) are calculated from the affected component pair \(B_v, B^\dagger\), inversely to (2.54). In the split move acceptance we now have \(a_u = \frac{1}{q_{\rightarrow}(s)}\), where

\[
q_{\rightarrow}(s) = p(s_{11})p(s_{12})p(s_{21})p(s_{22})
\]

is the prior probability of the split and \(\alpha_q = \frac{k}{k+1}\) reflects component selection.
Figure 2.12: Split bounding box B_i (black) with relative split locations s (dashed) for horizontal scenario and proposal Beta pdfs (dotted, approx.).

For merge, where $k \mapsto k' = k - 1$, the merged component rectangle B'_v is a bounding box of the merged components B_v, B^\dagger and the Jacobian is now

$$J_{\to} = \left| \frac{\partial (B'_v, s)}{\partial (B)} \right| = \frac{1}{w^2_v h^2_v}. \quad (2.58)$$

Again, with appropriate change of labeling, the derivation of merge move is the same as for split, except for the inversion of ratios, i.e. $a_q = \frac{k+1}{k}$ and $a_u = q_{\to}(s)$, where the corresponding split factors s must be calculated from the input configuration. The pair of components to merge is sampled from the edge proposal $q(u, v \mid \bar{\theta})$ in Sec. 2.6.2.4 to components close to each other.

2.6.4 Convergence and Complexity

The overview of implemented proposals is given in Tab. 2.2.

We have found that the typical necessary number of MCMC samples (and classifier calls) is proportional to image size in pixels $|I|$ (from 30% for easy instances to 200% for the difficult ones). As a result, we fixed the number of samples in our current method to a pessimistic estimate, but our experiments suggest that significantly shorter sampling time could be achieved with a suitably designed stopping condition (see Fig. 2.13). Another option is to use a more efficient sampling scheme, i.e. Duane et al. (1987) for the continuous part or Barbu and Zhu (2005) for the discrete variables (labels).

2.7 Experimental Results

We have performed a number of experiments with the implementation of window detection in facades of various styles to demonstrate the universality of our approach. We have run
Figure 2.13: Inference progress of the proposed RJMCMC sampler. Detected windows are shown in red, neighborhood edges in green and image edges are emphasized in blue.
the Markov Chain for fixed 5×10^5 iterations in our experiments, which roughly equals to visiting all pixels in the analyzed images. With our Matlab implementation, the running time was under one minute on a standard 2 GHz CPU.

The only public dataset known to us that allows quantitative comparison in this area has been provided by Teboul et al. (2010). The dataset consists of 30 rectified and annotated images of facades from a street in Paris, which share attributes of Haussmannian style but differ in illumination conditions. We have trained our model on 20 of them and 10 were used for testing. Direct comparison is not possible, because they segment facade pixels into eight different classes of components and our window detector defines only two (window/non-window). To deal with this issue, we have used a similar reduction as in Tyleček and Šára (2011a) and merged the columns of confusion matrix given in Teboul et al. (2010) into two, treating all original classes other than window as our background (non-window).

The results in Tab. 2.3 for window and wall suggest that the proposed method is performing better in the terms of high specificity when compared to the procedural segmentation (PS) framework (Teboul et al., 2010) see Fig. 2.15. We attribute this to the extended color model model with Gaussian mixtures in the HSV color space (which is less sensitive to the illumination changes), on the other hand, it resulted in a small drop in sensitivity to the window class. The new bipartite structural model with parameters learned from the annotations also contributed to the results, it is able to support windows completing the structure even where the data response is low. This allows us to achieve good results even when the illumination varies and partial occlusion of windows is present, as shown in Fig. 2.7.
Chapter 2: Weak Structure Model

Top row: Visualization of selected results from Parisian dataset (Teboul et al., 2010), facade a) is occluded by plants, in facade b) a cast shadow is present. False positive windows are also window-like regions: They have good response from both classifiers and match with the neighbors. Bottom row: Posterior histograms for complexity k.

The difference between RNG and SBG is in favor of the latter particularly due to less false positive detections as a result of using less restrictive graph prior which allowed to find better balance between the parts of the probability model (Sec. 2.4.4).

Posterior histograms shown in Fig. 2.7 for complexity k demonstrate different difficulty of the images, which is quantified by estimated entropy H. In the case of a) there is another less probable interpretation for $k = 15$ (missing some rows of windows), resulting in higher H.

To prove our framework is not limited to a particular style, we demonstrate results on modern buildings and even hand drawn images in Fig. 2.16 and Fig. 2.14. Note the appearance of edges in Fig. 2.16a) connecting the ‘shifted’ middle column, which was not possible in Tyleček and Šára (2011a) due to the RNG constraint. The shape parameter t in Fig. 2.16b) which was fixed in Tyleček and Šára (2011a) is now inferred along with the other parameters of the model.

Finally, we have made experiments with loosely regular facade of Dancing House shown in Fig. 2.14a), where window alignment shows significant deviation from the grid structure and we were successful in correctly locating all windows lying on the major plane as well as their neighborhood.
Table 2.3: Quantitative results on the Parisian dataset (Teboul et al., 2010) shown as percentage of pixels from each class specified in a row. The area is the percentage of pixels of a given class in the whole test set. PS stands for Procedural Segmentation (Teboul et al., 2010), RNG for Relative Neighborhood Graph (Tyleček and Šára, 2011a), SBG for Softly Bipartite Graph Tyleček and Šára (2012). Percentage in italics indicate remapping to window/wall classes described in Tyleček and Šára (2011a).

<table>
<thead>
<tr>
<th></th>
<th>Ground Truth</th>
<th>PS</th>
<th>RNG</th>
<th>SBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>area</td>
<td>hit miss</td>
<td>hit miss</td>
<td>hit miss</td>
</tr>
<tr>
<td>window</td>
<td>11</td>
<td>81 19</td>
<td>83 17</td>
<td>76 24</td>
</tr>
<tr>
<td>wall</td>
<td>48</td>
<td>83 17</td>
<td>84 16</td>
<td>98 2</td>
</tr>
<tr>
<td>balcony</td>
<td>12</td>
<td>72 28</td>
<td>60 40</td>
<td>89 11</td>
</tr>
<tr>
<td>door</td>
<td>1</td>
<td>71 29</td>
<td>65 35</td>
<td>100 0</td>
</tr>
<tr>
<td>roof</td>
<td>4</td>
<td>80 20</td>
<td>51 49</td>
<td>95 5</td>
</tr>
<tr>
<td>chimney</td>
<td>1</td>
<td>0 100</td>
<td>83 17</td>
<td>96 4</td>
</tr>
<tr>
<td>sky</td>
<td>7</td>
<td>94 6</td>
<td>99 1</td>
<td>100 0</td>
</tr>
<tr>
<td>shop</td>
<td>14</td>
<td>95 5</td>
<td>60 40</td>
<td>99 1</td>
</tr>
<tr>
<td>other</td>
<td>2</td>
<td>0 100</td>
<td>61 39</td>
<td>96 4</td>
</tr>
<tr>
<td>area-weighted</td>
<td>81 19</td>
<td>77 23</td>
<td>93 7</td>
<td></td>
</tr>
</tbody>
</table>

2.8 Conclusion

We have presented a recognition framework that uses a weak structure model to locate components in images, and demonstrated its potential in the task of window detection in facades. Our experiments have demonstrated that structural regularity given by pair-wise parameter constraints can efficiently guide a stochastic process that estimates component locations and neighborhood at the same time. We have shown that the conjunction of a weak non-specific classifier and a weak structural model can lead to performance that would be hardly achievable by a well-trained specific classifier alone.

In practice we have faced difficulties to tune model hyperparameters (Tab.2.1) with proposal parameters (Tab. 2.2) for overall balanced performance. Although the approach described in 2.4.4 is useful for this task, a limited set of tentative hyperparameter values must be established manually and this choice may be suboptimal. In the following chapters we will address this issue.
Chapter 2: Weak Structure Model

Figure 2.14: Results on non-standard facade images.

a) Irregular facade b) Sparse structure c) Hand-drawn
Figure 2.15: Results of the proposed method on the ten test images in the Parisian dataset with RNG and SBG structure priors.
Figure 2.16: Interpreted facades of modern buildings.
Chapter 3

Spatial Pattern Templates

“The design of a temple depends on symmetry, the principles of which must be most carefully observed by the architect.”

Marcus Vitruvius (80-25 BC)

3.1 Introduction

While previously some of hyperparameter values were assigned empirically, in this chapter a method which is able to learn the structure of relations between components will be proposed to get around the difficulties encountered in the previous approach (Sec. 2.8).

The recent development in the areas of object detection and image segmentation is centered around the incorporation of contextual cues. Published results confirm the hypothesis that modeling relations between neighboring pixels or segments (superpixels) can significantly improve recognition accuracy for structured data. The first choice one has to make here is to choose the neighbor relation, or in other words, which primitive elements participate in constraints on labels. The constraints are usually specified with a formal language of spatial arrangements. A common choice for the relation is the adjacency of element pairs in the image plane, such as 4 or 8-neighborhood of pixels in a grid, which supports the language model (Čech and Šára, 2009). This can be extended in various directions: In ‘depth’ when more concurrent segmentations\(^1\) are overlaid to handle multiple scales, or in cardinality when we connect more elements together. Generally speaking, in this chapter we will take a closer look on this design process and introduce a concept called Spatial Pattern Templates (SPT).

A convenient framework to embed such patterns into are probabilistic graphical models, where image elements correspond to nodes and edges (or higher-order cliques) to the relations among them. In such a graph, our pattern templates correspond to cliques or factors, as they describe how a given joint probability factorizes. We choose CRF (Sec. 1.3.2.3, Lafferty et al. (2001)) as a suitable model, which allows us to concentrate on the element relations

\(^1\)Segmentation is a partitioning of an image into segments (compact subsets of pixels in the image).
and not to care much about how the data are generated. Specifically, we propose pattern templates to deal with regular segmentations of translation-symmetric objects and call them Aligned Pairs (AP) and Regular Triplets (RT).

We identify regular segmentations as those where object geometry, shape or appearance exhibit translation symmetry, which manifests in alignment and similarity. Such principles often apply to images with man-made objects, even though such phenomena are also common in the nature. Urban scenes have some of the most regular yet variable segmentations and their semantic analysis is receiving more attention nowadays, as it can aid other computer vision tasks such as image-based urban reconstruction. We design our method with this application in mind, specifically targeting parsing of facade images (a multi-class labeling problem).

In this task, we exploit the properties of largely orthogonal facade images. We start by training a classifier to recognize the patches given by unsupervised segmentation. Based on the initial segments we build a CRF with binary relative location potentials on AP and ternary label consistency potentials on RT. For intuition, this can be seen as a process where all segments jointly vote for terminal labels of the other segments, with voting scheme following the chosen spatial patterns. The concept of template design, its embedding in the CRF and implementation for regular objects with Regular Triplets and Aligned Pairs are the contributions of this chapter.

3.2 Related Work

3.2.1 Contextual Models

Relative location prior on label pairs is used in Gould et al. (2008) for multi-class segmentation. Every segment votes for the label of all other segments based on their relative location and classifier output. Ideally, such interactions should be modeled with a complete graph CRF, where an edge expresses the joint probability of the two labels given their relative location, but this would soon make the inference intractable with the growing number of segments. Instead Gould et al. (2008) resort to a voting scheme and use CRF with pairwise terms for directly adjacent segments only. In our approach, we include the discretized relative location prior in a CRF but limit the number of interactions by choosing a suitable pattern template.

CRFs are popular for high-level vision tasks also thanks to the number of algorithms available for inference and learning (Nowozin et al., 2010). However, useful exact algorithms are only known for a specific class of potential functions (obeying submodularity). Kohli et al. (2009) fit in this limitation with a robust version of a generalized Potts model, which softly enforces label consistency among any number of elements in a high order clique (pixels in segments). We can use this model for RT, but because the pairwise relative location potentials may have arbitrary form, we cannot apply the efficient α-expansion optimization
used in Kohli et al. (2009).

3.2.2 Structure Learning

A number of methods for learning general structures on graphs have been recently developed (Galleguillos et al., 2008; Schmidt et al., 2008; Schmidt and Murphy, 2010). They learn edge-specific weights in a fully connected graph, which is directly tractable only when the number of nodes \(n \) is small (10 segments and 4 spatial relations in Galleguillos et al. (2008)) due to edge number growing with \(\mathcal{O}(n^2) \). Scalability of the approach has been extended by Schmidt et al. by block-wise regularization for sparsity (Schmidt et al., 2008) (16 segments) and subsequently also for higher-order potentials with a hierarchical constraint (Schmidt and Murphy, 2010) (30 segments). Since we deal with \(\approx 500 \) segments, this approach cannot be directly applied and, as suggested in Schmidt et al. (2008), a restriction on the edge set has to be considered. The SPT can be here seen as a principled implementation of this restriction to keep the problem tractable.

3.2.3 Facade Parsing

In contrast to the state-of-the-art method (Sec. 1.2.5) by Martinovic et al. (2012) our method accommodates the general assumption of regularity in a principled and general way as a part of the model, which is based on the CRF and can benefit from the joint learning and inference.

3.3 Spatial Pattern Template Model

Initially we obtain a set of segments \(X \) in the input image with a generic method such as (Felzenszwalb and Huttenlocher, 2004), tuned to produce over-segmentation of the ground truth objects such as windows, wall, door etc. in Fig. 3.7b. The image parsing task is to assign labels \(Z = (z_1, \ldots, z_n) \), \(z_i \in C \), of given semantic classes \(C = \{c_1, \ldots, c_k\} \) to given image segments \(X = (x_1, \ldots, x_n) \), \(x_i \subset \text{dom} \ I \) in an image \(I \). With segments corresponding to nodes in a graph and labels \(Z \) being the node variables, we construct a CRF with potentials taking the general form of

\[
p(Z \mid \theta, X, \mathcal{Q}) \propto \prod_{q \in \mathcal{Q}} \exp \left(- \sum_{j \in \phi(q)} \theta_j p_j(z_q \mid x_q) \right),
\]

(3.1)

where \(\mathcal{Q} \) is the set of cliques, \(p_j \) are potential functions from a predefined set \(\phi(q) \) defined for a clique \(q \). The \(p_j \) is a function of all parameters \(z_i, x_i \) in the clique \(q \) joined together in vectors \(z_q, x_q \) and the output is weighted by \(\theta_j \). The design of a specific CRF model now lies in the choice of cliques \(\mathcal{Q} \) defining a topology on top of the segments, and the choice
of their potential functions p_j, which act on all node variables in the clique and set up the probabilistic model.

The analogy to the other models is suggested by the notation following Sec. 1.3.1. Primitives are segments X and their assignment to classes C is represented by labels Z. Classes can be seen as ‘semantic components’ opposed to spatial components. Both primitives X, classes C with their number k need to be fixed in (3.1) for inference and learning of (hyper)parameters θ_j. This is the downside of bypassing the problem of hyperparameter learning encountered in the previous Chapter 2.

3.3.1 Spatial Templates for Data-dependent Topology

As a generalization of the adjacency, used i.e. in [Yang and Förstner (2011)](#), we can think of other choices for the graph topology that may suit our domain by including interactions between distant image elements, which are ‘close’ to each other in a different sense. As mentioned in Sec. 3.2, the scale of the problem does not allow us to reach complete connectivity. To allow dense connectivity while keeping the problem tractable, we need to restrict the number of cliques (edges). We describe this restriction with a template and, with the geometrical context in mind, we limit ourselves to spatial templates, which assign segments to cliques based on their geometrical attributes (shape, location). In principle other attributes (appearance) could be used in the template too. The meaning of this representation is to provide a systematic procedure for automatic learning of which interactions are the most efficient ones for the recognition task at hand.

In order to describe the process of designing a complex data dependent topology for a CRF, we first have to decompose the process behind clique template design into individual steps:

1. The first step is the specification of core attribute relation functions $\delta_i : A^n \rightarrow \mathbb{R}$ based on the domain knowledge. The relations act on easily measurable attributes A of n-tuples of segments.

 Example: Positions of two points in a plane as attributes $A_x, A_y \in \mathbb{R}^2$ and their signed distances in directions x and y as the relations δ_x, δ_y.

2. The ranges of relations δ_i are discretized to ordered sets Δ_i and $d_i : A^n \rightarrow \Delta_i$ becomes the discrete counterpart of function δ_i.

 Example: The signed distance is divided into three intervals, $\Delta_x = \{\text{left}, \text{equal}, \text{right}\}$, $\Delta_y = \{\text{below}, \text{equal}, \text{above}\}$.

3. In the next step the Cartesian product of m relation ranges Δ_i gives domain $D = \Delta_1 \times \cdots \times \Delta_m$, where subsets define logical composite relations (and, or, =).

 Example: Three intervals on two axes give 3^2 combinations in $D_{xy} = \Delta_x \times \Delta_y$, which can represent relations such as $((\Delta_x = \text{left}) \text{ and } (\Delta_y = \text{below}))$, another example is $$(\Delta_x = \Delta_y).$$
Figure 3.1: Illustration of AP construction on a simplified case with only three possibilities in $\Delta_a = (A,W,N)$ for horizontal alignment and the same for vertical alignment (not shown). The weights θ associated with the template are subject to learning, except for the θ_{NN} (not aligned in any direction) for which $\omega_{AP}(N,N) = 0$, i.e. it is purposely excluded by the designer.

4. The **spatial template** is a subset $\Omega \subset D$ representing a concrete relation. The template is specified by an indicator function $\omega : D \rightarrow \{0,1\}$ representing the allowed combinations.

Example: For alignment in one direction we set $\omega_{xy} = 1$ when $d_x = \text{equal}$ or $d_y = \text{equal}$, otherwise $\omega_{xy} = 0$.

The template design may be viewed as a kind of declarative programming framework for model design, a representation that can incorporate the specific knowledge in a generic way with combinations of core relations δ_i. Each spatial template is related to one potential function p_j in (3.1).

In summary, the result of this process describes which subsets of segments S labeled L should be jointly modeled in a graphical model; which of these are effective is subject to learning. Figure 3.3 shows how the segments correspond to nodes and their subsets define factors in $p(Z \mid X)$. In this work we introduce two templates suitable for regular segmentations.

3.3.1.1 Aligned Pairs (AP)

First template *Aligned Pairs* extend the basic adjacency relation by allowing also more distant connections between segments which are not directly adjacent. Out of all pairs of segments u, v we choose only those which are aligned either vertically or horizontally. It is useful to connect non-adjacent segments when the labels in such pairs follow some pattern, i.e. windows are aligned with some free wall space in between, sky is above roof, windows are inside wall etc.

The specification follows the spatial template design steps, a simplified illustration is provided in Fig. 3.1:

1. Based on the position attribute we choose horizontal and vertical **alignment** δ_h, δ_v with $\delta_h : (x_u, x_v) \rightarrow \mathbb{R}$ and $\delta_h = 0$ when the segments are exactly aligned, otherwise
Chapter 3: Spatial Pattern Templates

Figure 3.2: Spatial template Ω is a subspace in the domain D_{AP} given by relation functions δ_h, δ_v. The center corresponds to the exact alignment in both axes. If segment u (green) is located in the center, other squares (red for adjacency, blue belong to Aligned Pairs) correspond to discrete relative positions of segment v.

Figure 3.3: Factor graph for regular SPT. Segments X are shown as blue rectangles x_i (i.e. corresponding to window frames), factors are solid squares. Aligned Pairs connect only segments in mutual relative position specified by the template in Fig. 3.2. Regular Triplets then combine two aligned and equally spaced pairs together.

according to Fig. 3.2 (analogically δ_v for vertical).

2. Quantized functions $d_h, d_v : \mathbb{R}^4 \to \Delta_a$ evaluate locations of the two segment bounding boxes in both horizontal (d_h) and vertical (d_v) direction. The possible discrete values $\Delta_a \subset \mathbb{Z}$ for relative position and length of the two intervals are ordered according to Fig. 3.4, which is a pictorial representation of a set of inequality conditions, i.e. the identity $\Delta_a = 0$ is tested with $a = u \land b = v$, the left adjacency $\Delta_a = -6$ is tested with $u < a \land a = v$ and so on; a few more cases are described below. The values beyond ± 6 include the relative free space, i.e. on the right $\Delta_a = 6 + \lceil (u-b)/(b-a) \rceil$.

3. Combinations of horizontal and vertical alignment are then represented by joining d_h, d_v in a discrete domain $D_{AP} = \Delta_a \times \Delta_a$ limited by maximum distance.

4. Finally we specify the AP template with $\omega_{AP} = 1$ in the blue region in Fig. 3.2.

Note that adjacency (4-neighborhood) is a special case of AP when we specify $\omega_{AP} = 1$ only for four specific values in D_{AP} (directly above/under/left/right, red squares in Fig. 3.2, $|d_h| = 6 \land d_v = 0$ or $d_h = 0 \land |d_v| = 6$). Similarly values of $|d_h| \leq 5$ together with $|d_v| \leq 5$ correspond to overlap or nesting of segments.

3.3.1.2 Regular Triplets (RT)

In this template we combine two Aligned Pairs in a triplet u, v, w with regular spacing, in which the v is the shared segment. Including triplets allows to express a basis for repetitive structures (rows, columns) of primitive objects of the same label (window, balcony).
Figure 3.4: Given interval \((a, b)\) the figure shows the values \(\Delta_a\) of alignment relation function \(d_a\) for a set of intervals \((u, v)\), ranging from 0 (aligned) to \(\pm 7\) (no overlap). More free space between intervals corresponds to higher absolute values (8, 9, 10, \ldots) in \(\Delta\). Positions are considered equal within 10% tolerance of the interval length.

1. In addition to position alignment \(\delta_h, \delta_v\) defined for AP we introduce ternary relation functions for size similarity \(\delta_s: (x_u, x_v, x_w) \to \mathbb{R}\) (relative difference in size of segments) and regular spacing \(\delta_r: (x_u, x_v, x_w) \to \mathbb{R}\) (relative difference in free space between segments).

2. Based on them we define binary function \(d_s: (x_u, x_v, x_w) \to \{0, 1\}\) to be 1 when \(|\delta_s| < 0.1\) and similarly \(d_r: (x_u, x_v, x_w) \to \{0, 1\}\) to be 1 when \(|\delta_r| < 0.1\).

3. All functions \(d_h(x_u, x_v), d_v(x_u, x_v), d_h(x_v, x_w), d_v(x_v, x_w), d_s(x_u, x_v, x_w)\) and \(d_r(x_u, x_v, x_w)\) are then joined in a six-dimensional domain \(D_{RT} = \Delta_4^4 \times \{0, 1\}^2\).

4. Finally we specify \(\omega_{RT} = 1\) in the subspace of \(D_{RT}\) where \(d_s = 1, d_r = 1\) and values of \(d_h, d_v\) indicate that the three segments are pair-wise aligned in the same direction (horizontal or vertical).

3.3.2 Probabilistic Model for Label Patterns

Given the fixed set of segments \(X\), we will now make use of the SPT topology to model regular contextual information with a CRF for the graphical model.
For clarity we rewrite (3.1) in a convenient form

\[p(Z \mid X) \propto \prod_{u \in S} \exp(p_1(\nu_u)) \times \prod_{(u,v) \in AP} \exp(p_2(\nu_u, \nu_v)) \times \prod_{(u,v,w) \in RT} \exp(p_3(\nu_u, \nu_v, \nu_w)), \]

(3.2)

where \(\nu_i = (z_i \mid x_i) \) are variables related to node \(i \) and \(p_1, p_2, p_3 \) are unary, pair-wise \((AP)\) and ternary \((RT)\) potential functions (factors) respectively. We will now discuss features used in these factors.

3.3.2.1 Unary Potentials

The \(p_1(\nu_i) = \log p(z_i \mid x_i) \) are outputs of a multi-class classifier evaluated on the features for an image patch \(x_i \) of the segment \(x_i \). The feature vector \(f(x_i) \) is extracted from the image data by appending histogram of gradients (HoG), color (HSV), relative size, position, aspect ratio and 2D auto-correlation function.

3.3.2.2 Pairwise Potentials

Pairwise potentials for \((AP)\) are restrictions on the template learned for concrete label pairs. They are based on a discretized version of the relative location distribution (Gould et al., 2008), similar form is used in (Tighe and Lazebnik, 2011) for adjacency. It is the statistical function

\[p_2(\nu_u, \nu_v) = w_{2,h,d,v} \log p(z_u, z_v \mid d_h, d_v), \]

(3.3)

where \(d_h \) are the values of horizontal alignment \(d_h(x_{u1}, x_{v1}) \) analogically \(d_v \) for vertical. As suggested in the specification of \(AP \), they are computed by comparing the two segment locations: Their bounding boxes in the specified dimension (horizontal) are two intervals and a value \(d_h \) is assigned following Fig. 3.4. The pattern of labels \(z_u, z_v \) is the empirical distribution in the given relative locations \(d_h, d_v \) computed as the second order co-occurrence statistics of the labels for pairs of segments observed in a training set. The co-occurrence frequencies are obtained from a training set for each pair of class labels and are accumulated for all values in the spatial template domain \(\Omega_{AP} \). Figure 3.5 shows the resulting histograms of \(AP \) in Fig. 3.2.

3.3.2.3 Ternary Potentials

Ternary potentials model regularity by encouraging some labels in \((RT)\) to have the same value (i.e. window) in

\[p_3(\nu_u, \nu_v, \nu_w) = \begin{cases}
 w_{3,c} & \text{if } z_u = z_v = z_w = c, \\
 w_{3,0} & \text{otherwise},
\end{cases} \]

(3.4)

which is a generalized Potts model (Kohli et al., 2009) and \(w_{3,c} \) is a learned class-specific parameter. We do not use the complex ternary co-occurrence statistic with this potential.
Figure 3.6: Result of AP parameter learning θ_2, green box covers the domain $\Omega_{AP} = d_h \times d_v$ depicted in Fig. 3.2. Large values (bright) correspond to important spatial relations while small values (dark) indicated relations which can be ignored when constructing a CRF for inference.

because there is not enough data for its training. To facilitate efficient learning, we convert ternary potentials into pairwise by adding a hidden variable for each ternary factor p_3.

3.3.3 Piece-wise Parameter Learning

The goal of parameter learning is to maximize (3.1) w.r.t. potential parameters (weights) θ.

The unary potential classifiers are trained independently to reduce the number of free parameters in the joint CRF learning process. For binary potentials (including the reduced ternary potentials) we use pseudo-likelihood learning procedure to obtain values of the potential weights θ. This process corresponds to structure learning within the domain Ω_{AP} limited by the SPT topology, resulting in $\theta_2 \mapsto 0$ where the relation does not contribute to the discriminative power of the CRF (See Fig. 3.6). In practice this amounts to learning ~ 200 parameters based on likelihood in 50 sampled images, each of them with approximately 500 label variables, 3000 pair and 100 triplet factors. The training process takes several hours to complete (8 cores, 2 GHz) using Mark Schmidt’s UGM library \(^2\).

3.3.4 Inference

The overall inference process is illustrated in Fig. 3.7. The CRF is constructed only for important spatial relations, i.e. red edges shown in d) are not included. Because some of our potentials have a general form, exact CRF inference is not possible and we use an approximate algorithm (Kolmogorov, 2006) to compute the marginal distributions of the labels Z in (3.1). Segment labels are assigned to the most probable label to perform MAP estimation of (3.1). The run time around 30 s per image.

\(^2\)www.di.ens.fr/~mschmidt/Software/UGM.html
Chapter 3: Spatial Pattern Templates

Figure 3.7: Inference process. Only subset of pairwise relations is depicted in the graphs d) and e), ternary factors for rows and columns of windows are omitted for clarity.
3.4 Experimental Results

We have validated our method on two public datasets annotated into 8 classes (like wall, window, balcony etc.) and our large facade dataset (Tyleček, 2012).

The public ECP-Monge dataset is available from Simon et al. (2011) (we use corrected ground truth labellings from Martinovic et al. (2012)). It contains 104 rectified facade images from Paris, all in uniform Hausmannian style. Next, the public eTrims database (Korč and Förstner, 2009) contains 60 images of buildings and facades in various architectural styles (neoclassical, modern and other). We rectified them using vanishing points.

We have compiled a new publicly available larger CMP Facade database (Tyleček, 2012) with ~ 400 images of greater diversity of styles and 12 object classes. Its description can be found in Appendix A.

Figure 3.8 shows parsing results for different contextual models, additional results can be found on the dataset website Tyleček (2012). Table 3.1 provides their pixel-wise accuracy and comparison with other methods based on 5-fold cross validation. We have used method (Felzenszwalb and Huttenlocher, 2004) to extract averagely 500 segments (independently on the image resolution) and show it under SGT, where ground truth labels of pixels within each segment have been collected and the most frequent label among them selected for the entire segment. The result is the maximum achievable accuracy with this segmentation, inaccurate localization of the segment borders is currently the main limiting factor (we are 4.3% below the limit on ECP-Monge).

The main observation is that contextual information improves the accuracy averagely by 20% when statistics on AP is used, and by further 4% when RT are included. The RT help mostly with window and balcony identification, thanks to the statistics of these labels following regular pattern in the dataset. The qualitative improvement is noticeable, even when their effect on the total pixel-wise accuracy is small, which is a sign it is not a very suitable measure. A more sophisticated local classifier make the structural part of the model almost unnecessary, as observed in Martinovic et al. (2012), but such model may be overly reliant on a good training set and perhaps prone to overfitting.

3.5 Conclusion

We have introduced the concept of Spatial Pattern Templates for contextual models. The proposed Aligned Pairs and Regular Triplets templates have been found useful for segmentation of regular scenes by increasing accuracy of facade image parsing. Further we see possible improvement in the quality of the segment extraction to increase accuracy of segment borders.
Figure 3.8: Selected visual results on ECP-Monge facade dataset, our result with full model is under $APRT$, (note it cannot be better than SGT). See legend in Tab. 3.1 for abbreviations.
Figure 3.9: Selected visual results on eTrims DB facade dataset, our result with full model is under APRT. See legend in Tab. 3.1 for abbreviations.
Figure 3.10: Selected visual results on CMP facade dataset, our result with full model is under \textit{APRT}. See legend in Tab. 3.1 for abbreviations.
Conclusion

Table 3.1: Pixel-wise accuracy comparison on facade datasets (number of classes in brackets).

<table>
<thead>
<tr>
<th>Method</th>
<th>Classifier</th>
<th>Spatial pattern</th>
<th>Prob. model</th>
<th>ECP-Monge (8)</th>
<th>eTrims (8)</th>
<th>CMP Facade (12)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPT (proposed)</td>
<td>SVM</td>
<td>RNN</td>
<td>88.5</td>
<td>93.7</td>
<td>84.8</td>
</tr>
<tr>
<td></td>
<td>3L</td>
<td>AP</td>
<td>Potts</td>
<td>59.6</td>
<td>56.7</td>
<td>32.2</td>
</tr>
<tr>
<td>SG</td>
<td>3L</td>
<td>APRT</td>
<td>Potts</td>
<td>79.0</td>
<td>77.4</td>
<td>54.3</td>
</tr>
<tr>
<td>NC</td>
<td>3L</td>
<td>NC</td>
<td>Potts</td>
<td>84.2</td>
<td>82.1</td>
<td>60.3</td>
</tr>
<tr>
<td>HCRF</td>
<td>3L</td>
<td>NC</td>
<td>Potts</td>
<td>82.6</td>
<td>81.1</td>
<td>-</td>
</tr>
<tr>
<td>SG</td>
<td>3L</td>
<td>Adjacency</td>
<td>SG</td>
<td>85.1</td>
<td>81.9</td>
<td>-</td>
</tr>
<tr>
<td>RDF</td>
<td>3L</td>
<td>HAdj</td>
<td>CS-Potts</td>
<td>74.7</td>
<td>65.8</td>
<td>-</td>
</tr>
</tbody>
</table>

Abbreviations:

- SGT: Segments with Ground Truth labels,
- NC: No Context,
- AP: Aligned Pairs,
- RT: Regular Triplets,
- Cooc: Cooccurrence,
- BSG: Binary Split Grammar,
- HAdj: Hierarchical Adjacency,
- SVM: Support Vector Machine,
- RNN: Recursive Neural Network,
- RF: Randomized Forest,
- SG: Shape Grammar (Simon et al., 2011),
- 3L: Three Layers (Martinovic et al., 2012),
Chapter 4

A Bayesian Model for Multiple Reflection Symmetry Detection

“Symmetry is what we see at a glance; based on the fact that there is no reason for any difference...”

Blaise Pascal (1669)

4.1 Introduction

Reflection symmetry\(^1\) is a geometric property of a single object in an image, which typically cannot be further subdivided into distinguishable parts or components of the same kind, such as a car in Fig. 4.1a. We will say such an object is integral.

Exceptions from the integrality property are reflections of objects otherwise not necessarily symmetric (like in a mirror or water, Fig. 4.1b, which are composed of two separate parts (original, reflection). We will not address this case specifically.

Integrality makes the reflection detection problem substantially different from the translation symmetry addressed in the previous chapters. The elements repeating in translation make the identification of objects easier: multiple observations of the same objects (tens of them) justify the presence of the symmetry.

In the case of reflection symmetry we cannot rely on the regularity among the object parts and determination of the number of objects becomes more complicated. While there are typically only a few true reflection-symmetric objects in an image, we have to deal with the presence of multiple locally symmetric image patches (i.e. corners, stripes in texture) that are both geometrically and visually perfectly symmetric but not considered objects from the semantic point of view. This calls for a more elaborate method to determine the number of symmetric components rather than thresholding some symmetry measure, which is the common approach of the current state-of-the-art methods (Sec. 1.2.3).

\(^1\)Some authors refer to this type of symmetry as mirror or bilateral.
Chapter 4: A Bayesian Model for Multiple Reflection Symmetry Detection

Figure 4.1: Different types of reflection symmetry (from Liu et al. (2013) dataset).

Figure 4.2: Object-background ambiguity in symmetry detection. Which symmetry is of interest? Only one symmetry (1) is annotated in the dataset Liu et al. (2013).

An example in Fig. 4.2 demonstrates ambiguity in symmetry detection. Both major axes of symmetry (the bug and the blank between the leaves) appear similar according to the geometrical quality of the reflection as well as appearance, but from the subjective view of an observer, it is just the bug (1) that is a symmetric object while the blank space (2) is considered background. Without some semantic information on the objectness of the symmetric entity it is difficult to distinguish between object and background, and it has been identified as one of the causes of false positive detections in the state-of-the-art methods.

4.1.1 Overview

We propose to employ Bayesian two-level inference (Sec. 1.3.3.4) to determine the number of symmetry instances (components) in a given image. The probabilistic model and the
inference method are as little specific to the application as possible, based on general principles. Unfortunately this does not imply modeling or algorithmic simplicity as judged by the formal modeling machinery required.

The underlying probabilistic model will allow to jointly evaluate properties of a component as a whole during the inference and even relations among the components, not only individual correspondences. A correspondence is a basic element in this model, it is linking two local image patches around interest points on either side of a hypothetical symmetry axis.

While considering all possible correspondences in an image is not computationally tractable, we filter them first using standard computer vision methods, i.e. keypoint extraction and image patch descriptor similarity. Specifically, we will pair salient keypoints by measuring their geometry and testing reflection symmetry of the descriptors in Sec. 4.2.

Then we start building our model around the filtered set of tentative correspondences that are the primitives of the probability model. Assuming an axis is given, we measure how much each individual correspondence matches it. The quality of the match is given primarily by geometry of the keypoint locations w.r.t. to axis parameters and we will derive the geometric term from a generative model. Additionally we add terms for a set of correspondence features, which are discriminative auxiliary functions taking into account keypoint appearance, orientation and scale.

The next level of our assumptions stemming from the integrality will be encoded in model priors for component parameters and shape, i.e. objectness and compactness (Sec. 4.6.1). The top level of our model will consider the component set as a whole; we see it is possible to describe the structure of the set by grouping components together. See Fig. 4.3 for breakdown of model elements and features, which will be detailed in the model description (Sec. 4.3).

With a few more general terms (complexity prior etc.) we can proceed with the stochastic inference. It is based on a random walk in the model parameter space, where the complexity and grouping is treated in a special way. We can obtain its marginal distribution (complexity posterior) by sampling configurations of components from the model. Given the maximum posterior complexity we can determine (look-up) the output model and its parameters (Sec. 4.10).
Chapter 4: A Bayesian Model for Multiple Reflection Symmetry Detection

Elements

- keypoints = data
- correspondences = primitives
- axes = components
- groups

Features and Attributes

- geometric attributes: location error, orientation alignment
- appearance features: scale similarity, descriptor similarity
- component features: compactness, objectness
- group attributes

Figure 4.3: Hierarchy of model elements and features.
4.2 Image Features and Geometry

Similarly to other structure estimating methods in computer vision, we work with a set of keypoints which cover regions of interest. For our task of reflection symmetry detection we expect the keypoints to be invariant to reflection and obtain keypoints at similar locations on either side of the symmetry axis that correspond to each other, as in Fig. 4.5. This requires a keypoint detector sufficiently invariant to changes in local appearance of the object (particularly rotation, translation and reflection). To identify corresponding points we need also a descriptor which represents local appearance of an image patch around the keypoint with the same invariance properties as the detector. It will serve for the pre-selection of tentative correspondences and for computing descriptor similarity in the probabilistic model.

4.2.1 Keypoint Detector

The method for reflection symmetry detection (Loy and Eklundh, 2006), considered a baseline method by Rauschert et al. (2011) and described in Sec. 1.2.3, uses a traditional covariant feature detector of keypoints (DoG in Lowe (2004)), where the sparse detections often rely on a small number of corresponding points which can be missed when appearance varies from side to side of the axis. Furthermore, their sparsity does not allow accurate estimation of the center and extent of a symmetric patch.

More stable features are image edges (i.e. from detector by Canny (1986)) or ‘contours’ (gPb detector by Maire et al. (2008)), which have been used for symmetry detection by Wang et al. (2014). Matching of contour fragments however assumes good edge continuity, which is difficult to obtain when the object is not well separated from its background.

We propose to combine both approaches by augmenting densely sampled contours with covariant detections (Lowe, 2004) for better localization of the samples along the contour curves. Keypoints are sampled from a saliency map, which is a weighted sum of contours (Maire et al., 2008) and cornerness measure (Harris and Stephens, 1988b) shown in Fig. 4.4. In a given image I we select at most $n_k \approx 5000$ maximal points from such saliency map that exceed a given threshold and apply non-maximal suppression to enforce minimum distance between the keypoints. Each obtained keypoint has a set of attributes

$$(y_i, s_i, \phi_i, d_i),$$

where we distinguish geometric attributes y_i, ϕ_i and appearance attributes s_i, d_i specified as:

$y_i \in (0, 1)^2$ – location relative to image frame,

$\phi_i \in [0, 2\pi)$ – orientation (angle) in radians (image intensity gradient),

s_i, d_i – descriptors.
Figure 4.4: Saliency map for keypoint detection is constructed from edge and corner image features.

\[s_i \in (0, 1] \] – scale relative to image frame (descriptor radius),

\[d_i \in [0, 1]^d \] – invariant image descriptor (vector of length \(d \)).

For the geometric location we will have a generative model while appearance attributes will be treated as discriminative features (see Sec. 1.3.1.6 for difference between attributes and features).

4.2.2 Reflection Geometry

Reflection symmetry is given by an axis defined with two vectors \((\mu, u)\) in

\[
y = \mu + \lambda u, \quad ||u|| = 1,
\] (4.2)
where \(\mu \) is a point on the axis, \(\mathbf{u} = (\cos \varphi, \sin \varphi) \) is a directional vector corresponding to axis direction \(\varphi \in [0, \pi) \) and \(\lambda \in \mathbb{R} \) is a parameter (local coordinate of points on the axis). We further restrict the reflection to the strip delimited by two endpoints

\[
\mu^1 = \mu + \lambda_{h} \mathbf{u}, \quad \mu^2 = \mu - \lambda_{h} \mathbf{u}
\]

on an axis segment with half-length \(\lambda_{h} \) (see Fig. 4.5). Then

\[
\mu = \frac{1}{2}(\mu^1 + \mu^2)
\]

in (4.2) corresponds to their midpoint. The unit normal vector \(\mathbf{v} \) is defined with \(\mathbf{v} \perp \mathbf{u} \) and oriented counter-clockwise as in Fig. 4.5.

A single correspondence in the same sense as in RANSAC is a minimal sample of primitives for proposing an axis \(\mathbf{y}_j(\lambda) \) perpendicular to the line connecting points \(\mathbf{y}_{i_1}, \mathbf{y}_{i_2} \) running through their midpoint \(\mu_j = \frac{1}{2}(\mathbf{y}_{i_1} + \mathbf{y}_{i_2}) \)

\[
\mathbf{y}_j(\lambda) = \mu_j + \lambda \frac{\mathbf{y}_{i_1} - \mathbf{y}_{i_2}}{\|\mathbf{y}_{i_1} - \mathbf{y}_{i_2}\|} = \mu_j + \lambda (\cos \varphi_j, \sin \varphi_j),
\]

where \(\lambda \in \mathbb{R} \). This proposal will be later used to initialize the parameters \(\bar{\theta}_j = (\mu_j, \varphi_j) \) of a new component in inference.

Figure 4.5: Sketch of a symmetric object (blue outline) with keypoints (black dots), correspondences (dotted lines) and a symmetry axis (dot and dash).
4.2.3 Descriptors

Each correspondence i comes with a descriptor similarity value comparing appearance of image patches around two keypoints i_1, i_2. Assuming translation invariance of descriptors we specify a descriptor similarity function $D_s : [0, 1]^{d \times d} \to [0, 1]$ specified for a given i by

$$d_i = D_s(d_{i_1}, d_{i_2}; \varphi_i), \quad (4.7)$$

with respect to a reflection symmetry axis oriented by angle $\varphi_i \in [0, \pi)$ proposed by the correspondence itself (4.6). It has the form of

$$D_s(a, b; \varphi) = \|a - f_r(b; \varphi)\|, \quad (4.8)$$

where $a, b \in [0, 1]^d$ are descriptor vectors and $f_r(\varphi) : [0, 1]^d \to [0, 1]^d$ rotates and mirrors a descriptor. Value $D_s = 0$ corresponds to exact reflection symmetry. We implement this function using a steerable circular descriptor Daisy (Tola et al., 2010) similar to R-HOG (Dalal and Triggs, 2005). Daisy has a slight advantage, its similarity evaluation follows directly the proposed reflection geometry via parameter φ^2. It does not rely on implicit orientations φ_i locally estimated from descriptor such as in SIFT (Lowe, 2004), then f_r only mirrors as descriptors are rotated implicitly. In both cases we make use of a descriptor mirroring function, which prevents us from the need to extract the underlying image patch, mirror it and compute a new descriptor.

The reflection similarity measured in d_i compares regions around the two keypoints, but the appearance of the central region between them can still be arbitrary. To verify the symmetry of the central region with the assumption of integrality we can evaluate a large scale descriptor for the midpoint, with orientation given by the correspondence and region size given by the distance between keypoints, see Fig. 4.6. This is in spirit similar to validation step in (Patraucean et al., 2013), where candidates produced by the baseline method (Loy and Eklundh, 2006) are filtered to reduce false positives. The candidates are validated by rotating the image according to the axis and calculating symmetry error of image gradient orientations densely in all pixels; candidates with high error are discarded. Our approach can be seen as a sparse approximation of the gradient symmetry error more efficiently calculated using descriptors.

The reflection self-similarity of this descriptor m_i evaluated for a correspondence $i = (i_1, i_2)$ is denoted

$$m_i = D_s(m_i, m_i; \varphi_i). \quad (4.9)$$

In practice we calculate m only for selected tentative correspondences (Sec. 4.2.4) rather than all keypoint pairs due to the computational cost of $O(n^2)$.

2 Because of discretization of the descriptor w.r.t angle in practice an arbitrary rotation is approximated by linear interpolation.
4.2.4 Primitive Elements

The primitive element\(^3\) in reflection symmetry is a correspondence \(x_i\) between two keypoints \(i_1\) and \(i_2\) with locations \(y_{i1}, y_{i2}\) in a plane (Fig. 4.5). Let

\[
x_i = \left(y_{i1}, s_{i1}, \phi_{i1}, y_{i2}, s_{i2}, \phi_{i2}, d_i, m_i \right)
\]

be a concatenation of the two keypoint variables. As mentioned in Sec. 1.3.1.5, attributes are directly part of the data representation \(X\) while features are additional functions taking into account the original image \(I\).

In order to reduce the number of primitive elements entering inference, we pick up only the prospective pairs from the set of all keypoint pairs \(X\). The measure used for this purpose is the probability density of correspondence attributes (scale, orientation, descriptors) given the axis parameters proposed by the correspondence itself; it will be described in Sec. 4.4.2 as a part of the probabilistic model.

The most effective strategy found is a variant of non-maximum suppression, which can be described as a greedy selection of the best correspondences. In the greedy scheme correspondences close to the currently best correspondence are removed together from the set along with the best one. The closeness is characterized as follows: Each two keypoints generate a line (different correspondences can generate the same line). Let us consider a

\(^3\)A minimal data structure participating in the inference; see Sec. 1.3.1.1.
space of lines parameterized with polar coordinates (ϱ, φ), where $\varrho \in [0, \sqrt{2}]$ is the distance of the line from the origin in the unit image frame and $\varphi \in [0, 2\pi)$ the line orientation. The distance between the two lines i and j is then measured by

$$
\delta_{ij} = \left\| \frac{1}{\sqrt{2}} (\varrho_i - \varrho_j), \sin(\varphi_i - \varphi_j) \right\|.
$$

Finally correspondences with the distance $\delta_{ij} \leq \delta_0$ under a given threshold are considered close to each other.

With this strategy we can allow multiple distinct axes to share a keypoint while there is a low chance of a miss when we put a fixed limit on the maximum number of selected tentative correspondences. The tentative correspondence set will be denoted $X = \{x_1, \ldots, x_n\} \subset \mathcal{X}$.
4.3 Probabilistic Model

The parameters of this model follow the general definition from Introduction (Sec. 1.3.1.5), where different ‘flavors’ of parameters θ are distinguished and we give here only their brief review. The complexity k gives the number of components for which there are common configuration θ and shape parameters $\hat{\theta}$. Grouping parameters $\bar{\theta}$ are associated with \bar{k} groups. Components with parameters $\bar{\theta}$ are allocated to groups in the grouping field \bar{Z} and finally primitive data elements X are allocated to components in configuration field Z. The hyperparameters denoted by ξ are fixed during inference and we also distinguish their flavors $\bar{\xi}, \hat{\xi}, \bar{\xi}$.

The two-level inference method (Šára, 2014) assumes a probability model structured in a way similar to Richardson and Green (1997) as

$$p(X, Z, \bar{\theta}, \hat{\theta}, \bar{\theta}, \hat{\theta}, k) = p(X, Z | \bar{\theta}, \hat{\theta}, \bar{\theta}, k) p(\bar{\theta}, \hat{\theta}, \bar{\theta}, k) p(\bar{\theta}, \hat{\theta}, k | \bar{\theta}) p(\bar{\theta} | k) p(k),$$

(4.12)

with the following terms (from left to right) and their function w.r.t. to reflection symmetry detection:

Data clustering model $p(X, Z | \bar{\theta}, \hat{\theta}, \bar{\theta}, k)$, which describes the reflection geometry and assignment of correspondences to components based on keypoint matching.

Component model $p(\bar{\theta}, \hat{\theta}, \bar{\theta}, k)$, which describes component properties (integrality) and their relations (hierarchy, grouping).

Group prior $p(\bar{\theta}, \hat{\theta}, k | k)$, which describes group parameters $\bar{\theta}$, i.e. the center of a component cluster, and the number of groups \bar{k},

Shape prior $p(\hat{\theta})$, which describes shape parameters $\hat{\theta}$ common to all components, i.e. the typical size of a component (variance of correspondences w.r.t. symmetry axis),

Data clustering prior $p(\bar{\theta} | k)$, which is a regularizer preferring components of similar inlier count,

Complexity prior $p(k)$, which represents a weak constraint on the number of components.

The following sections will either describe these terms specific to symmetry detection or keep their default form as specified in Šára (2014). For the sake of readability we omit hyperparameters ξ from the high-level model description and present them only in the detailed specification of individual terms. The terms are summarized in Tab. 4.1 and the model parameter structure can be found in Fig. 4.7.
Figure 4.7: Breakdown of model parameters and their dependencies (blue arrows $\rightarrow y$ when $p(y \mid x)$). Some dependencies have been joined together for clarity (T-shaped arrows $x \mapsto y$). Parameters fixed during inference are in red.
Table 4.1: List of model parameters and their distributions. Hyperparameters fixed during inference are in red.
Chapter 4: A Bayesian Model for Multiple Reflection Symmetry Detection

4.4 Data Clustering Model

Following Sec. 1.3.1.3 we assume each individual primitive $i = 1, \ldots, n$ has parameters x_i and a component allocation vector (Dirac distribution) $z_i = (z_{ji}), j = 0, 1, \ldots, k$, where $z_{ji} \in \{0, 1\}$ are binary allocation variables ($z_{ji} = 1$ when primitive i is assigned to component j). Primitives assigned to the background component $j = 0$ are outliers while primitives assigned to some other components $j = 1, \ldots, k$ are inliers. The partitioning of the set of primitives X into $k + 1$ sets $Z_j, j = 0, \ldots, k$ will be called a configuration $Z : \cup_{j=0}^k Z_j$.

Probability density of observing a data instance X allocated to components by a binary configuration field $Z = \{z_i; i = 1, \ldots, n\}$ is then given by the joint distribution

$$p(X, Z | \tilde{\theta}, \hat{\theta}, \check{\theta}, k) = \prod_{i=1}^n \sum_{j=0}^k z_{ji} p_j p(x_i | \tilde{\theta}, \hat{\theta})$$

(4.13)

where $p(x_i | \tilde{\theta}, \hat{\theta})$ is the correspondence data term. The parameter p_j controls component membership and it is defined by

$$\check{\theta} = (p_0, p_1, \ldots, p_k), \quad p_j > 0, \quad \sum_{j=0}^k p_j = 1.$$ (4.14)

More details on this construction can be found in Šára (2014).

The data term of matching a correspondence x_i (keypoint pair) with a given axis $\tilde{\theta}_j = (\mu_j, \varphi_j)$ is then calculated as

$$p(x_i | \tilde{\theta}_j, \hat{\theta}) = p(y_i, \phi_i | \tilde{\theta}_j, \hat{\theta}) p(s_i, d_i, m_i | \tilde{\theta}_j, \hat{\theta}),$$

(4.15)

where geometric symmetry $p(y_i, \phi_i | \cdot)$ evaluates how locations of corresponding keypoints $y_i = (y_{i1}, y_{i2})$ and orientations $\phi_i = (\phi_{i1}, \phi_{i2})$ match a given axis and $p(s_i, d_i | \cdot)$ is appearance symmetry, where $s_i = (s_{i1}, s_{i2})$ are descriptor scales and d_i, m_i are descriptor symmetry features.

We will parameterize the per-primitive data model 4.15 in a way that is suitable for an efficient implementation. Let us write it as a scaled exponential-family distribution, which means it can be written as

$$p(x_i | \tilde{\theta}_j, \hat{\theta}) = \exp \left[\sum_{w=1}^W \eta^w_j (\tilde{\theta}_j, \hat{\theta}) T^w_i (x_i) \right] ,$$

(4.16)

where η^w_j are natural parameters and T^w_i are sufficient statistics of the exponential-class model4. For simplicity of exposition we assumed that the components are homogeneous (η^w_j, T^w_i, are the same functional forms for all components). The parameters $\tilde{\theta}_j, \hat{\theta}$ are subject to inference, whereas statistics $T^w_i(x_i)$ are fixed for a given problem instance, hence they can be

4This homogeneous form is somewhat non-standard by including the partition function in the parameter set. Nevertheless, we use the terms ‘natural parameters’ and ‘sufficient statistics’, even if this is not precise.
precomputed.

We proceed with geometric symmetry \(p(y_i, \phi_i \mid \bar{\theta}_j, \hat{\theta}) \) and appearance \(p(s_i, d_i \mid \bar{\theta}_j, \hat{\theta}) \) will be detailed later (Sec. 4.4.2).

4.4.1 Geometric Symmetry

We replace the geometric symmetry measure chosen mostly arbitrarily in existing works by a derivation of a distribution for the symmetry in data from a generative model for reflection symmetry. We proceed in a generic way and from the first principles, starting with

\[
p(y_i, \phi_i \mid \bar{\theta}_j, \hat{\theta}) = p(y_i \mid \bar{\theta}_j, \hat{\theta}) p(\phi_i \mid \varphi_j),
\]

where the locations \(y_i \) and orientations \(\phi_i \) are independent.

4.4.1.1 Location Symmetry

Let us assume the corresponding keypoints located at \(y_{i1}, y_{i2} \) are noisy observations of an underlying perfectly symmetric keypoint pair with unknown positions \(y, y' \) constrained by a given axis \(\bar{\theta}_j = (\mu_j, \varphi_j) \) in

\[
y' = f_r(y; \mu_j, \varphi_j) = \mu_j + R_j(y - \mu_j),
\]

where \(R_j = I - 2u_ju_j^T \) is a Householder reflection matrix and we will use the prime symbol as a shortcut for this reflection function \(f_r \) in the following text. The distribution of the perfect pair’s location is

\[
p(y, y' \mid \mu_j, \varphi_j) = N(F_j(y - \mu_j); 0, \Sigma_j),
\]

where \(\Sigma_j = \text{diag}(\sigma_{u_j}^2, \sigma_{v_j}^2) \) and \(F_j = [u_j, v_j] \) is a rotation matrix composed of vectors \(u_j, v_j \). The \(y' \) is not a free variable as it is fully determined by \(y \) given \(\mu_j, \varphi_j \).

The deviation of observed \((y_{i1}, y_{i2})\) from predicted \((y, y')\) is described by \(p(y_{i1}, y_{i2} \mid y, y') \), where the noise term for a single observed \(y_{i1} \) given a perfect location \(y \) is

\[
p(y_{i1} \mid y) = N(y_{i1}; y, \sigma_y^2),
\]

Because we don’t know which of the \(y_{i1}, y_{i2} \) ‘belongs’ to the observed \(y_1 \) or \(y_2 \), we marginalize this model over both possibilities in

\[
p(y_i \mid \bar{\theta}_j, \hat{\theta}) = \int (p(y_{i1} \mid y) p(y_{i1} \mid y') + p(y_{i1} \mid y') p(y_{i1} \mid y)) p(y, y' \mid \mu_j, \varphi_j) \, dy.
\]

The resulting geometric data term is a multinomial normal distribution in transformed coordinates and the pdf is specified as
Figure 4.8: Geometry for the measure of reflection error (red) and distance (green).

\[p(y_i \mid \tilde{\theta}_j, \hat{\theta}) = p(y_{i1}, y_{i2} \mid \mu_j, \varphi_j, \sigma_u, \sigma_v, \sigma_y) = \mathcal{N} \left(\delta_{ij}(y_{i1}, \tilde{\theta}_j); 0, \hat{\Sigma} \right), \quad (4.22) \]

where \(\hat{\Sigma} = \text{diag}(\sigma_y^2, \sigma_y^2, \sigma_u^2, \sigma_v^2) \) and \(\sigma_u^2 = \sigma_y^2 + 2\sigma_u^2, \sigma_v^2 = \sigma_y^2 + 2\sigma_v^2 \) are the natural coefficients describing the component size and shape. The transformed coordinates \(\delta_{ij} \) have intuitive meaning, as illustrated in Fig. 4.8. The first vector

\[\delta_{ij}(y_{i1}, \tilde{\theta}_j) = \begin{bmatrix} \frac{y_{i1} - \mu_j - R_j(y_{i2} - \mu_j)}{2} \\ \frac{y_{i1} + \mu_j + R_j(y_{i2} - \mu_j)}{2} \end{bmatrix}, \]

\(\delta_{ij} \) reflection error \(\delta_{ij} \)

\(\delta_{ij} \) distance \(\delta_{ij} \)

is a reflection error, which measures distance between one keypoint and reflection of the other. The second vector

\[\delta_{ij} = \frac{y_{i1} - y_{i2}}{2} = \frac{y_{i1}' - y_{i2}'}{2} \quad (4.23) \]

is a distance of the correspondence from midpoint or location relative to the axis frame.

Let us now use the following notation to simplify the exponential parametrization:

\[a = [a, 1] \] is a homogeneous representation of a vector \(a \),

\[A : B = \text{vec}(A)^\top \text{vec}(B) \] is a double inner product of tensors \(A \) and \(B \) (dot product of vectorized matrices).

Since for every symmetric matrix \(Q \) the quadratic form \(x^\top Q x \) can be written as \(Q : (xx^\top) \), the natural parametrization (4.16) of multinomial normal pdf (4.22) can be compactly written...
Data Clustering Model

\[\log p(y_i \mid \tilde{\theta}, \hat{\theta}) = \eta^p_j(\tilde{\theta}, \hat{\theta}) : \left(\begin{bmatrix} y_i^p \end{bmatrix} \begin{bmatrix} y_i^p \end{bmatrix}^T \right) + \eta^m_j(\tilde{\theta}, \hat{\theta}) : \left(\begin{bmatrix} y_i^m \end{bmatrix} \begin{bmatrix} y_i^m \end{bmatrix}^T \right), \]

\[y_i^p = \frac{1}{2}(y_{i1} - y_{i2}), \]

\[y_i^m = \frac{1}{2}(y_{i1} + y_{i2}), \]

where \(T^p_i, T^m_i \) are fixed primitive statistics computed from the original locations \(y_i = (y_{i1}, y_{i2}) \).

The natural parameters for a given component \(j \) are

\[\eta^p_j(\tilde{\theta}, \hat{\theta}) = \begin{bmatrix} -S^p_j & 0 \\ 0 & -\log(2\pi\sigma_u\sigma_y) \end{bmatrix} + U(\sigma_0), \]

\[\eta^m_j(\tilde{\theta}, \hat{\theta}) = \begin{bmatrix} -S^m_j & S_j^p \mu_j \\ \mu_j^T S^m_j & -\mu_j^T S^m_j \mu_j - \log(2\pi\sigma_v\sigma_y) \end{bmatrix} + U(\sigma_0), \]

\[U(\sigma_0) = \text{diag} \left(\frac{1}{2\sigma_0^2}, \frac{1}{2\sigma_0^2}, \log(2\pi\sigma_0^2) \right), \]

where \(U(\sigma_0) \) accounts for the universal model and \(S^m_j = F_j L^2_m F_j^T \), \(S^p_j = F_j L^2_p F_j^T \) are projections of diagonal precision matrices

\[L_p = \frac{1}{\sqrt{2}} \text{diag}(\sigma_u^{-1}, \sigma_y^{-1}), \]

\[L_m = \frac{1}{\sqrt{2}} \text{diag}(\sigma_y^{-1}, \sigma_v^{-1}). \]

4.4.1.2 Orientation Symmetry

We model orientations \(\phi_i \) by combining two circular normal (von Mises) pdfs in

\[p(\phi_i \mid \varphi_j; \kappa_o) = \frac{1}{4\pi^2 I_0(\kappa)} \exp \left[-2\kappa_o \sin(\varphi_j - \phi_{i1}) \sin(\varphi_j - \phi_{i2}) \right], \]

where \(\kappa_o \) is the concentration parameter. The symmetry term in (4.28) models condition on keypoint orientations \(\phi_{i1}, \phi_{i2} \) to be symmetric according to the given axis \(\varphi_j \) and the distribution has a mode at

\[\varphi_j = \frac{\phi_{i1} + \phi_{i2}}{2}. \]

The prior term in (4.28) prefers correspondences with opposite keypoint orientations to avoid ambiguous straight edge correspondences. The distribution has a mode at

\[\phi_{i1} = \phi_{i2} + \pi. \]
Chapter 4: A Bayesian Model for Multiple Reflection Symmetry Detection

An image of a linear object (e.g. pole, bar or profile) has a preferred longitudinal axis, but also (infinitely) many lateral axes of local reflection symmetry. A similar situation is on any longer straight edge with homogeneous surroundings.

The exponential parametrization involves trigonometric expansion to separate natural parameter vector η^o_j in

$$\log p(\phi_i \mid \varphi_j) = \eta^o_j \cdot T^o_i - 2 \log(2\pi I_0(\beta_0)),$$

$$\eta^o_j = \kappa \left[2 \sin(2\varphi_j), \ 2 \sin^2(\varphi_j), \ 1 \right],$$

$$T^o_i = [\sin(\phi_{i1} + \phi_{i2}), \ \cos(\phi_{i1} + \phi_{i2}), \ \sin(\phi_{i1}) \sin(\phi_{i2})],$$

$$\log p(\phi_i \mid \varphi_j) = \kappa(\mathbf{u}_{i2}^\top \mathbf{R}_j \mathbf{u}_{i1} - \mathbf{u}_{i1}^\top \mathbf{u}_{i2}) = \kappa \mathbf{R}_j : (\mathbf{u}_{i1} \mathbf{u}_{i2}^\top) - \kappa \mathbf{u}_{i1}^\top \mathbf{u}_{i2},$$

$$\mathbf{R}_j = \mathbf{I} - 2 \mathbf{u}_j \mathbf{u}_j^\top,$$ \hspace{1cm} (4.31)

where $\mathbf{u}_{i1} = (\sin \phi_{i1}, \cos \phi_{i1})$.

4.4.2 Appearance Symmetry

In addition to the geometric attributes of a correspondence x_i we also compare the appearance attributes of the two keypoints i_1 and i_2, namely scales s_i and descriptors d_i, m_i. This helps to differentiate correct correspondences from background. We use primitive feature functions for the comparison derived from Loy and Eklundh (2006), where the features are combined using arbitrary weight into a single scalar measure. We instead specify pdfs for each feature and combine them with

$$p(s_i, d_i, m_i \mid \bar{\theta}_j, \hat{\theta}) = p(s_i) \ p(d_i) \ p(m_i).$$ \hspace{1cm} (4.36)

4.4.2.1 Scale Symmetry

Keypoints are detected at different scales, which also influences the size of an surrounding image patch encoded in descriptor D. Comparison of descriptors from largely different scales does not reflect similarity of the image regions. This brings us to prefer correspondences with similar scale. We compare keypoint scales with Beta-like distribution

$$p(s_i; \beta_s) = \frac{1}{Z_s(\beta_s)} \left(\frac{4s_i s_{i2}}{(s_{i1} + s_{i2})^2} \right)^{\beta_s},$$ \hspace{1cm} (4.37)

where $Z_s(\beta_s) = \frac{1}{\beta_s - 1} \left(\sqrt{\pi} \frac{\Gamma(\beta_s + 1)}{\Gamma(\beta_s + 2)} - 2 \right)$, the Γ is the gamma function and $\beta_s > 1$ is a concentration parameter. The exponential parametrization is straightforward:

$$\log p(s_i; \beta_s) = \left(\beta_s - 1 \right) \frac{\log(4s_i s_{i2}) - 2 \log (s_{i1} + s_{i2})}{T^o_i} - \log Z_s(\beta_s).$$ \hspace{1cm} (4.38)
4.4.2.2 Descriptor Symmetry

We define pdfs for descriptor similarity features in \(d_i, m_i \) to prefer small differences between the descriptors. Descriptor similarity measure \(d_i \) from (4.7) and self similarity measure \(m_i \) from (4.9) introduced in Sec. 4.2.3 are independent and combined in Beta distributions

\[
p(d_i; \beta_d) = \text{Be}(d_i; 1, \beta_d) = \beta_d (1 - d_i)^{\beta_d - 1}, \\
p(m_i; \beta_m) = \text{Be}(m_i; 1, \beta_m) = \beta_m (1 - m_i)^{\beta_m - 1},
\]

where \(\beta_d > 1 \) and \(\beta_m > 1 \) are concentration parameters. The exponential parametrization is

\[
\log p(d_i, m_i; \beta_d, \beta_m) = \eta^s: T_i^s, \\
\eta^s = [\beta_d - 1, \beta_m - 1, \log \beta_d \beta_m], \\
T_i^s = \log [1 - d_i, 1 - m_i, 1].
\]

\[
4.4.3 Universal Model

The basis of the two-level inference is the model selection. Since empty configuration \((k = 0) \) is also an admissible result in case when data cannot be explained as a set of symmetric objects, we need a data model for this case as well, which we call the universal model. It must not be specific to the problem at hand since its role is to explain arbitrary data.

Let us assume the outliers come from a universal model that is described by a probability distribution \(p_0(X) \), which has few (fixed) parameters. The universal model must be able to explain all primitives in \(X \). The possible presence of an instance of the model of interest will always be judged against the per-primitive universal model indexed as a virtual component with \(j = 0 \). This extension of the function (4.15) is denoted as the function

\[
p(x_i \mid \bar{\theta}_j, \hat{\theta}); \sigma_0), \quad i = 1, \ldots, n.
\]

The data term for a non-matching correspondence \(x_i \) (outlier) belonging to the universal
Chapter 4: A Bayesian Model for Multiple Reflection Symmetry Detection

The background model is calculated as

\begin{align}
 p(x_i | \bar{\theta}_0; \sigma_0) &= p(y_i | \bar{\theta}_0; \sigma_0) p(\phi_i | \bar{\theta}_0) p(s_i | \bar{\theta}_0) p(d_i | \bar{\theta}_0) \\
 p(y_i | \theta_0; \sigma_0) &= \mathcal{N}(y_{i1}; 0, \sigma_0) \mathcal{N}(y_{i2}; 0, \sigma_0), \\
 p(\phi_i | \bar{\theta}_0) &= \frac{1}{4\pi^2}, \\
 p(s_i | \bar{\theta}_0) &= p(d_i | \bar{\theta}_0) = p(m_i | \bar{\theta}_0) = 1,
\end{align}

where the universal model is uniform for all appearance features on the unit interval.

4.5 Shape Prior

The shape parameter set becomes

\[\hat{\theta} = \{\sigma_y, \sigma_u, \sigma_v\}. \]

The priors for \(\sigma_u^2\), \(\sigma_v^2\), \(\sigma_y^2\) are inverse gamma distributions

\[p(\hat{\theta}) = p(\sigma_u) p(\sigma_v) p(\sigma_y), \]

where

\[p(\sigma_u) = IG(\sigma_u; \alpha_u, \beta_u) = \frac{\beta_u^{\alpha_u}}{\Gamma(\alpha_u)} \sigma_u^{2(\alpha_u-1)} \exp\left(-\beta_u \sigma_u^2\right), \]

and the priors \(p(\sigma_v)\) and \(p(\sigma_y)\) are defined analogically. We denote the set of the associated hyperparameters as \(\hat{\alpha} = \{\alpha_u, \alpha_v, \alpha_y\}\) and \(\hat{\beta} = \{\beta_u, \beta_v, \beta_y\}\).

4.6 Component Model

Multiple reflection symmetric components are in fact usually not independent. From a top-level point of view we can also model regularity of the entire component set. Unlike previous terms which address individual components independently, this prior describes how multiple components should interact with each other.

Let us define a *grouping field* \(\tilde{Z}\) for \(k\) components into \(\tilde{k} \leq k\) component groups

\[\tilde{Z} = \{\tilde{z}_{gj}\} \in \{0, 1\}^{k \times \tilde{k}}, \]

where \(\tilde{z}_{gj} = 1\) when the component \(j\) belongs to the group \(g\), which is an analogy to primitive allocation field \(Z\) (Sec. 4.4). Each component belongs to exactly one group (\(\sum_{g=1}^{\tilde{k}} \tilde{z}_{gj} = 1\)), the possible groupings range from all components in one group (\(\tilde{k} = 1\)) to each component

\footnote{In this section we will use the term *group* in a more general sense, i.e. it can be any set of components that do not necessarily form a (mathematical) *symmetry group* as defined in Introduction.}
in its own group \((\tilde{k} = k)\). Let \(G(g) = \{j; \tilde{z}_{gj} = 1\}\) be a set of indices of components in the group \(g\). We assume the component model can be written as component-wise product

\[
p(\tilde{\theta}, \tilde{Z} | \tilde{\theta}, \tilde{k}, \tilde{\theta}) = C(\tilde{Z}, \tilde{k}, k) \prod_{j \in G(g)} p(\Psi_j | \tilde{\theta}_j, \tilde{\theta}) p(\tilde{\theta}_j | \tilde{\theta}_g, \tilde{Z}, \tilde{\theta}) = (4.52)
\]

\[
= C(\tilde{Z}, \tilde{k}, k) \prod_{j=1}^{k} p(\Psi_j | \tilde{\theta}_j, \tilde{\theta}) \sum_{g=1}^{k} \tilde{z}_{gj} p(\tilde{\theta}_j | \tilde{\theta}_g, \tilde{\theta}) (4.53)
\]

where \(\tilde{\theta}\) are the group parameters defined as

\[
\tilde{\theta} = (\tilde{\theta}_1, \ldots, \tilde{\theta}_g, \ldots \tilde{\theta}_k), (4.54)
\]

and \(\Psi_j\) are component features specific to component \(j\). The combinatorial term \(C(\tilde{Z}, \tilde{k}, k)\) accounts for component index identity in

\[
C(\tilde{Z}, \tilde{k}, k) = \frac{k!}{\prod_{g=1}^{k} k_g!}, (4.55)
\]

where \(k_g = \sum_{j=1}^{k} \tilde{z}_{gj}\) is the number of components in a group \(g\) and \(\sum_{g=1}^{k} k_g = k\). We must sum over all permutations of indices within a group that give the same observation, because such permutations of component indices are not observable; that gives the multinomial coefficient. In addition to that the term \(\tilde{k}!\) accounts for identity of groups, now we sum over all permutations of group indices that give the same observation.

4.6.1 Component Features

We can evaluate data properties of the whole component (integrality) in order to separate a single symmetric object from two aligned ones or from the background. In terms of matching correspondence locations we assume additional geometric and appearance properties. We factorize the term from (4.13) as

\[
p(\Psi_j | \tilde{\theta}_j, \tilde{\theta}) = p(\psi^c_j | \tilde{\theta}_j, \tilde{\theta}) p(\psi^o_j | \tilde{\theta}_j, \tilde{\theta}), (4.56)
\]

where \(\psi^c_j\) and \(\psi^o_j\) are component features for compactness and objectness respectively. We assume independence of the features to facilitate efficient stratified inference (Sec. 4.10).

4.6.1.1 Compactness

Although the shape model, where the correspondence distance \(\delta_d\) is modeled with a Gaussian distribution centered at the axis midpoint \(\mu\), assumes an elliptic shape of the symmetric object with correspondences concentrated around the midpoint, this statistic still allows uneven coverage of the object. This can result in accepting false detections formed by several
groups of random or local symmetries joined together or in biasing the true detection by an outlying local symmetry unrelated to the object resulting in large geometric error w.r.t. true axis location.

To avoid such components, let us assume the correspondences should uniformly sample the object contour and interior, then no separating gap along the axis should appear.

We can interpret this assumption so that the corresponding points on one side of the axis should be neighbors to each other. To test the neighborhood condition, we can construct adjacency matrix N for keypoints y using Delaunay triangulation of the original keypoints, which is fixed for a given problem instance.

Then for a given axis we test if there is a gap between them by querying a subset of the adjacency matrix. For each point i_1 we obtain the number of neighbors i_2 such that the geometric error of the pair satisfies $\delta_y \leq \sigma_y$ and location satisfies $\delta_m^u \leq \sigma_u$, $\delta_m^v \leq \sigma_v$. If a point has less than 3 such neighbors, there is a gap around it. The number of gaps $\psi_j^c = \psi^c(\tilde{\theta}_j)$ can be modeled with Beta-binomial distribution

$$p(\psi_j^c | \tilde{\theta}_j, \hat{\theta}; \alpha_c, \beta_c) = \frac{B(\psi_j^c + \alpha_c, n_j - \psi_j^c + \beta_c)}{B(\alpha_c, \beta_c)},$$

(4.57)

where $\alpha_c < 1$, $\beta_c > 1$ are Beta type parameters.

4.6.1.2 Objectness

As discussed in Introduction, scenes (predominantly man-made) often include a number of local implicitly symmetric objects or parts (stripes, rods, corners), which are usually not considered as symmetries of interest (according to human annotations in datasets), because they do not represent an object.

It is difficult to differentiate between the two cases because the measure is subjective, but we can learn a classifier to help us with this decision. This has been studied in the context of general object detection as a class-independent measure of objectness or region saliency, where it is typically used to propose (sample) image regions for further classification.

The method proposed by Alexe et al. (2010) allows to train an objectness classifier using images with annotated object regions. In our case this requires to transform every axis of symmetry into a bounding box. The cues used include multi-scale saliency, color contrast, edge density and superpixel straddling.

The classifier integrates all the cues with Naive Bayes approach so the resulting score is actually objectness posterior

$$p(\psi_j^o = 1 | \tilde{\theta}_j, \hat{\theta}) = \frac{p(\psi_j^o = 1) \prod_{c \in C} p(c | \psi_j^o = 1)}{p(\psi_j^o = 1) \prod_{c \in C} p(c | \psi_j^o = 1) + p(\psi_j^o = 0) \prod_{c \in C} p(c | \psi_j^o = 0)},$$

(4.58)

where $\psi_j^o \in (0, 1)$ indicates the classification of the component either to object ($\psi_j^o = 1$) or background ($\psi_j^o = 0$) class and C is the set of above mentioned cues (features) from Alexe et al. (2010).
Figure 4.9: An example of dihedral symmetry group (left) with 5 reflection axes (cyan). The shape element repeating in different symmetries (right) is highlighted in green. Keypoints (blue) are connected by elementary symmetries (green lines).

4.6.2 Symmetry Grouping

Symmetry theory presented in Introduction (Sec. 1.2.1) explains which compositions of symmetries (called symmetry groups) can be encountered in 2D. We will implement some of the grouping principles to regularize our model. For example a star-shaped object (like in Fig. 4.9 but considered exact) has multiple symmetries, 5 reflections (R) and 5 rotations (cyclic group C_5), which form a dihedral symmetry group D_5 (Sec. 1.2.1.2). We will discuss options to handle such symmetric objects with our model while taking into account imperfections of the real-world objects resulting in deviations from the exact multiple symmetry, which are observed in the standard symmetry datasets (Liu et al., 2013).

A general symmetry detector should perform model selection w.r.t. the imperfect input and consider all of R, C_n, a D_n models and their discrete orders n. In our method we choose the model explicitly based on the facts given below.

The star shape could be explained with a single reflection symmetry R component (Sec. 4.2.2), which should be generally preferred for its simplicity to composed cyclic and dihedral groups (due to ‘Occam’s razor’ (MacKay, 2003)). In the presence of noise and shape imperfections there will be a single reflection axis best matching the given data. There are however five solutions for R annotated in the standard dataset, which forces us to drop this model due to its ambiguity.

The cyclic group C_5 generally allows also reflection-asymmetric spikes of the star in Fig. 4.9, but does not include the reflection constraint. Each of the spikes (period) is expected to
have the same shape and a single keypoint is replicated 5x. In this case the primitive data
element w.r.t. group C_n is the correspondence of three keypoints from three\(^6\) consecutive
spikes (periods). This requires to simultaneously use different primitives for the cyclic groups
and different for the reflection components and in practice equals to extending our model to
general rotation symmetries. An implicit C_5 model would compare the five cyclic keypoint
locations (blue in Fig. 4.9), but in practice there is a low probability of encountering a
constellation of five independently detected keypoints lying on a circle due to appearance
changes or occlusions. The constellation complexity is a strong reason to avoid the cyclic
group model.

The dihedral group D_5 is more specific as a reflection axis constraints the center of the
rotated element (phase). Now just a half-spike is expected to reflect and rotate to give the
complete shape and its single keypoint is replicated 10x, which makes the constellation
argument against the model even stronger. On the other hand the dihedral primitives w.r.t.
D_n are now two reflection correspondences with one common keypoint, which allows to reuse
reflection primitives but requires to allow two correspondences to share a single keypoint
within a group.

We propose to model the dihedral pattern explicitly by grouping reflection symmetry
components with axes crossing each other and assigning higher probability to groups with
the same angle between axes (rotation constraint). This provides greater flexibility than
implicit models given above while all reflection symmetries are part of the solution. The
possibility of correspondences sharing a keypoint however needs to be implemented at least
in tentative correspondence selection (Sec. 4.2.4).

For frieze symmetry patterns (Sec. 1.2.1.2) combining reflection and translation symmetries
we could group axes with a similar orientation (parallel) and prefer their equal spacing and
alignment (like in Chapter 2), but we do not find enough examples in the evaluated datasets
and leave this grouping for future work.

4.6.2.1 Dihedral Group Model

We identify dihedral group components based on two weak constraints: Their axis intersect
in a common point within the image frame and their midpoints should be close to each other.

Let us assume a dihedral grouping \tilde{Z} and associated dihedral group parameters $\tilde{\theta}_g =
\{\tilde{\mu}_g, \tilde{\phi}_g\}$, $g = 1, \ldots, \tilde{k}$, are given and that the reflection axes in a group g are arranged in a
rotation symmetric pattern with rotation center at location $\tilde{\mu}_g$ and starting angle (phase) $\tilde{\phi}_g$.
This geometrically translates into condition on angle differences: The angles between each
two neighboring axes are equally $2\pi/k_g$ depending solely on the number of components in
the group k_g (order of rotation). The angle of j-th axis in the group $j = 1, \ldots, m_g$ ordered
by $\varphi_j < \varphi_{j+1}$ is then given by

$$
\varphi_{jg} = \varphi_g + (j - 1)\frac{\pi}{k_g}.
$$

\(^6\)Exactly 2.5 points are sufficient to determine the rotation center, only one coordinate of the third point
is needed.
Figure 4.10: Dihedral grouping based on axis intersection with groups color encoded. Rectangle is an image frame, dots indicate axis midpoints μ_j and the axis segment length is $2\sigma_u$. Black component group $\{\Lambda_1\}$ is an isolated component. Consider axis Λ_2, Λ_3 indicate some local reflection symmetries. Red component group $\{\Lambda_2, \Lambda_3\}$ is not rotation symmetric and will receive low probability from component group model, unlike green group $\{\Lambda_3, \Lambda_4, \Lambda_5\}$ which is close to dihedral symmetry group D_3.

In the case there are just two components in the group the axis are preferred to be perpendicular. An isolated component j results in identity $\tilde{\phi}_j = \hat{\phi}_g$.

The component-wise feature pdf is modeling the deviations of the predicted and actual center locations in

$$ p(\bar{\theta}_j | \tilde{\theta}_g, \hat{\theta}) = p(\varphi_j | \tilde{\varphi}_{jg}) p(\mu_j | \hat{\mu}_g), \quad (4.60) $$

$$ p(\varphi_j | \tilde{\varphi}_{jg}; \kappa_\varphi) = \mathcal{N}_c(\varphi_j; \tilde{\varphi}_{jg}, \kappa_\varphi) = \frac{1}{2\pi I_0(\kappa_\varphi)} e^{\kappa_\varphi \cos(\varphi_j - \tilde{\varphi}_{jg})}, \quad (4.61) $$

$$ p(\mu_j | \hat{\mu}_g; \sigma_\mu) = \mathcal{N}(\mu_j; \hat{\mu}_g, \sigma_\mu), \quad (4.62) $$

where $\kappa_\varphi, \sigma_\mu$ are the concentration parameters and \mathcal{N}_c is the circular normal (von Mises) pdf with I_0 as modified Bessel function of order 0.

4.6.2.2 Natural Parameters

The exponential form of the component model is

$$ \log p(\psi_j^c | \tilde{\theta}_j, \hat{\theta}; \alpha_c, \beta_c) = \log \frac{\Gamma(\psi + \alpha)\Gamma(n - \psi + \beta)}{\Gamma(\psi + 1)\Gamma(n - \psi + 1)} + \log \frac{\Gamma(n + 1)}{\Gamma(n + \alpha + \beta)} + \frac{\Gamma(\alpha + \beta)}{\Gamma(n + \alpha + \beta) \Gamma(\alpha) \Gamma(\beta)} \quad (4.63) $$

$$ \log p(\psi_j^o | \tilde{\theta}_j, \hat{\theta}) = \log p(\psi_j^o = 1 | \tilde{\theta}_j, \hat{\theta}), \quad (4.64) $$

$$ \log p(\mu_j | \hat{\mu}_g; \sigma_\mu) = -\frac{1}{2\sigma_\mu^2} \left[\begin{array}{c} \sigma_\mu^2 \diag(1, 1) \mu_j \mu_j^\top \mu_j \end{array} \right] : (\hat{\mu}_g \hat{\mu}_g^\top) - \log(2\pi \sigma_\mu^2), \quad (4.65) $$

$$ \log p(\varphi_j | \tilde{\varphi}_{jg}; \kappa_\varphi) = \kappa_\varphi \mathbf{u}_j^\top \mathbf{u}_{jg} - \log(2\pi I_0(\kappa_\varphi)), \quad (4.66) $$

where $\mathbf{u}_{jg} = (\cos \tilde{\varphi}_{jg}, \sin \tilde{\varphi}_{jg})$.
4.7 Component Group Prior

While components should be concentrated around the group center, the opposite should hold for the group centers \(\bar{\mu} \) that should be spread out. Without this assumption the grouping would tend to degenerate configurations with each component in its own group. We have used the bounded domain \(\bar{\mu} \in (0, 1)^2 \) (rather then unbounded \(\mathbb{R} \)) for the group prior (4.68) to be a proper pdf and to implicitly restrict it to the image frame. We compute the mean distance of a group \(g \) from other groups \(h \neq g \) with

\[
d_g = \frac{1}{2(\bar{k} - 1)} \sum_h \|\bar{\mu}_g - \bar{\mu}_h\|^2,
\]

and model this feature with Beta distribution preferring \(d_g \to 1 \) in

\[
p(\tilde{\theta} | \bar{\mu}_g) = \prod_{g=1}^{\bar{k}} p(d_g | \bar{\mu}_g) p(\bar{\mu}_g) p(\bar{\varphi}_g),
\]

\[
p(d_g | \bar{\mu}_g; \beta_g) = \text{Be}(d_g; \beta_g, 1) = \beta_g (d_g)^{\beta_g - 1},
\]

where \(\beta_g \) controls the concentration. In the case \(\bar{k} = 1 \) we assume \(d_g = 1 \). The prior \(p(\bar{\mu}_g) = 1 \) is uniform on the unit image frame and \(p(\bar{\varphi}_g) = \frac{1}{2\pi} \) is uniform on the circle.

We argue that the search for the dihedral group \(D_n \) order \(k_g \) does not require model selection scheme (Sec. 1.3.3.4) because the number of group parameters is fixed and does not depend on the number of components \(k_g \) in the group (unlike when the component parameter dimension changes with \(k \)).

4.8 Configuration Prior

The role of a default configuration prior in ŠÁRA (2014) is to regularize parameter estimation. The regularizing assumption is that the number of inliers per component is equal in all components. A Dirichlet distribution with equal parameters corresponding to non-background
components softens this constraint

\[p(\hat{\theta} \mid k; \alpha_0, \alpha_I) = \text{Dir}(p_0, p_1, \ldots, p_k; \alpha_0, \alpha_I) = \frac{\Gamma(\alpha_O + k \alpha_I)}{\Gamma(\alpha_O) \Gamma(\alpha_I)^k} p_0^{\alpha_O - 1} \prod_{j=1}^{k} p_j^{\alpha_I - 1}, \tag{4.70} \]

where \(p_j \in \hat{\theta} \) as in (4.14). The mode of this prior is at

\[p_j^* = \begin{cases} \frac{\alpha_O - 1}{\alpha_O + k \alpha_I - (k + 1)}, & j = 0, \\ \frac{\alpha_I - 1}{\alpha_O + k \alpha_I - (k + 1)}, & j > 0. \end{cases} \]

4.9 Complexity Priors

The role of a default prior on complexity \(k \) in Šíra (2014) is to help select empty configuration when data is not containing any object instance. Note there are at most \(n \) components in a configuration, therefore \(k \leq n \). We use binomial distribution

\[p(k; p_c) = \binom{n}{k} p_c^k (1 - p_c)^{n-k}, \tag{4.71} \]

where \(p_c \) is the component ratio. The mode of this prior is (approximately) at

\[k^* \approx (n + 1) p_c. \tag{4.72} \]

On the next level the group complexity \(\bar{k} \leq k \) is similarly modeled with

\[p(\bar{k}; p_g) = \binom{k}{\bar{k}} p_g^{\bar{k}} (1 - p_g)^{k-\bar{k}}, \tag{4.73} \]

where \(p_g \) is the group ratio.
Chapter 4: A Bayesian Model for Multiple Reflection Symmetry Detection

4.10 Inference

As mentioned above, we have chosen to follow two-level inference scheme to perform model selection (Sec. 1.3.3.4), where the ‘models’ are the different complexities k.

In particular we use the LiSAEM algorithm (Šára, 2014) introduced in Sec.1.3.4.6. In this section we will overview its design and add parts specific to the reflection symmetry model described in the previous sections.

4.10.1 Algorithm Overview

LiSAEM is a generic two-level inference engine for the problems in the form of Sec. 1.3.4.6, where the model selection is performed over k. The principal components are a sampler from the posterior distribution (1.23) and a stochastic approximation EM algorithm for estimating the maximum posterior parameters θ whose Q-function is

$$Q(\theta \mid \hat{\theta}^{(t-1)}, Z^{(t-1)}, \tilde{Z}^{(t-1)}, k^{(t-1)}, \tilde{k}^{(t-1)}) = \mathbb{E} \left[\mathcal{L}(\theta; X, Z, \tilde{Z}, k, \tilde{k}) \right], \quad (4.74)$$
which is the lower bound on the target likelihood $L(\theta; X, Z, \tilde{Z}, k, \tilde{k})$ from (4.12) and where t is the time step (iteration), θ is the free variable and $\mathcal{E}[f(\theta; x)]$ is the expectation of $f(\theta; x)$ over the posterior distribution of x. The expectation (E-step) is implemented by means of a Metropolis-Hastings (MH) sampler made efficient with a stochastic averaging filter and the maximization (M-step) is deterministic. Simultaneously, the sampler is used to estimate the posterior distribution $p(k | X, \bar{\theta}, \hat{\theta})$ by histogramming the generated samples. The mode of the histogram is the most probable posterior complexity.

To implement a new probabilistic model of the type of (4.12) with LiSEAM an user needs to write a few callbacks that define the target distribution (4.12). For the sake of completeness of this thesis we briefly describe these parts of LiSAEM that employ the callbacks. The core blocks of LiSAEM are summarized in Fig. 4.11 and we will now explain them in some detail. The full specification and derivation can be found in ŠÁRA (2014).

4.10.2 Inlier Inference

This is a core deterministic mechanism. The role of this procedure is to map random parameters $\bar{\theta}, \hat{\theta}, \tilde{\theta}$ to configurations Z. Given all parameters $\theta = (\bar{\theta}, \hat{\theta}, \tilde{\theta}, \hat{\theta})$ the inlier inference maps each primitive i to a definite component j.

Primitive inlier inference maximizes the likelihood ratio (4.16) by

$$Z' = \arg \max_Z p(X, Z | k, \bar{\theta}, \hat{\theta}), \quad (4.75)$$

which breaks down to independent primitive allocations $z_i \in \{0, \ldots, k\}$ to components

$$z'_i = \arg \max_{z_i} p(x_i, z_i | \bar{\theta}, \hat{\theta}), \quad i = 1, \ldots, n. \quad (4.76)$$

This in effect allocates each primitive to the most likely component $\{0, \ldots, k\}$ (including background).

4.10.3 Complexity Proposals

In a Metropolis-Hastings (MH) sampler with reversible jumps across different configuration complexities k (Sec. 1.3.4) a generalization of Sequential Multipoint Metropolis (SMM) method (Qin and Liu, 2001) is used. Its complexity proposal scheme consists of a sequence of elementary proposals: A disassembly proposal decreases complexity k by unity, by deleting a random component from the configuration, and an assembly proposal initializes a new component location parameters $\bar{\theta}_j$ (RANSAC-like empirical distribution sample) and copies the other components’ parameters.

Propose component parameters (callback). Parameters $\bar{\theta}_j$ of a component represented by a symmetry axis are proposed by a single correspondence (seed) x_i determining its parameters μ_j and φ_j using (4.6).
Then configuration Z is inferred by means of deterministic inlier inference (Sec. 4.10.2). One of the sequence of proposed configurations Z is then randomly selected and subjected to the standard MH acceptance rule in which the forward and reverse proposal probabilities are computed in a specific way.

The sequential multipoint proposal scheme has several major advantages over the basic RJ-MCMC: improved mixing and the possibility to perform only approximate incremental inference to improve computational efficiency.

4.10.4 Group Proposals

The existence of groups is linked to the underlying components. We define the implicit grouping changes to \tilde{Z} when a complexity change is proposed (see section above).

Following *assembly*, a new component becomes a single member of its own new group with $\tilde{\mu}_s = \mu_s$.

Following *disassembly*, the deleted component is removed from its group. If it was the group’s last member, then the group is deleted too.

The actual group proposals follow the merge and split procedure. Let us first define a weighted complete graph C where the current configuration components correspond to graph nodes and graph edge weights $w_{\phi_{ij}}, w_{\mu_{ij}}$ evaluate the conditions on axis intersection and midpoint distance

\[
\begin{align*}
 w_{\phi_{ij}} &= \begin{cases}
1, & (\Lambda_i \cap \Lambda_j) \in \text{dom} I, \\
0, & \text{otherwise},
\end{cases} \\
 w_{\mu_{ij}} &= \frac{\|\mu_i - \mu_j\|}{\sigma_u},
\end{align*}
\]

where $i, j \in J$ are configuration components and $(\Lambda_i \cap \Lambda_j)$ is the intersection point of the two axes. A necessary condition for two axes i, j to belong to the same group is $w_{\phi_{ij}} = 1$. Then we construct an edge-induced subgraph $C' \subseteq C$ by randomly thresholding edge weights $w_{\mu_{ij}}$ and including only selected edges with the condition satisfied.

Merge joins two groups together. Only group pairs (g, h) within the same connected component of graph C' are considered and one such pair is uniformly sampled, $g \neq h$. The merged group parameter becomes

\[
\tilde{\mu}_s = \frac{1}{2} (\tilde{\mu}_g + \tilde{\mu}_h). \tag{4.79}
\]

Split removes a randomly selected component g from a group. Only groups with two or more components are considered and uniformly sampled in the first step. In the next step the component to be removed is sampled uniformly within the chosen group and becomes a single member of its own new group with $\tilde{\mu}_s = \mu_g$.

4.10.5 Parameter Proposals

The purpose of a parameter proposal is to provide exploration in configuration space with parameter θ. In practice LiSAEM without this proposal tends to get stuck in a configuration when the core parameters $\dot{\theta}$ are not estimated correctly. The exploration ability of the parameter proposal helps jump out of such configuration by following the gradient of target distribution stochastically.

The parameter proposal is based on a modification of Metropolis-Adjusted Langevin (MALA) algorithm by (Roberts and Tweedie, 1996). Given the current parameter value $\theta^{(t-1)}$, MALA proposes samples ϑ' as

$$\vartheta' = \theta^{(t-1)} + \frac{\sigma^2}{2} \nabla \log \pi(\theta^{t-1}) + \zeta,$$

in which ζ is a normally distributed random variable $\zeta \sim N(0; \sigma^2)$ and π is the target distribution (4.12). The ϑ' is then accepted using the standard MH acceptance rule.

LiSAEM uses a modification of MALA called Scaled Stochastic Newton (SSN) algorithm (Bui-Thanh and Ghattas, 2012), in which the gradient is scaled by the inverse of negative Hessian in a Newton-like step. Instead of the logarithm of the target distribution $\log \pi(\theta^{(t-1)})$ the Q function (4.74) is used, provided by the SAEM algorithm. The stochastic approximation filter of SAEM helps provide temporal stability of such gradient and Hessian estimates and improves mixing.

On-line adaptation of the scaling constant σ_θ from (4.80) is performed according to Atchadé (2006). The goal of adaptation is to provide acceptance rate close to the optimal value (approximately 0.574 derived for standard normal distribution (Roberts and Tweedie, 1996)) and improve stability of SSN.

Since an E-step and an M-step of SAEM follow the process illustrated in Fig. 4.11 the proposed parameter ϑ' is essentially forgotten. In fact, since ϑ' is used in inlier inference, it influences the proposed configuration Z, so it does contribute to the next estimate $\theta^{(t)}$.

4.10.6 E-step

The **E-step** performs expectation of Q-function (4.74) which in our representation can be written as summation over all possible configurations Z, \tilde{Z} in

$$Q(\theta \mid \theta^{(t-1)}, Z^{(t-1)}, \tilde{Z}^{(t-1)}, k^{(t-1)}, \tilde{k}^{(t-1)}) =$$

$$= \sum_{k=0}^{n} \sum_{k_1}^{k} \sum_{Z_k} p(Z_k, k, \tilde{Z}_k, \tilde{k} \mid X, \theta^{(t-1)}) \mathcal{L}(\theta; X, Z, \tilde{Z}, k, \tilde{k}),$$

where t denotes the current time step (iteration), Z_k represents the set of fields for fixed complexity k and the maximum complexity is the number of primitives, $k \leq n$. Analogically
where the default term comes from (4.70) as
\[\propto \tau_\nu \tau_\eta T K Z \]
our case the P-function of SAEM has the form of that RM guarantees convergence is a limiting case of empirical averaging. The \(\gamma_t \) is a sequence of diminishing multipliers such that RM guarantees convergence (Delyon et al., 1999): \(\gamma_t > 0, \sum_t p_t = \infty, \sum_t p_t^2 < \infty \). In our case the P-function of SAEM has the form of
\[P^{(t)}(\theta) = P_0^{(t)}(\theta) + \sum_{j \in J} P_j^{(t)}(\theta), \]
where the default term comes from (4.70) as
\[P_0^{(t)}(\theta) \propto \log p(\hat{\theta}) + \log p(\tilde{\theta}) + (\tau_0^{(t)} + \alpha_0 - 1) \log p_0, \]
and the component-wise term for component \(j \) in the group \(g \) has the form of
\[P_j^{(t)}(\theta) \propto \nu_j(\hat{\theta}, \tilde{\theta}) K_j^{(t)} + \left(\tau_j^{(t)} + (\alpha - 1) \kappa_j^{(t)} \right) \log p_j + \sum_{w=1}^W \eta_{jw}(\hat{\theta}, \tilde{\theta}) T_{jw}^{(t)}, \]
where \(\propto \) means here ‘up to an additive constant’ and terms are the following:
\(\nu_j(\hat{\theta}, \tilde{\theta}) \) is the universal model statistic (4.44),
\(\tau_j^{(t)} = (1 - \gamma_t) \tau_j^{(t-1)} + \gamma_t z_{ji} \) is the current estimate of primitive allocation \(z_{ji} \),
\(\tau_j^{(t)} = \sum_{i=1}^n \tau_j^{(t)} \) is the current estimate of number of inliers in the component \(j \), \((\tau_0 \) for outliers),
\(\kappa_j^{(t)} = (1 - \gamma_t) \kappa_j^{(t-1)} + \gamma_t \) is the posterior expectation of component’s presence in the current configuration (inclusion),
\(\kappa_j^{(t)} = \sum_{j \in J} \kappa_j^{(t)} \) is the current estimate of the posterior expectation of complexity \(k \),
\(\kappa_j^{(t)} \) is the current number of inliers in the component \(j \),
\(T_{jw}^{(t)} = \sum_{i=1}^n \tau_{ji}^{(t)} T_w(x_i) \) is the statistic aggregated from all primitives in (4.16),
\(\eta_{jw}(\hat{\theta}, \tilde{\theta}) \) are natural parameters (callback) given in (4.25) and (4.63).
The E-step in LiSAEM thus just estimates the quantities \(\tau_{ji} \) and \(\kappa_j \). The appeal of SAEM over the standard versions of Monte-Carlo EM algorithms is that it makes use of all simulated samples for the hidden variables \(Z^{(t-1)} \) and also leads to computationally efficient parameter update scheme.

4.10.7 M-step

The M-step implements parameter estimation to maximize the target function

\[
\theta^{(t)} = \arg \max_{\theta} P^{(t-1)}(\theta),
\]

where \(\theta \) are the estimated parameters while the statistics \(T \) are fixed and the implementation is specific to the given problem.

In the case of symmetry detection model we have statistics \(T_d = \sum_i y_d^i y_d^\top, T_m = \sum_i y_m^i y_m^\top \) and the active part of P-function is

\[
P^{(t)}(\sigma_u, \sigma_v, \sigma_y, \mu, u, v) = -(\alpha_u + 1) \log \sigma_u^2 - (\alpha_v + 1) \log \sigma_v^2 - (\alpha_y + 1) \log \sigma_y^2
\]

\[
+ \sum_{j=1}^k P_j^{(t)}(\sigma_u, \sigma_v, \sigma_y, \mu_j, u_j, v_j),
\]

with component-wise terms

\[
P_j^{(t)}(\sigma_u, \sigma_v, \sigma_y, \mu_j, u_j, v_j) \propto \eta_j^d : T_d + \eta_j^m : T_m + \eta_j^g : T_g + \nu_j K_j =
\]

\[
= -E_j^d : S_j^d - \log(2\pi \sigma_u \sigma_y) - E_j^m : S_j^m - \log(2\pi \sigma_y \sigma_v) - \\
- E_j^g : S_j^g - \log(2\pi \sigma_u^2 \mu_j) - \eta_j^g \mu_j^\top u_j - \log(2\pi \nu_0(\kappa_j)),
\]

where the newly introduced symbols following (4.25) are

\[
E_j^d = y_d y_d^\top,
\]

\[
E_j^m = y_m y_m^\top - (2y_m - \mu_j) \mu_j^\top,
\]

\[
E_j^g = \bar{\mu}_g \bar{\mu}_g^\top - (2\bar{\mu}_g - \mu_j) \mu_j^\top,
\]

\[
S_j^g = \frac{1}{2} \text{diag}(\sigma_u^{-2}, \sigma_v^{-2}),
\]

and \(K_j \) represents the number of inliers, and the background model for mean and angle is

\[
\nu_j = -\log(2\pi^2 \sigma_0^2) - \frac{\|\mu_j\|^2}{2\sigma_0^2}.
\]
M-step (callback). The M-step is in our case not closed-form. We use an initial estimate
\[
\hat{\mu}_j \approx \frac{y}{k_j}.
\]
(4.94)
The initial estimate of \(\varphi\) or \((u, v)\) is obtained by solving
\[
\frac{\partial P_j(\cdot)}{\partial \varphi} = \left(\begin{array}{c}
\left(\frac{1}{2\sigma_y^2} - \frac{1}{2\sigma_u^2}\right) E^d + \left(\frac{1}{2\sigma_v^2} - \frac{1}{2\sigma_y^2}\right) E^m\end{array}\right) : (uv^T + vu^T) = 0,
\]
(4.95)
where \(E^m = A - \mu\mu^T\) is a symmetric matrix. The solution of (4.95) are its eigenvectors \(\hat{u}, \hat{v}\) giving \(\hat{\varphi}_j\). The estimates of shape parameters for the given component are the eigenvalues \(\hat{\sigma}_u^2\) of \(E^d_j\) associated with eigenvector \(\hat{u}\) and analogically for \(\hat{\sigma}_v^2\) of \(E^m_j\) and \(\hat{v}\). These estimates are then combined together with shape prior resulting in
\[
\hat{\sigma}_u^2 = \frac{b_u + \sum_{j=1}^k \hat{\sigma}_{ju}^2}{1 + a_u + k}, \quad \hat{\sigma}_v^2 = \frac{b_v + \sum_{j=1}^k \hat{\sigma}_{jv}^2}{1 + a_v + k},
\]
(4.96)
which solves \(\partial P_j(\cdot)/\partial \sigma_u = 0\) or \(\partial P_j(\cdot)/\partial \sigma_v = 0\) respectively. The initial estimate of \(\sigma_y^2\) is similarly computed from the other eigenvalues \(\hat{\sigma}_{ju}^2, \hat{\sigma}_{jy}^m\) of both \(E^d\) and \(E^m\) resulting in
\[
\hat{\sigma}_y^2 = \frac{b_y + \sum_{j=1}^k (\hat{\sigma}_{ju}^2 + \hat{\sigma}_{jy}^m)}{1 + a_y + 2k}.
\]
(4.97)

In order to obtain an initial estimate of the group parameters \(\bar{\theta}\) w.r.t. (4.62) the rotation center \(\hat{\mu}_g\) becomes the mean of all axis midpoints in the group \(g\)
\[
\hat{\mu}_g = \frac{1}{|J_g|} \sum_{j \in J_g} \mu_j.
\]
(4.98)
An isolated component \(j\) has identically \(\hat{\mu}_g = \mu_j\). The starting angle \(\bar{\varphi}_g\) is chosen to be equal to the orientation of the component \(\varphi_j\) in the group \(g\) such that maximizes the likelihood in (4.61) by
\[
\bar{\varphi}_g = \arg \max_j \sum_{i \in G(g)} \log p(\varphi_i \mid \bar{\varphi}_g = \varphi_j).
\]

The initial estimates are refined by regularized Newton gradient method to find the (local) optimum, which requires calculation of gradient and Hessian of the P-function w.r.t. to the parameters (callback).

4.10.8 Post-processing

After the inference endpoints of axis segment \(\mu_{1j}, \mu_{2j}\) are chosen as intersections of the most extending correspondences \(\mu_1 = x_p\) and \(\mu_2 = x_q\) with the given axis \(\bar{\theta}_j\).
4.11 Experimental Evaluation

4.11.1 Implementation Overview

The detection process is illustrated in Fig. 4.12:

a) The input image is acquired.

b) Edge and corner map is constructed for keypoint sampling. Contour magnitude from (Maire et al., 2008) is added to the Harris operator response (Harris and Stephens, 1988b) to sample well localized points on the image edges.

c) Up to 5000 total points are found as local maxima in the edge and corner map with non-maximum suppression search strategy. Orientations are given by multi-scale image gradient (Sec. 4.2).

d) All keypoint pairs are sorted according to feature symmetry (Sec. 4.4.2, except self-similarity M, which is slow to evaluate on the full set) and up to $n = 5000$ tentative correspondences are selected (Sec. 4.2.4), the 100 top-ranking are shown in red, next 500 in blue.
e) Self-similarity M is evaluated for all tentative correspondences. Of those, only 100 top-ranking feature frames (patches) are shown.

f) Symmetry axes are detected with LiSAEM, shown with color-coded inliers. Axes midpoints (Sec. 4.10.8) are shown in white circle when it matches some ground truth axis (true positives). Otherwise the circle is black, in this example the axis extent (endpoints) goes beyond the required tolerance of a ground truth axis extent.

4.11.2 Hyperparameter Estimation

Although the ground truth annotations specify symmetry axes, supervised estimation of the prior parameters is not possible without assignment of keypoints and correspondences to the axes (inliers). For this purpose we have selected the inliers of a given axis based on two properties:

1. The training set annotations were enhanced with object segmentation and only keypoints within a segment were be assigned to the associated axis.

2. Only correspondences of such points with reflection error δ^y under a given threshold w.r.t. the ground truth axis are considered inliers.

The priors for parameters $\hat{\theta}, \tilde{\theta}$ were then estimated by maximum likelihood fitting of the respective distributions to the inliers. Note the inference includes the parameter estimation and does not rely on exact priors.

4.11.3 Experimental Results

Evaluation of the model is based on two publicly available benchmarks.

Benchmark 2011 (Rauschert et al., 2011) contains 15 real and 15 synthetic images. Precision and recall of the results for 2011 dataset (Rauschert et al., 2011) is shown in Tab. 4.2 and Fig. 4.13. The precision/recall curve was obtained by varying the universal model $\sigma_0 \in (0.1, 1.5)$, which influences the likelihood ratio and inlier acceptance. The resulting points were connected by lines for better visibility.

We have compared the performance of our method using both static SIFT descriptors and steerable Daisy descriptors. The latter have shown to allow more accurate calculation the appearance similarity, resulting in a performance boost for some images (particularly real-world). As with other methods, real world images taken by camera are the more difficult category, and among such images the natural objects like plants are the most challenging because there is usually no exact appearance symmetry, see Fig. 4.15. In some difficult cases our method found no symmetry in the image.

The final results of our method with the objectness prior indicate the performance compared to the state of the art methods is similar for single instances, while there is a
notable increase in recall for multiple instances. Overall the other methods are outperformed approximately by 10% in precision and 20% in recall.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Benchmark 2011 Precision / Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>single</td>
</tr>
<tr>
<td>SIFT + voting</td>
<td>0.57 / 0.80</td>
</tr>
<tr>
<td>Contours + voting</td>
<td>0.75 / 0.80</td>
</tr>
<tr>
<td>Daisy + Lisaem</td>
<td>0.73 / 0.85</td>
</tr>
</tbody>
</table>

Table 4.2: Results on the reflection symmetry dataset (2011) as reported in the benchmark. Results of our method correspond to the optimal point on the overall curve in Fig. 4.13.

Figure 4.13: Results on the reflection symmetry dataset (Rauschert et al., 2011) as precision/recall curves (connected points) for all images, their single instance subset and multiple instance subset. Curves are not available for other methods, only single point results.

Benchmark 2013 (Liu et al., 2013) contains 70 real images. It is more challenging because there are more instances of symmetric objects with a lack of symmetry in their appearance, mostly due to shadows and occlusions, see Fig. 4.16. Many natural objects such as humans, animals or plants are symmetric only in the large scale, their texture is locally random. As a result no method competing in this benchmark was able to outperform the baseline method (Loy and Eklundh, 2006), except of Patraucean et al. (2013) for a few points on the precision/recall curve.

The precision/recall curves shown in Fig. 4.14 shows our method without the objectness prior obtains results similar to the state of the art. Our method can’t benefit much from the improved inference because there are only few images with more than two axes of symmetry in this dataset.

By including a weak semantic information in the form of the objectness prior it was possible for our method to consistently achieve results above the state of the art. However,
in the case local axes of object’s parts are also annotated, th objectness prior can suppress
them, resulting in lower performance score. In general, by suppressing false positives the
objectness prior does not allow the precision to fall under a certain limit, which results in
shorter curves in Fig. 4.14.

Figure 4.14: Results on the reflection symmetry dataset (Liu et al., 2013) as precision/recall
curves (connected points) for all images, their single instance subset and multiple instance
subset. Overall curves for other methods are not available.

4.12 Conclusion

We have shown the chosen image features and Bayesian inference method achieve better
performance in detecting multiple instances of symmetry in an image. The integral cues of
compactness and objectness help us to identify true reflection symmetric objects and discard
local symmetries, which results in lower false positive rate when compared to other methods.

A possible extension is to implement the model also for other types of symmetries (radial,
translational) and some more possible extensions in both model and inference are suggested
below.
Conclusion

Ground truth *(Rauschert et al., 2011)*

Our results Lisaem+objectness (Daisy)

Baseline method output *(Loy and Eklundh, 2006)*

Figure 4.15: Selected images with symmetry axes and inliers from 2011 benchmark.
Figure 4.16: Selected images with symmetry axes and inliers from 2013 benchmark.
Chapter 5

Conclusion

“We find, therefore, under this orderly arrangement, a wonderful symmetry in the universe, and a definite relation of harmony in the motion and magnitude of the orbs, of a kind that is not possible to obtain in any other way.”

Johannes Kepler (1571-1630)

In this thesis three applications of symmetry principles to computer vision problems of object detection in images were presented, focusing on the ways how our prior knowledge on translation, reflection and rotation symmetries can be encoded in probabilistic models. We followed a weak object-centered approach, which lies between general symmetry detection and strongly informed procedural modeling.

The following table summarizes proposed models and their properties:

<table>
<thead>
<tr>
<th>Method</th>
<th>WSM</th>
<th>SPT</th>
<th>BMRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetries</td>
<td>Translation</td>
<td>Translation</td>
<td>Reflection, Rotation</td>
</tr>
<tr>
<td>Groups</td>
<td>Wallpaper</td>
<td>Wallpaper</td>
<td>Dihedral</td>
</tr>
<tr>
<td>Model type</td>
<td>Flat</td>
<td>CRF</td>
<td>Hierarchical</td>
</tr>
<tr>
<td>Data model</td>
<td>Generative</td>
<td>Discriminative</td>
<td>Hybrid</td>
</tr>
<tr>
<td>Structural model</td>
<td>Local</td>
<td>Local</td>
<td>Global</td>
</tr>
<tr>
<td>Inference method</td>
<td>MAP</td>
<td>Message Passing</td>
<td>Bayesian Model Selection</td>
</tr>
<tr>
<td>Inference algorithm</td>
<td>RJ-MCMC</td>
<td>TRW-BP</td>
<td>LiSAEM</td>
</tr>
<tr>
<td>Learning</td>
<td>Empirical</td>
<td>MPL</td>
<td>Empirical</td>
</tr>
<tr>
<td>Data point</td>
<td>Pixel</td>
<td>Pixel</td>
<td>Keypoint</td>
</tr>
<tr>
<td>Primitive element</td>
<td>Pixel</td>
<td>Segment</td>
<td>Correspondence</td>
</tr>
<tr>
<td>Component</td>
<td>Object</td>
<td>Class</td>
<td>Axis</td>
</tr>
<tr>
<td>Structural element</td>
<td>Neighborhood</td>
<td>N-Tuple</td>
<td>Group</td>
</tr>
</tbody>
</table>
Chapter 5: Conclusion

The first two methods successfully dealt with translation symmetry in the task of facade image parsing. The Weak Structure Model (WSM) was our first attempt to tackle problems with variable complexity and opened the question of learning and the question of model selection.

The answer to the call for learning were Spatial Pattern Templates (SPT), which facilitated learning and inference for models with a dense relation structure. Our experience suggests a tailored customization of employed general machine learning algorithms is required for further progress in this direction.

The third method aimed at Bayesian Multiple Reflection Symmetry (BMRS) detection. It validated the Bayesian model selection as a powerful inference mechanism for complexity estimation by producing more accurate detections when compared to the current state-of-the-art in symmetry detection.

Each method approaches the discovery of structure in the image data differently. In WSM the structure is inferred locally in terms of pairwise neighborhood, and top-level groups can be obtained as connected components, unlike in BMRS where the grouping is explicit and global. The SPT deals with structure in the learning phase, at the cost of restricting the object locations according to unsupervised image pre-segmentation.

We would like to emphasize the following contributions of this thesis:

Minimal modeling principle. We showed that probabilistic methods can be successful in reliable symmetric object detection without hard-coded domain-specific heuristics or complex features and classifiers.

Parsimony (BMRS). We found that Bayesian two-level inference does implement the Occam’s razor in a mechanism that balances model complexity and error and even makes the balance data-adaptive. The result of this behavior is that the method does not oversegment in a wide variety of images (Sec. 4.10).

Model selection for complexity (BMRS). We confirmed that a rigorous estimation of the number of objects in an image (components) can be implemented with Bayesian model selection (Sec. 4.10).

Grouping priors. (WSM, BMRS). We demonstrated that principles of grouping for structural relations can be efficiently implemented by Bayesian priors. We surmise an efficient stochastic inference mechanism is needed for such models (Sec. 2.6).

Learning important relations (SPT). We showed it is possible to learn which structural relations are important and make inference more efficient and accurate (Sec. 3.3.3).
Objectness priors (BMRS). We managed to incorporate a discriminative prior for objectness in our probabilistic model. It is shown that objectness contributes to a performance increase in the multiple symmetry detection problem (Sec. 4.6).

Facade database for learning (SPT). We created a public annotated dataset sufficiently large for learning, diverse in architectural styles and of greater complexity than other datasets (Sec. A).

5.1 Possible Extensions

We see there is a potential in extending our methods in the following research directions:

Active inference strategy. Which primitives (correspondences) should be considered to detect a symmetry? Clearly, even among the top 100 tentative correspondences ranked by descriptor similarity there are just too few supporting the symmetry, for example only 10 of them match the axis of the deer’s head in Fig. 5.1. A larger set could bring more support, but the number of all keypoint pairs grows quadratically with the number of keypoints and the size of their representation soon becomes prohibitive. Rather than enumerating them all not to miss some correspondence supporting the symmetry we can start with a small working subset (like in Fig. 5.1) and incrementally discover additional or more efficient correspondences during sampling with an active inference strategy. An efficient strategy must guarantee consistency of the probabilistic model and its implementation will need to revise the approach to primitive element set representation in the inference algorithm (Sec. 4.10).

Hierarchy of symmetries. Which symmetries describe the image in Fig. 5.2? The difficulty is in answering the question of which interpretation is better, symmetries of individual objects, even if the symmetry acts across the image or symmetry of symmetric objects that fills the entire image? The question is what symmetric composition of elementary symmetries describes the image best. The answer can be possibly extended from the grouping prior (Sec. 4.6) in a hierarchical model and the associated group inference mechanism.

Symmetry for saliency. Symmetry detections and measures can be used as indicators of saliency in images for a complex object recognition problems.

Integration with 3D data. Depth information associated with a given view could be included in the symmetry models as a strong additional cue. In return, a detected 2D symmetry typically indicates a symmetry in 3D as well.
Chapter 5: Conclusion

Figure 5.1: Selected tentative correspondences (left) and pairs of image patches around their keypoints (right).

Figure 5.2: Hierarchy of symmetries in an image (left) and the associated structure (right).
Appendix A

New Facade Dataset

The size of annotated training set containing regular structures is the limiting factor for learning of complex relations between objects of many classes. Because of only limited data sets are publicly available, we have set up a new data set CMP Facade Database (TYLEČEK, 2012), which is sufficiently large for learning, diverse in architectural styles and allows to describe more general relative locations of objects (overlapping, nesting).

A.1 Image Data

Our dataset originates from different sources, details are provided in the following sections. Images were rectified with a method based on estimation of vanishing points from lines detected in the image, and suitably cropped afterward (does not apply to already rectified adopted images).

A.1.1 CMP-Prague

Newly presented images acquired by CMP in Prague.

Location Prague, Czech Republic

Date 2007

Camera Canon G2

Resolution ~6 MPx

Size 213 images

Source J.Šochman, R.Šára (CMP)
A.1.2 CMP-World

Newly presented images acquired by CMP worldwide.

Location Bratislava, Buenos Aires, Frankfurt, Graz, London, Ostrava, Rome, Znojmo

Date 2007-2009

Camera Various

Resolution ~6 MPx

Size 99 images

Source J.Šochman, R.Šára (CMP)

A.1.3 ZuBuD

Images were adopted as a subset of unannotated Zurich Building Database.

Location Zurich, Switzerland

Date 2003

Camera ?

Resolution ~0.3 MPx

Size 177 images

http://www.vision.ee.ethz.ch/showroom/zubud/

A.1.4 ECP-World

Images were adopted as a subset of unannotated part of the Ecole Central Paris datasets.
Annotations

Location Barcelona, Greece, Budapest, USA
Date 2010
Camera ?
Resolution ~0.6 MPx
Size 177 images
Source O. Teboul (ECP) ?
http://vision.mas.ecp.fr/Personnel/teboul/data.php

A.2 Annotations

In this dataset image annotation is a set of rectangles scope with assigned class labels. Such rectangles are limited by the image scope in size and position, but otherwise they are allowed to overlap. The annotation do not necessarily explain the entire images, only objects of classes of interest are labeled. The unexplained part of the image is considered a Background.

A.2.1 Object classes

Dataset contains definitions for basic classes and sub-classes specified below.

Facade bounding box for a single plane wall, from pavement to roof, only complete facades are labeled, as if there is no occlusion by cars or others

Window entire glass area including borders, subtypes according to subdivision of window panes; all visible windows are annotated even if not within Facade.

Blind any functional obstacle to light on the window, both open or closed

Cornice decorative (raised) panel above the window

Sill decorative (raised) panel or stripe under the window

Door entrance

Balcony including railing, overlap with window when glass is visible behind

Deco any bigger piece of original art, paintings, reliefs, statues, when no other class is applicable

Molding horizontal decorative stripe across the facade, possibly with a repetitive texture pattern
Pillar vertical decorative stripe across the facade, possibly with a repetitive texture pattern, terminators (cap, base) are labeled separately

Shop shop windows, commercials, signs

A.2.1.1 Z-Order

While overlapping of object is allowed, we also sort the classes according to depth levels (Z-Order) in which they appear in the image. Rendering pixel-wise label map is then possible by sequentially painting elements according to their class labels and this order.

A.2.2 Principles

- All object annotations have rectangular shape.
- Overlaps are allowed.
- Nesting principle should be kept where applicable, i.e. windows inside a facade.
- Stretching of stripes should be to the maximal meaningful extend, i.e. side to side.
- Objects are annotated if they are not occluded by more than 33% of their area. Occlusion means that appearance of object borders or contents is substantially different from the expected appearance.
- The rectangle does not respect occlusions, it should reflect the occluded reality as much as possible. At least two opposite corners must be visible, or less if their position can be assumed from symmetry.
- Objects are annotated only on the major (rectified) plane.
- The major facade should be always labeled, additional facades only if their substantial part is visible.

A.2.3 Formats and Software

Annotation was performed in a custom tool for Matlab, which uses a single database file to store all annotations. Annotations are exported to the XML and PNG formats below, see Fig. A.1.
A.3 Dataset Summary

Currently we provide two datasets based on the degree of regularity present in the facades:

CMP-base planar facades with dense/strong regularity

CMP-extended irregular, non-planar and sparse facades or images with substantial occlusion from vegetation etc.

Total numbers for individual datasets are presented in Tab. A.1, which also provides comparison with previous datasets.
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Images</th>
<th>Objects</th>
<th>Classes</th>
<th>Avg. obj/im</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMP-base</td>
<td>378</td>
<td>32861</td>
<td>12</td>
<td>88</td>
<td>CTU</td>
</tr>
<tr>
<td>CMP-extended</td>
<td>228</td>
<td>18870</td>
<td>12</td>
<td>82</td>
<td>CTU</td>
</tr>
<tr>
<td>Tyleček (2012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>606</td>
<td>51731</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECP-Monge</td>
<td>109</td>
<td>?</td>
<td>8</td>
<td>?</td>
<td>ECP</td>
</tr>
<tr>
<td>Teboul et al. (2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eTrims-8</td>
<td>60</td>
<td>1702</td>
<td>8</td>
<td>28</td>
<td>UBonn</td>
</tr>
<tr>
<td>Korč and Förstner (2009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>169</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A.1: Statistics for current annotated datasets
Bibliography

Author’s own bibliography is given in the following Publication List on page 139.

Publication List

Related to the thesis topic

Peer Reviewed Journals

ISI Excerpted Publications

Other publications

Other (Unrelated) publications

Peer Reviewed Journals

Other publications

Citations and Authorship

The 39 known citations of the author’s work are listed below in order given by their citation counts. The corresponding H-index is 4. Equal authorship is assumed for all publications with two or more authors.

Tyleček and Šára (2012), 50% authorship, SJR=0.678, 1 citation:

Tyleček and Šára (2011a), 50% authorship, SJR=0.339, 4 citations:

Tyleček and Šára (2011b), 50% authorship, SJR=1.893, 4 citations:

Tyleček and Šára (2013), 50% authorship, SJR=0.339, 5 citations:

• Martinović, Andelo et al. 3D All The Way: Semantic Segmentation of Urban Scenes From Start to End in 3D., IEEE Conference on Computer Vision and Pattern Recognition, 2015.

TYLEČEK (2012), 100% authorship, 1 citation:

TYLEČEK and ŠÁRA (2010), 50% authorship, 9 citations:

TYLEČEK and ŠÁRA (2009), 50% authorship, 15 citations:

