CZECH TECHNICAL UNIVERSITY IN PRAGUE

Doctoral Thesis Statement

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Ing. Michal Hapala

Data Structures and Algorithms for Interactive Ray Tracing

A doctoral thesis statement submitted to
the Faculty of Electrical Engineering, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of
Doctor of Philosophy.

Ph.D. programme: Electrical Engineering and Information Technology
Branch of study: Information Science and Computer Engineering

Prague, June 2015

The doctoral thesis was produced in combined manner Ph.D. study at the Department of Com-
puter Graphics and Interaction of the Faculty of Electrical Engineering of the CTU in Prague.

Candidate:
Ing. Michal Hapala
Department of Computer Graphics and Interaction
Faculty of Electrical Engineering of Czech Technical University in Prague

Karlovo nam. 13,
121 35 Prague 2, Czech Republic

Thesis Supervisor:
doc. Ing. Vlastimil Havran, Ph.D.
Department of Computer Graphics and Interaction
Faculty of Electrical Engineering of Czech Technical University in Prague
Karlovo nam. 13,
121 35 Prague 2, Czech Republic

Opponents:

The doctoral thesis statement was distributedon:

The defence of the doctoral thesis will be heldon at............ a.m./p.m. before
the Board for the Defence of the Doctoral Thesis in the branch of study (to be specified) in the
meeting room No. of the Faculty of Electrical Engineering of the CTU in Prague.

Those interested may get acquainted with the doctoral thesis concerned at the Dean Office of
the Faculty of Electrical Engineering of the CTU in Prague, at the Department for Science and
Research, Technicka 2, Praha 6.

Chairman of the Board for the Defence of the Doctoral Thesis
in the branch of study Information Science and Computer Engineering
Faculty of Electrical Engineering of the CTU in Prague
Technickd 2, 166 27 Prague 6.

Contents

1 Current situation of the studied problem
1.1 Datastructures v v i e e e e e e e e
1.2 Hardware acceleration

2 Aims of the doctoral thesis
3 Working methods

4 Results

S Conclusion

6 Bibliography

7 Publications of the Author
8 Summary

9 Résumé

12

13

15

18

19

CHAPTER 1. CURRENT SITUATION OF THE STUDIED PROBLEM 1

1 Current situation of the studied problem

Ray tracing [App68,Gla89] or ray casting is a method that finds intersections along an oriented
half-line (ray) with geometric primitives in a virtual scene. This basic visibility computation is
used in a core of many rendering algorithms to simulate the light distribution in a virtual envi-
ronment. The naive algorithm for ray tracing with O(N) complexity computes the intersections
with all primitives and finds the closest ray-geometric primitive intersections, if any. This can
be used efficiently only for a small number of primitives.

For larger scenes we need to restrict the number of computed intersections along the ray path.
This is achieved by various spatial data structures which allow different structuring of spatial
regions or objects of a scene. We have to pay the reduced number of computed intersections by
the time spent on building and traversing these spatial data structures. The efficiency of build
and traversal algorithms for these data structures along with their data layout is crucial for the
overall performance of the rendering algorithms.

1.1 Data structures

Ray tracing algorithms usually depend on spatial data structures that divide the scene into
smaller parts to speed up the search for intersected objects by a particular ray. The require-
ments on how these data structure are created and when depends on the application and the type
of the scene. It can be done as a preprocessing step or there may be need to update the data
structure continually as is the case for e.g. animated scenes.

A simple example of a spatial data structure is a uniform grid [FTI86], that divides the scene
non-adaptively into regular equally-sized voxels. Partitioning of the scene in this way is fast
(O(N) time complexity), but the search for objects to be intersected performs well only for
certain types of scenes, typically with uniformly distributes primitives. The most commonly
used spatial data structures are hierarchical structures which are essentially search trees.

Hierarchical spatial data structures can be divided into two major groups: space partitioning
that recursively divide space, creating a hierarchy of subspaces and object partitioning that
recursively divide objects, creating a hierarchy of volumes that are bounded to the objects that
are inside of them (see Figure 1.1).

Typical construction of a hierarchical spatial data structure starts with a root node that encom-
passes all objects in the scene and follows with these recursive steps:

e Evaluate terminating criteria (e.g. reaching a certain depth in the tree or a certain minimal
number of objects). If these are met, the current node is set as a leaf and the division in
this part is terminated.

e Compute splitting position(s) with a chosen splitting method.
e Distribute geometry among children (not necessarily two) depending on the split.

e Repeat with all children.

2 CHAPTER 1. CURRENT SITUATION OF THE STUDIED PROBLEM

Space partitioning Object partitioning

Figure 1.1: Space and object partitioning. Dashed line signifies the first division, dotted line
second division. Note that in space partitioning structures objects may overlap splitting planes
and in object partitioning structures bounding volumes may overlap each other.

The splitting method has a big influence on the quality of the spatial data structure as a whole.
Two splitting approaches listed here are described in their general form, as their particular im-
plementation in different data structures may vary. The simplest splitting method is the median
i.e. one will split space/objects in the middle of the respective space range. This is definitely
the fastest method but will usually create a tree with low performance.

Currently the most used approach to determine a splitting plane is the Surface area heuris-
tic (SAH) [GS87], elaborated in [HavOO] and more recently described e.g. by Wald and
Havran [WHO06]. SAH computes the splitting position according to the equation:

SA(VL) SA(Vg)
sao L+ Sawy IRD
where SA(X) is a surface area of X, Vy is the left child node, Vk is the right child node, V is the
parent node, |L| is the number of geometric primitives to the left of the splitting plane, |R| is the
number of geometric primitives to the right of the splitting plane, K7 is the cost of one traversal
step and K7 is the cost of intersecting a triangle.

C=Kr+K(

The cost function has to be computed for every change of the number of geometric primitives
along the split axis, thus one has to compute SAH for every left and right boundary of a ge-
ometric primitive on each coordinate axis. It is a local greedy heuristic, but works well in
practice. SAH also provides a terminating criterion. The splitting is terminated when the cost
of intersecting triangles is lower than the cost of splitting.

Space partitioning

Space partitioning data structures divide space into disjoint subspaces usually defined by split
planes. A disadvantage of this approach is that geometric primitives are usually referenced
more than once, as it is quite common for them to straddle the split plane, thus belonging to
more than one node.

The most common space partitioning data structure used in ray tracing is a kd-tree. It is a special
case of a binary space partitioning tree, recursively partitioning space with splitting planes that
are perpendicular to the axes of the coordinate system. Every interior node of this tree has a
split value and a split axis, which together define a splitting plane. Half-spaces on each side

CHAPTER 1. CURRENT SITUATION OF THE STUDIED PROBLEM 3

of the plane belong to the left and the right child of the original node and geometric primitives
from the node are redistributed among its children. Those overlapping the split plane are copied
into both of them.

Kd-trees were first used in ray tracing by Kaplan [Kap85] and in-depth elaborated by Havran [Hav00].
Wald and Havran [WHO06] summarized techniques for kd-tree construction and have shown an
optimal algorithm for it and Hapala and Havran [HH11] have summarized kd-tree traversal
algorithms.

Object partitioning

Object partitioning data structure divides geometric primitives into disjoint subsets. The most
common object partitioning data structure is a bounding volume hierarchy (BVH), a tree where
each of its nodes is represented by a bounding volume that is the union of the bounding volumes
of its children. A bounding volume of a leaf node then encompasses all objects in the leaf.

Memory requirements for a BVH can be easily pre-computed, since there are no duplicated
geometric primitives in leaves as is the case for e.g. a kd-tree. The disadvantage is that a BVH
traversal algorithm must check all children along the ray path, since the nodes might spatially
overlap. However, if a ray has already found an intersection during traversal it may use this
information to skip traversing some nodes.

Usage of BVHs in ray tracing dates to Rubin and Whitted [RW80]. Kay and Kajiya [KK86]
used the spatial median to construct a BVH, while Goldsmith and Salmon [GS87] proposed the
aforementioned SAH in the context of insertion based BVH build algorithms. We are not aware
of a recent survey about the usage of BVHs for ray tracing, but e.g. Bittner et al. [BHHI15]
summarized all state-of-the-art BVH algorithms.

1.2 Hardware acceleration

The orientation of this research is towards efficient data structures and related algorithms for
ray tracing with regard also to hardware architectures, that are able to accelerate ray tracing
by means of data level parallelism e.g. single instruction multiple data (SIMD) instructions,
multi-threaded parallel execution or even with a completely specialized ray tracing units. This
section will shortly summarize the major hardware architectures related to ray tracing.

In 2002 Schmittler et al. [SWSO02] presented the SaarCOR, providing a VLSI design and an im-
plementation of a ray tracing chip on a FPGA. It was split into scalable shading and ray tracing
core units and a memory management module. As a spatial data structure SaarCOR used a kd-
tree. The tree is split based on an estimation of the cost of traversal operations versus intersec-
tion operations in the hardware. SaarCOR provided ray tracing and simple non-programmable
shading on static scenes, but the algorithm to build a kd-tree was not implemented in hardware.

Woop et al. [WSS05] progressed the usage of specialized hardware for ray tracing even further
in 2005 with a fully shader programmable chip, the Ray Processing Unit (RPU). At that point
rendering a complex scene in high resolution still required a cluster of CPUs and the expec-
tations of Woop et al. were that widespread use of multi-core CPUs was still 5 to 10 years

4 CHAPTER 1. CURRENT SITUATION OF THE STUDIED PROBLEM

away. Graphic processing units (GPUs) already had a similar hardware architecture, but their
programming model was rather simple. RPU used traversal processing units to traverse chunks
of rays through a kd-tree, exploiting coherency to alleviate memory access costs with a shared
so-called mailboxed list processing unit acting like a cache. Shader processing units were used
for geometry intersection and programmable shading computations.

In the same year Thrane and Simonsen [TS05] compared several algorithmic techniques used
to map ray tracing to a GPU. These methods used fragment and shader programs and in a way
supported the notion that GPUs are currently unsuitable for a fast ray tracing implementation as
compared to custom hardware. They used textures to pass different pre-computed spatial data
structures to the GPU, on which they ran traversal programs using the fragment processor.

SPE 0 SPE 1 SPE 7
SPU SPU
MFC (DMA) MFC (DMA) MFC (DMA)
| EIB (300 GB/s) |
3 425GBis
PPE

Figure 1.2: IBM Cell consists of eight SPEs with 256kB of local memory that communicate
with main memory and the PPE through the Element Interconnect Bus (EIB).

Also in 2005 Sony, Toshiba and IBM released the IBM Cell Broadband Engine. It is a micro-
processor designed for computationally intensive, mainly multimedia, tasks. Cell consists of
one PPE (Power Processor Element), a Power architecture based processor, and eight Syner-
gistic Processor Elements (SPEs) (see Figure 1.2). SPE is a RISC processor with most of its
instructions being 128-bit wide SIMD. The PPE is intended as a work distributor with SPEs as
worker units.

Cell’s primary usage was in a gaming console, the Sony Playstation 3, but in the fall of 2006
IBM released the QS20 blade module as a computational unit. IBM supported ray tracing
oriented research which resulted in the iRT by Minor et al. [MNMO06], but the seminal work
towards a Cell ray tracer was published by Benthin et al. [BWSF06]. Their heavily optimized
implementation achieved traversal performance on a single SPU on par with x86 processors of
that time.

In 2006 Nvidia released a general purpose GPU (GPGPU) computing platform known as CUDA
(not an acronym, named after the Plymouth Barracuda). CUDA extends C/C++ and Fortran to
give the developer access to the many-core computing capability of an Nvidia GPU multipro-
cessors and its memory. The basic element of a CUDA computation is a kernel, a function
that is executed by each GPU thread where the number of concurrent threads depends on the
hardware and runs in tens of thousands. The threads are, however, light-weight as compared to
their CPU counterparts and their capabilities are limited.

CHAPTER 3. WORKING METHODS 5

A ray tracing traversal framework on the first CUDA capable Tesla GPU architecture was pub-
lished in 2009 by Aila et al. [AL09]. Later they have added support for Fermi and Kepler
architectures [ALK12]. Aila et al. proposed a number of algorithmic improvements to maxi-
mize GPU utilization and the implementation was able to cast over 100 million primary rays
per second on Tesla and almost half a billion primary rays on Kepler. In 2010 Nvidia OptiX,
a general programmable CUDA ray tracing framework that parallelize both building of spatial
data structures and their traversal, was presented by Parker et al. [PBD*10].

We also have to mention general purpose architectures, such as the most common x86. These
are utilized for high performance ray tracing mainly with explicit or implicit usage of SIMD
instruction sets. First effort in this direction was the MMX instruction set, followed by SSE
and later AVX sets. A current example of a ray tracer using all these features is the Em-
bree [WWB™14], a collection of ray tracing kernels developed by Intel. It is not a complete
rendering system, but rather a highly optimized implementation of ray tracing algorithms based
on a BVH for different combination of instruction set extensions.

2 Aims of the doctoral thesis

Although ray tracing has been known for over four decades, it is still considered relatively slow
to be massively used in interactive applications, particularly for animated scenes. Real-time
rendering has traditionally been the domain of rasterization but with the rise of computational
power and development of new parallel processing architectures, e.g. modern GPUs, ray tracing
based methods are becoming viable alternatives and even provide ready access to computation
of complex global illumination effects that are difficult or impossible to produce with rasteriza-
tion based renderers.

The focus of the doctoral thesis is the development of new or improving on existing spatial data
structures and associated algorithms for ray tracing to be used for efficient rendering of complex
3-dimensional virtual scenes.The applicability of this research is in all fields that are related to
computer-generated imagery (CGI), but also others, such as lighting design or collision detec-
tion.

3 Working methods

First and foremost, the doctoral thesis is submitted as a collection of already published texts
authored not only by the submitter. It contains published contributions in the form of journal
and/or conference papers and the papers are also referenced where applicable. This chapter will
summarize the content of each paper.

Review: Kd-tree Traversal Algorithms for Ray Tracing

In [HHI11] we review the traversal algorithms for kd-trees for ray tracing. First we briefly in-
troduce build algorithms and then continue with the description of basic traversal algorithms
published prior to the year 2000: a sequential algorithm, a stack-based algorithm and those

6 CHAPTER 3. WORKING METHODS

based on neighbour-links. These have different limitations, which led to several new develop-
ments. We describe algorithms exploiting ray coherence and algorithms designed with specific
hardware architecture limitations such as memory latency in mind. Memory consumption is
taken into account with the description of different memory layouts of nodes (see Figure 3.1)
and sub-trees. We also discuss the issue of robustness of traversal algorithms. A summary ta-
ble of all traversal algorithms with their memory requirements is included to help with design
choices.

address: Ox.:....OO

(0)
right (30b)d split (4B) 1 ®
©,

address: 0x........ §
]] i plane/leaf (2b) 9
left (4B) | right (4B) | split (4B) H
plimc/l'caf(zb)
0/1]2|3|4
'_//
(a) (b)

Figure 3.1: Memory layout of a (a) kd-tree node for basic layout using 13 Bytes and (b)
memory aligned and condensed layout with an implicit left child pointer reduced to 8 Bytes to
a node with an example of a simple tree.

Efficient Stack-less BVH Traversal for Ray Tracing

In [HDW*11] we propose a new, completely iterative traversal algorithm for ray tracing bound-
ing volume hierarchies that is based on storing a parent pointer with each node, and on using
simple state logic to infer which node to traverse next. This logic is based on three states which
depend on how was the current node reached during the traversal, i.e. coming from its child,
its sibling or its parent node (see Figure 3.2). Though our traversal algorithm does re-visit in-
ternal nodes, it intersects each visited interior node only once, and in general performs exactly
the same ray-box tests and ray-primitive intersection tests, and in exactly the same order, as a
traditional stack-based traversal algorithm. The chapter includes a listing with commentary of
the algorithm in pseudo-code.

We also show a listing that formed a base of our implementation in CUDA, where we condensed
and reordered the algorithm for efficiency reasons so as to have less diverging warps. Results
were measured on an integration with the freely available Aila et al. CUDA ray tracer [AL09,
KALOQ9]. The proposed algorithm can be used for computer architectures that need to minimize
the use of local memory for processing rays or those that need to minimize the data transport
such as distributed multi-CPU architectures.

When It Makes Sense to Use Uniform Grids for Ray Tracing

In [HKH11] we describe a hybrid algorithm that improves on performance by using a two-step
approach. The algorithm uses a calibration phase requiring a set of scenes of different properties
such as the number of geometric primitives or their spatial distribution. During this phase we
measure the implementation efficiency constants of the building of the data structures and their
traversal algorithms.

CHAPTER 3. WORKING METHODS 7

: 0 : ()

OO0 OO

(1a) (1b)

Figure 3.2: Traversal states: 1. from child, 2. from sibling and 3. from parent. C is the
current node, P is parent of C, N and F signify near and far nodes with regard to the current
ray. Dotted lines show the traversal we have taken into the current node whereas thick lines

show next traversal step. Doubled rings signify where a ray-box test is needed to decide where
to traverse next.

For an unknown scene to be ray traced we build a uniform grid and test its performance by
sampling a small set of representative rays. Second, using an estimate on the number of rays
to be queried we either continue using the grid or build a hierarchical data structure instead.
Commonly used data structures have a rather high build time while building a uniform grid can
be done much faster. This way we select a more efficient data structure given a particular imple-
mentation of the algorithms which yields with high probability an overall smaller computation
time.

We evaluated the properties of this method for a set of 28 scenes. The computation was repeated
5000 times for combinations of n random scenes for calibration and 28 minus n scenes for
estimation. For random rays the estimate was about 25 percent more optimistic about the quality
of the uniform grid, i.e. the error of the estimate was about 25 percent (see Figure 3.3).

Estimate error [%]
w
o

0 5 10 15 20 25 30
Number of scenes for calibration [-]

Figure 3.3: Uniform grid quality estimate error based on a small set of random rays. Red line
is the average of estimate errors. Blue line is the average of absolute values of these errors.

8 CHAPTER 3. WORKING METHODS

Fast Insertion-Based Optimization of Bounding Volume Hierarchies

In [BHH13] we present an algorithm for fast optimization of bounding volume hierarchies
(BVH) for efficient ray tracing. We perform selective updates of the hierarchy driven by the
cost model derived from the surface area heuristic. In each step the algorithm updates a fraction
of the hierarchy in order to minimize the overall hierarchy cost. Nodes to be updated can be
chosen randomly or based on an inefficiency metric. We discuss three types of such metrics
and their correlation with the final cost of the tree and the number of updates required to reach
this number. The updates themselves are then realized by simple operations on the tree nodes:
removal, search, and insertion. For each updated node we remove both its children from the
tree, find a position with lower overall cost for each and then reinsert them (see Figure 3.4).

Figure 3.4: . Removal of inefficient nodes from the tree and re-insertion of their children to
positions that decrease the overall cost of the tree.

Our method can quickly reduce the cost of the hierarchy constructed by the traditional tech-
niques such as the surface area heuristic. We evaluate the properties of the proposed method
on fourteen test scenes of different complexity including individual objects and architectural
scenes. We also compare our algorithm to tree rotation methods based on hill climbing and
simulated annealing as a state of the art at the time. The results show that our method can
improve a BVH initially constructed with the surface area heuristic by up to 27% and a BVH
constructed with the spatial median split by up to 88%.

Massively Parallel Hierarchical Scene Processing with Applications in Rendering

In [VBHH13] we present a method for massively parallel hierarchical scene processing on the
GPU based on a sequential decomposition of a given hierarchical algorithm into small func-
tional blocks. The computation is fully managed by the GPU using a specialized task pool
which facilitates synchronization and communication of processing units, in this case persistent
CUDA warps (see [AL09]. We try to maximize the GPU utilization by using as many threads
as possible for a given task and also by computing tasks in different phases of the algorithm
at the same time. We present two applications of the proposed approach: construction of the
bounding volume hierarchies and collision detection based on divide-and-conquer ray tracing
(see Figure 3.5).

We have compared our method to the HLVBH by Garanzha et al. [GPM11] with different
settings. The results indicate that using our approach we achieve high utilization of the GPU
even for complex hierarchical problems which pose a challenge for massive parallelization.

CHAPTER 4. RESULTS 9

straddling right

=
o
o
£
=]
°
ol
@

triangles

right

Figure 3.5: Matrix representing a subdivision of the task into its child tasks for divide-and-
conquer ray tracing.

Incremental BVH Construction for Ray Tracing

In [BHH15] we propose a new method for incremental construction of Bounding Volume Hi-
erarchies (BVH). This method has at its core an insertion algorithm published in [BHH13],
but instead of just optimizing an already built BVH we rather create a new one from scratch.
We use insertions to incrementally build the BVH interleaving it with global updates of the tree
(see 3.6). Despite the belief that the incremental construction of BVH is inefficient we show that
our method incrementally constructs a BVH with quality comparable to the best SAH builders.
We illustrate the versatility of the proposed method using a flexible parallelization scheme that
opens new possibilities for combining different BVH construction heuristics.

insertions see updates ==+ insertions

time

Figure 3.6: The incremental insertion of nodes is searching for the best position of inserted
nodes, however the overall structure of the tree might get imbalanced. This is corrected by
BVH updates, which aim to globally optimize the current tree.

Since our method is able to insert additional geometry without loss of performance we demon-
strate the usage of the method in a proof-of-concept application for real-time preview of data
streamed over the network. We also show different approaches to selecting relevant triangles to
be sent according to a current camera view. The client application uses CPU to construct the
BVH and CUDA based GPU ray tracer to render the image. We also report results of our build
algorithm for four different settings compared to a BVH constructed with a high-quality SAH
builder and a BVH built with spatial median splits.

4 Results

In this chapter we will summarize the results of the papers included in the doctoral thesis and
discuss their impact on the ray tracing research.

In [HH11] we have summarized the traversal algorithms for kd-trees used in ray tracing. We

10 CHAPTER 4. RESULTS

have described several basic traversal algorithms and also newer developments motivated by
specific hardware issues such as lack of caches, the memory latency, and the penalty for per-
forming branches. We have shown that the traversal algorithms can be interconnected to the
kd-tree build algorithm as specific data may be needed to be precomputed and stored in the
kd-tree representation. We have also discussed the memory layouts for this representation that
can be optimized in particular for larger data sets or when limited by memory of a specific hard-
ware. Finally, we have described several approaches for ray tracing of many rays at once and
how the coherence of such rays can be exploited for better performance.

This paper was one of the most accessed on the Computer Graphics Forum website during
2011 [Joh12] and it was also cited as a survey article for kd-trees in a number of publications.
The context of these publications was not only computer graphics [CCI13] [Mknd12] [WGD14]
[YL14] [XCHZ13], but also artificial intelligence [CS13] or nuclear energy [CSZ " 15].

In [HDW™11] we have presented a traversal algorithm for bounding volume hierarchies that
does not need a stack and hence minimizes the memory needed for a ray. It is based on a
three-state logic and keeping a parent link for all nodes. The proposed algorithm can be used
efficiently in approaches where we process many rays in parallel. In these cases we need to
minimize the memory usage for individual rays either locally or for data transfer among pro-
cessing units. The algorithm also does only the necessary minimum of ray-box intersections, as
would a stack-based algorithm do.

We have shown the results for implementations in CUDA for Tesla and Fermi architecture
as the most commonly accessible highly parallel architectures at the time. We show that for
these GPU architectures the traversal algorithm with local stack is more efficient than stack-less
algorithm that needs twice as many traversal steps. Even though employing a stack demands
frequent access to memory, modern GPUs can run thousands of threads at once and effectively
hide memory latencies.

There are, however, hardware architectures or applications where having minimal memory per
ray is paramount. These are e.g. special hardware units, memory distributed CPU/GPU ar-
chitectures designed for tracing rays or ray-reordering traversal schemes and the usefulness of
our algorithm on such an architecture was shown in FlexRender by Somers and Wood [SW13].
They have used an extension of our algorithm for a distributed rendering architecture used on
commodity hardware. Their system balances load by suspending traversal on one computation
node and resuming it at another. Our stackless approach helped them to minimize the amount
of data required for a complete ray traversal state that needs to be transferred.

Kopta et al. [KSS*13,KSS™14] cited this paper in the context of special hardware that focuses
on optimizing memory and energy consumption. Kim et al. [KIN14] used R-trees for range
queries in large datasets on GPUs. Since R-trees are similar to BVHs the memory optimization
ideas in our paper were applicable too. Gribble et al. [GFE™12] implemented a path tracer
using OpenCL for their ray tracing visualization toolkit and our stackless traversal improved
their performance. The paper was also referenced as a related work by Wu et al. [WDZ13],
Garcia et al. [GJK13] and Liu et al. [LCD15].

In [HKH11] we have proposed an algorithm that combines a uniform grid and a hierarchical data

CHAPTER 4. RESULTS 11

structure for ray tracing so that it takes advantage of both types. Based on the scene properties
and a small number of rays computed using the grid we decide either to continue ray tracing
with the grid or to build a hierarchical data structure such as a kd-tree. To our best knowledge
we presented the first algorithm that decides when it is advantageous to use uniform grids in
dependence on the number of rays to be shot.

We have shown that the use of uniform grids is relatively limited for standard scenes with the
exception of scenes with a special distribution of geometric primitives in space. But our results
also show that the number of rays when it does not pay off to build a hierarchical structure can
be significant. The paper was cited by Wu et al. [WYB13] as a related work.

In [BHH13] we proposed an algorithm for building a high quality BVH by incrementally updat-
ing a tree initially constructed by a top down method with surface area heuristic. The method
is based on performing selective updates of the BVH by identifying inefficient nodes and rein-
serting them back in positions that will lower the total BVH cost. The updates are prioritized
and thus the algorithm can be tuned to give preference to the update time or the quality of the
hierarchy. The tree is also compacted with removal of sub-trees whose SAH cost is larger than
a simple leaf node with all triangles in such a sub-tree. We have shown that for complex scenes
our method achieves very good cost reduction in much shorter time than previous methods.

Gu et al. [GHFB13] referenced the BVH compaction optimization as similar to, and perhaps
and idea for, their sub-tree flattening. The core algorithm was compared to other state-of-
the-art methods by Aila et al. [AKL13]. Their results confirmed that our method constructs
high-quality trees when compared by SAH costs and also to their new end-point overlap metric.
However, mediocre results were achieved for a second newly proposed leaf count variability
metric and why this happened is a matter of future work.

In [VBHH13] we have proposed a novel method for massively parallel processing in the con-
text of hierarchical algorithms dealing with 3D geometrical data. Our method runs entirely on
the GPU and requires no management of the computation from the CPU side. We propose a
methodology of subdividing a given hierarchical algorithm into tasks, phases, steps, and work
chunks in order to map the algorithm to the parallel framework. We show two applications of
our method: construction of the BVH and divide-and-conquer ray tracing on the GPU. We eval-
uated two proof of concept applications, which indicate that our approach has a good potential
for massive parallelization of complex hierarchical problems. This paper was referenced as a
related work by Leyre et al. [LRAT14] in Optics Express journal.

In [BHHI15] we have proposed an incremental BVH construction algorithm, which builds a
BVH with better or comparable quality to the traditional SAH based top-down BVH construc-
tion methods. We have implemented a sequential and a parallel version of this algorithm,
achieving construction speeds of 0.8 and 2.9 million triangles per second respectively. This
makes the proposed method significantly faster compared with the reference implementation of
the precise top-down SAH build.

We have shown a possible application of the method for real-time ray tracing of scenes which
are streamed over a network with a proof-of-concept client-server application. This application
uses GPU ray tracing, while the networking layer and the incremental BVH construction is

12 CHAPTER 5. CONCLUSION

implemented on the CPU. We have used several simple prioritization schemes allowing for fast
previewing of large data sets even in the case of a low network bandwidth. This paper was
published quite recently and there were no known references at the time of the publication of
this thesis statement.

5 Conclusion

In conclusion, the papers presented in the doctoral thesis improved upon the performance of
build and traversal algorithms for ray tracing data structures either directly by contributing a
novel approach or indirectly as a survey. These papers were referenced in a number of publica-
tions in and also outside of the realm of computer graphics.

According to the citations we believe that ideas and techniques presented in the doctoral thesis
will have applications in different scientific fields where ray tracing is used and they shall further
the research about ray tracing itself.

CHAPTER 6. BIBLIOGRAPHY 13

6 Bibliography

[AL09]

[ALK12]

[App63]

[BWSFO06]

[FTI86]

[Glag9]

[GPM11]

[GS87]

[Hav00]

[Joh12]

[KALO9]

[Kap85]

[KKS86]

T. Aila and S. Laine. Understanding the Efficiency of Ray Traversal on GPUs.
In Proceedings of the Conference on High Performance Graphics 2009, HPG’09,
pages 145-149, New York, NY, USA, 2009. ACM.

T. Aila, S. Laine, and T. Karras. Understanding the Efficiency of Ray Traversal on
GPUs — Kepler and Fermi Addendum. NVIDIA Technical Report NVR-2012-02,
NVIDIA Corporation, June 2012.

A. Appel. Some Techniques for Shading Machine Renderings of Solids. In Pro-
ceedings of the April 30—May 2, 1968, spring joint computer conference, AFIPS
’68 (Spring), pages 37-45, New York, NY, USA, 1968. ACM.

C. Benthin, I. Wald, M. Scherbaum, and H. Friedrich. Ray Tracing on the Cell
Processor. In Proc. IEEE Symposium on Interactive Ray Tracing 2006, pages
15-23, September 2006.

A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: Accelerated Ray-Tracing System.
Computer Graphics and Applications, IEEE, 6(4):16-26, April 1986.

A. S. Glassner, editor. An Introduction to Ray Tracing. Academic Press Ltd.,
London, UK, 1989.

K. Garanzha, J. Pantaleoni, and D. McAllister. Simpler and faster HLBVH with
Work Queues. In Proceedings of the ACM SIGGRAPH Symposium on High Per-
formance Graphics, HPG’ 11, pages 59—64, New York, NY, USA, 2011. ACM.

J. Goldsmith and J. Salmon. Automatic Creation of Object Hierarchies for Ray
Tracing. IEEE Computer Graphics and Applications, 7(5):14-20, May 1987.

V. Havran. Heuristic Ray Shooting Algorithms. Ph.d. thesis, Department of Com-
puter Science and Engineering, Faculty of Electrical Engineering, Czech Techni-
cal University in Prague, November 2000.

John Wiley & Sons, Inc. Computer Graphics Forum: Most Accessed Ar-
ticles, 2012. http://web.archive.org/web/20120702235331/http:
//onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-8659/
homepage/MostAccessed.html.

T. Karras, T. Aila, and S. Laine. Understanding the Efficiency of Ray
Traversal on GPUs; Google Code, 2009. http://code.google.com/p/
understanding-the-efficiency-of-ray-traversal-on-gpus/.

M. Kaplan. Space-Tracing: A Constant Time Ray-Tracer. In SIGGRAPH ’85
State of the Art in Image Synthesis seminar notes, pages 149—158, July 1985.

T. L. Kay and J. T. Kajiya. Ray Tracing Complex Scenes. In D. C. Evans and R. J.
Athay, editors, SIGGRAPH 86 Proceedings, volume 20, pages 269-278, August
1986.

14

[MNMO6]

[PBD*10]

[RWS0]

[SWS02]

[TSO05]

[WHO6]

[WSSO05]

[WWBT14]

CHAPTER 6. BIBLIOGRAPHY

B. Minor, M. Nutter, and J. Madruga. iRT: An Interactive Ray Tracer for the CELL
Processor. Technical report, 2006.

S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,
D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich. OptiX: A Gen-
eral Purpose Ray Tracing Engine. In ACM SIGGRAPH 2010 Papers, SIGGRAPH
"10, pages 66:1-66:13, New York, NY, USA, 2010. ACM.

S. M. Rubin and T. Whitted. A 3-Dimensional Representation for Fast Rendering
of Complex Scenes. In SIGGRAPH 80 Proceedings, volume 14, pages 110-116,
July 1980.

J. Schmittler, I. Wald, and P. Slusallek. SaarCOR — A Hardware Architecture
For Ray Tracing. In Proceedings of the conference on Graphics Hardware 2002,
pages 27-36. Saarland University, Eurographics Association, 2002. available at
http://www.openrt.de.

N. Thrane and L. O. Simonsen. A comparison of acceleration structures for GPU
assisted ray tracing. Technical report, 2005. University of Aarhus.

I. Wald and V. Havran. On building fast kd-trees for ray tracing, and on doing that
in O(N log N). In Proceedings of IEEE Symposium on Interactive Ray Tracing
2006, pages 61-69, September 2006.

S. Woop, J. Schmittler, and P. Slusallek. RPU: A Programmable Ray Processing
Unit for Realtime Ray Tracing. In ACM SIGGRAPH 2005 Papers, SIGGRAPH
"05, pages 434-444, New York, NY, USA, 2005. ACM.

I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst. Embree: A Kernel
Framework for Efficient CPU Ray Tracing. ACM Trans. Graph., 33(4):143:1-
143:8, July 2014.

CHAPTER 7. PUBLICATIONS OF THE AUTHOR 15

7 Publications of the Author

Publications in high-impact journals:

[HHI11]

[BHHI13]

M. Hapala and V. Havran. Review: Kd-tree Traversal Algorithms for Ray Tracing.
Computer Graphics Forum, 30(1):199-213, Mar 2011.
Contribution: M. Hapala 50%, V. Havran 50%.

[CCI13]

[Mknd12]

[WGD14]

[YL14]

[XCHZ13]

[CS13]

[CSZT15]

[LBF13]

Choi B., Chang B. and Ihm I.. Improving Memory Space Efficiency
of Kd-tree for Real-time Ray Tracing. Computer Graphics Forum,32:
335-344, 2013.

R. Mukundan. Collision Detection. Advanced Methods in Computer
Graphics, 231-276, 2012.

Wang Y.,Guo P. and Duan F.. A Fast Ray Tracing Algorithm Based on
a Hybrid Structure. Multimedia Tools and Applications, 1-16, 2014.

Yin M. and Li S.. Fast BVH Construction and Refit for Ray Tracing
of Dynamic Scenes. Multimedia Tools and Applications, 1823-1839,
2014.

Xiao K., Chen D., Hu X. and Zhou B.. Shell: A Spatial Decomposition
Data Structure for 3D Curve Traversal on Many-Core Architectures.
Algorithms — ESA 2013, 815-826, 2013.

F. O. Cabrera and M. Sanchez-Marré. Using NIAR k-d Trees to Im-
prove the Case-Based Reasoning Retrieval Step. Advances in Soft
Computing and Its Applications, 314-325, 2013.

Chen Z., Song J., Zheng H., Wu B. and Hu L.. Optimal Spatial Sub-
division Method for Improving Geometry Navigation Performance in
Monte Carlo Particle Transport Simulation. Annals of Nuclear Energy,
314-325, 2015.

Lu H., Bao P. and Feng J.. OpenCL-based Real-time KD-tree and
Ray-tracing for Dynamic Scene. Journal of Computer-Aided Design
and Computer Graphics, 963-973, 2013.

J. Bittner, M. Hapala, V. Havran. Fast Insertion-Based Optimization of Bounding
Volume Hierarchies. Computer Graphics Forum, 32(1):85-100, Feb 2013.
Contribution: J. Bittner 50%, M. Hapala 25%, V. Havran 25%.

[GHFB13]

Y. Gu, Y. He, K. Fatahalian and G. Blelloch. Efficient BVH Construc-
tion via Approximate Agglomerative Clustering. Proceedings of the
Sth High-Performance Graphics Conference, pages 81-88, 2013.

16

[VBHH13]

[BHHI5]

CHAPTER 7. PUBLICATIONS OF THE AUTHOR

[AKL13] T. Aila, T. Karras and S. Laine. On Quality Metrics of Bounding Vol-
ume Hierarchies. Proceedings of the 5th High-Performance Graphics
Conference, pages 101-107, 2013.

[PIRT14] J. Parulek, D. Jonsson, T. Ropinski, S. Bruckner, A. Ynnerman and I.
Viola. Continuous Levels-of-Detail and Visual Abstraction for Seam-

less Molecular Visualization. Computer Graphics Forum, 33: 276-
287.2014.

M. Vinkler, J. Bittner, V. Havran, M. Hapala. Massively Parallel Hierarchical
Scene Processing with Applications in Rendering. Computer Graphics Forum,
32(8):13-25, Dec 2013.

Contribution: M. Vinkler 50%, J. Bittner 20%, V. Havran 20%, M. Hapala 10%.

[LRAT14] S. Leyre, J. Ryckaert, P. Acufa, J. Audenaert, Y. Meuret, G. Dur-
inck, J. Hofkens, G. Deconinck and P. Hanselaer. A Hybrid Tool for

Spectral Ray Tracing Simulations of Luminescent Cascade Systems.
Optics Express 22 , 20:24582-24593, Oct 2014.

J. Bittner, M. Hapala, V. Havran. Incremental BVH Construction for Ray Tracing.
Computers & Graphics, pages 135-144, Apr 2015.
Contribution: J. Bittner 50%, M. Hapala 30%, V. Havran 20%.

Publications excerpted by ISI:

[HKH11]

M. Hapala, O. Karlik, and V. Havran. When It Makes Sense to Use Uniform
Grids for Ray Tracing. In Proceedings of WSCG 2011, Communication Papers,
pages 193-200, Feb 2011.

Contribution: M. Hapala 35%, O. Karlik 35%, V. Havran 30%.

[WYBI13] WuZ., YuH. and Bin C.. Divide and Conquer Ray Tracing Algorithm
Based on BVH Partition. 2013 International Conference on Virtual
Reality and Visualization (ICVRV), pages 49-55, Sept 2013.

Other publications:

[HDW'11] M. Hapala, T. Davidovi¢, I. Wald, V. Havran, and P. Slusallek. Efficient Stack-less

BVH Traversal for Ray Tracing. In 27th Spring Conference on Computer Graphics
(SCCG 2011), pages 29-34, Apr 2011.

Contribution: M. Hapala 25%, T. Davidovi¢ 25%, 1. Wald 25%, V. Havran 23%, P.
Slusallek 2%.

CHAPTER 7. PUBLICATIONS OF THE AUTHOR 17

[KSST13]

[KSST14]

[BA14]

[GFE+12]

[AS14]

[LCDI5]

[GJIK13]

[WDZ13]

[SW13]

[KIN14]

[GJKR13]

D. Kopta, K. Shkurko, J. Spjut, E. Brunvand and A. Davis. An Energy
and Bandwidth Efficient Ray Tracing Architecture. Proceedings of the
Sth High-Performance Graphics Conference, pages 121-128, 2013.

D. Kopta, K. Shkurko, J. Spjut, E. Brunvand and A. Davis. Mem-
ory Considerations for Low Energy Ray Tracing. Computer Graphics
Forum, 2014.

R. Barringer and T. Akenine-Mdller. Dynamic Ray Stream Traversal.
ACM Trans. Graph., pages 151:1-151:9, Jul 2014.

C. Gribble, J. Fisher, D. Eby, E. Quigley and G. Ludwig. Ray Tracing
Visualization Toolkit. Proceedings of the ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games, pages 71-78, 2012.

A. T. Afra and L. Szirmay-Kalos. Stackless Multi-BVH Traversal
for CPU, MIC and GPU Ray Tracing. Computer Graphics Forum,
33:129-140, 2014.

Liu B. and G. J. Clapworthy and Dong F.. I[soBAS: A binary accel-
erating structure for fast isosurface rendering on {GPUs}. Computers
& Graphics, 2015.

M. Goldfarb, Y. Jo and M. Kulkarni. General Transformations for
GPU Execution of Tree Traversals. Proceedings of the International

Conference on High Performance Computing, Networking, Storage
and Analysis, 10:1-10:12, 2013.

Wu E,, Dong J. and Zhou F.. Indirect Illumination Algorithm Based
on Cone-rays Cast. Computer Engineering, 294-297, 2013.

B. Somers and Z. J. Wood. FlexRender: A Distributed Rendering
Architecture for Ray Tracing Huge Scenes on Commodity Hardware.
GRAPP/IVAPP’13, 152-164, 2013.

Kim J., Jeong W. and Nam B.. Exploiting Massive Parallelism for
Indexing Multi-dimensional Datasets on the GPU. IEEE Transactions
on Parallel and Distributed Systems, 2014.

A. Garcia, S. Murguia, U. Olivares and F. F. Ramos . Fast Parallel
Construction of Stack-less Complete LBVH Trees with Efficient Bit-
trail Traversal for Ray Tracing. Proceedings of the 13th ACM SIG-
GRAPH International Conference on Virtual-Reality Continuum and
its Applications in Industry, pages 151-158, 2014.

18 CHAPTER 8. SUMMARY

8 Summary

Current trends in computer graphics used in film or video games industry lead to an increasing
demand for methods than can deliver interactive high quality image synthesis with global illu-
mination effects. Many of these algorithms use in their core a simple visibility computation,
ray tracing, that computes intersections with primitives in a virtual scene along an oriented half-
line. This thesis focuses on improving data structures and algorithms used in ray tracing. It also
takes into consideration specialized hardware, such as graphics processing units, which can be
used to increase rendering performance thanks to its parallel design.

This thesis is submitted as a collection of papers published in various journals by a group of
authors including the submitter in the period of 2011 to 2015. We thoroughly review algorithms
for traversing a kd-tree, a hierarchical data structure, with a focus on algorithms implemented
on a specialized hardware. We also propose five novel algorithms: an iterative bounding vol-
ume hierarchy traversal that can traverse the tree structure without the use of a stack, a hybrid
algorithm that combines the use of two different spatial data structures, a new method for in-
cremental construction of bounding volume hierarchies, a method for massively parallel hierar-
chical scene processing on the GPU and, finally, an algorithm for fast optimization of bounding
volume hierarchies based on selective updates.

Soucasné trendy v pocitacové grafice pouzivané ve filmové produkci nebo videohernim primyslu
vedou ke zvySenému zdjmu o metody, které dokdZou pfinést interaktivni syntézu obrazu s
efekty globalniho osvétleni. Mnoho z téchto algoritmil ve svém jadru pouziva jednoduchy
vypocet viditelnost, tzv. sledovani paprsku, ktery spocitd pruseciky mezi primitivy ve virtudlni
scéné a polopiimkou. Tato doktorska price se soustfedi na zlepSeni datovych struktur a al-
goritml pouZzivanych pravé pro metodu sledovani paprsku. Bere do tvahy i specializovany
hardware, jako napftiklad grafické procesory, ktery se diky svému paralelnimu ndvrhu da pouZzit
pro zrychleni vykreslovani scény touto metodou.

Tato doktorska prace je predloZena jako soubor jiz zvetfejnénych ¢lanku skupinou autorti véetné
doktoranda v rozmezi let 2011 az 2015. Nejdfive dikladné zmapujeme algoritmy pro traver-
zovéani kd-stromu se zaméfenim na algoritmy implementované na specializovaném hardware
a dale navrhneme pét novych algoritmi: iterativni traverzaci hierarchie obdlek bez pouziti
zasobniku, hybridni algoritmus, ktery kombinuje pouZiti dvou rtiznych prostorovych datovych
struktur, novou metodu pro inkrementalni stavbu hierarchie obélek, metodu pro masivné par-
alelni zpracovini scény na grafické karté a algoritmus pro rychlou optimalizaci hierarchie
obdlek pomoci selektivni aktualizace.

CHAPTER 9. RESUME 19

Michal Hapala

CONTACT Vitkova 262/4 mikee@mikee.cz
Praha http://www.mikee.cz
186 00, Czech Republic http://dcgi.felk.cvut.cz/home/hapalmic/
WORK Game and Animations Programmer, Warhorse Studios 02/2012 - present
EXPERIENCE
Researcher, Czech Technical University in Prague 09/2009 - 04/2013
Lecturer, Czech Technical University in Prague 03/2008 - 02/2014
Nintendo DS Programmer, Cinemax 03/2008 - 11/2009
Tools Programmer, Centauri Production 11/2006 - 02/2008
EpucaTioN Czech Technical University in Prague, Faculty of FElectrical Engineering — 09/2003 - 02/2009

Ing. (eq. to MSc.)

Study programme: Electrical Engineering and Computer Science

Field of study: Computer Graphics

Master’s thesis: ”Data Structures for Ray Tracing on Specialized Hardware”
Awarded first place in IBM Student Research Projects 2009

Be. (eq. to BSc.)

Study programme: Electrical Engineering and Computer Science

Field of study: Computer Science

Bachelor’s thesis: ” Programming Techniques for the Development of Massive Multiplayer On-line

Games”
ACTIVITIES Chair of student volunteers
Eurographics 2007 (with Adam J. Sporka)
Reviewer
Siggraph Asia 2011, CAD/Graphics 2013
Volunteer

GDC Europe 2010, 2011

SKILLS Programming languages: C++ (5+ years); C# (2 years), GLSL/HLSL (familiar)
Frameworks, libraries and APIs: CUDA (2 years), OpenGL (2 years), XNA, Qt, Maya SDK, 3ds
Max SDK, OpenCollada, FBX SDK, Google Sketchup C++ API
Passive knowledge: Assembly, Java, PHP, JavaScript, SQL
IDEs: Microsoft Visual Studio, CodeWarrior

Cambridge Certificate of Proficiency in English

LANGUAGES English fluent
Czech, Slovak native

