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Abstract— Controlling mobile robots with complex articu-
lated parts and hence many degrees of freedom generates high
cognitive load on the operator, especially under demanding
conditions such as in Urban Search & Rescue missions. We
propose a solution based on reinforcement learning in order to
accommodate the robot morphology automatically to the terrain
and the obstacles it traverses. In this paper, we concentrate
on the crucial issue of predicting rewards from incomplete or
missing data. For this purpose we exploit the Gaussian processes
as a predictor combined with decision trees. We demonstrate
our achievements in a series of experiments on real data.

I. INTRODUCTION

Pushing the limits of the state-of-the-art in mobile
robotics, especially when concerning the Urban Search &
Rescue (USAR), nowadays requires not only close coopera-
tion with the end-users, but also a thorough field-testing in
the real environment. The motivation to our research comes
from the experience of confronting our approach to adaptive
traversability (AT) [1] with such a real environment. We build
on our previous results and on our definition of the AT as
a means of autonomous motion control adapting the robot
morphology (configuration of flippers and their compliance)
to traverse an unknown complex terrain with obstacles in an
optimal way. Complex mobile platforms usually have a large
number of degrees of freedom for control, causing inevitably
a high level of undesired cognitive load of the operator.

In [1] we proposed a solution based on reinforcement
learning, which lead to significantly lower cognitive load
of the operator and we improved the overall performance
of semi-autonomous traversability over complex obstacles.
However, while exploiting multiple sensor modalities in nat-
ural conditions (such as forest or collapsed buildings), we of-
ten encountered the issue of missing or incomplete data that
essentially spoiled our predictors of discounted rewards—the
crucial part of our reinforcement learning framework. After
exploring some straightforward approaches—such as least
squares fit to the incomplete terrain profile—and founding
them insufficient, we realized that a more robust and accurate
solution has to be found.

To conclude our main contributions, in this paper, we
demonstrate a significant improvement of our adaptive
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Fig. 1. Travesability with incomplete data: (top) high cognitive load of
the operator during full teleoperation, (middle) low cognitive load of the
operator with autonomously controlled flippers, (bottom) traversing obstacle
with incomplete data.

traversability by (i) proposing a better means of predicting
the discounted rewards using the Gaussian processes and (ii)
proposing a reliable way for completing the incomplete data
using decision trees. Our proposed solution now offers a
number of practical advantages. First, the mobile robot can
now operate in harsh environment, where both the propri-
oceptive data (inertial data from the Inertial Measurement
Unit (IMU), configuration of the robot morphology, currents
through the main tracks and subtracks—the flippers) and
exteroceptive data (provided by the rotating laser range-
finder) may be missing or incomplete. This occurs usually in
case of reflective surfaces such as water, in case of occluded
view, presence of smoke, or deformable terrain—conditions
common for USAR. Second, due to the Gaussian processes,
which are an efficient solution in the context of reinforcement
learning for control [2], we were able to integrate a means



I-shape V-shape L-shape U-shape soft U-shape hard
(Maximizes traction) (Provides observability) (Forward approach) (Smooth climbing down) (Lifts the body up)

Fig. 2. Flipper configurations. Five different flipper configurations are distinguished. Red denotes low flipper compliance, green denotes high flipper
compliance.

of probabilistic estimation of robot safety. This actually
allows us to integrate call for the operator in potentially
dangerous situations. Such supervision is crucial in order to
push our framework forward towards the autonomous data
collection and training. This is actually necessary for further
improvement in the future, since it bypasses the need for
any manual data annotations but with a sufficient guarantee
of robot safety.

The structure of this paper is as follows: Section II covers
the related work. Section III provides theoretical background
to our approach. Section IV describes both the qualitative and
quantitative experimental evaluation and Section V concludes
the implications of our work.

II. RELATED WORK

Many authors estimate terrain traversability only from
exteroceptive measurements (e.g. laser scans). For example
Kim et al. [3] estimate whether the terrain is traversable or
not and plan the trajectory over the traversable terrain. Colas
et al. [4] distinguish four discrete flipper configurations;
the traversability map then consists of list of feasible robot
configuration along the trajectory. There are also alternative
solutions based on kinematic models [5], [6] or on learning
of a direct mapping between terrain features and robot
actions [7], [8].

In our experience, when the robot is teleoperated in the
real environment, it is not possible to plan the flipper motion
in advance only from the exteroceptive measurements. The
reasons are three-fold: (i) it is not known in advance, where
the operator will lead the robot, (ii) exteroceptive mea-
surements are usually partially occluded; (iii) robot-terrain
interaction in a real environment cannot be inferred only
from exteroceptive measurements, because the robot can for
example slip or terrain can deform. Ho et al. [9] propose
to predict the terrain deformation from the exteroceptive
measurements. However, we argue that when the terrain col-
lapses unexpectedly, captured terrain profile must be updated
without exteroceptive measurements. Hence, rather reactive
control based on all available measurements is needed.

Reactive control has been successfully used for learning
the acrobatic tricks with an RC helicopter [10], [11]. Since it
is possible to model the helicopter-air interactions well, one
can use the model to improve the reinforcement learning. In
our case, analytical modeling of the robot-terrain interaction
is very difficult. On contrary to [10] we rather focus on a
model-free reinforcement learning technique.

The idea of inference from incomplete data via some kind
of sampling [12], [13] or EM algorithm [14] has been known

for several decades. In contrast to others, we demonstrate the
proposed approach on a real robotic platform equipped with
many different sensors.

III. THEORY

A. Reinforcement Learning Framework

For the sake of completeness, we briefly summarize our
adaptive traversability (AT) method, see [1] for more details.
We solve the AT problem for a tracked robot equipped with
four flippers, lockable differential, rotating 2D laser scanner
(SICK LMS-151) mounted in front of the robot, an IMU and
GPS, see Fig. 1. We assume that the speed and the heading
of the robot is controlled by the operator, and hence the AT is
used to control the configuration of the four flippers and their
compliance. Compliance of flippers is obtained by limiting
the maximum allowed current in flipper drives.

To simplify this 8-dimensional task, we defined five dis-
crete flipper modes specifying the angle and the compliance
for all four flippers. The task is to switch between these
flipper modes (denoted by c ∈ C = {1 . . . 5}) in order
to collect maximum sum of rewards while traversing the
obstacle. We define the reward function r(c,x) : (C×Rn)→
R, which assigns a real-valued reward for achieving state x
(defined in the following paragraph) while using mode c. It
is expressed as a weighted sum of (i) user-denoted penalty
(reward) specifying that the state is (not) dangerous, (ii)
high pitch/roll angle penalty (preventing robot’s flip-over),
(iii) penalty for excessively switching the modes, (iv) robot
forward speed reward (for making progress in traversing),
and (v) the motion roughness (smoothness) penalty (reward)
measured by accelerometers.

We represent the mutual state of the robot and the local
neighboring terrain as n-dimensional feature vector x ∈ Rn
which consists of exteroceptive and proprioceptive features.

Exteroceptive features: We merge online individual scans
into a point cloud 3D map using the ICP algorithm [15]. A
point cloud map in the local neighborhood of the robot is
further transformed into the Digital Elevation Map (DEM),
see Fig. 3, capturing the local spatial representation of the
terrain. Heights in bins are directly used as exteroceptive
features.

Proprioceptive features: These consist of the robot speed
(both actual and requested by the operator), the pose (pitch,
roll), the flipper angles, the compliance thresholds and the
actual flipper configuration.

We further define function Q(c,x) : (C × Rn) → R,
which estimates expected sum of discounted rewards, when
the robot is in state x and flippers are set to mode c and the



Fig. 3. An example of the Digital Elevation Map (DEM) together with the
robot. Color encodes terrain heights in particular bins. The heights in the
respective locations are directly used as state description features.

robot will be controlled optimally from the following state
onwards. Such function allows for the following recursive
definition:

Q(c,x) =
∑
x′

p(x′|c,x)
[
r(c,x) + γmax

c′
Q(c′,x′)

]
where p(x′|c,x) is the transition probability that the robot in
state x with flippers set to mode c will get to the following
state x′. Discount factor γ ∈ [0, 1] is used to reduce
the influence of distant future rewards. The Q-function is
modeled by the Gaussian processes learned on training sets
collected over several episodes by a standard Q-learning
method [16]. Once the Q-function is known, the optimal
flipper mode c∗ for the robot in the state x is chosen as
follows:

c∗ = argmax
c
Q(c,x).

B. Gaussian Processes

Gaussian processes (GPs) [2] are the extension of multi-
variate Gaussians to infinite-size collections of real valued
variables. In general, GPs can be understood as distributions
over random functions. Therefore, instead of describing the
distribution by a mean vector and covariance matrix, in GPs
we define a mean function m(x) and a covariance function
k(x,x′)—the kernel. The kernel captures the correlation
between the function values of any input pair (x,x′), leading
to the definition:

f(x) ∼ GP (m(x), k(x,x′)).

Since the essential part of the learning is given by the
kernel function, the mean function is often set to zero, as it is
in our case. After empirically evaluating a number of kernel
functions used in common practice, in our implementation,
we exploit the rational quadratic function. We modify it
for the purpose of automatic relevance detection, which
can be interpreted as embedded feature selection performed
automatically when optimizing over the parameters of the
kernel (to maximize the likelihood):

k(x,x′) = σ2
f (1 +

1

2α
((x− x′)Λ−2(x− x′))−α

where σ2
f and α are the kernel parameters, and Λ is a

diagonal matrix containing weights to perform the automatic
relevance detection.

Since GP is a stochastic process such that any finite subset
of random variables has a multivariate Gaussian distribution,

having a finite training set, we can easily use GPs for
regression of discounted sum of rewards; i.e. predicting both
mean and variance of the testing data.

C. AT with Incomplete Data

The proposed AT is based on a model-free reinforce-
ment learning technique with the action-value Q-function
learned on a training set collected over several episodes.
Since autonomous collection of training samples may cause
destruction of the robot, expensive manual operation and
annotation of the data is needed and the resulting training
set is rather limited. Since we observed that such a limited
training set does not capture all the mutual dependencies
which we need to reconstruct the missing data, we learn
the model for reconstruction of missing data from a signifi-
cantly larger training set, captured almost autonomously and
without any manual annotations. We also add synthetically
generated partial occlusions of the DEM. As a result, huge
training set consisting from hundreds of thousands of training
samples is obtained.

To tackle the training from such a huge training set in a
reasonable time, we model conditional probability distribu-
tions for each feature separately by the regression forest [17].
It is known that decision trees provide good performance
when huge training set is available [18] while allowing for
online learning (meaning that the training time is linear in
the size of the training set).

Let us denote n-dimensional vector of features x =
(x1 . . . xn)

>. Conditional probability p(xi|xJ), J =
{1 . . . n} \ i of i-th feature is represented by 24 binary
regression trees1 with stump decision rules. To train the tree,
we are given training set consisting of m training samples
x1, . . . ,xm.

Each tree is learned by the greedy algorithm which selects
the splitting variable j ∈ J and split point s that minimize
the weighted variance in the left and right sub-tree in each
node as follows:

argmin
(j,s)

|R1| · var
k∈R1(s,j)

(xki ) + |R2| · var
k∈R2(s,j)

(xki ),

where R1(s, j) = {k | xkj ≤ s} is the set of indices
going to the left sub-tree, R2(s, j) = {k | xkj > s} is the
set of indices descending into the right sub-tree and |R1|,
|R2| denotes number of samples descending into the left
and right sub-tree, respectively. Especially, if the value of
the splitting feature is unknown (e.g. occluded), then the
training sample descents into both sub-trees. The leaves of
the regression tree contain discretized conditional probability
p(xi|xJ) estimated on training data. Conditional probability
of the feature is computed as the mean conditional probabil-
ity over all the leaves in the forest reached by the respective
sample. To reconstruct the missing data, we perform the
Gibbs sampling [19] from conditional probability models of
missing features to obtain samples from their joint proba-
bility. These samples are further used (i) to reconstruct the

1The number of trees was chosen to be suitable for the parallelization on
our grid.



Fig. 4. Qualitative evaluation. See Section IV-A for corresponding description. Size of bins in the DEM is 10 cm ×10 cm.

missing data (e.g. for the reconstruction of training data or
for the visualization purposes) and (ii) to estimate probability
distribution function of the Q-function (we will further refer
to it as QPDF). To speed up the burn-in we replace the
random initialization of the missing features by the one
based on conditional probabilities. We initialize each missing
feature by estimating its conditional probability given all
other features. When other missing features are needed we
send the sample to both sub-trees, the conditional probability
is then estimated as the weighted average over all leaves
it reached. The missing feature is initialized by the value
maximizing the conditional probability.

The reconstruction of the missing data is obtained as the
mean of generated samples, since the reliable estimate of the
high dimensional joint probability of all missing data requires

a lot of training samples. QPDF is computed for each flipper
configuration separately as the mean of Gaussian distribu-
tions estimated by the Gaussian processes corresponding to
the Q-function of the particular configuration. 2

In the teleoperated mode, we choose only from configura-
tions achieving positive discounted rewards with probability
higher than 80%. If more configurations exist, we chose the
one which yields the highest average sum of discounted

2Note, that we could alternatively also generate samples from the joint
probability of missing features from the Gaussian process directly, however,
our tree based conditional probabilities are trained on significantly larger
unannotated training set, with missing features which allows to capture non-
Gaussian dependencies among missing features. Please also note, that in
our case, existence of a unique joint probability of all missing features
consistent with all conditional probabilities is not guaranteed, however,
plausible results are achieved in our experiments.



rewards. If none of the configurations satisfies the safety
condition, the robot is stopped and the operator takes over
the flipper control.

IV. EXPERIMENTAL EVALUATION

Experiments are organized as follows: Section IV-A pro-
vides qualitative evaluation by showing examples with miss-
ing data, their reconstructions, and probability distribution
of Q-functions (QPDF). Section IV-B presents quantitative
evaluation of the robustness to missing features. Section IV-
C evaluates the reconstruction error of the missing data.

A. Qualitative Evaluation

Fig. 4 shows some typical results including the one with
incorrect reconstruction and inability to control the flippers
autonomously. Rows correspond to different situations. The
first column shows the input data; the missing heights in
the DEM are outlined by red X in a blue rectangle, pitch
is denoted by α, mean absolute current over both main
tracks is denoted Im, mean absolute current in the engines
lifting the front flippers is denoted by If . The second
column corresponds to our mean reconstruction of missing
heights. The third column shows the ground-truth data of the
terrain profiles measured by our laser scanner under ideal
observation conditions. Scale is given in meters. The last
column shows the probability distribution of the Q-function
for five different flipper configurations. The horizontal axis
corresponds to the discounted sum of rewards (the higher the
better), vertical axis contains probability distribution function
(i.e. integral over each function is equal to one) of the
discounted sum of rewards (i.e. the Q-values); we will refer
to this graph as QPDF.

The first row depicts the robot on a flat terrain: currents
are low, since there is no obstacle which the robot could
bounce into; pitch is also close to zero. The reconstruction
of the missing flat terrain is correct. The most suitable
configuration is the V-shape. Of course, in this particular case
all configuration are possible, but we trained the Q-learning
to use this configuration exclusively on the flat terrain since
it provides the best observation conditions (i.e. flippers do
not cause occlusions in the scene sensed by the laser and the
omnidirectional camera).

The second row shows the robot in front of an obstacle.
Pitch is still close to zero and the obstacle is not visible in
the input DEM. Nevertheless, the reconstruction is correct,
since the robot senses the obstacle using the front flippers.
QPDF shows that the only suitable configuration is the L-
shape, which is also correct since

The third row corresponds to the state in which the robot’s
pitch is almost 30◦ and the robot is lifting its body up on
the top of the obstacle. The reasonable mode is the U-shape-
hard since we need rear flippers to support the whole robot
body. Reconstruction of the obstacle is also correct.

The fourth row demonstrates the inability to reconstruct
the step down in front of the robot. The input is only a small
piece of flat terrain with zero pitch, however the robot is still
in the U-shape-hard configuration causing high current in the

Fig. 5. Robustness to DEM occlusion. The experiment shows that the
proposed QPDF marginalization preservers high precision even for 100%
occlusion (i.e. fully occluded DEM).

front and rear flippers. One possible reconstruction is a flat
terrain, but the U-shape-hard is prohibited configuration for
such terrain and there is no permitted way by which the robot
could get into such state. Another possibility is step-down
or step-up. QPDF reveals that none of the configurations is
sufficiently safe. This is the typical case in which the operator
has to make a safe decision.

The fifth row shows climbing down the stairs with pitch
almost −30◦. The only suitable configuration is the I-shape,
which maximizes the friction.

B. Quantitative Evaluation

In this experiment we quantitatively evaluate robustness to
DEM occlusions of (i) the proposed QPDF method (denoted
by triangles) and (ii) the Least Squares (LSq) interpolation
method (denoted by circles). We also compare the Gaussian
process Q-function (GP) proposed in this work with the
piece-wise constant Q-function (PWC) proposed in [1].

The QPDF method first computes the QPDF distributions
(see Section III-C for details) and choose the configuration
guaranteeing maximal mean discounted sum of rewards. The
LSq interpolation method first interpolates the missing data,
then it computes the response of the Q-function on the inter-
polated data and chooses the configuration with the highest
response. Each method has its own Q-function trained on
the data reconstructed by the corresponding reconstruction
method.

The robustness to DEM occlusions is demonstrated by
synthetically occluding the DEM from the front of the robot.
For each occlusion, the average precision is computed as
the ”number of states in which the method selects permitted
flipper configuration” divided by ”the total number of testing
states”. Fig. 5 shows superiority of the QPDF method over
the LSq interpolation method. In particular, we see that up to
40% of DEM occlusion, the LSq and QPDF methods behave
comparably. The reasons are two-fold: (i) the part of the
occluded DEM is far in front of the robot and there is no
way to sense it from the proprioceptive measurements, (ii)
the obstacle hidden in this part of DEM is usually far enough,



Fig. 6. Reconstruction of the Digital Elevation Map: (left) input data, with
red crosses denoting the missing data, (right) the profile of the reconstructed
and ground-truth terrain. Size of bins in the DEM is 10 cm ×10 cm, terrain
height in particular bins is measured in meters. Unit of the horizontal axis
of the right figure is DEM bin.

therefore the V-shape configuration (the one for flat terrain)
is still allowed in most of the testing data. When more
than 40% are hidden, performance of the LSq interpolation
method drops rapidly down towards 0.4− 0.5 precision (i.e.
40% − 50% of states in which the permitted configuration
is selected) for both GP and PWC, while the QPDF method
preserves the high precision.

C. Reconstruction Error

Finally, we present the reconstruction error of our method
and LSq interpolation method for different DEM occlusions,
see Table I. When front 25% of the DEM is occluded, we can
see that reconstruction errors are the same, since the terrain
is too far from the robot to be reflected in proprioceptive
measurements. When the occlusion is larger, our method
obviously dominates. We do not evaluate the reconstruction
error of the LSq method for the full occlusion, since if the
whole DEM is occluded, there are no data to interpolate
from. Fig. 6 presents a typical case in which our method
reconstructs the stair-like terrain shape correctly while the
LSq method fails.

TABLE I
RECONSTRUCTION ERROR

occlusion 25% 50% 75% 90% 100%

our method 2.8 cm 5.5 cm 6.7 cm 7.8 cm 8.7 cm
LSq method 2.8 cm 9.2 cm 24.7 cm 94.7 cm -

V. CONCLUSIONS

We have proposed a reinforcement learning based method
for the adaptive traversability and extended our original
contribution to handle incomplete or missing data coming
from partially occluded obstacles. We proved that it is
possible to reconstruct the missing exteroceptive data from
the proprioceptive data, and preserve reasonable precision
even for full occlusion of the digital elevation map (DEM).
Furthermore, we have also shown how to estimate the
safety of our proposed autonomous control method and for
dangerous cases then execute a call for the operator to
avoid damage to the platform. In our approach we greatly
benefit from the incorporation of the regression trees, which

model the probability distribution of missing data and do
not require any manual annotations—in contrary to learning
the Q-function. Therefore, a significantly larger training set
can be provided. For the actual prediction of rewards, we
exploited the Gaussian processes framework that proved to
be superior to standard piecewise constant regression.
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