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Abstract—This paper shows that the successively evaluated features used in a sliding window detection process to decide about
object presence/absence also contain knowledge about object deformation. We exploit these detection features to estimate the
object deformation. Estimated deformation is then immediately applied to not yet evaluated features to align them with the
observed image data. In our approach, the alignment estimators are jointly learned with the detector. The joint process allows for
the learning of each detection stage from less deformed training samples than in the previous stage. For the alignment estimation
we propose regressors that approximate non-linear regression functions and compute the alignment parameters extremely fast.

Index Terms—non-rigid object detection, alignment, regression, exploiting features, real-time, waldboost, sliding window,
sequential decision process
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1 INTRODUCTION

D ETECTION of objects with appearance altered by
pose variations (including non-rigid deforma-

tions and viewpoint changes) is more difficult than
the detection of objects in a single pose [1], [2]. If the
detection time is constrained, exhaustive search over
the space of possible poses with a single pose detector
is intractable.

An ample amount of work has been devoted to
the detection of objects deformed by pose variations.
Many approaches partition the positive training sam-
ples into clusters with similar poses, see Figure 1b.
Some of them [3], [4] first estimate the pose cluster
and then use pose-specific classifier to decide about
the object presence. Others [5], [6] estimate pose clus-
ter simultaneously with the detection process. A fine
partitioning of the pose space is desirable to achieve
good detection performance. However, the finer the
partitioning, the fewer training samples fall into each
cluster and therefore immense training sets are often
needed [5]. In contrast to these approaches, recent
work [1] uses simple pose estimators which align
some detection features. These pose estimators help
to detect objects in an arbitrary pose without training
set partitioning.

Our feature alignment remedies the partitioning of
the training set. In contrast to [1] which finds simple
local deformations (e.g. inplane rotations) and aligns
each feature independently, we rather estimate a global
non-rigid alignment of all the features. Importantly, the
alignment is estimated solely from the features used
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for detection by pre-trained regressors. The align-
ment estimation is reduced to reading a value from
a look-up table which costs negligible time. On the
other hand, our approach requires annotated data for
learning. Nevertheless, the use of our method does
not prevent the use of [1], thus the frameworks are
complementary.

In our system the features are evaluated sequen-
tially; each one reveals a certain amount of object
deformation, see Figure 2. Features are successively
aligned to the observed deformation which makes the
positive class less scattered and easier to detect, see
Figure 1(c). The training set is not partitioned and
the number of necessary training samples remains
relatively low, even for large deformations.

We demonstrate the sequential alignment idea on
a Sequential Decision Process (SDP) similar to Wald-
boost [7], where the successive nature of feature evalu-
ation allows for efficient application of the estimated
alignment. In the SDP a classifier cumulatively esti-
mates a confidence about the object presence or absence
in a given detection window. Once the confidence is
sufficiently low, the window is rejected. We extend
the SDP by exploiting the same features that were
used for the confidence computation to estimate the
alignment. The alignment is then applied on the sub-
sequent features and the process continues with more
appropriately aligned features. In consequence, both
the confidence and the alignment are estimated more
efficiently as it is then easier to distinguish the well
aligned positive samples from the background and to
estimate the alignment from a closer neighbourhood.
The process continues until the rejection or acceptance
is reached as in the classical SDP. Note that the
confidence and alignment updates are encoded by
the same feature values, therefore in comparison with
the classical SDP the computational complexity of



NON-RIGID OBJECT DETECTION WITH LOCAL INTERLEAVED SEQUENTIAL ALIGNMENT (LISA) 2

(a) objects in a single pose (b) partitioning into pose clusters (c) our approach–aligning features

Fig. 1: Simplified sketches of positive (red circles) and negative (blue crosses) samples in 2D feature space. (a)
objects in a single pose exhibit smaller scatter than objects deformed by pose variations, (b) scattered samples
are often partitioned into pose clusters with a small number of training samples, (c) our approach aligns
features during the detection to compensate for object deformation consequently making positive samples
less scattered.

SDP with alignment is almost preserved. We call the
proposed scheme Sequential Decision Process with Lo-
cally Interleaved Sequential Alignment (SDP with LISA).

The contribution of this paper is threefold: (i) we
show that features evaluated in the sliding window
detection process also contain knowledge about the
correct alignment of the evaluated window on the
observed object deformation; (ii) we propose very
efficient piecewise linear regression functions which
are jointly learned with the classifier. This facilitates
estimating the alignment during the detection process;
(iii) we show that the estimated alignment speeds up
the detection process by reducing the search space and
improves the detection rates.

2 RELATED WORK

Great progress has been made in the detection of
objects under varying poses and deformations [1],
[8], [9], [10]. The predominant strategy is to combine
a collection of classifiers, each dedicated to a single
pose or deformation [2], [11], [12], [13], [14], [15]. To
train multiple classifiers, either the training data need
to be separated into disjoint clusters [5], [12], or the
features in training samples need to be registered to
lie in correspondence [1], [13], or both strategies are
combined [2].

The clustering of training data imposes the need
to collect large amounts of data for learning each
classifier separately. Some authors try to reduce the
amount of training data by sharing some features
across multiple views [12], [11]. To avoid the clus-
tering of training data, some methods [12], [13], [14],
[15] align the object features in each training sam-
ple (before or during the training process) to lie in
correspondence. This task usually requires a precise
labelling of object features correspondence.

Other methods avoid the necessary labelling and
try to align the features automatically [2], [1] before
their evaluation. Usually, the feature positions and
low level deformations are estimated first, e.g. by
computing the dominant edge orientation in some
part of the detection window and using pose-indexed

features [1], [13]. The automatic feature alignment
keeps the training set less scattered, and improves the
detection rates but lacks interpretation. We model the
alignment for a specific class of objects, and as a side
product of the detection we obtain a parametrized
alignment of the whole model.

Detection of deformable objects
Recently, Ali et al. [1] proposed to use pose in-

dexed features coupled with dominant edge orien-
tation estimation, in different scales and positions
in the detection window, for feature alignment. By
the feature alignment, they forgo the need to train
a collection of detectors for different object poses and
learn a single deformable detector. The dominant edge
orientation is partitioned into 8 bins in 14 poses (1
pose in the largest scale, 4 in smaller scale and 9 in
the smallest scale) and needs to be computed for every
candidate position in order to estimate the features
poses. For alignment estimation they need to evaluate
additional 8·14 = 112 features apart from the detection
features which is considerably more than the average
number of features needed for classification in our
system. We interleave object detection and alignment
by regression. The detector runs on increasingly better
aligned features, which consequently groups together
the training samples in the feature space, as shown
in Figure 1(c). Thanks to the design of regression
functions and the re-use of detection features, a negli-
gible number of additional computations are needed
(reading the alignment parameters from a look-up
table and moving the features) and the computational
complexity grows with the dimension of the align-
ment space only very gently. The approach of [1]
does not require the training data labelling while our
method does. However, our method allows having the
pose space not discretized.

In general, SDP with LISA outperforms the stan-
dard SDP’s [7], [16], [17], [18], [19], [20] in both the
speed and detection performance. In [2] the authors
argue that the sliding window-based object detectors
work best when trained on examples that come from
a single coherent group with well aligned features,
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Fig. 2: Local Interleaved Sequential Alignment (LISA): Left: The first feature always has the same position.
The deformation of the local coordinate system is outlined by the blue mesh. Features evaluated during the
detection process contribute to both (i) confidence and (ii) non-rigid deformation. The second column shows
how features are aligned after 30 evaluated features. A non-aligned feature position is delineated by the red
rectangle; the aligned feature is green. The last column shows alignment of the last evaluated feature.

e.g. frontal faces. Our improvement in performance is
caused by the ability to locally align on the displaced,
rotated, and deformed object instances. The gain in
speed is obtained by the search space reduction. From
the point of view of 2D translation search space reduc-
tion (sparser detection grid) has already been shown
for a cascade of classifiers in [21] and for SDP in [22].
Here we show that we can effectively reduce a high
dimensional search space of non-rigid deformation.

Recent deformable part-based object detectors [23],
[12], [13] achieve excellent detection rates, but are far
from the real-time performance. The computational
complexity of part-based object detectors is given
governed by the detection of model parts and by
the estimation of globally optimal parts configura-
tion. Model parts are usually detected by an SVM-
based [23], [12] or AdaBoost [13] classifier. The root-
part of the object is detected first [23], [13], which
allows reducing the search space for the remaining
parts. After estimating the candidate positions of the
parts, the globally optimal configuration of the model
parts (or for multiple models for multiple views [12])
is found by using the dynamic programming. Our
method may be compared from the computational
complexity point of view with [8]. Their classifier is
an SVM working with HoG features which similar to
[12] for one-view model as well as for the root part of the
part-based model in [23]. In [8] N denotes the number
of possible locations in multiple scales and V the
number of evaluated features in each subwindow. For
an SVM-based detector, VN multiplications are needed.

Since the SDP with LISA may learn to compensate
2D translation [22], the number of poses N may be
significantly reduced to M and we may run the SDP
with LISA on a sparser detection grid. Here we com-
pensate non-rigid deformation of high dimensionality
and M � N . Our method requires 4VM additions in
the worst case (all features being evaluated without
the early rejection), where 4 is the number of additions
needed to transform each evaluated feature according
to estimated alignment (see Section 6 for details).
For performance comparison with [23], [12] and the
running times of different methods see Section 8.

The Patchwork of Parts [24] builds a statistical
model for detection of objects with multiple parts. The
detection process loops through the image locations
(positions and scales) and evaluating the classifier for
every part (class) in every location. Model deforma-
tions are modelled as shifts of object parts which are
than recombined using a patchwork operation. The al-
gorithm is able to classify 100 subwindows per second
which is not fast enough a real-time performance.

Search space reduction
A speeding-up of the original part based model [23]

was addressed in [25]. The authors argue that the cost
of detection is dominated by the cost of matching each
part of the model to the image and not by the cost of
computing the optimal configuration of parts. They
propose to learn a multi-resolution hierarchical part
based model. The parts are tested sequentially and
image locations are discarded as soon as a partial
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detection score falls under some threshold. The re-
sulting algorithm achieves almost the same detection
accuracy as the original algorithm and runs twice as
fast.

The search space reduction for detection speed-
up has been approached also in Efficient Subwindow
Search (ESS) [26]. ESS is reducing the search space
by a branch and bound algorithm. It defines multiple
sets of rectangles (sets of candidate windows) in the
image. After evaluation of all the features in the image
the algorithm computes the upper bound (highest
possible detection score) that the score function could
take on any of the rectangles in each set. The authors
propose an efficient scheme for going hierarchically
through all the possible rectangles (scales and trans-
lations) without the need to exhaustively evaluate
the detection score for all possible rectangles. Many
rectangle sets are rejected as soon as the upper bound
is under some acceptance threshold. The disadvantage
is the need for evaluating all the features in the
image first. This is well applicable for the approaches
which use a bag of features or some shared low level
features, usually for multiview and part-based object
detection [14], [12]. After the features evaluation, the
detectors need to evaluate a non-trivial score function
(usually SVM-based classifiers) of all the features
which fall into each particular rectangle, and here ESS
brings significant speed-up [14]. A sliding window-
based SDP does not need to evaluate all the features
in all the positions and scales thanks to the early
rejection stages. Here, ESS would actually slow down
the process by the necessary evaluation of all features
first. Also, in the SDP the rejection thresholds are
already known in advance for each stage and no other
bounds need to be computed. From the search space
reduction point of view, ESS reduces the number of
candidate window translations as well as scales, but
does not take into account other object deformations.

The recently proposed Crosstalk Cascades [27] as-
sume that adjacent subwindows responses at nearby
locations and scales are correlated. As soon as the
classification score for some location reaches some
threshold, all points in the detection grid in the
close neighbourhood start to be evaluated as well
(excitatory cascades). When the ratio of score in the
current position and in at least one position in the
close neighbourhood goes under some stage specific
threshold the evaluation of remaining stages in ac-
tual position stops (inhibitory cascades). Training the
classifier needs perturbing each training sample by
small 2D shifts to ensure the correlation of classifier
answers at nearby positions. This perturbing corrupts
the performance of the cascaded detector. We ap-
proach the problem from an opposite direction. We are
aligning the detection window to a pose at which it
fits the object better. It does not require corrupting the
training samples by adding shifts to positive samples.
The detection of well aligned samples is easier and

needs to evaluate fewer features to reach the decision.
From the point of view of search space reduction,
the Crosstalk Cascades reduce the 2D sliding window
translation and scale as well as [26]. Nevertheless,
they still need to look at every position in the de-
tection grid but the number of evaluated features
is reduced. Our method yields the detection grid
reduction because our detector is able to move and
deform.

Non-rigid alignment estimation
We mention only few of the most relevant papers in

this area, since our method focuses more on improve-
ment of object detection, than on precise alignment
estimation.

State of the art methods specialized in alignment
of deformable models are now able to cope with
quite large object deformations [28], [29], [30]. In [28]
authors train a cascade of regressors for non-rigid face
deformation estimation. Every regressor in the cas-
cade is a Fern. Each Fern separates the training set into
subsets (one for each leaf), where within one subset
there are samples with a similar type of deformation.
Therefore each Fern basically divides the space of
possible deformations. This makes the alignment task
easier for regressors trained on subsets in each leaf
and allows coping with larger deformations. On the
other hand, it is necessary to cluster the training data
to learn the regressors. In comparison, our method
does not need to cluster the training data for learning.
We transform only the features which is faster than
inversely transforming the whole image patch as in
[28].

In the Boosted Appearance Model (BAM) [30] the
authors propose to train a classifier which recog-
nizes well aligned deformable model from those not
well aligned. The classifier is then used in a criterial
function which includes a parametrized shape of the
object. The goal is to find the shape parameters that
maximize the score of the learned strong classifier.
The problem is solved iteratively by gradient ascent
optimization. The follow-up to BAM is Boosted Rank-
ing Model [29] (BRM). In BRM given 2 image patches
a classifier is trained to recognize the better aligned
image patch from the worse aligned. The shape in
both BAM and BRM is a set of 2D points and the
displacement of each of the points is parametrized by
a 2D vector. The number of parameters is reduced
by projection to a low dimensional space via PCA
similarly to our approach. In comparison, we model
the shape deformation by deforming the whole grid
which covers the object patch. This allows us to
efficiently transform the features instead of inversely
transforming the whole image patch. We obtain a
transformation for every pixel in the grid and not only
for the control points of the shape as in [28], [29].

A Sequence of Learnable Linear Predictors for
learning a fixed sequence of linear predictors (weak
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Fig. 3: Classification: Three steps of SDP with LISA are depicted. Left: In the initial position, only feature 1 is
evaluated. From its value the first alignment a1 and confidence c1 are computed. Middle: the alignment a1 is
applied on features 2 and 3. Note that the applied alignment a2 is updated by contribution of two regressors,
not just one. Also note that the alignment a1 was not applied on feature 4. Right: the last feature is moved
from its initial position by the accumulated alignment a2.

regressors) that estimate the object alignment was
proposed in [31]. Each predictor in the sequence is
learned on the estimation error of the previous predic-
tor. A similar idea was later proposed in [32], only
they use Ferns instead of linear predictors as the weak
regressors. Our work uses weak regressors proposed
in [22]. Instead of using simple linear functions we
propose a non-linear regression and approximate it
by piecewise linear (or piecewise constant) functions
which improves the alignment and keeps the fast
performance of linear predictors.

3 SDP WITH LISA CLASSIFICATION

We divide the classification process into K stages.
In each stage k, only one feature is evaluated. The
value of this feature contributes to the confidence and
the alignment. Contributions are determined by (i) a
detection function dk : R→ R, which maps the feature
value to a contribution to the confidence, and (ii) a
regression function rk : R → Rm, which assigns an
m-dimensional contribution to the alignment vector
a using the same feature value. Both the confidence
and the alignment are accumulated from evaluated
features. Then there is a threshold θk ∈ R (estimated
during the learning), which allows to reject windows
with the so far accumulated confidence lower than θk.
In each stage, the feature can potentially be aligned.
This is determined by a binary value qk, which is
estimated by boosting during the training stage. If qk
is TRUE, this will invoke aligning of the feature, while
qk = FALSE means that the non-aligned feature will
be used.

The alignment estimated from a single feature may
be inaccurate, therefore it must be accumulated over
multiple features. We keep the last valid alignment,
denoted as aω , where index ω corresponds to the
stage at which the alignment was estimated. Besides

that, we also accumulate alignment updates from all
evaluated features. This alignment is updated in each
stage k and we denote it by ak. Hence, there are two
alignments: (i) accumulated up to stage k denoted by
ak and (ii) valid, which is applied on features, denoted
by aω . The stage at which the index ω is updated is
determined by a binary value zk = TRUE; zk is again
estimated by boosting during the training stage).

We define a feature function fk : (I ×Rm)→ R as a
mapping which assigns a feature value to a window
with image data I ∈ I and m-dimensional alignment
vector a ∈ Rm. For the sake of simplicity, we refer to
the feature function as the feature and to image data in
the sliding window as the window. Based on the above
introduced notation, we define the strong classifier as
a collection:

H = [f1, q1, d1, θ1, r1, z1, . . . , fK , qK , dK , θK ] . (1)

The classification Algorithm (Figure 4) summarizes
how the SDP with LISA decides about object presence
or absence in a given window I with the given strong
classifier H . See also Figure 3 for illustration. In the
algorithm, we denote ck as the confidence and ak as
the alignment, both accumulated up to stage k.

4 JOINT LEARNING OF SDP WITH LISA
The expected output from learning is the strong clas-
sifier H , Eq. (1), inputs are training and validation sets.
At the beginning of each training stage, the training
set with the following structure is available:

T = {(I1, t1, y1), . . . , (Ip, tp, yp), (2)
(Ip+1, yp+1), . . . , (IN , yN )},

where I1, . . . , Ip are positive image data, Ip+1, . . . , IN

are negative image data, y1 . . . yN are labels such that
y1 = · · · = yp = 1, yp+1 = · · · = yN = −1 and t1 . . . tp

are correct alignments of positive data. The validation
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1: Initialize a0 = 0, c0 = 0, k = 1, ω = 0.
2: while k ≤ K do
3: if qk = TRUE then // use alignment
4: Estimate the value of feature v = fk(I,aω)

with alignment aω .
5: else
6: Estimate the value of feature v = fk(I,0)

without alignment.
7: end if
8: Update confidence ck ← ck−1 + dk(v).
9: if ck < θk then

10: reject the window and break,
11: end if
12: Estimate alignment ak = ak−1 + rk(v).
13: if zk = TRUE then // alignment is valid
14: update ω ← k
15: end if
16: k ← k + 1
17: end while
18: Accept the window.

Fig. 4: Classification algorithm: Classification of a
single window by SDP with LISA

set V and the testing set W1 have the same structure.

The learning algorithm uses the following notation:
[[Ψ]] is a binary function equal to 1 if a statement
Ψ is TRUE and 0 otherwise, and [Υ Ξ] is concate-
nation of Υ and Ξ. We introduce the error of the
strong classifier H on validation data V denoted as
E(H,V) =

∑
i[[H(Ii) 6= yi]], ∀(Ii, yi) ∈ V . For the sake

of completeness we define: E(∅,V) = ∞. To simplify
the notation, we also denote a weak classifier wck to
be the following foursome wck = [fk qk dk θk].

The joint learning of SDP and LISA, see Figure 5,
successively builds a strong classifier H . The current
stage is denoted by the lower index k, the training
samples are indexed by the upper index i. Since we
allow the alignment to be accumulated over multiple
stages without direct application on features, we also
keep the index ω of the last valid alignment.

The algorithm (Figure 5) first constructs two weak
classifiers: ŵck, that use features either aligned by ak−1
or not aligned at all, and wck, that use features either
aligned by aω or not aligned at all (lines: 4-5). Then
the validation errors of [Hk wck] (strong classifier Hk

concatenated with wck) and [Hk ŵck] (strong classifier
Hk concatenated with ŵck) are compared, and the
one with the lower error is selected and denoted as
Hk (lines: 6-11). If the alignment ak−1 is used (i.e.
ŵck is used and q̂k = TRUE), then ω is set to k − 1,
which makes ak−1 to be the valid alignment from
now on. After that, we jointly re-learn regression
functions rω+1 . . . rk to estimate the alignment from

1. Sets T and V are used during the learning phase and testing
set W is used for experimental evaluation.

1: input: T , V , F
2: k = ω = 1, H0 = ∅, wi = 1/N, i = 1 . . . N .
3: while E(Hk,V) ≤ E(Hk−1,V) do

//Build two weak classifiers: wck that use aω
//and ŵck that use ak−1.

4: wck = learn weak cls(T ,F , Hk,a
1
k−1 . . .a

N
k−1)

5: ŵck = learn weak cls(T ,F , Hk,a
1
ω . . .a

N
ω )

//Comparison of validation errors determine, whether
//to start using ak−1 from stage k or not.

6: if E([Hk wck], V) > E([Hk ŵck], V) then
7: Hk ← [Hk ŵck]
8: if q̂k = TRUE then ω ← k − 1 end if
9: else

10: Hk ← [Hk wck]
11: end if

//Learn regressors estimating alignment from
//features fω+1 . . . fk

12: [rω+1 . . . rk] ← learn regressors(T , fω+1, . . . , fk)

//Update regressors rω+1 . . . rk in the strong classifier
13: Hk =

[
Hω [wcω+1 rω+1 zω+1] . . . [wck rk]

]
//Update weights of training samples

14: wi = exp(−yiHk(Ii)), i = 1 . . . N

//Collect new negative samples as FPs of Hk

15: T ← update negative samples(Hk)
16: [a1ω . . .a

n
ω a1k . . .a

N
k ]← update alignment(T )

17: k ← k + 1
18: end while

Fig. 5: Learning of SDP with LISA:

features fω+1 . . . fk, i.e. those features which have not
yet been used for the alignment (lines 12-13). Please
note, that in case where the alignment ak−1 is used,
the re-learning reduces on the learning of the new
regression function rk, which will be used in the
following stages.

Eventually, training weights are updated in line 14
and training data T are updated (line 15) by the new
negative samples. Negative samples are collected as
the false positive detections of the current strong clas-
sifier Hk. The algorithm continues until the validation
error starts to increase.

The paper continues as follows: Learning of weak
classifiers and alignment regressors for the group
of features is described in section 5. The non-rigid
deformation model is summarized in Section 6. Im-
plementation details are explained in Section 7.
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Fig. 6: Examples of tested piecewise linear regression functions: The density of the training data for one
feature (depicted as grayscale heatmap) with fitted regression functions. The left image corresponds to non-
proportional partitioning and the right image to the proportional partitioning of the feature space. Green is a
piecewise affine function (i), yellow corresponds to a piecewise linear function (ii) and red is a piecewise
constant function (iii).

5 LEARNING OF WEAK CLASSIFIERS AND
ALIGNMENT REGRESSORS

5.1 Learning of Weak Classifiers
In our approach, the weak classifier dk is a piecewise
constant function of feature fk ∈ F dividing feature
values into U bins with sizes proportional to the train-
ing data density2. To simplify the notation, we define
a bin assigning function δj : R → N which assigns
corresponding bin u to feature value v = fj

(
Ii,aiω

)
for the i-th training sample and j-th feature. Given
training samples weights wi, the constant response
κku of dk in bin u is computed as follows:

κku = arg min
κ

∑
i∈Iu

wi(κ− yi)2 =

∑
i∈Iu w

iyi∑
i∈Iu w

i
(3)

where Iu = {i | δ(fj(Ii,aiω)) = u} is the set of training
samples indexes, which fell to bin u.

In the weak classifier estimation the same procedure
is performed for each bin and each feature from
the feature pool. Finally, we use the feature (and
corresponding classifier dk) which yields the lowest
weighted error. Such approach is coincident with Gen-
tleboost technique [33]. Rejection thresholds θk and
θ̂k are set in order to preserve the required maximum
number of false negatives (FN) per learning stage. The
FN limit is defined by the user to achieve the required
running time similarly to [20].

5.2 Learning of Regressors
As already noted in section 3, the use of a regressor,
learned on a single feature, may inaccurately align
some positive samples and cause the lower detection

2. except the size of border bins which are [−∞, min value] and
[max value,+∞]

rate. During the learning we do not immediately
apply the estimated alignment on the feature, but we
wait for the right number of features, for which jointly
learned regressors yield better alignment and conse-
quently lower the validation error of the detector.

In the learning algorithm (Figure 5, line 12), regres-
sors rω+1, . . . , rk are jointly learned to compensate the
residual alignment error ∆ti = (ti − aiω) of preceding
regressors r1, . . . , rω . ti is the vector of ground truth
parameters of alignment. We search for regressors
rω+1, . . . , rk which are the solution of the following
problem:

arg min
r̃ω+1...r̃k

p∑
i=1

∥∥∥( k∑
j=ω+1

r̃j(fj(I
i,aiω))

)
−∆ti

∥∥∥2
F
. (4)

For simplicity we explain only one dimensional
alignment estimation, i.e. with ∆ti being only a scalar
for each sample instead of a vector. The higher di-
mensional alignment is learned for each dimension
independently, therefore the following equations are
valid for multiple alignment parameters estimated by
each regressor. To solve the problem (4) we propose to
learn a piecewise affine function by the least squares
method. The feature space is divided into U bins,
where each bin gives an affine response, see green
lines in Figure 6.

The response of a regression function r(v) is then
computed as follows:

r(v) = γj,δ(v)v + λj,δ(v), (5)

where γj,δ(v) and λj,δ(v) are scalar coefficients. We con-
sidered (i) full affine function with γj,δ(v) ∈ R, λj,δ(v) ∈
R, (ii) linear function γj,δ(v) ∈ R, λj,δ(v) = 0 and (iii)
constant function with γj,δ(v) = 0, λj,δ(v) ∈ R. Since we
experimentally verified that all three functions yield
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Fig. 7: Example data from the LFW and CSV datasets. The red crosses are ground truth labels. Yellow crosses
depict the mean of labelled positions for each dataset and the blue points are the deformed grid. The deformed
grid is obtained by thin plate splines non-rigid deformation using the correspondences between the yellow
and red points.

similar results for a sufficient number of bins (see
experimental evaluation in section 8.4), we used the
piecewise constant function to speed up the alignment
estimation process. Therefore problem (4) is reduced
to search for coefficients [λω+1,1 . . . λk,U ]. We substi-
tute Equation (5) with γj,δ(v) = 0 into problem (4) to
obtain the corresponding least squares problem:

arg min
λ̃η,u∈ R

p∑
i=1

∥∥∥ k∑
j=ω+1

λ̃j,δ(fj(Ii,aiω)) −∆ti
∥∥∥2. (6)

To write the solution of (6) in a compact form, we
further introduce a binary matrix

[A]i,(ju) =

〈
1 if δ(fj(Ii,aiω)) = u
0 otherwise (7)

where index i determines the row and indexes (ju)3

determine the column. We also introduce vector λ̃ =
[λ̃ω+1,1 . . . λ̃k,U ]>, which is concatenation of all un-
known lambdas from all bins and all features. Finally,
we form the vector ∆g = [∆t1 . . .∆tp]> with all the
residual alignments. The solution of problem (6) is
then

λ = arg min
λ̃

∥∥∥Aλ̃−∆g
∥∥∥2 = A+∆g, (8)

where A+ denotes Moore-Penrose pseudo-inverse [34]
of matrix A.

Two types of feature space partitionings were
tested: (i) non-proportional partitioning, which di-
vides the space into bins of equal sizes and (ii) pro-
portional partitioning, which divides the space into
bins of sizes inverse proportional to the training data
density, where each bin contains the same number
of training samples. See Figure 6 for example of
partitioning into 7 bins with all three tested functions
fit into the training data of one feature.

6 NON-RIGID DEFORMATION MODEL

We work with two types of alignments. The first is a
simple two dimensional displacement and the second

3. (ju) denotes a linear combination of indexes j and u.

is a non-rigid deformation parametrized via PCA [35].
We define the feature as function P : (I×R4×N)→ R,
the value of which is computed from image I ∈ I on
the position specified by its left-upper corner α ∈ R2

and right-bottom corner β ∈ R2 with type γ ∈ N.
We experimented with HoG features [27] (where γ
denotes orientation of edges) and Haar features [36]
(where γ stands for the feature type).

The alignment encoding the two dimensional dis-
placement is given by two dimensional vector a =

(∆x, ∆y)
T . Then, feature function f(I,a) of the fea-

ture P (α, β, γ) aligned by the two dimensional dis-
placement a is

f(I,a) = P (I, α+ a, β + a, γ). (9)

The non-rigid alignment deforms the position of ev-
ery corner point α (resp. β) by m-dimensional vector
a = [a1 . . . am]T as follows:

α(a) = α+ a1w
1
α + · · ·+ amwm

α , (10)

where w1
α . . .w

m
α are 2D Eigenvectors corresponding

to deformations modelled in point α. Eigenvectors of
the non-rigid deformation are obtained by PCA. Train-
ing of PCA is detailed in the next paragraph. Feature
function f(I,a) of the feature P (α, β, γ) aligned by
the non-rigid deformation a is

f(I,a) = P (I, α(a), β(a), γ). (11)

To train the PCA, we use the position of a few
manually selected keypoints in each bounding box
from the training set, see the red points in Figure 7.
Given these keypoints, we compute the elastic trans-
formation by thin plate splines transformation [37]
of an orthogonal pixel grid within the bounding box
for each training sample, see blue grids in Figure 7.
The elastic transformation assigns a two-dimensional
displacement vector to each pixel from the orthogonal
grid in each bounding box. Finally, we concatenate
these displacements for each training sample into
one column vector and project them into the lower
dimensional space by PCA.

The alignment may be applied either by deforming
the features and placing them in the right position
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in the image or by inversely deforming the image.
The latter would require the image deformation after
each applied alignment update. Unfortunately, this
is unthinkable for the real-time performance of the
detector as we would need to transform the image (or
part of it) multiple times for each candidate window.
Hence we transform the features.

We need to keep the features in a rectangular shape
to take advantage of the fast evaluation on integral
images. Therefore the deformation of each feature is
only approximated by anisotropic scaling, see Figure 2
for example. The non-rigid transformation is applied
on the upper left and lower right corner of each
feature. This gives us the correct positions of both cor-
ners for each feature and determines the new width
and height of each feature, see Figure 2. This feature
transformation costs 8 additions per feature and is
very efficient. This type of feature transformation is
used in the learning as well as in the detection process.

bins of feature fk dk rk

(−∞,−0.42) −1 0 0
〈−0.42,−0.27) 0 0.05 −0.37
〈−0.27,−0.19) −0.32 −0.07 −0.39
〈−0.19,−0.11) 0.91 −0.09 0.02

...
...

...
...

TABLE 1: A part of a lookup table encoding the
confidence and 2D translation updates for one feature
in stage k. Bin sizes and values of the first regression
column correspond to the function shown in red in
the right image in Figure 6.

7 IMPLEMENTATION DETAILS

Both the weak classifier dk and the weak regressor
rk in stage k are implemented as a single lookup
table (see Table 1 for an example); both confidence
and alignment updates are read by a single look-
up. The only additional cost during the classification
for the alignment is its application to the features
positions. For a rigid alignment by translation, ap-
plication of the alignment means only two scalar
additions per evaluated stage since both corners move
identically and the feature’s height and width are
precomputed. In non-rigid deformations, we precom-
pute an alignment lookup table, where each alignment
vector a = [a1 . . . am] is assigned with both position
corners αi, βi for all features fi, see Table 2. To speed-
up the m-dimensional indexing, we compute a 1-
dimensional index from a1 . . . am by bit-shifting. As a
consequence, application of the non-rigid alignment
costs four additions plus one access to the lookup
table per stage. The size of the lookup table is rea-
sonable. We usually use m = 3 and feature corners
positions are integer values, that can be encoded by
one byte. Denoting: D to be the number of discrete
values of aj and F to be the total number of features,

a1 . . . am
f1 . . .

fk
α1 β1 αk βk

0 0 (3,7) (5, 25) (51, 61) (12, 18)
0 . . . 0.1 (4,7) (6, 26) . . . (51, 61) (11, 18)
...

...
...

...
...

...

TABLE 2: A part of a lookup table encoding corner
positions of particular features for all possible align-
ments.

the size of the alignment lookup table is 4FDm (e.g.
for D = 100, m = 3 and F = 300, the size is 1.2GB).

8 EXPERIMENTS

The results of the experiments demonstrate the impor-
tance of (non-rigid and rigid) LISA for SDP. Section 8.1
and 8.2 describes experiments with non-rigid LISA on
Annotated Faces in the Wild dataset (AFW [38]) and Car
Semi-profile View dataset (CSV). Our negative data con-
sist mostly of Google street-view images without cars
and faces in total amount of 15Gpxl. Experiments with
rigid LISA are detailed in [22]. Section 8.4 evaluates
performance of different regression functions.

We apply our feature alignment method on SDP
similar to Waldboost [7]. We refer to our method
applied on SDP as SDP+LISA, reimplementation of
the alignment method proposed by Ali et al. [1]
applied on SDP is referred to as SDP+Ali [1]. Besides
that we also evaluate SDP+LISA+Ali [1]. This method
allows to combine non-aligned features with features
aligned by either the Ali [1] method, LISA method,
or by both methods simultaneously. The alignment
method of each particular feature is determined by
boosting during the training stage. In addition to
that, we also show baseline given by pre-trained,
publicly available models: (i) Deformable Part based
Models (DPM) [15] on a CSV and AFW dataset and
(ii) Zhu’s and Ramanan’s [12] face detector on AFW
dataset. In section 8.4 we also compare the precision
of our alignment to the one of Zhu [12]. Section 8.5
discusses advantages, drawbacks, and limitations of
the proposed method.

Ground truth annotations contain positions of sev-
eral manually annotated keypoints. AFW has 7 key-
points and CSV has only 3 keypoints (upper left,
lower right for bounding box and one vertical edge
point), see Figure 7. All experiments are conducted
with HoG features. Detection rates are summarized in
Figure 8. Section 8.3 justifies the choice of HoG over
Haar features by comparing detection rates on CSV
dataset.

In all experiments where sequential decision pro-
cess is involved, detected windows are filtered by Non
Maxima Suppression (NMS). NMS is set to suppress
all detections which have mutual coverage (union of
bounding boxes divided by their intersection) bigger
than 0.6. Criterion for correct detection is that the
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Dataset/Method SDP SDP+LISA SDP+Ali [1] SDP+LISA+Ali [1] Zhu [12] DPM [15]
AFW 0.129 0.041 0.081 0.047 0.069 0.115
CSV human-view 0.038 0.001 0.042 0.003 − 0.001

Fig. 8: Experiment summary: Comparison of FN rates for fixed number of FP per 1Mpxl equal to 10−2. Results
corresponds to ROC curves in Figures 10 and 12

Method SDP+LISA SDP+Ali [1] Zhu [12] DPM [15]
Running time on VGA 33ms 41ms 17.2s 10.5s

Fig. 9: Running time: Comparison of running time on Intel core i7 Q700, 1.7GHz. Methods SDP+LISA,
SDP+Ali [1], Zhu [12] run on single core, DPM [15] uses 4 cores. We used publicly available MATLAB/MEX
implementation of DPM [15] and Zhu [12], while SDP+LISA and SDP+Ali [1] is measured on our C++
implementation with image resolution known in advance and the nearest neighbour image rescaling (ROC
curves correspond to the linear interpolation when rescaling images). Time reported in [1] for AdaBoost+Ali
is 30ms for 120 × 190 images and probably only one scale. Nevertheless, we reimplemented their feature
alignment method and use it in our SDP, which is significantly faster than the AdaBoost used in [1] due to
early rejections.

detected bounding box and ground truth bounding
box have mutual coverage bigger than 0.3.

8.1 AFW dataset results

The AFW dataset is a publicly available dataset of
face images obtained by random sampling of Flicker
images. We use ground truth data which specify posi-
tions of 7 manually chosen keypoints (2 for each eye, 1
for the nose and 2 for the mouth corners). Note that a
considerable amount of publicly available annotations
have very low accuracy of keypoint positions (errors
corresponding to 15% of the face size are not an excep-
tion). Even though such annotations make it difficult
to train any accurate regression function (especially in
L2-norm), we use them directly. Since our approach
does not contain any decision tree, which could split
frontal and profile images, we focused only on frontal
images captured within the range of approximately
±45 degrees (in-plane and out-of-plane rotations).

Figure 10 shows ROC curves of SDP, SDP+LISA,
SDP+Ali [1], SDP+LISA+Ali [1] trained on the first
part of the AFW dataset. We can see that LISA out-
performs Ali’s [1] method. However, Ali’s [1] method
still yields significant improvement with respect to
the pure SDP. It is also worth emphasizing that the
SDP+Ali [1] method only needs annotated bounding
boxes, while SDP+LISA also needs annotated key-
points to learn the regressors estimating non-rigid de-
formation. We can also see that the SDP+LISA+Ali [1]
method, which combines features aligned by Ali [1]
and LISA methods, has almost the same results as
the SDP+LISA method. For comparative purposes
the results of publicly available pre-trained models
of Zhu’s and Ramanan’s [12] detector and Felzen-
szwalb’s DPM detector [15] are shown. We do not
retrain their detector and use publicly available model
p146 small and the same DPM model from [12] using
10 mixtures learned for faces and kindly provided
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DPM[15]
Zhu [12]

Fig. 10: AFW-AFW ROC curves: Comparison of dif-
ferent methods on the AFW dataset. SDP, SDP+LISA,
SDP+Ali [1], SDP+LISA+Ali [1] trained on the first
part of AFW. All methods were tested on the second
part of AFW (images were captured by random sam-
pling of Flicker images, therefore training and testing
sets are independent). False positives are measured
per 1 Mpxl of background data, false negatives per
dataset.

to us by Xiangxin Zhu. Unlike our detector, Zhu’s
and Ramanan’s detector is designed to detect high-
resolution faces only (bigger than 80 × 80 while our
detector works with 40 × 40 pixels). To make the
comparison fair, we evaluated all methods only on
faces which are bigger than 80× 80.

Since AFW was captured by random sampling of
Flicker images, training and testing sets are indepen-
dent. Nevertheless, we also show that if we train on a
subset of the BIOID dataset and a small fraction of the
LFW dataset (faces already detected by Viola-Jones
detector), we achieve almost the same results (see
Figure 11 for the comparison of SDP and SDP+LISA
trained on different datasets).
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Fig. 11: AFW-BIOID ROC curves: Comparison of
(i) SDP, SDP+LISA trained on first part of AFW
(solid lines) and (ii) SDP, SDP+LISA trained on BIOID
dataset (office environment images) and small fraction
of LFW (dashed line). All methods were tested on the
second part of AFW. False positives are measured per
1 Mpxl of background data, false negatives per dataset.

10
−3

10
−2

10
−1

10
0

10
10

0.05

0.1

0.15

0.2

FP per 1Mpxl

F
N

 

 

SDP
SDP+LISA
SDP+Ali[1]
SDP+LISA+Ali[1]
DPM [15]

Fig. 12: CSV ROC curves: False positives are mea-
sured per 1 Mpxl of background data, false negatives
per dataset.

8.2 CSV dataset results
The CSV dataset consists of 1600 images of cars taken
from a semi-profile view ranging from almost pure
rear view to the almost pure side view. Images are
taken from a human view angle. We use 1200 images
for training (training and validation sets) and 400
for testing. As the ground truth three points were
marked: upper left, lower right, and a rear vertical
edge point. The rear edge point corresponds to the
imaginary intersection of the lower side windows line
and the rear edge. The bounding box has a fixed
aspect ratio. The parameters which were estimated by
the regressors were selected by PCA, as described in
section 6, for both modelled non-rigid deformations
in the AFW and CSV datasets.

Figure 12 shows ROC curves of SDP, SDP+LISA,
SDP+Ali [1], SDP+LISA+Ali [1] and publicly avail-
able DPM [15] pre-trained from VOC 2007 data.
Figure 12 shows corresponding ROC curves. LISA
outperformed Ali’s [1] method. Actually, Ali’s [1]
method did not yield any significant improvement in
the detection rate, because the deformations in this
dataset probably could not be well modelled by the
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Fig. 13: ROC curves (Haar vs HoG features): False
positives are measured per 1 Mpxl of background data,
false negatives per dataset.

pose estimators of [1] (mainly estimating dominant
edge orientation) since there is almost no in-plane
rotation present in the CSV dataset. We can also see
that DPM slightly outperforms SDP+LISA in human
view-point images, however we still preserve real-
time performance, see running time summary in Fig-
ure 9.

8.3 Haar vs. HoG features
We also demonstrate the influence of the choice of
feature type. Figure 13 shows ROC curves of SDP
and SDP+LISA methods evaluated on the CSV dataset
captured from the human-view angle for (a) Haar
features and (b) HoG features. While the relative
improvement coming from using LISA is preserved,
HoG features exhibit much better detection rates than
Haars.

8.4 Regression Functions Evaluation
In this experiment we evaluate the performance of
piecewise regression functions in all three variants of
equation (5): (i) affine function with γ and λ, (ii) linear
function with γ only and (iii) constant function with λ
only (used in LISA). We learn the regression functions
for different numbers of bins in combination with two
types of feature space partitionings.

Here the regression functions are learned separately
from the detector on their own features. In line 12
of the Learning Algorithm in Figure 5 multiple re-
gressors are jointly learned at once. The number of
jointly learned regressors is estimated automatically
by observing the error on validation data. Five re-
gressors are jointly learned on average. Therefore
for performance evaluation, we also jointly learn 5
regressors.

As a criterion for selection of the best performing
function and feature space partitioning we use the
mean regression error (MRE) of the alignment param-
eters (selected by PCA) estimation with respect to
the parameters computed from the deformed grids
computed from ground truth annotations, depicted in
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Fig. 14: Detections: with the SDP+LISA detector. Upper row shows some faces from AFW testing set. The last
image in the upper row shows FP detection. The bottom row shows semi-profile cars from robot view angle
on CSV testing images.

Figure 7. Each features’ regressor estimates all m = 3
alignment parameters. In this section we denote rkj
a part of the j−th regressor, which estimates single
alignment parameter k. The MRE of the positive
samples in the testing set is then computed as follows

MRE =

p∑
i=1

 m∑
k=1

 5∑
j=1

rkj (vij)−∆tki

2

/m

 /p, (12)

where p is the number of positive image samples, vij
is the j−th feature value of sample i and tki is the
samples’ k−th ground truth parameter.

The resulting MREs on testing data for all vari-
ants of tested regression functions dependent on the
number of bins are depicted in Figure 15. The MREs
are normalized by the initial MRE of the testing set
when no alignment is applied. The results in Figure 15
correspond to non-rigid alignment estimation on the
testing part of the LFW dataset. The results for other
datasets are similar.

The important observation here is that MREs of the
third function (piecewise constant - dark and light
red bars in Figure 15) decrease very quickly with
the growing number of bins. At approximately 15
bins it reaches the testing error of the first two types
of functions with the slope parameter γ. Also the
proportional partitioning variants (bars in light tones)
perform better than the non-proportional ones (bars
in dark tones). In our algorithm we use the piecewise
constant function with the proportional partitioning (light
red bars). It achieves a good alignment precision and
is extremely fast to evaluate.

In the last experiment we evaluate the precision of
estimated alignment and we compare our results to
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Fig. 15: Mean Regression Error (Eq. 12) as a function
of the number of bins for LFW alignment learned
on 5 features. Please note that piecewise constant
function (dark and light red bars) quickly reaches the
testing error of the first two functions, which use the
slope parameter γ. Also note that the proportional
partitioning of the feature space yields better results
than the non-proportional one. MREs are normalized,
with 1 being the testing set error when no alignment
is estimated.

[12] on facial features. Alignment precision is evalu-
ated on a testing part of the AFW dataset. Our model
was trained on the training part of the AFW dataset.
The same model was used to generate red curve in
Figure 10. The publicly available model p146 small
from [12] works with faces larger than 80 × 80. That
is why we made a selection of images with faces
appearing in larger resolution. We took the positive
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Fig. 16: SDP+LISA+DPM pipeline: Comparison of
SDP+LISA, SDP+LISA+DPM and DPM on a hard face
dataset with wide range of poses, illuminations and
occlusions.

detections of [12], which corresponded to one of 7
frontal face models (out of 13). The remaining are side-
view models, which do not contain all the facial fea-
tures necessary for comparison with our model. From
this selection we made an intersection of true positive
detections of both our method and the one of [12]
in order to evaluate the alignment on the exact same
images. A total of 338 images from the testing set were
selected for this experiment. The computed errors
are Euclidean distances of estimated facial features
positions from ground truth facial features positions
relative to face size (to compensate for different face
scales). 7 facial features were used: 4 eye corners, 1
nose tip and 2 mouth corners. The resulting mean
error of [12] is 0.0513, median 0.0441 with variance
0.0012. I.e. for a face of size 100× 100 pixels, there is
a mean error of 5.13 pixels for each facial feature. The
resulting mean error of our method is 0.0472, median
0.0410 with variance 0.0009. For the same face size,
we achieve a lower mean error of 4.72 pixels for each
facial feature.

8.5 Discussion
The proposed local interleaved sequential alignment
improves the sequential decision process. The main
competitors are the SDP itself and local pose estima-
tors proposed by Ali [1], which may be combined with
the SDP as well.

The SDP is favorable for its high detection speed,
see running time comparison in Figure 9. On the
other hand, it is known that the greedy learning
suffers from lower generalization when compared to
SVM based approaches like [12], [15]. Notice that in
the previous experiments we used publicly available
models of [12], [15] to show the baseline. When
the DPM with 4 components [15] and SDP+LISA are
trained on the same dataset and tested on a harder
face dataset with wide range of poses, illuminations
and occlusions, then the detection rate of DPM is

indeed better, see Figure 16. To achieve both high
speed of SDP+LISA and high detection rate of DPM,
we propose a combined SDP+LISA+DPM pipeline.
The SDP+LISA step reduces the number of possible
sub-windows and the strong but slow DPM runs only
on the remaining small fraction of all sub-windows.
In this experiment, the SDP+LISA leaves only 15 sub-
windows per 1MPxl image in average for additional
DPM evaluation, while only 2% of true positives
are rejected. Remaining 15 sub-windows are finally
evaluated by the DPM in a negligible time.

LISA is based on regression functions, which se-
quentially compensate deformation of the object in the
evaluated sub-window. The advantage of the regres-
sion functions is that the computational complexity
grows only linearly with the dimensionality of the
pose space. However, accurate regression is usually
possible only for a limited range of local deformations.

Main drawbacks of the proposed method are: (i)
inherently limited generalization of SDP methods, (ii)
limited range of deformations and (iii) keypoint anno-
tations needed for learning. The main advantages are:
(i) high detection speed, (ii) better detection rate than
other SDP methods, (iii) global object deformation is
estimated as a side-product of the detection process.

9 CONCLUSION

We have proposed an efficient approach for align-
ing detection features with observed non-rigid object
deformation in a real-time. The idea was shown on
sequential decision process (SDP), where pre-trained
features are successively evaluated in a detection win-
dow. The successive feature evaluation allows for ef-
ficient alignment estimation by pre-learned regressors
during the detection process. The estimated alignment
is directly applied to not yet evaluated features which
significantly improves the detection rates.
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