
Czech Technical University in Prague
Faculty of Electrical Engineering

Bachelor Thesis

Learning Strategies in Stochastic
Zero-Sum Games

David Futschik

Supervisor:
Mgr. Branislav Bošanský, Ph.D.

May 2015

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: David F u t s c h i k

Studijní program: Otevřená informatika (bakalářský)

Obor: Informatika a počítačové vědy

Název tématu: Učení se strategií ve stochastických hrách s nulovým součtem

Pokyny pro vypracování:

Dvouhráčové nekonečné stochastické hry, ve kterých jsou ohodnocení pouze v terminálních
stavech, jsou důležitou třídou her s řadou potenciálních aplikací. Bohužel v současnosti
neexistují efektivní a v praxi použitelné algoritmy pro výpočet optimálních strategií pro tuto
třídu her. Standardní algoritmy, které využívají iterativní výpočet hodnot/strategií, mohou
v nejhorším případě potřebovat až dvojitě exponenciální počet iterací. V oblasti konečných
sekvenčních her však v posledních letech vzniklo několik algoritmů, které umožnily
řešení velkých her, a které primárně využívají techniky učení pro nalezení optimální strategie.
Cílem studenta je proto:
(1) prozkoumat možnosti využití učících algoritmů pro řešení stochastických her a adaptace
 vybraných přístupů úspěšných v konečných hrách,
(2) experimentálně porovnat nově navržené algoritmy se standardními algoritmy pro řešení
 nekonečných stochastických modelů na sadě konkrétních her.

Seznam odborné literatury:
[1] Kristoffer Arnsfelt Hansen, Rasmus IbsenJensen, and Peter Bro Miltersen. "The complexity
 of solving reachability games using value and strategy iteration." Computer Science–Theory
 and Applications. Springer Berlin Heidelberg, 2011. 7790.
[2] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. "Regret
 minimization in games with incomplete information." In Advances in neural information
 processing systems, pp. 17291736. 2007.
[3] Yoav Shoham, and Kevin LeytonBrown. Multiagent systems: Algorithmic, gametheoretic,
 and logical foundations. Cambridge University Press, 2009.

Vedoucí bakalářské práce: Mgr. Branislav Bošanský, Ph.D.

Platnost zadání: do konce letního semestru 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 14. 1. 2015

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: David F u t s c h i k

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Learning Strategies in Stochastic Zero-Sum Games

Guidelines:

Twoplayer infinite stochastic games with utilities in the terminal nodes are important class
of games corresponding to many realworld problems. However, there are not many practical
algorithms for this class of games and typical algorithms based on value (or strategy) iteration
can take up to doubly exponential number of iterations to converge. On the other hand, there
has been a substantial advancement in algorithms for solving finite sequential games, where
algorithms based on learning are among the most successful ones.
The goal of the student is therefore to:
(1) explore learning algorithms applied in finite sequential games and adapt selected algorithms
 for solving infinite stochastic games,
(2) experimentally compare the computation time of new algorithms with existing value and
 strategy iteration algorithms on a collection of games.

Bibliography/Sources:
[1] Kristoffer Arnsfelt Hansen, Rasmus IbsenJensen, and Peter Bro Miltersen. "The complexity
 of solving reachability games using value and strategy iteration." Computer Science–Theory
 and Applications. Springer Berlin Heidelberg, 2011. 7790.
[2] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. "Regret
 minimization in games with incomplete information." In Advances in neural information
 processing systems, pp. 17291736. 2007.
[3] Yoav Shoham, and Kevin LeytonBrown. Multiagent systems: Algorithmic, gametheoretic,
 and logical foundations. Cambridge University Press, 2009.

Bachelor Project Supervisor: Mgr. Branislav Bošanský, Ph.D.

Valid until: the end of the summer semester of academic year 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 14, 2015

Prohlášeńı autora práce

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických
princip̊u při př́ıpravě vysokoškolských závěrečných praćı.

Declaration

I hereby declare that I created the presented thesis independently and that I cited
all used sources of information in accord with Methodical instructions about ethical
principles for writing academic theses.

V Praze dne
Podpis autora práce

Acknowledgements

I would like to take this opportunity to thank my supervisor Mgr. Branislav
Bošanský, Ph.D. for his invaluable assistance, patience and exceptional care through-
out the writing of this thesis.

Abstrakt

Dvouhráčové nekonečné stochastické hry s nulovým součtem a ohodnoceńım v kon-
cových stavech jsou d̊uležitým typem her s velkým počtem aplikaćı, ale jedná se
o méně studovanou tř́ıdu her. Z tohoto d̊uvodu neexistuje mnoho praktických
algoritmů pro jejich řešeńı. Standardńı algoritmy použ́ıvaj́ı iteraci hodnot nebo
strategíı, ovšem tyto algoritmy mohou v nejhorš́ım př́ıpadě potřebovat až dvojitě
exponenciálńı počet iteraćı. Proto hledáme algoritmy s lepš́ı složitost́ı, nebo alespoň
metody vylepšeńı stávaj́ıćıch algoritmů. Prvńı část práce vysvětluje základńı pojmy
teorie her se zaměřeńım na řešeńı her. Následně jsou popsány stochastické hry a
standardńı postupy při jejich řešeńı. Abychom mohli aplikovat postupy použ́ıvané
při řešeńı konečných sekvenčńıch her, zavád́ıme pojem serializace stochastických
her. Poskytneme algoritmus pro řešeńı stochastických her založený na kombinaci
prvotńıho odhadu hodnot s hodnotovou iteraćı. Nakonec provedeme experimentálńı
porovnáńı nových algoritmů s existuj́ıćım algoritmem hodnotové iterace na sadě
konkrétńıch her.

Kĺıčová slova: Dvouhráčové stochastické hry s nulovým součtem a ohodnoceńım
v koncových stavech, stochastické hry, serializace stochastických her, hodnotová
iterace

Abstract

Two-player zero-sum stochastic games with utilities in terminal nodes is an impor-
tant class of games with many applications, but one that has not been studied in
great depth. As such, there are not many practical algorithms for solving this class
of games. The two standard algorithms are value iteration and strategy iteration.
However, these algorithms have doubly exponential worst case complexity in number
of iterations. Therefore, we are searching for algorithms with lower complexity or
methods of improving existing algorithms’ performance. First, we explain the most
essential basics of game theory with focus on solving games. Then, we describe
stochastic games and the standard approaches to solving them. To be able to apply
algorithms used in finite sequential games, we introduce the concept of serialization
of stochastic games into finite sequential games. We present an algorithm for solving
stochastic games based on value estimation combined with value iteration. Lastly,
we experimentally compare performance of novel algorithms to the existing value
iteration algorithm on a collection of example games.

Keywords: two-player zero-sum stochastic games with utilities in terminal nodes,
stochastic games, serialization of stochastic games, value iteration

Contents

1 Introduction 1

1.1 Overview . 2

2 Theoretical background 3

2.1 Normal-form game . 3

2.2 Zero-sum game . 4

2.3 Extensive-form game . 4

2.4 Strategy and strategy profile . 5

2.5 Solving a game . 5

2.6 Best response and Nash equilibrium 6

2.7 Algorithms for solving extensive-form games 7

2.8 Solving extensive-form games with concurrent moves 7

3 Stochastic games 9

3.1 Definition, example . 9

3.2 Computing strategy . 10

4 Serializing stochastic games 14

4.1 Serialization . 14

4.2 Description of the algorithm . 14

4.3 Improvements . 16

4.4 Serialization iteration . 19

5 Serialization of concurrent play 20

5.1 Serializing a single concurrent stage 20

5.1.1 Example . 20

5.2 Notes . 21

6 Application of serialization 22

6.1 First phase . 22

6.2 Second phase . 23

6.3 Both phases combined . 23

7 Experimental domain 24

8 Experimental results 26

8.1 Measured data . 26

8.2 Detailed examples . 27

CONTENTS

9 Conclusion 34

A Contents of the attached CD 36

Chapter 1

Introduction

In this thesis, we consider two-player zero-sum possibly infinite stochastic games
with utilities in terminal nodes. The property of being possibly infinite refers to
the individual runs of the game, while the set of game states is finite. This is an
important class of games with many applications, but one that has not been studied
in great depth.

A direct application of stochastic games is in software design, specifically in
network flow control. Stochastic games are used to model dynamic control in queuing
networks. Solving the model for the network controller yields an efficient policy
which guarantees the best performance under the worst service conditions [1].

Another application is in robot control, where we model the robot (or rather a
group of robots) as one of the players, playing against the environment. This is espe-
cially effective in environments where the robots only have access to limited means
of communication with each other or cannot communicate at all. Stochastic games
may be used to represent distributions over other robots’ observations about the
world, thus minimizing the need for communication. The domain of this application
is more complex than the stochastic games studied in this thesis, as they are only
partially observable [3].

However, there are not many practical algorithms for solving this class of games.
The two standard algorithms are called value iteration and strategy iteration. The
basic idea behind these algorithms is propagating the values from terminal nodes to
nonterminal nodes through repeated iteration of values or strategy. However, these
algorithms have doubly exponential worst case complexity in number of iterations
[5].

Conversely, there has been a significant advancement in algorithms for solving
finite sequential games [2]. In this class of games, algorithms based on learning are
among the most successful. In this thesis, we explore the possibility of applying
learning algorithms to solving stochastic games. Then, we experimentally compare
performance of novel algorithms to existing value iteration algorithm on a collection
of example games.

Solving stochastic games is significantly harder than solving a sequential finite
game for several reasons; firstly, stochastic games are possibly infinite, meaning that
an instance of such game is not guaranteed to end. Secondly, nodes of a stochastic
game often have circular dependencies.

1

2 CHAPTER 1. INTRODUCTION

1.1 Overview

The first part of the thesis is dedicated to introducing the reader to required ter-
minology and theoretical basis. As we are only interested in two-player games, all
definitions in this thesis are chosen with that in mind. However, most of them can
be (and often are) generalized to n-player games.

Then, we describe the type of games we are interested in and define what solving
a game means - formally, we want to find a strategy with the best possible average
guaranteed outcome provided both players play optimally.

Second part of the thesis focuses on description of an original method of solving
the type of games described in the first part. This includes chapters 4 through 6.

The last part of the thesis presents a comparison of the proposed algorithms and
the standard method of value iteration. First, the experimental domain is described
in Chapter 7. The results and their analysis are then laid out in Chapter 8.

Chapter 2

Theoretical background

In order to properly describe the algorithms and ideas in this thesis, we need to
define some crucial terms. We use definitions from [6], most of which have been
modified to suit two-player games only. This section describes essentials of game
theory and provides necessary theoretical background. First, we define normal-form
and extensive-form games, as they are necessary for understanding later algorithms.

Additionally, we need to define what a zero-sum game is, gain basic insight into
what a strategy means in different classes of games and present an algorithm to
calculate strategy in extensive-form games.

We define best response and Nash equilibrium in order to be able to explain how
to solve normal-form games.

2.1 Normal-form game

The key representation of a game in game theory is called Normal-form game (NFG).
Definition: A finite, 2 -person normal-form game is a tuple (N,A, u), where:

• N is a set of two players, indexed by i (and additionally j, where i 6= j)
N = {1, 2}.

• A = A1 × A2, where Ai is a finite set of actions available to player i. Vector
a = (a1, a2) ∈ A is called an action profile.

• u = (u1, u2) where ui : A 7→ R is a real-valued utility function for player i.

One way (perhaps the most common) to represent normal form games is a matrix.
An example of such game would be the Prisoner’s Dilemma in Figure 2.1.

Cooperate Defect
Cooperate 5, 5 0,3
Defect 3, 0 1,1

Figure 2.1: A game of Prisoner’s Dilemma

In matrix games the actions of two players correspond to rows and columns
of the matrix; the elements of the matrix itself specify the utility of outcomes for
respective players. Here, we have two players (row player and column player) who
both have the choice of either cooperating with the other player or defecting. Both

3

4 CHAPTER 2. THEORETICAL BACKGROUND

players choose their action without having any knowledge about their opponent’s
choice. After that, they receive utility as specified in the matrix (sometimes also
called Payoff matrix).

In this thesis, we often refer to a single instance of a normal-form game as a
concurrent (move) node (CM).

2.2 Zero-sum game

Definition: A two-player game is zero-sum if the following statement holds: for
each action (strategy) profile a ∈ A1 ×A2 it is the case that u1(a) + u2(a) = 0.

In other words, a game is zero-sum if first player’s gain is exactly equal to the
second player’s loss.

2.3 Extensive-form game

Normal-form games themselves have no concept of turns, as both players only play
once. To introduce sequential play, we must first define extensive-form games.

Definition: A finite, 2 -person extensive-form game (EFG) is a tuple (N,A,H,Z,
χ, ρ, σ, u), where:

• N is a set of two players, indexed by i (and additionally j, where i 6= j)
N = {1, 2}.

• A is a single set of actions.

• H is a set of nonterminal choice nodes.

• Z is a set of terminal nodes. (Z ∩H = ∅)

• χ : H 7→ 2A is the action function, which assigns to each choice node a set of
possible actions.

• ρ : H 7→ N is the player function, which assigns to each nonterminal node a
player who chooses an action at that node.

• σ : H × A 7→ H ∪ Z is the successor function, which maps a choice node and
an action to a new choice node or terminal node such that ∀h1, h2 ∈ H and
∀a1, a2 ∈ A, if σ(h1, a1) = σ(h2, a2) then h1 = h2 and a1 = a2.

• u = (u1, u2) where ui : Z 7→ R is a real-valued utility function for player i and
u1 = −u2.

Unlike normal-form game, extensive-form game is best visualized using a tree
graph, which inherently encompasses the sequentiality as introduced by σ. See
Figure 2.2 for an example with players A and B. In this game, player A is the first
player; his choice of action decides the node player B gets to play after that.

Extensive-form games as defined above are often also called perfect information
extensive-form games.

2.4. STRATEGY AND STRATEGY PROFILE 5

Figure 2.2: An extensive-form game

2.4 Strategy and strategy profile

Definition: Let (N,A, u) be a normal-form game, and for any set X let Π(X) be
the set of all probability distributions over X. Then the set of (mixed-)strategies for
player i is Si = Π(A).
Definition: A (mixed-)strategy profile is the Cartesian product of individual strat-
egy sets, Si × Sj .
Definition: A pure strategy is such strategy that assigns one of the possible actions
probability of 1.

Consider again the game in Figure 2.1. Always playing Cooperate would be a
pure strategy. Playing Cooperate and Defect with equal probabilities is a mixed
strategy.

For extensive-form games, the definition is different, because it may be beneficial
for the player to choose a different action at different nodes.
Definition: Let G = (N,A,H,Z, χ, ρ, σ, u) be an extensive-form game. Then the
pure strategies of player i consists of the Cartesian product∏

h∈H,ρ(h)=i χ(h)

that is, a pure strategy is a vector which assigns an action to each node where
that player is supposed to choose an action.

A mixed strategy for player i is a probability distribution over his set of pure
strategies. For example, in Figure 2.2 player A has two possible pure strategies;
{(0), (1)}. On the other hand, player B has four - {(0, 0), (0, 1), (1, 0), (1, 1)}.

For extensive-form games, we can also define the concept of a behavioral strategy.
Rather than randomizing over pure strategies, a behavioral strategy is a strategy in
which the player randomizes in each node independently. For the game in Figure
2.2, (0.3 · (0, 0), 0.7 · (0, 1)) is one example of a mixed strategy for player B, whereas
playing action 0 with probability 0.1 and action 1 with probability 0.9 is an example
of a behavioral strategy.

2.5 Solving a game

When we talk about solving a game, it means we are searching for a strategy (usually
for one player - the maximizer) that gives the player certain guarantees. Consider

6 CHAPTER 2. THEORETICAL BACKGROUND

a game in which we have to choose a strategy before we are assigned an opponent
and before we actually play. We cannot make any assumptions about how the other
player is going to play, because if it turned out to be incorrect, we would likely end
up with an unfavorable result.

Therefore, we want a strategy that will have the property of being ”good” re-
gardless of how our opponent would play. That is, it will guarantee us a mini-
mum utility we can expect to gain and, preferably, this value will be the maxi-
mum of all such strategies. That is, we are searching for the maximin strategy
argmaxsi minsj ui(si, sj).

The mechanism of finding the maximin strategy is different in NFG and EFG,
therefore, we describe them separately.

2.6 Best response and Nash equilibrium

Definition: Player i’s best response to the strategy sj is a mixed strategy s∗i ∈ Si
such that ui(s

∗
i , sj) ≥ ui(si, sj) for all strategies si ∈ Si.

Given a strategy of his opponent, a player’s best response is such strategy that
is not worse than any other strategy available to that player.

Definition: A strategy profile s = (si, sj) is a Nash equilibrium if for player i si is
a best response to sj and for player j sj is a best response to si.

Nash equilibrium is such couple of strategies that neither player can benefit form
changing their strategy. Normal form games do not necessarily have a unique Nash
equilibrium, but it can be shown that every finite game has at least one. This is
an important result, because, in some sense, Nash equilibrium strategy is the best
guarantee a player can have without making assumptions about the other player in
games that are zero-sum.

As an example, we can try to find the Nash equilibrium of the previously shown
Prisoner’s dilemma game. Let us consider only pure strategies. If the row player
chooses to cooperate, then the column player’s best response would be to defect.
But so is the case when the row player defects, therefore, the column player’s best
response is to always defect. Identical reasoning works for the row player and so
defecting is the mutual best response. It is obvious that no player can benefit
from assigning cooperation probability higher than zero. Therefore, it is a Nash
equilibrium strategy profile.

Nash equilibrium does not necessarily have to exists for pure strategies only,
for that reason, we must also consider mixed strategies.In that case, finding Nash
equilibria becomes slightly more complicated. In case of zero-sum two-player games,
they can be found using linear programming. We use the following formulation:

2.7. ALGORITHMS FOR SOLVING EXTENSIVE-FORM GAMES 7

minimize U∗1 (2.1)∑
j∈A2

u1(a
k
1, a

j
2)s

j
2 ≤ U

∗
1 ∀k ∈ A1 (2.2)

∑
j∈A2

sj2 = 1 (2.3)

sj2 ≥ 0 ∀j ∈ A2 (2.4)

Solving this linear program yields equilibrium strategy for one of the players as
well as the utility for the other player. Similar program can be constructed that
reverses the roles of players.

2.7 Algorithms for solving extensive-form games

The standard algorithm for solving perfect-information extensive-form games is
called backward induction. As the name implies, it involves propagating the tree
node values from bottom to top. Since the utilities at terminal nodes are known, we
can calculate values of nodes one step higher, by choosing the value most favorable
for given player.

We can then effectively replace this node by its value and continue with the
calculation, all the way up to the root node. Consider again Figure 2.2. Let us
suppose that player B is the minimizer, that is, he tries to minimize his utility. By
following Algorithm 1 for his two nodes, we get Figure 2.3. After performing another
step of backward induction, we arrive at the result of 0 in the root node, meaning
that the value of the game is equal to 0.

This algorithm also reveals the equilibrium strategy for this game [6]. We can
obtain it by keeping track of which action leads to bestUtility (Algorithm 1 lines 14
and 17) and then constructing a pure strategy of this action at given node.

Many improvements to this basic algorithm have been presented, such as α− β
pruning, Negamax, Negascout and others.

Figure 2.3: Partially solved extensive-form game

2.8 Solving extensive-form games with concurrent moves

CM-EFG is an extensive-form game where one or more nodes have been replaced
with a concurrent move node. The basic idea for solving such game is very similar
to solving EFGs (Section 2.7). However, when encountered with a concurrent node,
calculating its value is not as simple as choosing the value of the best child.

8 CHAPTER 2. THEORETICAL BACKGROUND

Algorithm 1 Backward Induction

1: function BackwardInduction(node)
2: if node is terminal then
3: return utility of node
4: end if
5: player = ρ(node)
6: if player is maximizer then
7: bestUtility = −∞
8: else
9: bestUtility = ∞

10: end if
11: for all child of node do
12: childUtility = BackwardInduction(child)
13: if player is maximizer and childUtility > bestUtility then
14: bestUtility = childUtility
15: end if
16: if player is minimizer and childUtility < bestUtility then
17: bestUtility = childUtility
18: end if
19: end for
20: return bestUtility
21: end function

When solving a normal-form game, we are usually searching for the maximin
strategy. Naturally, such strategy is found in a Nash equilibrium of the given game
[6]. Several algorithms have been proposed to find Nash equilibria of two-player,
zero-sum games, such as solving the linear program shown in section 2.6.

In this case, then, we must calculate the Nash equilibrium strategy and its value.
We can then again use that value in place of the node and continue with backward
induction.

Chapter 3

Stochastic games

Games we are interested in for this thesis have some special properties. First of all,
the games fall into the two-player category. Next, the games we are studying are
stochastic, meaning they are, in part, random. An example of this would be a game
of tic-tac-toe where the starting player is decided by a coin toss.

A very important property of the games is that they are (possibly) infinite. That
is, there exists such vector of strategy profiles ŝ = (s1, . . . sq) (a profile for each stage
game in the studied game) that will ensure the game will never reach a terminal
state.

3.1 Definition, example

Definition: A stochastic game is a tuple (Q,N,A, P, Z, u), where:

• Q is a finite set of stage games. These games may correspond to matrix games,
be chance nodes or player nodes.

• N is a set of two players, indexed by i (and additionally j, where i 6= j)
N = {1, 2}.

• A = A1
1× . . .×A

q
1×A1

2× . . .×A
q
2, where Aki is a finite set of actions available

to player i in game k ∈ Q.

• Z is a set of terminal nodes. Z 6= ∅.

• u is a terminal node utility function u: Z 7→ R.

• P : Q × A × (Q ∪ Z) 7→ [0, 1] is the transition function. P (q, a, q̂) is the
probability of transitioning from q to q̂ after action profile a.

These games therefore contain four basic elements: Matrix games (NFG), player
nodes, where one of the players chooses an action, chance nodes, where no player
chooses an action but instead the outcome is decided randomly (based on probabil-
ities) and terminal nodes.

Instead of receiving utility after chosing actions, the players are taken to play
another stage game based on the chosen actions or an element of randomness in
case of chance nodes. This in practice means that the games may be infinite and
will only end if the state of the game moves into a terminal node, where each of the
players receives utility.

9

10 CHAPTER 3. STOCHASTIC GAMES

Furthermore, the games could be classified as recursive games with randomness.
That is, they are finite sets of ”game elements” (Q∪Z), which are either real numbers
(utility in terminal nodes) or another game of the set, but not both. It can be shown
that if every game element posseses a solution, then the recursive game posseses a
solution as well [4].

Another way to look at the games is from a reachability perspective. One player’s
goal is to reach a certain set of terminal states and the other player’s goal is to prevent
that from happening (so called safety condition). Additionally, the other player may
too have a set of terminal states that they are trying to reach.

Every game has at least one terminal node. At each terminal node player utility
is defined (as the games are also zero-sum, utility of player j is equal to minus utility
of player i, let us call player i the maximizer and player j the minimizer). Usually,
we look at those terminal nodes from perspective of the maximizer. A terminal node
that is favorable to that player (utility is greater than zero) is often called a goal
node, while a terminal node with utility less than zero is called a trap.

As an example, consider Figure 3.1, a game called Dante’s purgatory [5]. Here,
player 1’s goal is to reach state 3. Player 2 is trying to prevent that while also striving
to reach state 4. States 1 and 2 are concurrent nodes, meaning that both players
have to choose their action before the next state can be determined. The numbers
in the matrices correspond to the result of function P for given combinations of
actions.

At state 1 and 2, both players have two actions available, 0 and 1. Note that
this game lacks an element of randomness. The values in terminal nodes 3 and 4
are player utilities.

Figure 3.1: Dante’s purgatory

3.2 Computing strategy

Computing the values (and thus the strategy) of nodes in a stochastic game is sig-
nificantly harder than solving normal-form games or extensive-form games, despite
having relatively similar structure to EFGs. Backward induction as described in
Algorithm 1 will not work in the general case, because the algorithm would possibly
never terminate.

3.2. COMPUTING STRATEGY 11

If we assume knowledge of node values for all nodes in a game except the one
we are trying to calculate, we can calculate the value according to Algorithm 3. In
one-player nodes, the player simply selects the successor with the most beneficial
value. In concurrent play nodes, we calculate the Nash equilibrium value. For
chance nodes, the value is the sum of successor values multiplied by their respective
probabilities.

However, because the calculations of values can be dependent on each other, we
cannot simply propagate the values as we do in backward induction. Instead, we
are forced to iterate the process, thus improving the values in each iteration. There
are two best-known algorithms for solving stochastic games. Perhaps the most
standard algorithm for doing so is called value iteration, described in Algorithm 2.
The SolveNode function is described in Algorithm 3.

The iteration needs an initial point to start from (line 2), in most cases we
choose to start from 0 for all nonterminal states, but any value would work. Indeed,
having a good estimate value before starting to iterate can speed up the process
substantially (as we show in Chapter 8).

In each iteration of the algorithm, value of every node is recalculated using vector
of values from the previous iteration (line 6). Thus, we only need to store k real
numbers, where k is the number of nodes in the game.

Algorithm 2 Value iteration

1: S = Set of all nodes
2: values0 = Initial values
3: i = 0
4: while valuesi 6= valuesi−1 do
5: for s ∈ S do
6: valuesi[s] = SolveNode(s, valuesi−1)
7: end for
8: i = i+ 1
9: end while

The other algorithm is called strategy iteration, described in Algorithm 4. In
strategy iteration, we iterate strategically, meaning we are improving the players’
strategy in each iteration, as opposed to only calculating the value of the nodes.
µ(s1, s2) on line 7 denotes the probability of player 1 reaching goal, given the players
play the strategy profile (s1, s2). Maximin strategy (needed on line 14) is the Nash
equilibrium strategy for player 1.

In both algorithms, we iterate until the convergence is reached. In practice
however, this may be a very lengthy process; usually, we do not iterate until the
values are stable, but rather until they only change by a very small amount (ε>0).
Both algorithms also have the property that as i approaches infinity, the values
approach the correct values.

In fact, the worst case complexity of the algorithms is doubly-exponential. This
phenomenon can be observed on Dante’s purgatory[5]. Therefore, we are searching
for algorithms with lower complexity, or at least with better performance in the
general case.

12 CHAPTER 3. STOCHASTIC GAMES

Algorithm 3 Calculating node values

1: function SolveNode(node, values)
2: if node is a terminal node then
3: return utility of node
4: else if node is a chance node then
5: value = 0
6: for all children of node do
7: value = value + values[child] × probability of child
8: end for
9: return value

10: else if node is a concurrent play node then
11: matrix = game matrix of node with values filled in
12: value = NashEquilibriumValue(matrix)
13: return value
14: else if node is a maximizer node then
15: value = -∞
16: for all children of node do
17: if values[child] > value then
18: value = values[child]
19: end if
20: end for
21: return value
22: else if node is a minimizer node then
23: value = ∞
24: for all children of node do
25: if values[child] < value then
26: value = values[child]
27: end if
28: end for
29: return value
30: end if
31: end function

3.2. COMPUTING STRATEGY 13

Algorithm 4 Strategy iteration

1: N = Set of all nodes
2: s01 = strategy for player 1 playing uniformly at each node
3: i = 0
4: while true do
5: si2 = optimal best reply by player 2 to si1
6: for n ∈ N do
7: valuesi[n] = µ(si1, s

i
2)

8: end for
9: i = i+ 1

10: for concurrent node n ∈ N do
11: matrix = game matrix of node with values filled in
12: value = NashEquilibriumValue(matrix)
13: if value > valuesi−1[n] then
14: si1[s] = maximin(matrix)
15: end if
16: end for
17: end while

Chapter 4

Serializing stochastic games

In order be able to apply algorithms used on sequential games, we have to make the
stochastic game finite. One such way is to ”serialize” the game.

Serialization of stochastic games is an idea of approximating possibly infinite
games with finite games, namely extensive-form games with concurrent moves. This
way we obtain a game that we already have theoretical foundations for solving, by
using estabilished algorithms and methods described in Chapter 2.

4.1 Serialization

One algorithm to serialize a stochastic game is the Algorithm 5. In order to serialize
a stochastic game, we first have to choose the node that will be the root node
of the finite approximation. Any nonterminal node can be chosen as the root of
the serialization. When using this algorithm, we specify the depth of serialization.
The algorithm expands the game, starting from the root node. When a node with
successors is encountered, all its successors are copied (line 20) and expanded as well
(line 12). This process stops when nodes in path from the root have been used depth
number of times (line 17).

4.2 Description of the algorithm

The algorithm starts by copying the node selected as root of the serialization and
putting the copy on in the work queue (lines 4 and 5). Then, until the queue is empty,
we take the front of the queue and, if it is not a terminal node, copy its successors
and set the copied nodes as its new successors (CopyAndSetAllSuccessors function).

However, if any of the successor nodes have been copied depth times already,
we instead replace it with a terminal node containing the best known value of that
node as its utility (line 16). All copied nodes are put into the work queue after they
have been assigned as successors to their parent (line 9). The resulting game is then
effectively stored in the root node, as its graph is a tree.

Consider an example game as seen in Figure 4.1. Nodes 1 and 2 could be con-
current move nodes or one-player nodes (their exact type is not relevant for the
serialiaziation, only the fact that they have successors is), nodes 3 and 4 are termi-
nal nodes.

14

4.2. DESCRIPTION OF THE ALGORITHM 15

Algorithm 5 Serialization of a stochastic game

1: depth = User parameter of serialization depth
2: numUsed = Mapping of how many times each node has been used in serialization
3: workQueue = Queue of nodes to process
4: root = CopyNode(root)
5: workQueue.Add(root)
6: while workQueue is not empty do
7: currentNode = workQueue.RemoveFront()
8: if currentNode is a terminal node then
9: continue

10: end if
11: successors = CopyAndSetAllSuccessors(currentNode)
12: workQueue.AddAll(successors)
13: end while
14: function CopyAndSetAllSuccessors(node)
15: newNodes = empty list
16: for all successor of node do
17: if numUsed[successor] ≥ depth then
18: ReplaceSuccessor(node, successor, MakeTerm(successor))
19: else
20: copy = CopyNode(successor)
21: ReplaceSuccessor(node, successor, copy)
22: newNodes.Add(copy)
23: end if
24: return newNodes
25: end for
26: end function

16 CHAPTER 4. SERIALIZING STOCHASTIC GAMES

Figure 4.1: Example game

Serialized game created by this algorithm is a tree graph game. Nodes where the
graph would naturally continue but the node has been used maximum of allowed
times are replaced by the best known value for that node as a new terminal node.
See the game from Figure 4.1 serialized into a tree with depth = 3 in Figure 4.2.
The white node represents the best known value for nodes 1 and 2.

Figure 4.2: Example game serialized to a tree

To calculate value of nodes in the serialized game, we can use the backward induc-
tion algorithm (optionally with α−β pruning) described in Algorithm 6. Compared
to Algorithm 1, this implementation also supports concurrent play nodes and chance
node. As the serialized game contains no simple cycles, the algorithm is guaranteed
to finish.

4.3 Improvements

However, a closer inspection reveals that many subtrees are often repeated in the
serialized game. This could potentially cause the game to substantially increase in
size. Naturally, we should try to avoid duplicity where possible, thus, instead of
producing a tree graph, we should try to create a directed acyclic graph (DAG), as
its properties are identical to a tree as far as calculating the game value is concerned
and it does not suffer from the issue of duplicate subtrees.

The algorithm for serializing a stochastic game into a DAG is very similar to the
tree serialization, except this time, we keep a list of nodes that have not yet been

4.3. IMPROVEMENTS 17

Algorithm 6 Backward induction for serialized games

1: procedure BackwardInduction(node)
2: value = 0
3: if node is terminal then
4: value = node utility
5: else if node is a chance node then
6: for successor of node do
7: p = probability of successor
8: value += p × BackwardInduction(successor)
9: end for

10: else if node a maximizer node then
11: max = −∞
12: for successor of node do
13: successorValue = BackwardInduction(successor)
14: if successorValue > max then
15: max = successorValue
16: end if
17: end for
18: value = max
19: else if node a minimizer node then
20: min = ∞
21: for successor of node do
22: successorValue = BackwardInduction(successor)
23: if successorValue < min then
24: min = successorValue
25: end if
26: end for
27: value = min
28: else if node is a concurrent play node then
29: m = matrix of BackwardInduction values of successors
30: value = NashEquilibriumValue(m)
31: end if
32: return value
33: end procedure

18 CHAPTER 4. SERIALIZING STOCHASTIC GAMES

expanded (taken out of the workQueue, algorithm line 12). Whenever we would
copy a node in that list, we use that node instead. See Figure 4.3 for the earlier
example game serialized to a directed acyclic graph game using Algorithm 7. As
we can see, choosing DAG instead of tree saved us an instance of a 1 node (and
therefore all subtrees it would spawn).

Algorithm 7 SerializeGameDag

depth = User parameter of serialization depth
numUsed = Mapping of how many times each node has been used in serialization
workQueue = Queue of nodes to process
openList = Empty list
root = CopyNode(root)
workQueue.Add(root)
while workQueue is not empty do

currentNode = workQueue.RemoveFront()
if currentNode is a terminal node then

continue
end if
openList.Remove(currentNode)
successors = CopyAndSetSuccessors(currentNode, openList)
workQueue.AddAll(successors)

end while
function CopyAndSetSuccessors(node, openList)

newNodes = empty list
for all successor of node do

if numUsed[successor] ≥ depth then
ReplaceSuccessor(node, successor, MakeTerm(successor))

else
if successor not in openList then

copy = CopyNode(successor)
ReplaceSuccessor(node, successor, copy)
newNodes.Add(copy)

end if
end if
return newNodes

end for
end function

4.4. SERIALIZATION ITERATION 19

Figure 4.3: Example game serialized to a directed acyclic graph

To calculate the value of nodes, we can again use the backward induction algo-
rithm described in Algorithm 6. When we get the value of the root node, it can be
then used as a new best known value for that node in the original game.

4.4 Serialization iteration

Once we can serialize the game from any nonterminal node, we can iterate this
process. The complete algorithm serializes the game, using every nonterminal node
as a root node, improving the best values as it iterates. See Algorithm 8.

The algorithm’s outer loop works exactly like value iteration, but the means
of obtaining the value differs. The SerializeGameDag function serializes the game
according to Algorithm 7, using s as its root, depth as the maximum times any node
can be used and valuei as the currently best known values of nodes (valuei[k] for
k-th node) for when it has to replace a node by its value.

Algorithm 8 Serialization Value Algorithm

1: S = Set of nonterminal nodes
2: value0 = Vector of zeros
3: depth = Depth constant chosen by user
4: while max(|valuei − valuei−1|)>ε do
5: for node s ∈ S do
6: g = SerializeGameDag(s, depth, valuei)
7: valuei[s] = DFS(root of g)
8: end for
9: end while

Chapter 5

Serialization of concurrent play

Computing the Nash equilibria of matrix (concurrent) games is a costly operation,
because it requires us to solve a linear program, which consists of constructing
said program and then usually calling an external solver. Naturally, we should
think whether there exists a way that would allow us to quickly approximate the
value instead. One such approach is to serialize the concurrent play [2]. That is,
to approximate simulataneous play with a turn based game, effectively producing a
perfect-information extensive-form game.

5.1 Serializing a single concurrent stage

There are two different ways to serialize a concurrent play move in a two-player
game. One is to allow the first player to play first, thus giving the second player an
advantage of knowing his opponent’s move before choosing. The other way is where
the roles are reversed.

Let us asses the situation from one player’s perspective in both cases. When
the first player goes first, it is at a clear disadvatage; they will expose their strategy
before the other player gets to play. But with this in mind, the player can make such
decision that has the ability to prevent the worst of outcomes, essentially creating
the best worst-case scenario. By calculating its value, we get the lower-bound value
of the original game.

On the other hand, if the player gets to play second, they already know the
action taken by the other player and can therefore choose their action accordingly.
This produces the upper-bound value of the original game.

5.1.1 Example

Consider Figure 5.1 that shows an example concurrent play, zero-sum game, where
A is the maximizer and B is the minimizer. By serializing it, we obtain two games,
Figure 5.2 shows the lower bound game for player A, Figure 5.3 shows the upper
bound game for player A. By solving those games, we can observe that the lower
bound value of the original game is 0, while the upper bound value is 1, it therefore
follows, that the actual value of a Nash equilibrium must be between 0 and 1 (it is,
in fact, 0).

20

5.2. NOTES 21

Figure 5.1: Example zero-sum game

Figure 5.2: Lower bound game serialization

Figure 5.3: Upper bound game serialization

5.2 Notes

Note that when the lower bound value is equal to the upper bound value, then they
are also directly equal to the value of a Nash equilibrium of the original game. Since
the serialization and calculation of its values is a significantly simplier operation, it
allows us to quickly check whether this is possibly the case and thus obtaining the
value of a Nash equilibrium almost effortlessly.

Chapter 6

Application of serialization

By applying the concepts described in Chapters 4 and 5, we were able to design an
algorithm for solving stochastic games.

The algorithm works in two phases; in the first phase, the algorithm tries to
rapidly estimate the values of nodes using serialization of stochastic games and
serialization of concurrent play. The second phase refines the values, converging
towards the solution using value iteration.

6.1 First phase

The first phase takes advatage of serializing the game, as described in Chapter 4
as well as serializing concurrent play, as described in Chapter 5. In each iteration,
a sequence of steps is carried out for each nonterminal node. First, the node is
used as the root in a serialization into a DAG game. All concurrent play nodes in
this serialized game are then serialized into extensive-form lower and upper bound
games. Afterwards, the lower and upper bounds are calculated (using backward
induction described in Algorithm 6).

Once we know the lower and upper bound values for the given state, those values
are averaged (line 8) and this average is used as the new value of the node. Based
on experimental data, this works reasonably well, often producing the correct values
(as we will show in Chapter 8). See Algorithm 9 for implementation.

The algorithm iterates until a user-chosen codition is met. For example, this
could be a requirement for convergence, although convergence of values in this al-
gorithm does not necessarily bring meaningful information, as the algorithm itself
does not converge to the correct values. In practice, this algorithm is best run for
either a fixed number of iterations or time, simply because there are no guarantees
that the estimate gets better with more iterations.

The main reason we use this algorithm is that it is very quick. It gives us a value
estimate for each node, with no guarantee of how close to solution that estimate
is (when lowerBound and upperBound are equal, then the value is correct). It is
also the reason we should want to choose a rather small depth parameter (2 or 3 in
practice), as increasing the depth has a negative effect on the computational time
of each iteration due to increasing size of serialized DAG.

22

6.2. SECOND PHASE 23

Algorithm 9 First phase

1: S = Set of all nonterminal states
2: depth = Depth of serialization
3: bestValues = Mapping of best known values of states
4: repeat
5: for node s ∈ S do
6: g = SerializeGameDag(s, depth, bestValues)
7: lowerBound, upperBound = SerializeConcurrentPlay(root of g)
8: value = (lowerBound + upperBound) × 0.5
9: bestValues[s] = value

10: end for
11: until arbitrary condition is met

6.2 Second phase

After obtaining an estimate of the values from the first phase, the second phase is
present to improve the values with guaranteed convergence. It does so by using value
interation (Algorithm 2), where the initial values have been set to the output of the
first phase. This phase continues until ε-convergence is reached, meaning none of
the node values changed by more than ε> 0 from the previous iteration.

6.3 Both phases combined

The resulting algorithm is running phase one and phase two in sequence, using values
estimated by the first phase as the initial point for the second phase. See Algorithm
10. As the second phase has the same guarantees regarding convergence as value
iteration, the node values approach the correct values as the number of iterations
in second phase approaches infinity. However, this also means that the worst case
complexity is the same - doubly exponential.

Algorithm 10 Resulting algorithm

1: game = Game to solve
2: depth = Depth of serialization
3: value estimates = First phase(game, depth)
4: values = Value iteration(game, value estimates)

Chapter 7

Experimental domain

Because there is no public library of stochastic games, we had to generate a set of
games to experiment on. All experiments described in the next chapter have been
carried out on a set of games with the following two properties: randomly generated
and computationally interesting.

Every game in the set has the property of being non-trivial. This property
has been tested by running value iteration for 3 seconds. If the algorithm did not
ε-converge in that time (see Chapter 8 for specific values), the game is considered
computationally interesting. Some of the generated games also have a predetermined
number of given node types (e.g. chance nodes). This does not apply to all games
in the set however, as some of the games have the numbers generated randomly (up
to a fixed maximum).

All the games in the set have been generated by the algorithm described in Al-
gorithm 11, which parametrizes every game by 8 values: a seed, number of terminal
nodes, number of goal nodes, number of chance nodes, number of concurrent nodes,
number of maximizer nodes, number of minimizer nodes and the number of actions
available at each node. The algorithm first creates the nodes and then generates
transitions between them in a pseudo-random fashion.

The experiments in Chapter 8 were done on four types of games:

• Small games - 5 chance nodes, 7 concurrent play nodes, 2 actions available at
nodes, 1 single player node for each player.

• Medium games - 8 chance nodes, 15 concurrent play nodes, 2 actions available
at nodes, 3 player nodes for the maximizer, 2 player nodes for the minimizer.

• Large games - 10 chance nodes, 20 concurrent play nodes, 3 actions available
at nodes, 5 player nodes for each of the players.

• Random games with a maximum of 60 nodes in total and a maximum of 5
actions available at each node.

Even the large games are relatively small in number of nodes, but the difference
is sufficient to demonstrate differences between the tested algorithms.

24

25

Algorithm 11 Game generator

1: goal = terminal node with utility 1
2: trap = terminal node with utility -1
3: chanceNodes = list of chance nodes
4: concurrentNodes = list of concurrent nodes
5: player1Nodes = list of player nodes
6: player2Nodes = list of player nodes
7: allNodes = goal ∪ trap ∪ chanceNodes ∪ concurrentNodes∪
8: player1Nodes ∪ player2Nodes
9: for all chanceNode ∈ chanceNodes do

10: successorCount = RandomNumber(low, high)
11: distribution = RandomDistribution(successorCount)
12: connections = SelectRandomNodes(sucessorCount, allNodes)
13: chanceNode.probabilities = distribution
14: chanceNode.successors = connections
15: end for
16: for all concurrentNode ∈ concurrentNodes do
17: for i = 1 .. numActions do
18: connections = SelectRandomNodes(numActions, allNodes)
19: concurrentNodes.successors[i] = connections
20: end for
21: end for
22: for all player1Node ∈ player1Nodes do
23: player1Node.successors = SelectRandomNodes(numActions, allNodes)
24: end for
25: for all player2Node ∈ player2Nodes do
26: player2Node.successors = SelectRandomNodes(numActions, allNodes)
27: end for

Chapter 8

Experimental results

Three algorithms were selected for comparison. From the standard algorithms, value
iteration (VI) was chosen. Second algorithm was the one described in Chapter 6,
which we will call value iteration with estimation (EST+VI) in this chapter. The
last algorithm compared is serialization iteration, as described in Algorithm 8, also
with value estimation (EST+SER).

The algorithms were allowed to run for up to 600 seconds before being stopped.
The ε for double precision comparison used was set to 10−15. All references to
algorithm convergence in this chapter are with respect to this ε value. All the
compared algorithms were implemented in Java using a single core. Experiments
were done on a machine equipped with Intel i5-3210M @ 2.5 GHz CPU and 16 GB
of RAM. Linear programs were solved using the IBM ILOG CPLEX v12.4 library.

Though the convergence of EST+SER is not proven or otherwise guaranteed,
the values it produces have been experimentally used as the initial point in value
iteration as a weak check of convergence. In all cases where EST+SER converged,
using the values produced as the initial point for VI resulted in convergence after
one iteration.

In total, 112 games were selected for experimental comparison. We selected 24
small games, 28 medium games, 32 large games and 28 random games. The config-
uration of EST and SER was set to depth = 2. In both EST+VI and EST+SER,
the first phase was allowed to run for up to 1

30 of the time - 20 seconds. The reason
we chose this figure is twofold: On one hand, there is no guarantee that the EST
phase is doing calculations that are actually helpful in determining the correct val-
ues, therefore letting the EST phase have a greater fraction of the total computing
time is a risk (as it would take time away from the phase two algorithms). On the
other hand, we did want to demonstrate that it can very powerful, and this figure
seemed appropriate based on experimental data.

8.1 Measured data

Because the concept of an iteration is very different for the EST+SER and VI
algorithms and therefore it would not make sense to compare them using the number
of iterations it took for the algorithms converge, we compare their performance based
on their runtime in seconds.

Out of the 112 games, VI converged in 15 cases. In those 15 cases, 3 instances
were small games, 3 medium games, 6 large games and 3 random games. EST+VI

26

8.2. DETAILED EXAMPLES 27

converged in 90 cases: 23 out of 24 small games, 24 out of 28 medium games, 21
out of 32 large games, 22 out of 28 random games. Lastly, EST+SER converged in
98 cases; 24 out of 24 small games, 26 out of 28 medium games, 23 out of 32 large
games and 25 out of 28 random games.

Both EST+VI and EST+SER therefore show a substantial improvement in per-
formance over VI on the experimental set of games, but the effect does seem to
diminish as the games get larger. This fact could be caused by poor scaling of the
EST algorithm, although more data would be necessary to confirm such hypothesis.

Tables 8.1, 8.2, 8.3 and 8.4 show the time in seconds needed for the algorithms
to converge on given game instances. If an algorithm did not converge within the
600 seconds’ time, the respective element in the table is left blank. The seeds listed
uniquely identify a game of given type. They are the same seeds we used to generate
those games.

It is interesting to note that EST+SER converged on several games where
EST+VI did not (e.g. small game seed 77). Such phenomenon suggests that
EST+SER exploits some properties of the games that EST+VI can not. Further
research on this algorithm could explain the behavior.

Tables 8.5, 8.6, 8.7, 8.8 show the number of iteration until convergence for the VI
and EST+VI algorithms. If the algorithm did not converge, the number of iterations
shown is the number of iterations completed by the 600 seconds mark.

Even though iterations of the estimation algorithm and iterations of value iter-
ation are hard to compare, the results show a clear trend: whenever VI solved a
game, EST+VI also solved the game, while requiring strictly fewer VI iterations to
do so, implying the estimation was closer to the solution than vector of zeros.

8.2 Detailed examples

Let us compare three example games in greater detail for the VI and EST+VI
algorithms.

First of the selected examples is one of the large games, seed 155 and the value
of its node 3 in number of iterations. See Figure 8.1. The correct value of the node
is roughly 0.714. EST+VI algorithm is clearly faster, calculating the value correctly
to 3 decimal places within 100 iterations. Similar precision can be reached only after
around 850 iterations of VI.

The second example is one of the small games - seed 10, node 2. See Figure 8.2
for plot of precision against number of iteration. In this case, the correct value of
the node is roughly equal to 0.478. EST+VI reaches precision of 3 decimal places
after 1450 iterations, whereas VI needs more than 16000 iterations to reach similar
precision.

In both examples, the trend of convergence is very similar (on a logarithmic
scale) for both algorithms. It is obvious that the EST+VI algorithm is superior
in these cases. The EST phase provides a speed-up factor of nearly an order of
magnitude.

On the other hand, consider large game seed 141, node 3, in Figure 8.3. There,
the trends appear to follow the previous examples until about 600 iterations (where
the EST phase ends). From there, the performance of EST+VI is the same as that
of VI.

28 CHAPTER 8. EXPERIMENTAL RESULTS

Seed VI EST+SER EST+VI

3 — 10.015 8.203
8 — 0.169 0.06
9 — 0.094 0.017
10 42.287 10.355 7.57
12 3.073 1.608 1.168
14 — 0.356 0.225
16 — 0.295 0.186
26 — 0.478 0.113
44 — 20.079 17.174
60 — 0.211 0.134
63 — 0.161 0.084
71 4.976 1.707 1.039
72 — 0.113 0.054
77 — 1.734 —
84 — 0.129 0.065
86 — 0.745 0.554
104 — 0.219 0.132
111 — 0.953 0.619
118 — 0.151 0.101
128 — 0.081 0.053
137 — 1.174 1.017
142 — 275.853 36.921
144 — 0.276 0.272
146 — 0.271 0.267

Table 8.1: Small games time compar-
ison table

Seed VI EST+SER EST+VI

3 — 1.731 2.778
6 — 2.201 1.808
7 — 0.814 0.576
14 — 3.180 2.766
16 — 0.531 0.268
27 — 1.414 0.998
28 — 2.731 2.139
36 13.461 11.998 9.029
37 — 2.976 2.423
46 6.051 0.795 0.545
56 — 0.595 0.338
57 — 7.155 —
59 — 0.266 0.142
64 — 3.829 3.107
65 — 6.385 4.99
68 — 1.058 0.742
75 — 0.665 0.404
76 — 1.048 0.709
85 — — —
91 — 0.862 0.687
96 — 0.515 0.357
115 5.481 0.650 0.421
120 — 1.134 0.881
123 — 3.080 2.685
156 — 3.026 —
159 — 16.011 8.598
165 — — —
167 — 1.783 1.206

Table 8.2: Medium games time com-
parison table

As previously stated, it would be misleading to compare the algorithms based
only on the number of iterations. In Table 8.3 we can see that EST+VI and VI
have similar run times on game 141, despite EST+VI performing fewer iterations in
total. Although the EST phase only ran for 605 iterations, VI calculated over 6000
iterations in the same amount of time.

8.2. DETAILED EXAMPLES 29

Figure 8.1: Large game (seed 155, node 3)

Figure 8.2: Small game (seed 10, node 2)

30 CHAPTER 8. EXPERIMENTAL RESULTS

Figure 8.3: Small game (seed 10, node 2)

8.2. DETAILED EXAMPLES 31

Seed VI EST+SER EST+VI

127 — 5.531 3.945
130 185.797 — 187.759
131 — 23.389 20.121
133 — — —
135 — — —
137 — 7.647 —
139 — — 20.221
141 54.903 414.061 59.519
142 — 71.425 —
143 — — —
146 — 6.662 5.322
147 7.385 20.365 20.083
148 — 2.817 2.393
152 — 75.175 —
155 330.073 12.111 11.069
159 30.651 150.821 31.923
161 86.958 1.732 1.256
166 — 5.386 4.205
169 — 20.645 19.68
173 — — —
175 — 4.529 4.072
179 — 24.158 20.361
182 — — —
184 — 6.214 5.173
192 — — —
198 — 15.034 15.120
199 — 24.080 —
205 — 6.865 6.073
208 — 88.337 20.91
215 — — —
216 — 21.324 20.072
217 — 10.559 8.677

Table 8.3: Large games time compar-
ison table

Seed VI EST+SER EST+VI

5 — 3.725 —
8 — 0.862 0.716
9 — — —
16 — 0.219 0.175
18 — 0.542 0.601
30 9.832 21.685 20.105
32 14.038 70.181 22.733
44 — 2.979 0.719
48 — 1.043 1.011
57 — 0.572 0.236
67 — — —
73 — — —
74 — 1.358 0.454
78 — 3.041 2.821
79 — 61.171 —
80 — 0.640 0.486
83 — 0.904 0.239
93 — 7.019 4.689
105 — 0.589 —
109 — 5.749 2.114
110 — 1.046 0.340
112 — 0.18 0.121
114 5.189 50.207 9.795
117 — 2.039 0.935
124 — 8.797 4.838
128 — 1.692 1.095
131 — 0.226 0.19
137 — 0.109 0.061

Table 8.4: Random games time com-
parison table

32 CHAPTER 8. EXPERIMENTAL RESULTS

Seed VI EST+VI

3 > 650488 6803 + 77
8 > 644050 52 + 1
9 > 806261 14 + 1
10 51553 5607 + 1
12 4207 831 + 3
14 > 709121 362 + 8
16 > 678501 123 + 5
26 > 671679 50 + 51
44 > 644645 10243 + 1
60 > 568116 84 + 1
63 > 625912 97 + 3
71 6381 1118 + 20
72 > 648902 51 + 1
77 > 655767 > 49 + 605212
84 > 707445 34 + 1
86 > 787160 299 + 2
104 > 633750 103 + 1
111 > 665815 269 + 6
118 > 700366 50 + 1
128 > 876636 31 + 1
137 > 800542 389 + 11
142 > 707474 17271 + 21686
144 > 663424 124 + 3
146 > 650350 168 + 7

Table 8.5: Small games number of it-
erations comparison table

Seed VI EST+VI

3 > 316608 178 + 2
6 > 355229 207 + 2
7 > 248968 90 + 3
14 > 333406 315 + 9
16 > 366947 44 + 2
27 > 287119 136 + 10
28 > 366138 335 + 6
36 7958 1454 + 8
37 > 332865 362 + 3
46 3072 93 + 1
56 > 320462 52 + 2
57 > 298701 > 744 + 369018
59 > 342352 19 + 1
64 > 285442 411 + 2
65 > 308322 652 + 15
68 > 300028 111 + 5
75 > 334268 71 + 3
76 > 372349 117 + 3
85 > 323177 > 3527 + 284228
91 > 323142 78 + 1
96 > 321303 50 + 1
115 344 52 + 4
120 > 333939 112 + 2
123 > 355405 476 + 3
156 > 331153 > 48 + 306785
159 > 305674 1582 + 22
165 > 321810 > 71 + 304857
167 > 406402 176 + 11

Table 8.6: Medium games number of
iterations comparison table

8.2. DETAILED EXAMPLES 33

Seed VI EST+VI

127 > 229328 173 + 8
130 66203 810 + 59812
131 > 215719 880 + 43
133 > 225915 > 846 + 235765
135 > 219263 > 808 + 217487
137 > 207357 > 27 + 217575
139 > 216200 779 + 38
141 19653 817 + 14601
142 > 215502 > 885 + 200730
143 > 190637 > 810 + 182364
146 > 214156 244 + 8
147 2033 798 + 18
148 > 212380 75 + 1
152 > 212109 > 822 + 205265
155 109601 436 + 5
159 9954 745 + 3765
161 28800 54 + 2
166 > 201429 129 + 6
169 > 206229 733 + 13
173 > 187851 > 842 + 194402
175 > 191286 141 + 8
179 > 108629 729 + 128
182 > 219862 > 848 + 188404
184 > 195083 209 + 3
192 > 215529 > 749 + 197653
198 > 213067 614 + 6
199 > 214688 > 775 + 187726
205 > 225195 239 + 6
208 > 227773 866 + 222
215 > 209248 > 618 + 182049
216 > 214791 761 + 15
217 > 212956 321 + 12

Table 8.7: Large games number of it-
erations comparison table

Seed VI EST+VI

5 > 2044740 > 628 + 1906578
8 > 488387 50 + 3
9 > 347622 > 111 + 262020
16 > 558529 18 + 1
18 > 1535545 64 + 1
30 19430 2119 + 142
32 9796 692 + 1592
44 > 385162 23 + 69
48 > 340973 51 + 1
57 > 637780 19 + 1
67 > 256729 > 549 + 234069
73 > 330666 > 1281 + 379210
74 > 1974642 62 + 240
78 > 329530 114 + 1
79 > 337393 > 1031 + 277547
80 > 796677 113 + 1
83 > 1233892 26 + 95
93 > 539530 802 + 43
105 > 4406529 > 47 + 3686992
109 > 376768 70 + 41
110 > 1375031 57 + 112
112 > 486283 21 + 1
114 5058 923 + 3801
117 > 527152 391 + 2
124 > 353641 371 + 2
128 > 519090 173 + 5
131 > 712752 22 + 1
137 > 3823240 12 + 5

Table 8.8: Random games number of
iterations comparison table

Chapter 9

Conclusion

Two-player zero-sum stochastic games with utilities in terminal nodes are an im-
portant type of games with many applications in other parts of computer science.
The goal of this thesis was to design an algorithm for solving two-player zero-sum
stochastic games using the ideas applied to solving sequential finite games and to
experimentally compare its performance with estabilished algorithms on a set of
games.

First, we described the basics of game theory, including solution concepts for
normal-form and extensive-form games. Next, we described stochastic games and
common algorithms for solving them. Then, we presented an algorithm for serializing
stochastic games in order to make them finite and described the process of serializing
concurrent play and computing lower and upper bound values of a matrix game.

Because there is no public library of stochastic games, we created an algorithm
to generate a diverse set of stochastic games to experiment on. By combining serial-
ization of stochastic games and serialization of concurrent play with value iteration,
we designed a two-phase algorithm for computing the values of stochastic games.
While the algorithm presented in Chapter 6 has the same worst case complexity as
value iteration - doubly exponential, the value estimation phase can greatly improve
the performance in practice, as seen on the experimental data in Chapter 8.

Three algorithms were experimentally compared on a set of 112 games. Mea-
sured data shows promising results of value estimation, in many cases significantly
reducing the time needed by value iteration to reach ε-convergence. Even though the
estimation has no theoretical guarantees, it seems to be very powerful. The experi-
mental data also suggests that the serialization iteration algorithm could be a viable
alternative to value iteration, but no proof of its convergence exists. However, more
research regarding scaling of both algorithms on even larger games needs to be done
before the algorithms could be used in applied research or real world applications.

34

Bibliography

[1] Flow control using the theory of zero sum markov games. Queueing Systems, 23,
1996.

[2] Branislav Bošanský. Iterative Algorithms for Solving Finite Sequential Zero-Sum
Games. PhD thesis, Czech Technical University in Prague.

[3] Rosemary Emery-Montemerlo, Geoff Gordon, and Jeff Schneider. Game theoretic
control for robot teams. Robotics and Automation, 2005.

[4] H. Everett. Recursive games. Annals of Mathematics Studies, 39, 1957.

[5] Kristoffer Arnsfelt Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. The
complexity of solving reachability games using value and strategy iteration. 2010.

[6] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems. Cambridge Uni-
versity Press, 2009.

35

Appendix A

Contents of the attached CD

The attached CD contains source code files of our framework, including Java imple-
mentations of the algorithms described in this thesis. It also contains all files with
experimental data, along with a runnable jar file which can be used to reproduce
the experimental data. Running the jar requires IBM ILOG CPLEX optimization
studio.

All solver algorithms reside inside the solving package, the set of games used for
experiments can be found inside the domain.GameSet class. The utility.GamePrinter
class can be used to construct a Graphviz file representing a game, it will also auto-
matically produce a PNG image file if Graphviz is added to the PATH environment
variable.

Example usage of the jar file: java -Djava.library.path=”<path to IBM CPLEX>”
-jar algorithmComparison.jar. Running this command will reproduce the values in
the tables in Chapter 8 by running the three algorithms for a maximum of ten min-
utes on each of the games in the experimental game set. Output will be saved to a
folder named ’results’ in the current working directory.

36

	Introduction
	Overview

	Theoretical background
	Normal-form game
	Zero-sum game
	Extensive-form game
	Strategy and strategy profile
	Solving a game
	Best response and Nash equilibrium
	Algorithms for solving extensive-form games
	Solving extensive-form games with concurrent moves

	Stochastic games
	Definition, example
	Computing strategy

	Serializing stochastic games
	Serialization
	Description of the algorithm
	Improvements
	Serialization iteration

	Serialization of concurrent play
	Serializing a single concurrent stage
	Example

	Notes

	Application of serialization
	First phase
	Second phase
	Both phases combined

	Experimental domain
	Experimental results
	Measured data
	Detailed examples

	Conclusion
	Contents of the attached CD

