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Abstract— In this paper we introduce the concept of Adaptive
Traversability (AT), which we define as means of autonomous
motion control adapting the robot morphology—configuration
of articulated parts and their compliance—to traverse unknown
complex terrain with obstacles in an optimal way. We verify
this concept by proposing a reinforcement learning based AT
algorithm for mobile robots operating in such conditions. We
demonstrate the functionality by training the AT algorithm
under lab conditions on simple EUR-pallet obstacles and then
testing it successfully on natural obstacles in a forest. For
quantitative evaluation we define a metrics based on comparison
with expert operator. Exploiting the proposed AT algorithm
significantly decreases the cognitive load of the operator.

I. INTRODUCTION

Tracked robots with several articulated parts such as legs
or subtracks—referred to as flippers, see Fig. 1—have been
studied intensively since the design of robot morphology
directly influences the ability to traverse complex terrain,
especially with natural unstructured obstacles. Possessing
a high number of articulated parts inevitably yields more
degrees of freedom that have to be controlled. To reach a suit-
able pose to traverse such terrain in a safe way may become
easily intractable, even for an expert operator. Controlling
such many degrees of freedom also requires more time and
poses a significant cognitive load onto the human operator.
This may have crucial effect on the success of any Search
& Rescue mission, that we primarily aim for [1], as well as
influence on the robot safety.

We call this task Adaptive Traversability (AT), which we
define as means of autonomous motion control adapting the
robot morphology (configuration of flippers and their com-
pliance) to traverse unknown complex terrain with obstacles
in an optimal way. Our metrics for optimality is based on
comparison of the AT autonomous regime to the control of
an expert operator with respect to time taken for traversal,
robot safety and smoothness of transitions. Beside having an
edge in these criteria, the ultimate merit of using AT lies in
minimal cognitive load for the operator.

Many approaches focus on optimal robot motion control
in an environment with a known map, leading rather to
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Fig. 1. Adaptive traversability: Robot configuration of the 4 flippers
(subtracks) and their compliance is controlled autonomously in order to
adapt to the terrain and traverse it in an optimal way. The robot is equipped
with rotating laser scanner SICK LMS-151, Ladybug 3 omnicam, Xsens
MTi-G IMU, and independent flipper stiffness control for each subtrack.

the research field of trajectory planning. In contrary to
planning [2] [3], the AT can easily be exploited in unknown
environment and hence provide a crucial support to the actual
procedure of map creation. From the conceptual point of
view, the AT is intended to run one level below any SLAM
or trajectory planning algorithms and its input commands
can either be directly from the operator (usually unknown-
map case) or from a planner. We would like to emphasize to
perceive AT rather as independent complement to trajectory
planning and in no way a substitution. If the task of AT
was to be solved by means of trajectory planning, a reliable
map is required, providing detailed information on Robot-
Terrain Interaction (RTI) (e.g. estimation of stability, slippage
coefficient, power consumption, robots full 3D pose etc).
Such RTI can be theoretically estimated from the terrain
shape and a physical model of the robot and used to
build traversability maps [4] [5]. However this modeling is
analytically very complex, computationally demanding and
in specific cases such as high slippage or aerial motion
phases often inaccurate and unreliable. This is not viable
solution for many applications, especially when the robot
is controlled in an unknown environment. Therefore, in
our approach to AT we rather propose to process only the
instantaneous RTI properties locally as the robot traverses
and explores the environment. The only way to obtain such
RTT properties is prediction online using machine learning
techniques [6], [7], [8]. We adopted this approach to RTI
already in applications such as predicting correction coeffi-
cients of robot odometry [9] or estimating stride length of
a legged robot while slipping [10] [11]. Since the RTI is
predicted only locally, greedy optimization of inaccurately
estimated RTI criterion can easily lead the robot into the
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dangerous state. Therefore, we propose to rather compute
the RTI criterion directly during the training phase and learn
to predict the expected sum of RTI criterion values, which
can be obtained with the robot from its current state for
different controlling strategies. This formulation naturally
leads to the reinforcement learning task, where the RTI
criterion corresponds to the reward.

Our main contributions lie in (i) defining the concept of
AT for mobile robots, and (ii) proposing a reinforcement
learning based AT algorithm for autonomous morphology
adaptation that improves the motion control even in complex
unknown environment. We (iii) demonstrate the functionality
by training the AT under lab conditions on simple EUR-
pallet obstacles and testing it on natural obstacles in a forest.
For quantitative evaluation we (iv) define a metrics based on
comparison with expert operator.

The paper is structured as follows: Section II introduces
the related work, Section III describes our proposed solution,
Section IV summarizes the experimental evaluation and
Section V concludes the implications of our work.

II. RELATED WORK

An ample amount of work has been devoted to the field
of Robot Terrain Classification (RTC) [12], [13], [14], [15]
where terrain features are mapped on discrete classes of
given properties. On the conceptual level, this is relevant to
extracting the terrain properties for the RTI. However, these
RTC defined classes are often weakly connected with the
way the robot can actually interact with the terrain or the
connection is lacking. Few papers describe the estimation of
RTTI directly, for example, Kim et al. [7] estimate whether
the terrain is traversable or not, and Ojeda et al. [8] esti-
mate power consumption on a specific terrain type. In the
literature, the RTI properties can be specified explicitly (e.g.
robot consumption [8]) or implicitly (e.g. state estimation
correction coefficient [9]). The problem of the AT in the
way we approach it using reinforcement learning is a road
less traveled in robotics, but though the target application
differs, highly relevant is the work of Abbeel et al. [16],
[17]. There are also alternative solutions, based for instance
on kinematic model of the robot [18], [19], or by achieved
learning a direct mapping between terrain features and robot
actions [20], [21]. However, analytical modeling of the RTI
is in general very difficult and simplifications cannot be
avoided. On contrary to [16] we omit this modeling since
it is not needed in our approach and instead of using Value-
based algorithms, we rather focus on Q-learning technique.

IIT. ADAPTIVE TRAVERSABILITY BY
REINFORCEMENT LEARNING

We solve the adaptive traversability problem for a tracked
robot! equipped with four flippers, see Fig. 1. The sensor
suite of the robot consists of a rotating 2D laser scanner
(SICK LMS-151) mounted in front of the robot (the rotation
of the scanner provides the 3D scans), a Point Grey Ladybug

'Developed as part of NIFTi project http://www.nifti.eu

3 omni-directional camera, and a Xsens MTi-G inertial
measurement unit (IMU) with GPS.

It is expected that the speed and azimuth of the robot is
controlled by the operator (or provided by a path planner),
and the task is to control the configuration of the four flippers
and their compliance. Compliance of flippers is obtained by
measuring the actual current in flipper drives and setting a
threshold on the maximum allowed current. This threshold
is called the compliance threshold.

To simplify such 8-dimensional task, we defined five
discrete flipper modes specifying the angle and the com-
pliance threshold for all four flippers. The task is to switch
between these flipper modes (denoted by ¢ € Z) in order
to collect maximum sum of rewards over the obstacle being
traversed. We define reward function r(c, s) : (ZxR") — R,
which assigns a real valued reward for achieving state s
while using mode c. We experimented with several types
of the reward function, which are described and evaluated
in Section IV. For now, we define the reward function
as a weighted sum of (i) user denoted penalty (reward)
specifying that the state is (not) dangerous, (ii) high pitch
angle penalty (considering robot safety from flip-over), (iii)
excessive flipper mode change penalty, (iv) robot forward
speed reward (for making progress in traversing), and (v)
motion roughness (smoothness) penalty (reward).

A. Reinforcement learning algorithm

To tackle this problem, the reinforcement learning tech-
nique is used. We define function Q(c,s) : (Z x R") — R,
which estimates expected sum of discounted rewards, when
the robot is in state s and flippers are set to mode ¢ and the
robot will be controlled optimally from the following state
onward. Such function allows for the following recursive
definition:

Qle,s) = Y pls'les) [rle,s) +ymaxQ(cs)] (D)

where p(s’|c, s) is transition probability that the robot, which
is in state s with flippers set to mode c will get to the
following state s’. Discount factor v € {0,1} is used
to reduce the influence of distant future rewards. If such
function is known, the optimal flipper mode c* for the robot
in the state s is chosen as follows

¢ =argmax Q(c, s) 2)

Since we want to avoid the learning of p(s’|c, s), function
Q(c, s) is learned using modification of the fitted Q-iteration
algorithm summarized in Alg. 1. The proposed algorithm re-
peats the Q-learning procedure for several episodes. Training
data collected for the first episode (line: 3) are obtained by
an expert operator. To speed up the learning process, also
reasonably negative training samples (with negative rewards)
are provided. Once we are satisfied with the performance
on validation data (also collected and annotated by the
expert operator), we start to collect the training data with
autonomously chosen flipper modes, i.e. chosen according to
Eq. (2). When a batch of the training data is collected, the
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Q(c, s) function is trained in lines 4-7. Since we defined the
Q(c, s) as a collection of piecewise constant functions, the
solution of the problem from line 6 is detailed in Section III-
B. Section III-C describes features representing the state and
the feature selection method we used.

/nitialization
I Qc,s) =0 Vs
2: while (adaptive traversability is not good) do
3:  Drive the robot over training obstacles and assign
rewards. Captured training data consists of sequences
[(st,ct,rl), (s2,¢2,r2),. . ].
// Train Q(c, s)

:  repeat
5: yr=rt+y {maxcf Q(d, si‘*‘l)} 2
6: Q(c,s) = argming S0, [|Q(¢', s) — y'|3
7 until (convergence reached)
8: end while

Algorithm 1: Procedure of learning of the Q)-function.

B. Piecewise constant function learning

In our approach, the Q(c¢, s) is collection of mode specific
functions Q.(s) corresponding to the number of flipper
configuration modes. Since the procedure of learning is same
for all functions Q.(s), we omit index ¢ and focus on the
learning of a regression function @(s) for N training samples
(st,y) ... (sN,yN) prepared in the line 5 of Alg. 1. The
upper index ¢ is used to denote training samples, the lower
index k is used to denote features. Concatenation is denoted
by square brackets.

We define Q(s) = 21[::1 qr(sk) as the sum of piecewise
constant functions gi(s;) of features s € R, where K
denotes the number of features. Features sy are normalized
to have zero mean and unit covariance. Feature values are
divided into U equally sized bins 2. To simplify the notation,
we define a bin assigning function Q(s;) : R — N which
assigns corresponding bin u to feature value sy.

Response of the regression function Q(s) is then computed
as follows:

K K
Q(s) = ZQk(Sk) = ZAk,Q(sk)a 3)
k=1 k=1

where Ay o) € R is the constant response of feature
function q; on feature value sy.

Substituting Eq. (3) into the problem in Alg. 1, line: 6,
we obtain the corresponding least squares problem:

N k
_ 12
A = argmin ZHZAM(sé) _yzH ) “4)
Ae REXU 51 7 =1 '
To write the solution of (4) in a compact form, we further
introduce a binary matrix
/1 if Q(si) =u
(Al () = < 0 otherwise

2except the size of border bins which are [—oco,min_value] and
[max_value, +0o0]

o)

where index i determines the row and indices (ku)? de-
termine the column. We also introduce a vector A =
[A11...Axu]", which is concatenation of all unknown
lambdas from all bins and all features. Finally, we form the
vector y = [y*...y™]T with all desired values. The solution

of problem (4) is then

‘AX—yH2 — Aty ©)

A = arg min
by

where AT denotes Moore-Penrose pseudo-inverse of ma-
trix A.

C. State representation and feature selection

We represent the mutual state of the robot and the local
neighboring terrain as N-dimensional feature vector s € RY.
Features are selected from a feature pool, which consists
of: Terrain shape features: Since the robot is equipped
with the laser scanner, we merge individual scans into a
point cloud 3D map exploiting the ICP algorithm [22]. The
point cloud map in the local neighborhood of the robot is
further transformed into the Digital Elevation Map (DEM),
see Fig. 2, capturing the local spatio-temporal representation
of the terrain. To represent the terrain shape in a compact
form, Haar-like features are computed using the DEM values.
In addition to that parameters of the plane fitted into the
neighboring terrain are used.

Robot state and configuration features: Robot speed
(both actual and requested by the operator), pose (pitch, roll,
yaw), flipper angles, compliance thresholds and actual flipper
mode. To estimate the velocity of the robot, terrain adaptive
odometry method [9] is used and combined with IMU data
and information provided by the ICP using the Extended
Kalman filter (EKF). The precise and stable pitch and roll
angles are obtained using a complementary filter [23]. In
addition to this information, currents in the flipper and the
main track drives are used to provide the knowledge about
the weight distribution and ground contacts.

We select a set of suitable features from the feature pool S
by a forward stage-wise feature selection strategy [24] based
on Gram-Schmidt orthogonalization process. More formally,
we are given a training set {(S',4%),...(SY,y")} consist-
ing of N training samples, where S’ are M-dimensional
vectors containing values of all features from the feature
pool. Especially, we denote S} as the k-th feature value of
the i-th training sample.

This proposed feature selection method is summarized in
Alg. 2. It successively builds the feature set from the features
minimizing residuals Ay’ of all training samples i = 1... N.
Initially we equal residual of the i-th training sample Ay’ =
y'. In each training stage, the algorithm estimates coefficients
for all features £k = 1... M and greedily selects the feature
with the lowest residual error. Such feature is added to the
list of selected features and the algorithm continues while
the validation error is decreasing.

3(ku) denotes a linear combination of indices & and u corresponding to
the vectorization of A.
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Fig. 2. Obstacles: Digital elevation maps (DEM) of testing obstacles constructed during experiments.
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/lnitialization
Ay =9F K=1
2: while (validation error is decreasing) do

// Select the feature k™ with the lowest residual error
// from the feature pool.

3 k" =argminga) D, |Q([sE - sk—_1S]) —v'l13
// Add the selected feature Sk~ into s.

4 s=[s Sk
// Update residuals

50 Ayt =y —Q(s) Vi

6: K=K-+1

7: end while

Algorithm 2: Feature selection procedure

IV. EXPERIMENTAL EVALUATION

Our proposed solution to the AT was tested on five
challenging obstacles created from woods and stones in an
outdoor forest environment*; see the examples in Fig. 1,
Fig. 4b and the digital elevation maps (DEM) of testing
obstacles computed online by the robot Fig. 2. Each obstacle
was traversed multiple times with autonomous flipper control
(AC) following the Eq. (2).; obstacles 1,2 and 5 were
also traversed with manual flipper control (MC) by the
expert operator for the purpose of quantitative comparison.
We emphasize that the complexity of testing obstacles was
selected in order to challenge robots hardware capabilities.
One of the testing obstacles even proved to be too complex
to be traversed neither with the AC nor MC.

The rest of this section is organized as follows: Section I'V-
A describes training procedure, Section IV-B summarize the
testing procedure. Section IV-C provides the comparison and
evaluation.

A. Training Procedure

We define five morphological configurations—five differ-
ent flipper modes (Fig. 3) (i) I-shape with unfolded flippers
(useful for traversing holes or stairs), (ii) V-shape with
flippers folded in order to provide the best observation

4For better comprehension, see the attached multimedia showing one
testing drive over obstacle 2 from Fig. 2.

L-shape
Defined flipper modes: Definition of five flipper modes corresponding to different morphological configurations of varying properties.

U-shape soft U-shape hard

(a) Training objects (b) Testing objects
Fig. 4. Obstacles: (a) Three EUR pallets with one non standard pallet and
concrete shoal used for training part. (b) Natural obstacles in an outdoor
forest environment used for testing part.

capabilities to the robot, (iii) L-shape with front flippers
raised (suitable for climbing up), (iv) U-shape soft, pushing
the flippers down with low pressure—low compliance thresh-
old (suitable for smooth climbing down), and (v) U-shape
hard, pushing the flippers down with high pressure—high
compliance threshold.

Our proposed approach to AT was trained in controlled
lab conditions using only two artificial obstacles created from
EUR pallets °. First training obstacle was just a single pallet,
the second consisted of stairs created from three pallets (see
Fig. 4a).

We trained the Q-function according to the Alg. 1 in
three episodes, i.e. three iterations of the while-loop. In
the first two episodes, the training data were collected with
manual flipper control. To speed up the learning procedure
reasonably negative (but not dangerous) training samples
were provided. In the last episode, the training data were
collected autonomously by the robot. Each training sample
was accompanied by its reward. The best results were
achieved for the reward function defined as a weighted
sum of (i) manually annotated labels reflecting success of
the operator’s goal (either positive equal to 1 or negative
equal to —1), (ii) thresholded exponential penalty for pitch
angle, and (iii) roughness of motion penalty defined as

v2 +v2. In order to reduce oscillations between modes

Stype EUR 1: 800mm x 1200mm x 140mm
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Fig. 5. Pitch, roll, and flipper modes along the obstacle traversal: All
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(c) Obst.2: pitch + flipper modes (d) Obst.2: roll + flipper modes
graphs show used flipper modes and pitch+roll angles reached by the robot

during the obstacle traversal. Graphs (a) and (b) correspond to the obstacle 1, graphs (c) and (d) to the obstacle 2. Autonomous control (AC) is depicted
by the blue color and manual control (MC) by the red color. Autonomously selected modes are shown in the first color bar and manual in the second.

with similar Q-values we (i) introduce additional penalty
for changing the mode and (ii) evaluate the Q-values over
1 second long time interval. In each episode, the training
of the Q-functions was iterated 30 times. The number of
iterations was experimentally determined as sufficient for the
convergence of the Q-values with v = 0.8. To achieve a
well conditioned training dataset, the training samples were
artificially perturbed several times.

B. Testing Procedure

We tested the AC method on five challenging natural
obstacles in a forest. Both the AC and MC allowed to traverse
obstacles 1 — 4 (see Fig. 2). Obstacle 5 consisted of two
woods located in parallel with the mutual distance equaled
approximately to the length of robot with folded flippers.
Such obstacle turned out to be not traversable neither with
the autonomous nor with the manual flipper control. For
obstacles 1 and 2 quantitative comparison of the autonomous
and manual flipper control is provided in Tab. I, II. To
compare AC and MC traversability quality, five different
metrics were proposed and evaluated: (i) average pitch angle
(sum of absolute values of the pitch angle divided by the
number of samples), (ii) average roll angle, (iii) traversal
time (start and end points are defined spatially), (iv) average
current in flipper engines (corresponds to flipper torque), (v)
overall power consumption during the whole experiment, and
(vi) number of mode changes.

C. Results

Tab. I shows that the average pitch, roll and the number of
changes of the AC and MC on the obstacle 1 are comparable.
However, the power consumption and the average current are
both lower for the AC. This is achieved by more efficient
mode selection—such as using the U-shape soft mode for
going down from the obstacle—, see the flipper modes, pitch
and roll angle plots of AC and MC in Fig. 5a,b.

Tab. II clearly demonstrates that the AC outperformed MC
in most of evaluated metrics. The most significant difference
can be seen in the actual time taken. While MC often
required to stop the robot and wait for the end of the mode
change procedure, the AC was continuous and proceeded as
the robot was driven forward. Therefore, the traversal time
of the AC is almost twice as short. In addition to that, since

TABLE I
COMPARISON OF AUTONOMOUS AND MANUAL ROBOT CONTROL ON THE
OBSTACLE 1 (SIMPLE OBSTACLE).

Pitch | Roll | Time | Current | Changes | Consumption
CL 1 [P]] I [A] (-] [Ah]
AC 11.2 1.8 35.7 34 3 0.07
MC | 11.3 2.8 36.8 5.4 2 0.10
TABLE II

COMPARISON OF AUTONOMOUS AND MANUAL ROBOT CONTROL ON THE
OBSTACLE 2 (CONTAINS SOFT-TERRAIN AND SIDE-ROLL).

Pitch | Roll | Time | Current | Changes | Consumption
Pl s | (A -] [Ah]
AC 102 | 10.6 | 75.3 3.9 10 0.17
MC | 17.1 | 17.1 | 132.1 4.6 4 0.33

our definition of the reward function also contains penalty for
being in extreme angles (accounting for robot safety), the AC
achieved smaller pitch, roll, as well as flipper current—the
ground/obstacle contacts were less frequent and less intense.
The power consumption of AC compared to MC was hence
much lower, enabling the robot to last longer while carrying
out the mission.

On the other hand, the number of mode changes of AC is
higher. To explain it, we need to analyze the actual motion
trajectory and corresponding obstacle in detail (see also
Fig. 5 c,d): The first part of the obstacle is created from many
flexible sticks behaving as a soft terrain—and thus deforming
under the robot weight. Since we used only the EUR pallets,
this RTI property was not represented in the training set at
all. The robot correctly starts in the L-shape mode to climb
on the obstacle.Then it switches to the U-shape hard mode
to lift its body on the obstacle. However, the soft terrain
collapses under the body weight and L-shape must be used
again to traverse the remaining hard part of the obstacle.
Similar scenario repeats, when traversing the middle part
of the obstacles and can be in general expected on similar
terrain.

V. CONCLUSION

In this paper we have concentrated our efforts on defin-
ing the task of Adaptive Traversability (AT) as means of
autonomous motion control adapting the robot morphology
(configuration of flippers and their compliance) in order to
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traverse unknown complex terrain with obstacles. Similar
approaches have been deployed using trajectory planning
for scenarios, where a map of the environment was avail-
able, hence providing an easy way to compute the Robot-
Terrain Interaction. However, we propose a solution based
on reinforcement learning that exploits only the informa-
tion from local RTI and does it online, hence no map is
needed—solution ideal for exploring unknown environments
with obstacles. Having experience from real deployment of
robots in Search & Rescue scenarios, we are aware of the
crucial impact of cognitive load on the operator. Therefore,
we define a metrics allowing us to compare our solution
to an expert operator driving the robot manually. Beside
outperforming the manual control in a number of criteria
(time taken for traversal, power consumption, smoothness
and safety of the robot), the main accomplishment lies in the
minimal cognitive load required for the robot control while
using our AT solution. Moreover, our approach can easily
be used together with any trajectory planning algorithm in
general in a complementary way. We would like to also
point out, that for the actual training, only simple obstacles
made of EUR pallets were used, but the actually testing was
successfully performed using challenging natural obstacles
in a forest environment.

To conclude, on the testing dataset, the proposed AT algo-
rithm exhibited very stable behavior such as: (i) Repeatabil-
ity: consistent flipper control over multiple traversals of the
same obstacle, (ii) Robustness: training with similar param-
eters and similar training data yields similar behavior (iii)
Generalization: reasonable and explainable flipper control
on the challenging testing data—no deformable obstacles in
the training dataset, yet surprisingly good performance on
such deformable terrain during testing.

As a future work, we clearly see the opportunity in
expanding all of our assumptions made: we can define more
different modes, exploit more compliance thresholds, we can
allow the robot to train by itself on much larger scale of
obstacles, as well as to push the challenge of the testing
environments. We also intend to integrate the AT algorithm
with our SLAM solution and trajectory planner to expand
the range of field applications and possibilities.
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