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Abstract

The goal of this work is to improve on the work done previously in a markerless motion
capture project called Kostilam. The main goals of the thesis assignment were to optimize
the algorithm as close to realtime performance as possible and to modify the approach to
be able to adapt to light variations. We have managed to optimize the algorithm through
the use of sparse vectors, custom memory management and parallelization. On the other
hand the light adaptation was not a success and is perhaps a topic for some future work.

Keywords: Markerless motion capture, Automatic differentiation, Sum of Gaussians body
model, performance capture

Abstrakt

Cílem této práce je pokračovat na práci započaté při semestrálním projektu na systému
bezznačkového snímání pohybu jménem Kostilam. Hlavní části zadání tvoří za prvé op-
timalizace snímacího algoritmu tak, aby se co nejvíce přiblížil zpracování snímku za reál-
ného času, a za druhé úprava algoritmu takovým způsobem, aby byl schopen se přizpůsobit
měnícím se světelným podmínkám. Optimalizace snímacího algoritmu se nám zdařila po-
mocí implementace řídkého vektoru, vlastního alokátoru paměti a paralelizace. Na druhou
stranu se světelnou adaptací jsme neměli úspěch a ta tak zbývá jako námět k příští práci.

Klíčová slova: motion capture bez značek, automatická derivace, suma gausiánů jako model
člověka, zachycení pohybu

vii



viii



Contents

1 Introduction 1
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Motion capture cost function 3
2.1 Sum of Gaussians body model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Positional model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Angular model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Rotation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 Model summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Image model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Similarity measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Model projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Blob similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Model similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Note about tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Cost minimization 13
3.1 Automatic differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Operations over dual objects . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Multidimensional differentiation . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Implementation overview 21
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Initial solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Inverse kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Fitting a body model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Multi-pose cost function . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Color calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Creating an image model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix



x CONTENTS

5 Implementation details 29
5.1 Automatic differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Dual objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Operations with Dual objects . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 Generic math primitives . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Angular model representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Inverse kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4.1 Applying automatic differentiation . . . . . . . . . . . . . . . . . . . . 37
5.4.2 Dual objects initialization . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Motion tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.6 Optimization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6.1 Sparse vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6.2 Memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6.2.1 Fixed-sized pool allocator . . . . . . . . . . . . . . . . . . . . 44
5.6.3 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Testing 47
6.1 Various sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.1 Sequence blue_exercise . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.2 Sequence red_exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.3 Sequence take1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.4 Sequence take3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Conclusion 57

Bibliography 59

A Figures 63

B Contents of CD 67



List of Figures

2.1 Original human body model from Kostilam. . . . . . . . . . . . . . . . . . . . 4
2.2 Angular model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Image decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Projection of the model to 6 camera images . . . . . . . . . . . . . . . . . . . 9

4.1 Kostilam overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Finding the initial solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Fitting a body model to an actor I . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Fitting a body model to an actor II . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Color calibration of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Image model with background subtraction . . . . . . . . . . . . . . . . . . . . 28

5.1 Evaluating a function using Dual objects [a,b] as the arguments. . . . . . . . 32
5.2 Data types for the representation of the angular model . . . . . . . . . . . . . 34
5.3 Structure of the vector of parameters x . . . . . . . . . . . . . . . . . . . . . 35
5.4 Parameters influencing a blob position. . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Size of Dual objects in calculations . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 SparseVector representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7 Memory manager initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.8 Memory manager allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.9 Memory manager deallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1 Frame 2091 of the blue_exercise sequence, model view . . . . . . . . . . . . . 48
6.2 Frame 1078 of the blue_exercise sequence, model view . . . . . . . . . . . . . 48
6.3 Frame 2091 of the blue_exercise sequence . . . . . . . . . . . . . . . . . . . . 49
6.4 Frame 1078 of the blue_exercise sequence . . . . . . . . . . . . . . . . . . . . 49
6.5 Frame 672 of the red_exercise sequence, model view . . . . . . . . . . . . . . 50
6.6 Frame 1300 of the red_exercise sequence, model view . . . . . . . . . . . . . 50
6.7 Frame 672 of the red_exercise sequence . . . . . . . . . . . . . . . . . . . . . 51
6.8 Frame 1300 of the red_exercise sequence . . . . . . . . . . . . . . . . . . . . . 51
6.9 Frame 390 of the take1 sequence, model view . . . . . . . . . . . . . . . . . . 52
6.10 Frame 913 of the take1 sequence, model view . . . . . . . . . . . . . . . . . . 52
6.11 Frame 390 of the take1 sequence . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.12 Frame 913 of the take1 sequence . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.13 Frame 674 of the take3 sequence, model view . . . . . . . . . . . . . . . . . . 54
6.14 Frame 824 of the take3 sequence, model view . . . . . . . . . . . . . . . . . . 54

xi



xii LIST OF FIGURES

6.15 Frame 674 of the take3 sequence . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.16 Frame 824 of the take3 sequence . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1 Point clouds and skeletons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 IIM studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.3 IIM studio, the dog experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.4 take3 exported to Maya, courtesy of Radek Smetana . . . . . . . . . . . . . . 65
A.5 take11 exported to Maya, courtesy of Radek Smetana . . . . . . . . . . . . . 66



Listings

5.1 C++ function using floats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 A templated C++ function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Computing the gradient of g(x, y) by using Dual objects . . . . . . . . . . . . 30
5.4 Definition of the Dual object . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Multiplication operator with Dual objects as arguments . . . . . . . . . . . . 32
5.6 Examples of various operations with Dual objects as arguments . . . . . . . . 32
5.7 A helper object for computing the inverse kinematics cost function . . . . . . 35
5.8 Code calculating the inverse kinematics cost function . . . . . . . . . . . . . . 36
5.9 Code calculating the joints’ reference frames . . . . . . . . . . . . . . . . . . . 36
5.10 Evaluation using floats, result = f(x) . . . . . . . . . . . . . . . . . . . . . 37
5.11 Automatic differentiation, result.a = f(x), result.b = ∇f(x) . . . . . . . 37
5.12 A helper object for computing the motion tracking cost function . . . . . . . 38
5.13 Multiplication operator with Dual objects as arguments . . . . . . . . . . . . 44
5.14 Custom memory manager class inspired by [31] . . . . . . . . . . . . . . . . . 44
5.15 OpenMP enabled parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xiii



xiv LISTINGS



Chapter 1

Introduction

Over the last few decades, motion capture has become a widely used term in many branches
of work [8], especially with the ever larger presence of digital media technology in our lives.
Motion capture is an act of recording an actor’s performance, usually resulting in a 3D
sequence which we can use to replay all the the motions exactly as the happened. Since we
have full 3D information about the movements, we can watch the resulting animation from
any angle. Motion capture typically refers to taking animations of humans, but the method
can also be used to capture the movements of animals.

There are several reasons why someone would like to capture human or animal motion
to a digital form. According to a survey [5], the fields where motion capture is used range
from virtual reality - film production and computer games - continues with motion analysis
for clinical studies or surveillance where it is used to recognize people by their gait - and
as a last example we will give special user interfaces e.g. for sign language interpretation or
gesture driven applications.

The traditional motion capture technologies are marker-based; they involve the actors
having to change their clothes for specially crafted black suits which have distinctive white
markers attached. Such markers are then tracked using a multiple camera setup giving us
in the end a 3D reconstruction of the performed motion. Such approaches are already well
developed today, the user can choose among several commercial solutions e.g. OptiTrack
[24] or Qualysis [28].

Markerless motion capture on the other hand, is a relatively new trend. It tries to
capture the movements just by analyzing usual camera images, no special suits should be
necessary. Markerless motion capture is the central topic of this thesis, all the presented
work will be done on our custom markerless motion capture software based on the ideas
from Stoll [33]. To give some context, let us take a look at some related work.

1.1 Related work

Even though we said the trend of markerless motion capture is relatively new, it has actually
been studied extensively in the past, e.g. the survey [5] from 2001 references over 40 other
articles on the topic. A newer survey [27] from 2007 goes further and references over 100
other articles.
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2 CHAPTER 1. INTRODUCTION

The most notable difference between the various approaches seems to lie in the way they
use the body model. The survey [27] describes two ways; in the first case the algorithms use
some a priori body model, typically consisting of a hierarchy of joints with varying degrees
of freedom.

Those further divide into top-down or bottom-up categories. In bottom-up the algorithm
tries to find individual parts of bodies in the camera image and construct from them a
complete model, e.g. [22]. The top-down methods on the other hand try to find the position
of the model in space, so that it projects to the actor in the image image, e.g. [14].

The second case are called model-free algorithms and that’s because they don’t assume
any information about the model beforehand. Such methods either try to fit the model on
the go using maximum a posteriori esimator, e.g. [16], or they work based on an existing
database of poses such as [38].

All the presented works have been part of a long line of research dating back to the 80s
and continuing through to the beginning of the century. Later, however, we have started to
begin seeing approaches aimed solely on fast computation, as it became possible to achieve
realtime speeds on new machinesm, e.g. Michoud [21], Stoll [33] or Wei [39].

Stoll [33] came with a novel approach for markerless motion capture involving usage of a
simplified body model made up of 3D Gaussians. By the above definition, it is a top-down
method, yet its formulation is relatively simple and promises realtime performance. Those
were good reasons for this method to be used in our software as well.

1.2 Thesis structure

Following will be 4 key chapters of this thesis. In the chapter named “Motion capture
cost function” we will present the core idea behind the motion capture algorithm as it
was developed in Stoll [33], in the end we will present a cost function that will be used to
determine the quality of a given body pose. In the next chapter, called “Cost minimization”,
we will show how we approach minimization of this cost function.

After that, in chapter named “Implementation overview”, we will describe the complete
workings of our motion capture software, where the above mentioned cost function is just one
of the pieces in the puzzle. Next, in the chapter “Implementation details”, we will talk about
detailed workings of our motion capture algorithm plus we will show some optimization
techniques we used to make the program run as fast as possible. Finally in the chapter
“Testing,” we will show what results we achieved with our implementation.



Chapter 2

Motion capture cost function

We chose to implement a markerless motion capture system based on the ideas introduced
by Stoll in 2011 [33]. In this section we will give a theoretical overview of our problem,
describe the choices we made in creating a model representing the tracked subject and
finally we will make our way to defining a cost function that will be at the core of the
tracking algorithm. Owing to the difficulties in the early beginnings the project has earned
its name characteristically - Kostilam.

As mentioned in the introduction, this method involves creating a model for the tracked
subject consisting of a simplified skeleton and 3D Gaussians attached to its joints. We will
describe in this section how we built the model for a human body, however the approach
can be modified for other subjects as well, namely what we have experimented with was a
model for a dog body.

2.1 Sum of Gaussians body model

In developing our own human body model we have taken inspiration mainly in [33], also in
[10], and in an atlas of biology to establish some reasonable proportions. In the simplest
sense the body is modeled as a sum of unnormalized uncorrelated Gaussians. This approach
is used both in the image domain where the Gaussians are two-dimensional and in the 3D
space where the Gaussians have three dimensions. In the following definition µ ∈ Rd stands
for the mean, with d being either 2 or 3, σ2 stand for the variance. The building blocks for
the model are the following Gaussians:

B(x) = exp
(
−‖x− µ‖

2
2

2σ2

)
(2.1)

A model K is defined as a sum of such Gaussians:

K(x) =
n∑
i=1
Bi(x) (2.2)

As in [33] we store the color information for each Gaussian Bi in a separate variable
ci ∈ R3, the Gaussians themselves only represent the volume of the model.

3



4 CHAPTER 2. MOTION CAPTURE COST FUNCTION

This definition doesn’t reveal the underlying structure of the model very well. The
placement of the individual Gaussians in space and their possible interconnections have to
be defined in addition to this.

2.1.1 Positional model

In the original version of Kostilam the model was defined using a simple skeleton consisting
of joints (visible in fig. 2.1) and links representing bones. The position for the Gaussians is
defined to be a convex combination of two joints; to define the position three parameters
are needed - 2 joints and a coefficient α ∈ 〈0, 1〉.

Figure 2.1: Original model from Kostilam. Skeleton structure with joints in green (left),
Spheres representing the model’s Gaussians, they are drawn with a radius of σ (right)

The parameters which are to be optimized for are the positions of the joints, given that
there are 15 joints, this results in an optimization problem with 45 variables. Unfortunately,
a model defined in this way poses some problems. Given the way the optimization process
will be defined, it is quite hard to impose further restrictions on the positions of joints.

The most important one being that joints which are connected by a bone shouldn’t
change their length during the tracking. This was solved in the original implementation by
using a regularization step based on ARAP similarity [36] with a default model in-between
following optimizations.

Another problem is that it is difficult with this model to impose restrictions on some
relationships between adjacent bones, which would be helpful to limit the occurrence of
certain unnatural movements e.g. the shin or wrist bending in the opposite direction than
they should be.

2.1.2 Angular model

A key part of this work was to introduce a model more alike to the one defined in [33] which
would use rotations of the joints as the new parameters, leaving the bone lengths fixed.
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That means the ARAP regularization step won’t be necessary anymore. Such a model will
also allow to make limits on the rotations themselves thus leading to a more rigid model,
not susceptible to some of the problems of the original model such as unnatural looking
movements.

We named the new model the angular model as it relies mainly on rotations as its
parameters unlike the older model which used only translations. Each joint in angular model
has two important parameters, a fixed offset which represents the length and direction of
the bone leading to this joint, and a set of angles which are used to rotate the relevant bone.
Each joint has a defined parent and together the joints form a hierarchy to model the human
skeleton. This approach is common in animation software packages like Maya [3] or [2].

As is the case with the older model, Gaussians are attached to the joints of the angular
model to represent its volume in space. This time each of the Gaussians has its location
defined by a three dimensional offset to a given joint which allows us to place the Gaussians
in arbitrary positions, not necessarily on a connection of joints. This is used e.g. to model
the human torso and could potentially be used to model more complicated scenarios.

Figure 2.2: Angular model. Skeleton structure with joints in green (left), Spheres represent-
ing the model’s Gaussians, they are drawn with a radius of σ (right)

The angular model differs with the previous model in that it has a spine modeled from
several shorter bones (fig. 2.2) to allow for more natural bending animations. The pelvis
joint was chosen to be the root of the skeleton’s hierarchy, the position and rotation of the
remaining joints is always relative to this root joint.

2.1.3 Rotation parameters

A more detailed description of how to calculate the precise position of the joints in space
will follow. Before doing that however, let us first detail the choices we made for the
representation of the rotations as this is an important step in many optimization problems.
In general in optimization we want to keep the number of degrees of freedom to a minimum,
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in the case of 3D rotations, it should be 3 degrees of freedom. Introducing more degrees of
freedom may lead to poor performance or even inability to find a good solution at all.

We have considered the unit quaternion and axis-angle representations for use in angular
model. Both of these come with the restriction of unitarity, in the first case the quaternion
has to be unitary to represent a rotation, in the second case the axis vector should be unitary.
Unfortunately, that is a difficult constraint to satisfy in typical optimization solvers. Lot of
work has been spent in literature to keep this constraint implicitly e.g. [30], however, the
proposed solutions bring unnecessary overhead to the problem which is in conflict with our
demands on fast performance.

Also it is not straightforward to come up with meaningful constraints on rotations in
either of these representations, although some work has been done on this [4]. In the end
we chose standard Euler angles for the rotation representation which allowed us to keep the
number of degrees of freedom to a minimum, even going below 3 for specific joints. For
example the knee and ankle joints have just 1 degree of freedom in our model.

We enforce limits on the values of the angle parameters to disallow unnatural movements,
this also helps with keeping the problem of gimbal lock at bay. We have worried about
it’s possible occurrence, especially with shoulder joints, but in our later testing we didn’t
encounter it while tracking real-life videos.

2.1.4 Model summary

Here we will give a concise overview of the angular model parameters and then we will show
how these parameters are used to compute the position of the model in space. This is helpful
later when we introduce the final cost function further down this section 2.15 to see its full
complexity.

• Joint Jj :

1. parent joint p(j)
2. offset sj ∈ R3

3. angles αj ∈ Rd, d ∈ {0, 1, 2, 3}, the rotation matrix is given by R(αj)

• Gaussian (for simplicity called blob) Bi:

1. joint to attach to a(Bi)
2. offset wi ∈ R3

3. variance σ2

First we will establish a transformation from something we call the joint’s reference frame
to the world coordinates, because the offsets wi are taken relative to the joints rotation and
translation. For a joint j the transformation will consist of a rotation by matrix Rj followed
by a translation by vector tj :

Rj = Rp(j)R(αj) (2.3)
tj = tp(j) + Rjwj (2.4)
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Given such a transformation, we can now compute the position µi of the Gaussian blobs
attached to joint j, that is blobs for which a(Bi) = j:

µi = tj + Rjwi (2.5)

We have prepared a set of parameters to define a default human model to be used for
tracking, on top that we have developed a way of fitting the model semi-automatically to
an individual actor. This process involves using the final cost function (2.15) so we will
describe it later in chapter 4.

2.2 Image model

For the purpose of defining a suitable similarity measure between the model and images
from a camera, we introduce an approximation of the images in exactly the same form as
the model itself - a sum of Gaussians (2.2). The difference this time is that the Gaussians
are two-dimensional. This idea is taken from [33], where two methods of decomposing the
image to Gaussian blobs are presented.

First method involves using a quad-tree structure to form an irregular grid of blobs based
on color similarity. Some blobs will cover a larger area of similar color, while other may
be small when there is lot of color variation in the image. The second method is simpler
and it works by forming a uniform grid over the image and creating a blob in each cell with
the average color of the cell’s pixels. The cells can be as small as 1 pixel wide, larger cells
decrease the overall computational complexity, as that results in fewer image blobs.

Figure 2.3: Image decomposition. Variable size blobs (left), Fixed size blobs (right)

We have tried both methods in Kostilam. Having fewer image blobs in the image model
will speed up the computation of the similarity function, so the irregular structure looks
promising at first. In practices, however, the irregular structure didn’t reduce the number
of blobs significantly for it to be worth the overhead it takes to create.

Creating the regular structure of the image model is as simple as going through all the
image pixels once and averaging colors in square cells on the way. This proved to be a good
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compromise for Kostilam, also ability to control the cell size allows to easily create a finer
or coarser approximation of the image. This choice may need to be reconsidered if we would
use higher resolution cameras, currently we used cameras with 640x480 resolution.

This approximation is not particularly precise in that we are actually replacing square
cells of pixels with circular Gaussian blobs. This may even seem as quite questionable to say
the least, on the other hand it is precisely this definition that allows us to later formulate a
relatively simple analytical similarity function between the tracked model and the camera
images.

2.3 Similarity measure

In the following paragraphs we will introduce one of the most important parts of the tracking
algorithm - a similarity measure between the body model and the camera images. We have
taken inspiration for it heavily in Stoll et al. [33], it is a core part of their approach as
well. The measure works by first projecting the body model from the world coordinates to
individual camera images and then calculating an overlap between the images’ blobs and
projected model blobs.

2.3.1 Model projection

We are using a projection matrix Pi of size 3×4 to model the geometry of each of the cameras
Ci, each camera also has a focal length fi which can be extracted from the projection matrix.
We will define an operation Ψ which will project a 3D Gaussian B̃(x) : R3 → R to a Gaussian
in the image space B(x) : R2 → R. In other words, it will map the parameters of the 3D
blob (µ̃, σ̃) to the parameters of the 2D blob (µ, σ). First we project the center µ̃ into the
image to get a point µp = Piµ̃ in homogeneous coordinates, then the operation Ψ goes as
follows:

µ =
(

[µp]x/[µp]z
[µp]y/[µp]z

)
σ = σ̃fi

[µp]z
(2.6)

The subscripts x, y and z are used to index the first, second and third coordinates
respectively. The process of division by the third coordinate is a standard procedure used to
bring the points from homogeneous coordinates to the image domain. The projection Ψ is
actually only a simplification because spheres in general don’t project circles, but to ellipses
[18]. As the authors of [33] we have chosen to disregard this, again to keep the similarity
measure simple enough. An example of the projection can be seen on fig. 2.4.

To obtain the matrices Pi, we use theMulti Camera Self Calibration toolbox [35] provided
to us by CMP [12]. We gather a set of multi-view correspondences by moving a point light
source in the space so that it is visible in all the cameras, this gives a good input dataset
for the calibration toolbox.
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Figure 2.4: Projection of the body model to 6 different camera images using the (2.6)
formula. Note that only crops from the whole images are shown here for better detail.

2.3.2 Blob similarity

The similarity Eij of two blobs Bi and Bj consists of two parts; the color similarity d(ci, cj)
and the overlap of the blobs’ volumes, which is calculated as an integral over the image
domain Ω. Good for us, the integral can also be computed analytically:

Eij = d(ci, cj)
∫

Ω
Bi(x)Bj(x)dx (2.7)

= d(ci, cj) 2π
σ2
i σ

2
j

σ2
i + σ2

j

exp
(
−‖µi − µj‖

2
2

σ2
i + σ2

j

)
(2.8)

For the color similarity d(ci, cj) we used exactly the same function as the authors of [33]:

d(ci, cj) =

0 if ‖ci − cj‖2 ≥ εsim
ϕ3,1

(
‖ci−cj‖2
εsim

)
if ‖ci − cj‖2 < εsim

(2.9)

Where ϕ3,1(x) is a smooth radial basis function. This way defined color similarity forces
distant colors to always have similarity 0, but colors closer than εsim will enjoy a smooth
similarity measure.
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2.3.3 Model similarity

Now that we have all the necessary preliminaries ready, we can proceed to describing the
similarity function between the image model and the projected body model. Lets say we
have a body model Km consisting of a sum of Gaussians (2.2), then we will denote its
projection to a camera image as Ψ(Km). The camera image consists of a sum of Gaussians
as well, we will call it KI . The similarity E is then defined as a summation of overlaps (2.8)
of all pairs of blobs, first one being from the image and the second one from the projected
model:

E(KI ,Ψ(Km)) =
∑
i∈KI

∑
j∈Ψ(Km)

Eij (2.10)

=
∫

Ω

∑
i∈KI

∑
j∈Ψ(Km)

d(ci, cj)Bi(x)Bj(x)dx (2.11)

In practice it is not necessary to compute the overlaps (2.8) for all possible pairs of blobs,
it suffices for example to only consider the image blobs which are within some distance from
the projected body model.

There is a caveat, however, in the way the similarity measure (2.10) is defined. It is
caused by the fact that very often blobs end up being projected on top of each other, this
can be seen in fig. 2.4. We want the similarity measure to be roughly proportional to the
area of the total overlap of the projected model and the tracked subject in the image. Half
of this comes from the color similarity, but the other half can be skewed considerably by
overlapping blobs - if the colors would be the same, 2 blobs projected to the same position
would have the same total overlap as 2 distant blobs.

We have solved this problem the same way as authors of [33] by defining the maximum
value a single image blob Bi can contribute to the total value of the similarity measure.
That is set to be the overlap of the given image blob with itself: Eii. Then the similarity
can be rewritten to reflect this in the following way:

E(KI ,Ψ(Km)) =
∑
i∈KI

min

 ∑
j∈Ψ(Km)

Eij , Eii

 (2.12)

We have found that without introducing this way of limiting image blobs’ contributions
to the total overlap, our software couldn’t track the subjects reliably.

2.4 Cost function

Now we can step up to describe the objective function which is at the heart of Kostilam’s
tracking algorithm. We have a body model Km which has a set of parameters Θ, in the case
of the positional model (2.1.1) it is 45 translational parameters, in the case of the angular
model (2.1.2) it is 3 translational and 29 rotational parameters; these together determine
the position of the model’s blobs. We also have a set of ncam cameras Cl together with the
sum of Gaussians (2.2) representation Kl of their images.
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We project the model to all the cameras and calculate a weighted sum of the correspond-
ing similarity measures (2.12):

E(Θ) = 1
ncam

ncam∑
l=1

1
E(Kl,Kl)

E
(
Kl,Ψ

(
Km(Θ)

))
(2.13)

The term E(Kl,Kl) in the denominator is there to balance the contributions of camera
views where in one the model may fill most of the image while in another the model can be
significantly smaller.

Altogether we want to maximize the value of E(Θ) so it will appear in the final objective
function with a negative sign. One last piece of the objective function we need to present is
a term responsible for limiting the possible values the parameters Θ can take. This is done
on an individual basis by introducing a set of soft limits ll and lh and a quadratic penalty
term Elim(Θ):

Elim(Θ) =
∑
Θ(i)


0 if l(i)l ≤ Θ(i) ≤ l(i)h
(l(i)l −Θ(i))2 if Θ(i) < l

(i)
l

(Θ(i)− l(i)h )2 if Θ(i) > l
(i)
h

(2.14)

Putting the terms (2.13) and (2.14) together we get the final cost function E , we used w
as a weighting parameter:

E(Θ) = wElim(Θ)− E(Θ) (2.15)

By minimizing E(Θ) we want to achieve maximal overlap of the projected body model
with the subject in corresponding camera images, while also keeping some rigidity of the
model thanks to the penalty term Elim. We haven’t experimented with the value of the
weighting parameter w considerably, having it equal to 1 worked well in limiting undesir-
able motions like shins or elbows bending in the opposite direction or the spine bending
excessively.

2.4.1 Note about tracking

We will describe the approach we use in Kostilam to minimize the cost function (2.15) in
the following chapter. Note that by nature of the problem, when we track the motion of
a subject in a video sequence, we should always have a relatively good initial solution at
the ready, the optimization process tries to determine the change of parameters Θ between
consecutive frames. Of course, this assumes that the subsequent solution always gets found
correctly, which doesn’t need to be the case e.g. for too fast motions. On the other hand,
Kostilam proved to be able to recover from getting “lost” in our experiments when the
subject returned to its previous position.

Setting of the initial solution for the first frame is done manually in Kostilam and we
will describe this process in chapter 4.
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Chapter 3

Cost minimization

In this section, we will give a theoretical overview of the approach we took to minimize the
above mentioned cost function 2.15. The demands for our problem of motion tracking are
specific in that we are solving the cost minimization problem in each frame and in each of
them we have a solid initial solution from the previous frame. The change in parameters
between the frames corresponds to the subject’s movement performed in the short interval
between frames, in our case 1/60 of a second. This greatly reduces the complexity of the
cost minimization making the problem a suitable fit for a gradient descent method.

Given the requirements for our solution to be able to perform in realtime, we needed a fast
method for computing the gradient, however we also wanted our method to be ’programmer
friendly’ in that a small change to the cost function or the defined body model would not
require a significant rewriting of the code, ideally for it to be fully automatic.

A common practice in computing derivatives is that for each function f(x) in the code
one writes a separate function f ′(x) which computes its derivative. This process is usually
done manually and it is prone to small and hardly noticeable mistakes when one forgets to
update the definition of f ′(x) or makes a mistake in it. Although the process of writing the
definition for f ′(x) can be automated, leading to symbolic differentiation of code [17], we
decided not to implement this as it is very hard to do effectively and also it makes some
constraints on the code that can be used in the differentiated function.

Another possibility is to calculate a numerical approximation using the definition of
derivative:

lim
δ→0

f(x+ δ)− f(x)
δ

(3.1)

The method of finite differences calculates approximates the true value of the derivative
by substituting the δ with a small number. The major benefit of this method is that it
needs only the definition of the function we want to differentiate and then an appropriate
value of d. Unfortunately picking a good value for d proves to be problematic as too large
values give big approximation errors and too low values introduce rounding errors.

A less known method and the one we finally chose to implement is called emphautomatic
differentiation [26]. It solves both the problem of numerical errors the finite differences
method has as it computes the derivative exactly and it is also fully automatic meaning we

13
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only need to supply code for the definition of the function. The method uses a concept of
emphdual numbers which was originally introduced in [11] and then later used in [19], for
our implementation our main source was a later article [26] whose authors also used the
method in the field of computer graphics.

3.1 Automatic differentiation

Assume we want to take a derivative of the function f(x) = 3x2 + 5, the idea behind
automatic differentiation is to substitute δ in (3.1) by a small number d, then for our
function f(x) the formula evaluates to:

3(x+ d)2 + 5− 3x2 − 5
d

= 6dx+ 3d2

d
= 6x+ 3d (3.2)

On the right side we can see the exact derivative 6x plus an error term 3d where d is a
small number. Now the idea is to remove the error term completely which could be done for
some value of d such that d2 = 0 as can be seen from the intermediate step. Unfortunately
the only real number for which this is possible is 0 and then the formula wouldn’t make
sense. The solution to this problem is seemingly counter-intuitive, it lies in defining a special
constant d which has the desired property d2 = 0, this approach is similar to adding the
imaginary unit to real numbers to solve the equation x2 + 1 = 0. The set of real numbers
extended by the constant d is called the emphdual numbers [9]. Having the number d at
our disposal we can now rewrite the equation (3.1) as:

f(x+ d) = f(x) + df ′(x) (3.3)

Which allows us to compute the derivative simply by evaluating the given function at
x+ d, consider the previous example of f(x) = 3x2 + 5:

f(x+ d) = 3(x2 + 2xd+ d2) + 5 = (3x2 + 5) + 6xd+ 3d2 (3.4)

Since d2 is defined to be 0, by comparing (3.3) and (3.4) we can see that the value of
f ′(x) is exactly the coefficient of d in the result, in this case 6x.

Let us show another example of using this strategy to compute derivatives, this time on
a little more complex quadratic function g(x) = (x+ 3) ∗ (x+ 2). Let’s say we want to take
the derivative at x = 2, following the previous example, we should evaluate the function
with the argument 2 + d:

(2 + d+ 3)(2 + d+ 2) = (5 + d)(4 + d) = 20 + 9d+ d2 = 20 + 9d (3.5)

The derivative at x = 2 is the coefficient of d in the result, in this case it is 9. We can
also reach this this result using standard symbolic derivation:

g(x) = x2 + 5x+ 6 (3.6)
g′(x) = 2x+ 5 (3.7)
g′(2) = 9 (3.8)
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3.1.1 Generalization

To generalize the above introduced principle on a wide variety of functions we have used
the concept of Dual object as described in [26].

• Dual object: a+ bd

1. a - real part, scalar
2. b - infinitesimal part, scalar

The idea is to use the dual objects as the default number type in the functions we want
to take a derivative of. The parameters have to be dual objects, all the intermediate values
and the result value as well. By doing that, taking a derivative is then a simple matter of
reading the value of b of the function return value. In certain programming languages, most
notably in C++, this approach can be relatively easily implemented using the templating
functionality, which allows the programmer to write the functions completely oblivious to
the number type being used, as long as the type is capable of certain operations e.g. addition
or multiplication.

3.1.2 Operations over dual objects

Here we will show the operations which need to be implemented in order to compute a
vast majority of functions. The process is similar to evaluating operations of complex
numbers, which also implies that evaluating functions using dual objects is of comparable
computational complexity as if we were using complex numbers.

The most simple operation is addition of two dual objects:

(a0 + b0d) + (a1 + b1d) = (a0 + a1) + (b0 + b1)d (3.9)

Subtraction is along the same line, while product of two dual objects is as follows:

(a0 + b0d)(a1 + b1d) = (a0a1) + (a0b1 + b0a1)d (3.10)

Computing division is not that straightforward and requires a different form:

a0 + b0d

a1 + b1d
= a0 + b0d

a1

1
1 + (b1/a1)d (3.11)

At this point we use the following expansion (1 + x)−1 = 1− x+ x2 − x3 + (. . .):

= a0 + b0d

a1
(1− (b1/a1)d+ d2(. . .)) (3.12)

= a0
a1

+ a1b0 − a0b1
a2

1
d (3.13)

It makes sense that division by a dual object with the real part being 0 is not defined.
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It is already possible to evaluate a big range of functions with only the operations
(3.9), (3.10) and (3.13). The last step required to cover all the operations used in our cost
function 2.15 is to be able to evaluate transcendental functions with the dual objects, most
importantly for us the trigonometric functions. For this we use the following rule from [26]
for differentiable functions:

f(a+ bd) = f(a) + bf ′(a)d (3.14)

The trigonometric functions sine and cosine can then be evaluated:

sin(a+ bd) = sin(a) + b cos(a)d (3.15)
cos(a+ bd) = cos(a)− b sin(a)d (3.16)

3.1.3 Multidimensional differentiation

So far we have been describing exclusively computation with functions of a single variable.
For computing the gradient of our cost function 2.15, we need all its partial derivatives
with respect to the model parameters. Again using the idea from [26] we accomplish this
by introducing a new variable di for each partial derivative we want to compute. All these
variables di will have the same properties as the original variable d introduced in 3.1. On
top of that it is defined that for all pairs i, j it holds that didj = 0. The dual object as
defined in section 3.1.1 can then be extended to accommodate partial derivatives as follows:

• Extended dual object: a+
∑
i∈I bidi, where I = {1, . . . , n}

1. a - real part, scalar

2. b - infinitesimal part, vector of length n

Analogously to the singlevariate case, computing the partial derivatives is then a matter
of evaluating the desired function using the extended dual object as the number type for
parameters and then reading the corresponding coefficient of di from the return value.

For a better illustration, assume we have a function of two variables f(x, y) and we want
to compute partial derivatives with respect to both x and y. The analogy for the equation
(3.3) for a two-dimensional function will look like this:

f(x+ d1, y + d2) = f(x, y) + ∂f

∂x
d1 + ∂f

∂y
d2 (3.17)

To compute the functions over extended dual objects the operations introduced in the
previous section 3.1.2 will generalize relatively simply. In the following equations we will
use vector d = (d1, . . . , dn). The rules for addition, multiplication and division of extended
dual objects are the following:
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(a0 + b0
>d) + (a1 + b1

>d) = (a0 + a1) + (b0 + b1)>d (3.18)
(a0 + b0

>d)(a1 + b1
>d) = (a0a1) + (a0b1 + b0a1)>d (3.19)

a0 + b0
>d

a1 + b1
>d

= a0
a1

+
(
a1b0 − a0b1

a2
1

)>
d (3.20)

And last, the rule for evaluating differentiable functions:

f(a+ b>d) = f(a) + f ′(a)b>d (3.21)

When these rules and all needed specializations of the last rule (3.21) are implemented, it
becomes possible to evaluate all kinds of functions using the extended dual objects, therefore
we gain access to the desired partial derivatives, which can be read off as the coefficients of
di from the result.

3.1.4 Example

To get more familiar with the process of automatic differentiation, let us show the compu-
tation on a more complex example of a function of three variables:

f(x, y, z) = sin
(
x+ y2

z

)
(3.22)

Let’s say we want to calculate the derivatives at point (2π, 0, 3) with respect to variables
x, y and z, then we will use the following extended dual objects as arguments:

• x̂ = 2π + d1 (a = 2,b = (1, 0, 0))

• ŷ = 0 + d2 (a = 0,b = (0, 1, 0))

• ẑ = 3 + d3 (a = 3,b = (0, 0, 1))

Then the evaluation will be:

f(x̂, ŷ, ẑ) = sin
(

2π + d1 + d2
2

3 + d3

)
= sin

(2π + d1
3 + d3

)
= (3.23)

The term d2
2 is zero by definition. Next we will use the rule for division (3.20):

= sin
(2π

3 + 3d1 − 2πd3
32

)
(3.24)

And then the rule for differentiable functions (3.21):

= sin
(2π

3

)
+ cos

(2π
3

) 3d1 − 2πd3
9 (3.25)
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We repeat the above result here:

= sin
(2π

3

)
+
(
−1

2

) 3d1 − 2πd3
9 (3.26)

The derivatives at point (2π, 0, 3) are the coefficients of d1, d2 and d3 respectively:

∂f

∂x
(2π) = −1/6 ∂f

∂y
(0) = 0 ∂f

∂z
(3) = π/9 (3.27)

To verify the results, we can take standard symbolic derivatives of function f(x, y, z):

∂f

∂x
= 1
z

cos
(
x+ y2

z

)
∂f

∂y
= 2y

z
cos

(
x+ y2

z

)
(3.28)

∂f

∂z
= −x+ y2

z2 cos
(
x+ y2

z

)
(3.29)

By substituting for the values x = 2π, y = 0 and z = 3 we can see that the method of
automatic differentiation gives correct results for the given function.

∂f

∂x
= 1

3 cos
(2π

3

)
= 1

3

(
−1

2

)
= −1

6
∂f

∂y
= 0

3 (· · · ) = 0 (3.30)

∂f

∂z
= −2π

9

(
−1

2

)
= π

9 (3.31)

The given example can also be used to explain an interesting difference between the
methods of finite differences and automatic differentiation. To get approximations for all
partial derivatives of the function (3.22), we have to evaluate the trigonometric function at
least 3 + 1 times for one-sided difference or 6 times for symmetric difference. On the other
hand with automatic differentiation it suffices to calculate the value of the trigonometric
function just once, as can be seen from (3.25).

Hopefully, we have managed to show that automatic differentiation is a viable method for
our purpose. This theoretical overview didn’t consider the technical details of implementing
the extended dual objects to some programming language. That will be the main focus of
the chapter 5 as there are many ways one can choose for an efficient implementation, the
main problem being an effective manipulation of vectors b (3.1.3) in memory as they will
contain as many elements as there are parameters for our model.

3.2 Gradient descent

Being able to compute the derivatives effectively it is now necessary to choose a suitable
minimization algorithm. In the paper [26] the authors use the Levenberg-Marquardt mini-
mization together with computing the full Hessian matrix, they also describe a clever way of
using the dual objects “recursively” to compute higher-order derivatives. We didn’t choose
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this approach as we didn’t feel confident with making it run effective enough with the prob-
lem of real-time motion tracking.

Another way is described in the article by Stoll [33] where the method of choice is
a custom conditioned gradient descent method inspired by [29] where it is used to learn
parameters for neural networks.

In the end we chose the L-BFGS algorithm (Limited-memory Broyden-Fletcher-Goldfarb-
Shanno) which is a quasi-Newton method, meaning that it approximates the Hessian which
is used to steer the algorithm efficiently through the solution space. According to [25] the
most important part of the method - the update step for approximating the Hessian - has
been independently developed by Broyden [6], Fletcher [13], Goldfarb [15] and Shanno [32],
whose results have all been published in 1970. This method combines the low iteration
count inherent to second-order minimization methods while still requiring only the gradient
for the computation which made it a good fit for our problem.

To run this method in Kostilam we used an open-source implementation of the L-BFGS
method written by Nocedal and Okazaki [23].



20 CHAPTER 3. COST MINIMIZATION



Chapter 4

Implementation overview

So far we have talked about the core concepts behind the Kostilam motion capture software.
In chapter 2 we have introduced a sum of Gaussian (2.2) model, its parametrization and

a cost function (2.15) to determine which values of parameters most closely represent the
actor’s pose in multiple camera images.

Later in chapter 3 we have talked about the way we minimize this cost function - by
using the L-BFGS optimization algorithm where we compute the cost’s gradient by the
method of automatic differentiation.

In this chapter we will set all the pieces together, giving a complete overview of the
process of tracking an actor’s performance using the Kostilam markerless motion capture
software. The parts that didn’t fit in the previous chapters will be laid out in detail in this
chapter, those include among others: body model fitting, initial solution selection, color
calibration or light source adaptation.

4.1 Overview

To give a complete and concise image of the whole motion capture process, each of its
important parts will get a short summary in the following paragraphs. After that we will
give a more detailed description of those parts that require it.

Fitting a body model. This is the process of adapting the sum of Gaussians body
model to fit to an individual actor as close as possible. Important parameters are the bone
lengths and shape. The fitting can be done manually in Kostilam, however, we have also
developed a semi-automatic tool to help estimate the parameters, its description will follow
in section 4.3

Initial solution. Finding the initial solution for the first frame means placing and
shaping the body model in space in the same position as is the actor. This step is also done
manually; Kostilam allows for the user to simply drag the model in space by its joints. For
the case of the angular model we have developed an inverse kinematics approach to make
the process more user friendly, this will be described in section 4.2

Color calibration. When the model is in good shape and place, we need to assign
specific colors to its blobs. We do this by back-projecting the camera images to the 3D

21
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Default model Model fitting
+ Initial solution

Color calibration

Parameter
Estimation

L-BFGS +
Automatic diff.

Image model

Light adaptation

Figure 4.1: Showing all the parts of the motion capture algorithm.

space; essentially by casting a camera ray through each pixel and seeing if it intersects our
model. We will give more details and illustrations of this in section 4.4.

Creating an image model. We need to create a sum of Gaussians image model for
each of the frames of the tracked sequence. Moreover we want the image models to contain
only the relevant blobs, ideally only the blobs which cover the actor in the given view. For
this we use culling of blobs outside a bounding box given by the projected body model and
a background subtraction based technique. More on this will be shown in section 4.5.

Estimating parameters. This is the most important part of the tracking software, it
involves running the L-BFGS optimization algorithm to minimize the cost function E(Θ)
2.15, which results in a new set of parameters that hopefully represent the actor’s pose in
the new frame. This step has been already covered extensively in the previous chapters.

Light source adaptation. We have encountered in our motion capture performances
some problems related to color variation in time either with the actor changing color under
different angles or with the whole scene changing brightness. We have devised a relatively
simple countermeasure involving color recalibration when certain thresholds are met. We
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will detail the method in section ??.

4.2 Initial solution

We have a 3D visualization of the model space built in Kostilam, to help find the initial
pose in it, we have created a helper point cloud which represents the actors body (fig. 4.2).
The point cloud is created by projecting a uniform grid of 3D points (inside some predefined
bounding box) to all the camera images and then checking which of the points project to
the actor in all of them. To determine if the point was projected to the actor, we use simple
background subtraction which gives a rough estimate.

Now the task for the user is to move the predefined model to match the cloud of points,
there are operations like translation, rotation and scaling available, usually working by
mouse dragging. This can be done relatively easily for the original version of the model
(2.1.1) where all the parameters are translational, on the other hand with the angular
model((2.1.2)) moving certain joints of the model requires solving for all the translational
and rotational parameters of the model.

Figure 4.2: Setting the initial solution for the first frame. Helper point cloud (left) moving
the model’s arm via inverse kinematics (middle) initial solution and the point cloud (right)

4.2.1 Inverse kinematics

Inverse kinematics is a method of finding the parameters of a model given some requirements
on position of its joints. It is quite broadly studied e.g. the summary [7]. Given that this
wasn’t the key part of our project, we can consider ourselves lucky that it was fairly easy
to implement given the tools we already developed for minimizing the motion tracking cost
function 2.15.

We introduced a set of effectors ei ∈ R3, each of which we attached to some joint that
it should control and then we allowed the effectors to be dragged by mouse. The set of
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parameters we want to solve for is Θ and µi(Θ) is the position of the blobs in space (2.5).
Then we can write this cost function:

EIK(Θ) = Elim(Θ) +
∑
i

‖ei − µi(Θ)‖22 (4.1)

Where Elim(Θ) is the quadratic penalty term (2.14) responsible for limiting unnatural
movements of the model. After that we used automatic differentiation to compute the
gradient of this cost function and the L-BFGS optimization algorithm to solve for parameters
Θ. This way we got a surprisingly strong inverse kinematics solution which allowed for the
model to be moved around and shaped simply by dragging its joints.

4.3 Fitting a body model

In the previous section we showed what technique we use to position the model in space.
Once that is done we proceed to adjust the model’s fixed parameters to fit the individual
actor, most importantly bone lengths and blob sizes. In our experiments we have found that
especially for the angular model 2.1.2, our tracking algorithm is sensitive to discrepancies
between the virtual model and the real actor. Without setting the correct dimensions for
the skeleton, the algorithm was failing to track the actor reliably.

We have developed a semi-automatic tool for model fitting based on the ideas from [33].
Again we exploited the tools we had already at hand, extending the cost function 2.15 and
using automatic differentiation together with the L-BFGS optimization algorithm.

The idea behind it is based on picking several poses from the sequence and trying to
fit the model to all of them at once. Since we don’t have the colors of the model yet at
this point and since we only care for the shape of the model at this step, the input will
consist of binary masks representing the position of the actor in respective frames (fig. 4.3).
Unfortunately, those have to be segmented manually at this point.

4.3.1 Multi-pose cost function

Here we will introduce the cost function we used to fit the body model to an actor. We
have npos poses, each consisting of ncam camera images. For each pose p and camera c we
create a sum of Gaussians representationM(p)

c of the binary mask representing the actor in
the image. For the next part we will take a second look at the similarity measure between
a sum of Gaussians model and a projected body model (2.10) defined in chapter 2.

E(KI ,Ψ(Km)) =
∫

Ω

∑
i∈KI

∑
j∈Ψ(Km)

d(ci, cj)Bi(x)Bj(x)dx (4.2)

We will modify this similarity measure so that it doesn’t rely on color information but
only on the volume overlap, the idea is to reward blobs that project to the actor and to
penalize blobs that project outside of it. To implement this we will use function d(ci) defined
to only have two values; d(black) = 1 and d(white) = −w, where the value of w represents
the relative importance of having the model inside or outside a predefined mask, as seen in
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Figure 4.3: Several masks all used together to optimize the body model. The projected
model on top of them is a rough initial solution picked by hand.

fig. 4.3. We have experimented with several values of w and we found the most satisfying
results around w = 0.1. The modified similarity measure follows:

Ẽ(Mc,Ψ(Km)) =
∫

Ω

∑
i∈Mc

∑
j∈Ψ(Km)

d(ci)Bi(x)Bj(x)dx (4.3)

Now consider all the parameters that occur in our setup. All of these will be later stacked
together and optimized for using automatic differentiation and L-BFGS:

Shared parameters These parameters are shared amongst all the poses, they represent
the physical dimensions of the model we are trying to fit. In the case of our human body
model, we have 9 parameters for bone lengths, 1 parameter for chest width and 24 parameters
for blob sizes. Notice that there are not as many parameters as there are bones or blobs
in our model, that is because we are also sharing certain parameters between relevant body
parts. It makes sense for example to make the lengths of bones to be equal on both sides of
the body. In total we have 34 shared parameters, let us denote them Λ.

Pose related parameters These are the parameters that change in each pose - the
32 translational and rotational parameters that determine the position and posture of the
body model. Let us denote the parameters of i-th pose Θi.
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Figure 4.4: Here we can see the body model fitted to the image masks using the method
outlined in this section, comparison can be made with the previous figure.

Putting all these parameters together gives us the full parameter vector Φ:

Φ = (Λ,Θ1, . . . ,Θnpos) (4.4)

Now defining the final cost function responsible for the model fitting is a matter of
summing the modified similarity measure Ẽ over all the npos poses and in each of them over
all the ncam cameras:

Ẽ(Φ) =
npos∑
p=1

ncam∑
c=1

Ẽ
(
M(p)

c ,Ψ
(
Km(Λ;Θp)

))
(4.5)

Our standard procedure of minimizing the cost function Ẽ(Φ) using automatic differen-
tiation and L-BFGS worked surprisingly well, some results are shown in fig. 4.4. Sometimes
however, the full joint optimization proved to be a tough match so for that case we also
allowed the individual sets of parameters to be optimized selectively, e.g. only optimizing
the bone lengths or blob sizes.

4.4 Color calibration

At this point we have the sum of Gaussians body model positioned to reflect the actor’s
pose in the first frame and also adjusted to resemble the actor’s shape as close as possible.
The next step is to assign a color ci to each individual blob of the model.

Recall that we use the standard 3×4 projection matrix Pi to model the geometry of our
cameras, furthermore for the color calibration step we use the following decomposition:

P = KR
[
I −c

]
(4.6)

Where matrix K ∈ R3×3 is the camera calibration matrix, R ∈ R3×3 is a rotation from
the world coordinate system to the camera coordinate system, I ∈ R3×3 is an identity matrix
and c ∈ R3 is the camera center.
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Figure 4.5: Color calibration of the model, casting rays through camera center and image
pixel. Here we can see a single blob getting a contribution for its color from multiple cameras.

Typically the matrix P is used to project 3D points from the world coordinate system to
2D points in the image domain. For the color calibration part we reverse the process that
is we cast a ray through the center of the camera and a pixel and then we check whether
the ray hits some of the blobs in the model.

Consider that we have an image pixel with the coordinates x ∈ R2, then to get the
direction vector of the ray connecting it with the camera center we compute the following:

d = (KR)−1
[
x
1

]
= R>K−1

[
x
1

]
(4.7)

Then we intersect the ray (c,d) with all of the blobs of our body model and the blob that
is the closest to the camera center gets assigned the color of the pixel to an accumulator.
The colors are then averaged over all the contributions of various pixels. An illustration of
this process is shown in fig. 4.5.

We usually carry out this process with the first frame of the video sequence, the color
model obtained this way works well enough in sequences where the actor’s color remains
consistent throughout the whole sequence. When there are color variations in time, we try
to compensate by relearning the color model more often. This will be described in detail in
section ??.

4.5 Creating an image model

The process of creating a sum of Gaussians representation of a camera image has already
been described shortly in a previous chapter in 2.2. Note that we have to create the image
model ncam times for each of the frames of the tracked multi-view sequence so we can’t
afford anything too complex to be happening.
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Figure 4.6: A sum of Gaussians image model created for six different views of the same
pose, regular grid of cells was used. Note that only crops of the full image are shown here.

We have shown in 2.2 two ways of decomposing the camera image to a sum of Gaussians
image model; a quad-tree based irregular grid approach and a uniform grid approach. The
one we ended up using the most was the uniform grid, which is a simple method of dividing
the image to adjacent square cells and then averaging the color in them. For each cell we
assign a blob with σ equal to half the width of the cell.

Furthermore, to speed up the whole motion tracking algorithm, we decided to throw
away all blobs that are unimportant for the algorithm to run - those are the blobs which
don’t represent the actor. We accomplish this by means of background subtraction, where
the background is captured separately beforehand / afterwards.

Such a method may be detrimental to the accuracy of the tracking in that it may even
discard some blobs which actually belong to the actor. But the motion tracking algorithm
used proved to be robust enough to deal with most of such situations.

Another problem may arise when the lighting conditions of the scene change, this may
happen for example when some of the cameras automatically adjusts exposure during the
video capture, because of some strong light getting into view. Then original captured
background doesn’t match the scene anymore and almost all of the blobs in the image are
left in the image model. This shouldn’t lower the accuracy of the tracking, but its speed
will definitely suffer from this.



Chapter 5

Implementation details

In the previous chapters we have described all the the pieces of the Kostilam motion cap-
ture software, starting with formulating a cost function in chapter 2, then presenting an
optimization strategy in chapter 3 and finally we gave the whole picture of everything that
is done in the tracking algorithm in chapter 4.

The most computationally expensive part of the proposed solution lies in computing the
value of the previously formulated cost function (2.15):

E(Θ) = wElim(Θ)− E(Θ)

Together with also calculating its gradient. We have decided to accomplish this by
using the method of automatic differentiation as presented in [26]. In this chapter we will
describe the implementation of our automatic differentiation framework, the optimization
approaches we have taken to make it run as fast as possible and we will sum up by showing
an implementation of the cost function E(Θ) in our code.

The programming language of choice for Kostilam was C++. As we will show, C++
allows for relatively straightforward implementation of automatic differentiation. Also it is
considered to be a good language for writing fast and efficient programs plus there is a wide
availability of drivers and libraries that can be used with it to load either recorded video
sequences or live camera streams.

5.1 Automatic differentiation

As we have detailed in chapter 3, automatic differentiation computes derivatives by evalu-
ating functions with arguments being of a special type - dual object. To compute partial
derivatives of multi-dimensional functions, we have introduced the extended dual object:

• Extended dual object: a+
∑
i∈I bidi, where I = {1, . . . , n}

1. a - real part, scalar
2. b - infinitesimal part, vector of length n

29
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Now consider that we have a function f(x, y) : R2 → R written in C++, taking as its
arguments standard variables of type float. By using a feature of the C++ language called
templates, we can rewrite the function so that it can accept either float or dual object
variables as its arguments. Let’s call the new templated version g(x, y) :

1 f loat f ( f loat x , f loat y )
2 {
3 return 2 .0 f ∗x∗y ;
4 }

Listing 5.1: C++ function using floats

1 template<typename T>
2 T g (T x , T y )
3 {
4 return T(2 . 0 f )∗x∗y ;
5 }

Listing 5.2: A templated C++ function

The templated functions in C++ have an interesting property in that just including
them to the source files of the project doesn’t actually generate any code in the final ex-
ecutable. Only when we use the function with some specified template argument, e.g. by
calling g<float>(.1f,.2f), the preprocessor notices this and creates an instantiation of
the function with the template argument substituted to the function.

In this case calling the function g from listing 5.2 with the template argument being
float will create exactly the same code as function f from listing 5.1. Now consider having
an object Dual available, representing the extended dual object shown above. When we use it
as the template argument for function g, the calculation of its gradient can be accomplished
by the following code:

1 Dual x ( 3 , { 1 , 0 } ) ;
2 Dual y ( 4 , { 0 , 1 } ) ;
3 Dual r e s u l t = g<Dual>(x , y ) ;
4 return r e s u l t . b ;

Listing 5.3: Computing the gradient of g(x, y) by using Dual objects

This piece of code will return the gradient of function g(x, y) at point (3, 4). The ele-
ments of the returned vector result.b are represent the coefficients of the dual numbers di
introduced previously in 3.1.3. This piece of code should serve here to illustrate the method’s
elegance, hopefully giving some motivation for the following detailed explanations.

The strategy for using automatic differentiation in C++ should also be noticeable here
- we need to write the functions we want to differentiate as templated functions, using
the generic type as their arguments, intermediate values and the return value. Then after
evaluating the function with a Dual object as the template argument, we can read off the
gradient as the result’s b vector.

5.2 Dual objects

For the above outlined strategy to work, we need to implement the Dual object type and
overload all the operations that it is a part of to be able to handle computations with Dual
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objects. Such operations have already been shown in 3.1.3, to give an example here as well,
let us show again how two Dual objects multiply:

(a0 + b0
>d)(a1 + b1

>d) = (a0a1) + (a0b1 + b0a1)>d (5.1)

In the following listing, we will show a part of the definition of the Dual object which is
present in Kostilam. To make matters more complicated, we have also made the object use
templates:

1 template<template<typename> class V, typename T>
2 struct Dual
3 {
4 public :
5 T a ;
6 V<T> b ;
7
8 Dual ( const T& a ) : a ( a ) {} ;
9 . . .

10 } ;

Listing 5.4: Definition of the Dual object

There are two template arguments here, T represents the precision level of math opera-
tions, we can choose either floats or doubles, while the V represents a container class for
the vector b, where we have been using a dense representation Vector or a sparse represen-
tation class SparseVector. For example to get a sparse vector representation using floats
as the number type, we can create the Dual object like so: Dual<SparseVector,float>. We
have given the choice for the container type to accommodate even large scale optimizations,
where it often happens that the vector b is mostly empty and therefore suitable for a sparse
representation.

It is important that we allow constructing the Dual object from a single scalar value as
shown on line 8 in listing 5.4. This allows us to write code like in listing 5.2 on line 4 ,
where we automatically convert the type of some constant to the type given by the template
argument. In such a conversion to a Dual object, the a member is assigned the constant’s
value, while the member vector b is left with only zeros.

There is a number of boilerplate functions and operators present in our code for manipu-
lating the Dual objects, like various constructors, copy constructors or assignment operators.
Those will be left out of this explanation and we will focus more on the important operations
that are at the core of the automatic differentiation process.

5.2.1 Operations with Dual objects

Luckily, C++ allows us to overload all the standard mathematical operators it uses to also
support taking Dual objects as the parameters. When all the necessary operations are
implemented, we can start to express templated functions like 5.2 in an elegant way, oblivious
to the underlying data type.
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For the case of the above shown multiplication (5.1), we can overload the standard C++
operator in the following way:

1 template< . . . class V, typename T>
2 Dual<V,T> operator ∗(Dual<V,T>& x , Dual<V,T>& y)
3 {
4 return Dual<V,T>(x . a∗y . a , x . a∗y . b + x . b∗y . a ) ;
5 }

Listing 5.5: Multiplication operator with Dual objects as arguments

Note that we omit here some parts of the code for clarity, e.g. part of the template
definition on line 1 or the const qualifiers on line 2.

At this point we have ready all the code that is needed to step through the example
given in listing 5.3. We have the function g(x, y) = 2xy and we are going to compute its
gradient at point (3, 4). All the values that will be calculated with will be of the Dual type.
The order of operations will go as follows:

[2, {0,0}] x = [3, {1,0}]

[2*3, 2*{1,0}] = [6,{2,0}] y = [4, {0,1}]

[24, 6*{0,1}+4*{2,0}] = [24, {8,6}]

Figure 5.1: Evaluating a function using Dual objects [a,b] as the arguments.

The result shows that derivative with respect to x is equal to 8 and derivative with
respect to y is equal to 6. This can be easily checked by symbolic differentiation. Note that
the multiplication operation in C++ is left-associative.

In the following code listing we will show some more operators for Dual objects that are
present in Kostilam, though not all of them as there is a lot of slightly modified variations
that wouldn’t be interesting here. However, even a small subset of operations as presented
here is enough to already be used to evaluate a large group of functions.

1 template< . . . class V, typename T>
2 inl ine Dual<V,T> operator+(Dual<V,T>& x , Dual<V,T>& y)
3 {
4 return Dual<V,T>(x . a+y . a , x . b+y . b ) ;
5 }
6



5.2. DUAL OBJECTS 33

7 template< . . . class V, typename T>
8 inl ine Dual<V,T> operator /(Dual<V,T>& x , Dual<V,T>& y)
9 {

10 return Dual<V,T>(x . a/y . a , ( x . b∗y . a − x . a∗y . b )/ ( y . a∗y . a ) ) ;
11 }
12
13 template< . . . class V, typename T>
14 Dual<V,T> sqr (Dual<V,T>& x)
15 {
16 return Dual<V,T>(x . a∗x . a , (T(2)∗ x . a )∗x . b ) ;
17 }
18
19 template< . . . class V, typename T>
20 Dual<V,T> s in (Dual<V,T>& x)
21 {
22 return Dual<V,T>(std : : s i n ( x . a ) , x . b∗ std : : cos ( x . a ) ) ;
23 }

Listing 5.6: Examples of various operations with Dual objects as arguments

The last 2 rules shown in listing 5.6 are specializations of the rule for evaluating differ-
entiable functions, which was described previously (3.21). The rule goes as follows:

f(a+ b>d) = f(a) + f ′(a)b>d (5.2)

Note that with respect to code efficiency, it is preferable to use the above presented
sqr(x) operation instead of writing simply x*x. The two approaches can be compared by
the number of computations involving vectors b - while in the sqr(x) operation we perform
just one multiplication of the vector b, when we use the multiplication operator we actually
have to perform 2 multiplications and 1 addition as can be seen in the listing 5.5.

In the last example shown in code listing 5.6 we can see an interesting property of the
automatic differentiation approach which we already touched upon in 3.1.4. On line 22 in
the listing we can see, that evaluating the sin function with dual objects of arbitrary length
only requires 2 evaluations of trigonometric functions.

5.2.2 Generic math primitives

The cost functions defined in chapters 2 and 4, either the motion tracking cost function
(2.15), or the one responsible for inverse kinematics (4.1) all require the use of vectors and
matrices for their calculations. For the above defined Dual objects to be usable in these cost
functions as well, we need to define the required data types in a generic fashion.

In Kostilam, there are several objects that enable this functionality:

• Vector - dynamically allocated

• Vec - statically allocated
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• Mat - statically allocated

All of these objects allow for specifying the underlying data type as a template argument.
For example, one can create a vector of floats by calling Vector<float>(), or a vector of
Duals by calling Vector<Dual>(). The statically allocated types also require to specify the
dimensions as their template arguments, e.g. to get a 3× 4 matrix of floats we should call
Mat<3,4,float> in the code.

5.3 Angular model representation

Before we show an example of a cost function taken from Kostilam, let us present the data
types we used to represent the sum of Gaussians body model 2.1.2. Note that we will only
include the most important members of each data type here. Also in the following figure we
use V3f as a shorthand for Vec<3,float>.

Joint                  
int parentId;
vector<int> children;
vector<AngularModelBlob> b;

V3f offset;
float boneLength;

RotationType rotationType;
V3f angle;

AngularModelBlob       
int id;

V3f offset;

float radius;
V3f color;AngularModel           

vector<Joint> joints

int rootId;
V3f rootPosition;

Figure 5.2: Data types for the representation of the angular model

Members of the data types shown in the above figure are based on the model description
we made in 2.1.4. Both the joints and blobs have an offset member to model the dimensions
of the body, on top of that in joints we add an additional variable boneLength which is useful
especially when we want to optimize the length of bones.

AngularModel keeps a list of its joints, each of which contains a list of its attached blobs.
The joints are in a hierarchy defined by the value of the variable parentId, for example joint
knee_L has as it’s parent the joint hip_L. The id of a joint is set implicitly by its order in
the joints list.

The rotationType determines the number of degrees of freedom of the given joint. It
is used to choose an appropriate way to compute the joint’s rotation matrix R(α). Even
though the number of degrees of freedom can range from 0 to 3, we always keep the angle
variable of size 3 to simplify the implementation.
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5.4 Inverse kinematics

Now that we have been exposed to the data types behind the body model, let us show
our implementation of the inverse kinematics cost function (4.1) to illustrate the use of
automatic differentiation in a more complex setting. We will introduce a helper functor
object AnglesCostIK that will facilitate storage of several parameters:

1 template<typename T>
2 struct AnglesCostIK
3 {
4 const AngularModel& model ;
5 const E f f e c t o r s& e f f e c t o r s ;
6
7 std : : vector< Vec<3,T> > params ;
8
9 std : : vector< Mat<3 ,3 ,T> > R;

10 std : : vector< Vec<3,T> > t ;
11
12 void operator ( ) ( const Vector<T>& x , T& sum)
13 . . .
14 } ;

Listing 5.7: A helper object for computing the inverse kinematics cost function

Notice that the given functor is templated and the template argument T also appears in
declaring the storage type of the intermediate values params, R and t. The vector params is
purely for intermediate storage, while matrices R and t together represent a transformation
from the joints reference frame to the world coordinates.

Calling the functor object with a set of parameters x will return the function value of the
inverse kinematics cost function. The argument x represents the same set of parameters as
the vector Θ previously introduced in 2.4. It contains the model’s translational parameters
and rotational parameters of all its joints stacked one after the other:
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Figure 5.3: Structure of the vector of parameters x. In total, there are 32 parameters - 3
translational and 29 rotational.
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Note that some joints don’t appear in the above figure 5.3 as they have 0 degrees of
freedom. We have made this choice for the hips joints to model the rigid pelvis bone.

Following is the implementation of the inverse kinematics cost function, for brevity, we
have omitted the quadratic penalty term Elim(Θ).

1 template<typename T>
2 void AnglesCostIK<T>:: operator ( ) ( const Vector<T>& x , T& sum)
3 {
4 params = parseParameters ( x ) ;
5
6 Mat<3 ,3 ,T> eye = getRotat ion (EYE) ;
7 ca lcJo intFrames (model . rootId , eye , params [ 0 ] ) ;
8
9 for ( int e f f e c t o r : e f f e c t o r s ){
10 Vec<3,T> d i s t = t [ e f f e c t o r . t a r g e t ] − Vec<3,T>( e f f e c t o r . pos ) ;
11 sum += sqr ( d i s t ( 0 ) ) + sqr ( d i s t ( 1 ) ) + sqr ( d i s t ( 2 ) ) ;
12 }
13 }

Listing 5.8: Code calculating the inverse kinematics cost function

The function parseParameters splits the vector x according to the structure shown
above in fig. 5.3. The resulting vector params contains 3-element vectors, so When there is
a joint with less than 3 degrees of freedom, the remaining values are filled with zeros.

Calling the function calcJointFrames calculates the intermediate values of R and t,
where t is the one that interests us as it gives us the position of the model’s joints. The
values are computed recursively by traversing through the skeleton hierarchy, during that,
we are keeping the last calculated transformation in accumulators R_acc and t_acc:

1 template<typename T>
2 void AnglesCostIK<T>:: ca lcJo intFrames
3 ( int id , Mat<3 ,3 ,T> R_acc , Vec<3,T> t_acc )
4 {
5 const Jo int& j o i n t = model . j o i n t s [ id ] ;
6 R[ id ] = R_acc ∗ getRotat ion ( j o i n t . rotationType , params [1+ id ] ) ;
7 t [ id ] = t_acc + R[ id ] ∗
8 Vec<3,T>( j o i n t . o f f s e t ∗ j o i n t . boneLength ) ;
9
10 for ( int ch i l d : j o i n t . c h i l d r en )
11 ca lcJo intFrames ( ch i ld , R[ id ] , t [ id ] ) ;
12 }

Listing 5.9: Code calculating the joints’ reference frames

For the functions to be usable with automatic differentiation, it is important that all the
values used in the above computations are consistent in having the data type of the template
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argument T. For this reason you can see in the code at several places an explicit conversion
to the data type T, e.g. the piece of code Vec<3,T>(joint.offset * joint.boneLength)
converts the joint’s V3f parameters to type Vec<3,T>.

Consider for a moment that the data types would be inconsistent, for example that we
would use the V3f type for the intermediate values t. Then either the code wouldn’t work
at all when trying to assign to t a variable of type Vec<3,T>, or if we would have some
implicit conversion in place, then in the case that T would be Dual we would necessarily
drop the dual object’s infinitesimal part b, losing all information about the derivatives.

5.4.1 Applying automatic differentiation

Now we have a generic implementation of the inverse kinematics cost function realized in the
code by means of the functor object AnglesCostIK. In the following listings, we will show the
difference between simple function evaluation using floats and automatic differentiation of
the function using objects of type Dual.

1 f loat r e s u l t ;
2 Vector<f loat> x ( 3 2 ) ;
3 for ( int i = 0 ; i < 32 ; i++)
4 {
5 x [ i ] = __some_value ;
6 }
7
8 AnglesCostIK<f loat> cos t ( . . . ) ;
9 co s t (x , r e s u l t ) ;

Listing 5.10: Evaluation using floats,
result = f(x)

1 Dual r e s u l t ;
2 Vector<Dual> x ( 3 2 ) ;
3 for ( int i = 0 ; i < 32 ; i++)
4 {
5 x [ i ] . a = __some_value ;
6 x [ i ] . b [ i ] = 1 ;
7 }
8 AnglesCostIK<Dual> cos t ( . . . ) ;
9 co s t (x , r e s u l t ) ;

Listing 5.11: Automatic differentiation,
result.a = f(x), result.b = ∇f(x)

Some parts of the code are left out to make the point short, e.g. the Dual object would
require further specifying a template argument to choose one of the implementations or the
AnglesCostIK object would require some constructor parameters.

In both examples we prepare a vector of parameters x and fill it with some values - this
is the point where we want to evaluate or differentiate the function, usually it comes from a
previous state of the model. The difference is in the data types; in listing 5.10 we us floats
so then all the calculations in the cost function will be done in standard float arithmetic
and as a result we will get a single function value.

On the other hand when we specify the arguments as objects of type Dual we are going
to perform the automatic differentiation process instead of a simple function evaluation.
The Dual arguments are prepared in the same fashion as shown in the theoretical example
3.1.4, that is the real part a gets assigned the single scalar input and the infinitesimal part
b is a vector of zeros with a 1 denoting the argument’s position in the input.

Now all the calculations in the cost function will involve Dual objects as their operands,
also giving the result as a Dual object. Its real part (a) is going to be the original function
evaluation and the infinitesimal part (b) will give us the function’s gradient at the specified
point as has been explained in the chapter 3 in the theory part of this work.
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5.4.2 Dual objects initialization

Returning to the way the Dual objects are initialized, another way of thinking of such a
setup is when we think of the infinitesimal part b as the gradient of the function that resulted
in the given Dual object.

At the beginning when we have only the input parameters in a list, such functions are
of the form f(x) = xi. Consider the input parameters x = (x1, x2, . . . , x32) and then a
gradient of one such simple function:

f(x) = x2
∂f

∂x = (0, 1, 0, . . . , 0) (5.3)

If we would leave the part b of the Dual objects only zeros, then we would get no
derivatives in the end. Also setting the b vectors in any other way than presented above
wouldn’t in the end produce the desired gradient.

5.5 Motion tracking

In the previous section we have shown the inverse kinematics cost function in full detail,
hopefully giving a good idea of how we use the automatic differentiation approach in Kos-
tilam. Giving such a detailed description of our motion tracking cost function (2.15) here
would be far too long and probably not much beneficial for the reader, so we will show only
a simplified overview of the implementation.

Similarly to the previous case, we will define a functor object to help us with storing all
the intermediate variables needed in the cost function:

1 template<typename T>
2 struct AnglesCostTracking
3 {
4 const AngularModel& model ;
5 const Views& views ;
6
7 std : : vector< Vec<3,T> > params ;
8 std : : vector< Mat<3 ,3 ,T> > R;
9 std : : vector< Vec<3,T> > t ;
10
11 std : : vector< T > perViewSum ;
12 std : : vector< Vec<3, T> > pro jec tedBlob ;
13
14 void operator ( ) ( const Vector<T>& x , T& sum)
15 . . .
16 } ;

Listing 5.12: A helper object for computing the motion tracking cost function

The members params, R and t have the same meaning and are computed identically
as in the inverse kinematics cost function. On top of that we have perViewSum for storing
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contributions from different cameras and then projectedBlob for storage of the projected
body model.

Following will be the code for the cost function itself, but note that it is not exactly the
same as it appears in Kostilam, we have stripped it here to its bare essentials - some of the
constructions shown here would have to be written on more lines of code in Kostilam and
somewhere we would introduce more code to make the program run faster. We have tried
to capture the general idea as well as possible.

1 template<typename T>
2 void AnglesCostTracking<T>:: operator ( ) ( const Vector<T>& x , T& sum)
3 {
4 params = parseParams (x ) ;
5 ca lcJo intFrames (model . rootId , EYE, params [ 0 ] ) ;
6
7 sum += l im i t sPena l t y (x ) ;
8
9 for ( int k = 0 ; k < views . s i z e ( ) ; k++)
10 {

In the first part, we split the parameter vector x and compute the transformations [ R t ]
for each joint. New from the previous function we have the computation of the quadratic
penalty term Elim(Θ) (2.14) and we start a loop over the different camera views.

The following part is calculated for each camera view; in all of them we step through
the model’s blobs and project them using the given view’s camera matrix P, this process
has been described already in section 2.3.1; first we project the blob centers to homogeneous
coordinates and then divide by the third element to get the image coordinates. The new
size of the projected blobs is calculated using the camera’s focal length f.

11 for ( int i = 0 ; i < model . j o i n t s . s i z e ( ) ; i++)
12 {
13 for ( AngularModelBlob& blob : model . j o i n t s [ i ] . b lobs )
14 {
15 // b l o b p o s i t i o n in world coord ina t e s
16 Vec<3, T> blobPos = t [ i ] + R[ i ] ∗ Vec<3, T>(blob . o f f s e t ) ;
17
18 // b l o b p ro j e c t e d to image
19 Vec<3, T> pb = views [ k ] . camera .P ∗ Vec<4, T>(blobPos , 1 ) ;
20
21 // convers ion from homogeneous coord ina t e s
22 pro jec tedBlob [ blob . id ] . x = pb . x / pb . z ;
23 pro jec tedBlob [ blob . id ] . y = pb . y / pb . z ;
24
25 // c a l c u l a t i n g the new s c a l e o f the b l o b
26 pro jec tedBlob [ blob . id ] . r = ( views [ k ] . camera . f ∗ blob . r ) / pb . z ;
27 }
28 }

We will follow by calculating the similarity Eij 2.8 of the blobs in the image with all the
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projected blobs of our model. This involves calculating the color similarity d(ci, cj) and the
integrated overlap of the two Gaussians representing the blobs:

29 for ( ImageBlob& imageBlob : views [ k ] . imageBlobs )
30 {
31 T imageBlobSum = 0 ;
32
33 for ( Jo int& j o i n t : model . j o i n t s )
34 {
35 for ( AngularModelBlob& blob : j o i n t . b lobs )
36 {
37 const T blobOverlap =
38 calcBlobOver lap ( imageBlob , pro jec tedBlob [ blob . id ] ) ;
39 const f loat c o l o r S im i l a r i t y = d( imageBlob . c , blob . c ) ;
40
41 imageBlobSum += T( c o l o r S im i l a r i t y ) ∗ blobOverlap ;
42 }
43 }
44
45 f loat imageBlobSel fOver lap = E( imageBlob , imageBlob ) ;
46 perViewSum [ k ] −= min( imageBlobSum , T( imageBlobSel fOver lap ) ) ;
47 }

The contributions of all the projected blobs are summed up for each blob in the image
in the variable imageBlobSum, then we compare the value with the maximum allowable
contribution for a single image blob imageBlobSelfOverlap. The minimum of the two
is then accumulated in the variable perViewSum. Notice on line 55 that we actually use
subtraction here so by minimizing the final value, we will be maximizing the blob overlaps.
The equations that were implemented at this step were described in section 2.3.3.

Now we have done all the necessary calculations in the individual camera images, we can
close the loop starting at line 9 and sum the images’ contributions to the final cost function:

48 } // end o f the ( f o r each view ) loop
49
50 for ( int k = 0 ; k < views . s i z e ( ) ; k++)
51 sum += perViewSum [ k ] / views [ k ] . sumBlobsOverlaps ;
52 }

We are weighting the contributions of the images by the term E(Kl,Kl) shown before
in section 2.4, the term should balance images where the model appears large with images
where the model is small.

5.5.1 Summary

We have shown a simplified implementation of the cost function E(Θ) (2.15) responsible for
finding the most probable pose of the model. Computing its gradient is done by means of
automatic differentiation, the same code as in listing 5.11 can be used here as well, only we
replace the previous cost function with the new AnglesCostTracking.
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We then use the L-BFGS optimization algorithm with this cost function plugged in to
finally track the model. We described the choice of this algorithm previously in section 3.2,
basically it approximates a second-order optimization method but still it only requires us to
supply only the function’s gradient. We used an open-source library [23] to run the method
in our code.

5.6 Optimization techniques

In order to run our tracking algorithm as fast as possible, we have focused mainly on efficient
calculations with Dual objects because that is where most of the time is spent, in fact, more
than 80% of the algorithm’s running time is spent on operations of Dual objects or their
life-cycle management.

The reason why those operations take such a significant portion of the used time is that
they are actually operations with vectors (infinitesimal part b) and as such require heavy
movement and allocation/deallocation of data. But it is also a fact that at the beginning
of the computations, the vectors are mostly filled with zeros (5.4.2), only a single non-zero
element is present. Those get added up, however, and this is a point where we can see a
major difference between the original Kostilam model 2.1.1 which relied on translational
parameters only and the new angular model 2.1.2.

Consider how position of a single model blob is influenced by different model parameters:

Elbow: 3

Wrist: 1

Shoulder: 2

Spine: 3

Pelvis: 3 + 3

Elbow: 3

Wrist: 3

Figure 5.4: Parameters influencing a blob on the left hand, joints responsible for its move-
ment are in blue. Angular model parameters (left), positional model parameters (right).
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In the positional model the blob only moves when its adjacent joints move, on the other
hand in the angular model any joint up to the root in the skeleton hierarchy can influence
the blob’s position. So while in the positional model the position of a blob can have up to
6 non-zero values in its b part, for the angular model this can rise up to 15 non-zero values.

Hopefully, this has shown the importance that effective Dual / vector operations have
in our tracking algorithm. In the following part we will show our implementation approach.

5.6.1 Sparse vector

In our first implementation of the cost function (5.5), we have used as the underlying
data structure for the Dual objects a standard dense vector representation - Vector. This
implementation was extremely slow, it was taking tens of seconds to compute one frame.

We have observed the distribution of sizes of the Dual objects appearing in the compu-
tations over the first few frames, the size meaning how many non-zero values are actually
present in the vectors:
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Figure 5.5: Size of Dual objects in calculations is given on the x-axis, no. of occurences
(left), percentage of operations with Dual objects having less than x non-zero values (right).

Seeing how as much as 70% of all the operations with Dual objects only calculates with
less than half-full vectors, we have decided to bring to the table a sparse representation of
vector: SparseVector. Implementing sparse operations to power the automatic differenti-
ation framework is not uncommon in literature, e.g. [26] or [37] use it with success. Our
implementation contains the following four members:

• size - number of non-zero values in the vector

• mask - a bit mask having 1 at the position of the data

• ind - an array of indices, represents the position of the data

• val - an array of non-zero data values



5.6. OPTIMIZATION TECHNIQUES 43

int mask x|x|x|~|~|~|x|~
int size 4  
int* ind 1|2|3|7
  T* val 2|2|4|1

int mask x|~|~|~|x|~|x|~
int size 3 
int* ind 1|5|7
  T* val 4|2|3

int mask x|x|x|~|x|~|x|~
int size 5  
int* ind 1|2|3|5|7
  T* val 6|2|4|2|4

+

int mask x|~|~|~|x|~|x|~
int size 3  
int* ind 1|5|7
  T* val 3|1|1

int mask x|~|~|~|x|~|x|~
int size 3 
int* ind 1|5|7
  T* val 1|1|2

+ A

B

Figure 5.6: SparseVector representation with two modes of addition: fast(A), merge(B).

We keep with each vector a bit mask representing all the positions of the vector’s data
in a single integer. Lucky for us, our human body model has just 32 parameters in total.
When we are adding two sparse vectors together we first compare their masks and if they
match exactly, we can proceed to fast addition (A in fig. 5.6) otherwise we have to initiate
a slower “merge” addition (B in fig. 5.6).

Good thing is that the fast additions actually constitute more than 95% of all the addi-
tions combined. One more thing to add is that when we want to perform larger optimizations
- with more parameters than 32 - we usually disable the fast addition completely. The al-
gorithm for the general addition is similar to the merge part of the merge sort algorithm,
we have taken inspiration for our implementation in [37].

Also notice that the data member val uses a template for its type, so the sparse vector
could store floats or doubles, even Duals if the need would arise.

5.6.2 Memory management

You may have noticed some dangerously looking pointers in the sparse vector representation,
here we will describe our rationale behind using them and also the way we manage their life-
cycle. It is being recommended these days to use the standard vector containers in modern
C++ almost everywhere some memory allocation is necessary [34], in our case, however, we
are dealing with lots of small allocations and deallocations happening constantly every time
some new temporary variable is created.



44 CHAPTER 5. IMPLEMENTATION DETAILS

Unfortunately there is a lot of such temporary variables appearing in our code at the
moment, consider the simple example of the multiplication operator for Dual objects:

1 Dual<V,T> operator ∗(Dual<V,T>& x , Dual<V,T>& y)
2 {
3 return Dual<V,T>(x . a∗y . a , x . a∗y . b + x . b∗y . a ) ;
4 }

Listing 5.13: Multiplication operator with Dual objects as arguments

Not taking into account some compiler optimizations, in general we have to allocate two
sparse vectors for both operands x.a*y.b and x.b*y.a and finally there is one more allo-
cation for the result. The two intermediate values then have to be deallocated. Considering
that this process happens within every multiplication of Duals, any improvement here can
be very significant.

Under such heavy load, the standard C++ operators new and delete can cause memory
fragmentation, ultimately leading to slow response or fluctuations in performance. We have
therefore decided to write a custom memory management scheme, that would cope with our
demands.

5.6.2.1 Fixed-sized pool allocator

We strived to find an algorithm that would be very simple, but still faster than the default
C++ memory management. Such requirements necessarily led us to a compromise. We found
something called the fixed-size pool algorithm, which is being used often in videogames for
realtime purposes [20] and it allows to allocate and deallocate chunks of memory of fixed
size in very little time. The data structure for the memory manager is remarkably simple:

1 class MemoryManager {
2
3 struct FreeStore {
4 FreeStore ∗next ;
5 } ;
6
7 int maxMemory ;
8 FreeStore ∗ f r eeStoreHead ;
9 . . .

10 } ;

Listing 5.14: Custom memory manager class inspired by [31]

Indeed, it is a simple linked-list. However, there is a trick in the algorithm that makes
the simple linked-list a powerful memory manager. Let’s say we want to be allocating sparse
vectors of maximum number of elements maxMemory. First we allocate a continuous chunk
of memory and we construct a linked-list in it with its elements representing free space for
new vectors. In the next step we will allocate some sparse vectors and finally we will perform
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a deallocation. Notice that the data of the vectors will overwrite the space of the previous
pointer:

*freeStoreHead nullptr

SparseVector SparseVector SparseVector SparseVector

Figure 5.7: Memory manager initialization, here we have space for 4 sparse vectors. The
blue rectangles represent pointers to the next free space.

*freeStoreHead nullptr

SparseVector SparseVector SparseVector SparseVector

*freeStoreHead nullptr

SparseVector SparseVector SparseVector SparseVector

Figure 5.8: A series of two memory allocations, the space for them is taken from the
beginning of the linked-list.

*freeStoreHead nullptr

SparseVector SparseVector SparseVector SparseVector

Figure 5.9: Performing deallocation of the first allocated sparse vector. The reclaimed
space is returned to the beginning of the linked-list.
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Introducing the custom memory manager indeed made the cost function computation
faster, against the standard new and delete operators the difference was around 50%. And
that is even though we actually allocate with our memory manager more memory than is
needed - majority of the sparse vector will never get filled up completely. In this case the
compromise on space was beneficial for run time.

In Kostilam we allocate the default memory manager to hold up to a 1000 sparse vectors
but still, the maximum simultaneously allocated vectors took only around 600 chunks of
memory.

5.6.3 Parallelization

We enabled parallelism for the computation of the main cost function 5.5 relatively simply
by using an OpenMP [1] directive:

1 #pragma omp p a r a l l e l for
2 for ( int k = 0 ; k < views . s i z e ( ) ; k++)
3 {
4 . . .
5 }

Listing 5.15: OpenMP enabled parallelism

This way each of the views should be calculated on a different thread. The only catch
was that we had to instantiate one new memory manager for each such thread, because more
threads accessing one memory manager wouldn’t be safe. When we implemented this and
ran the parallel algorithm on a processor with support for at least 6 simultaneous threads,
we got a speedup of about 150% against the single-thread implementation.

5.6.4 Summary

On top of these optimizations, we used the new feature of C++11 called move seman-
tics [34] and implemented both the move constructor and move assignment operators for
SparseVectors and Duals. That way at least some of the temporary variables appearing
in all calculations are avoided. Putting that together with the sparse vector implementa-
tion, custom memory manager and parallelization lead to a solid speedup of the tracking
algorithm - where with the naive approach we had to wait more than 10 seconds for each
frame, now we can reach up to 3 frames per second with the optimized algorithm.



Chapter 6

Testing

In this chapter we will show images from the sequences we managed to track with our
algorithm. We have been testing our motion capture algorithm on a setup of 6 PlayStation
Eye cameras which have a resolution of 640x480 pixels and a framerate of 60 frames per
second. All of the tracked sequences are present on the enclosed CD, the results probably
look a bit better in the video as the movement can hide some imperfections.

6.1 Various sequences

6.1.1 Sequence blue_exercise

We have successfully tracked 4000 frames of this sequence, up to its end. The whole process
was finished without any manual corrections. When you look at frame samples on the
following pages, on both sides you will be able to see the same pose, on the left in the model
space, on the right in the image space.

6.1.2 Sequence red_exercise

We have managed to track 3268 frames of this sequence, up to its end. There was a minor
problem, however - at one point the actor got out of the area visible by all the cameras, which
caused the model to behave erratically. We have solved this by programatically turning off
the contribution of the views from which the actor is at least half-absent. This turned out
to work in this particular case.

6.1.3 Sequence take1

We have tracked this sequence successfully without needing any corrections. This sequence
is 1280 frames long.

6.1.4 Sequence take3

We have tracked this sequence with success, not needing any manual corrections. This
sequence is 1190 frames long.

47
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Figure 6.1: Frame 2091 of the blue_exercise sequence, model view

Figure 6.2: Frame 1078 of the blue_exercise sequence, model view
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Figure 6.3: Frame 2091 of the blue_exercise sequence

Figure 6.4: Frame 1078 of the blue_exercise sequence
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Figure 6.5: Frame 672 of the red_exercise sequence, model view

Figure 6.6: Frame 1300 of the red_exercise sequence, model view
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Figure 6.7: Frame 672 of the red_exercise sequence

Figure 6.8: Frame 1300 of the red_exercise sequence
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Figure 6.9: Frame 390 of the take1 sequence, model view

Figure 6.10: Frame 913 of the take1 sequence, model view
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Figure 6.11: Frame 390 of the take1 sequence

Figure 6.12: Frame 913 of the take1 sequence
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Figure 6.13: Frame 674 of the take3 sequence, model view

Figure 6.14: Frame 824 of the take3 sequence, model view
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Figure 6.15: Frame 674 of the take3 sequence

Figure 6.16: Frame 824 of the take3 sequence
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Chapter 7

Conclusion

We have shown in this work the development of a markerless motion capture system, from
its key concepts, to the little details that make it work. In chapter 2 we have shown the
core idea we decided to base our software on - the cost function 2.15 first published in [33]
by Stoll. Together with it went the development of a sum of Gaussians body model 2.2 that
was designed to be able to represent different actors as well as possible.

Continuing on to chapter 3, that is where we introduced theory related to automatic
differentiation, based on an article [26] by Piponi. We decided to use the automatic differ-
entiation approach to minimize the above mentioned motion tracking cost function.

In chapter 4 we have shown all the supporting tasks that need to be implemented in
order to make good use of our chosen tracking approach, e.g. finding a good initial solution
or calibrating the body model to a specific actor.

In the longest chapter 5 we have shown the hard implementation details of our automatic
differentiation framework, hopefully giving the reader a good idea how it works and perhaps
an inspiration to implement it in their own existing solutions. Also in this chapter we have
described the optimization techniques we used to speed up Kostilam as much as possible.

Finally in chapter 6 we have shown some results of tracking people’s motion through
recorded sequences.

Unfortunately we haven’t managed to develop a solution for the light adaptation prob-
lem, partly due to the complexity of the whole task, this leaves perhaps as a topic for future
work.

This work gave me opportunities to play with some very interesting materials, during
our work we had visited two different capture studios, we had access to some fast computers
where we could run our Kostilam software, which was always a joy to see, for that I’m
grateful.

57
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Appendix A

Figures

Figure A.1: Point clouds and skeletons
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Figure A.2: IIM studio

Figure A.3: IIM studio, the dog experiment
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Figure A.4: take3 exported to Maya, courtesy of Radek Smetana
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Figure A.5: take11 exported to Maya, courtesy of Radek Smetana



Appendix B

Contents of CD

Unfortunately, we cannot enclose the Kostilam software here, as it is targeted to be a com-
mercial product. If you have inquiries about the software, please feel free to contact the
author of this thesis or the supervisor.

Folder video:

• take1.mov

• take3.mov

• iim-blue-exercise.mp4

• iim-red-exercise.mp4

Folder pdf:

• krupka-mt.pdf

67


	Introduction
	Related work
	Thesis structure

	Motion capture cost function
	Sum of Gaussians body model
	Positional model
	Angular model
	Rotation parameters
	Model summary

	Image model
	Similarity measure
	Model projection
	Blob similarity
	Model similarity

	Cost function
	Note about tracking


	Cost minimization
	Automatic differentiation
	Generalization
	Operations over dual objects
	Multidimensional differentiation
	Example

	Gradient descent

	Implementation overview
	Overview
	Initial solution
	Inverse kinematics

	Fitting a body model
	Multi-pose cost function

	Color calibration
	Creating an image model

	Implementation details
	Automatic differentiation
	Dual objects
	Operations with Dual objects
	Generic math primitives

	Angular model representation
	Inverse kinematics
	Applying automatic differentiation
	Dual objects initialization

	Motion tracking
	Summary

	Optimization techniques
	Sparse vector
	Memory management
	Fixed-sized pool allocator

	Parallelization
	Summary


	Testing
	Various sequences
	Sequence blue_exercise
	Sequence red_exercise
	Sequence take1
	Sequence take3


	Conclusion
	Bibliography
	Figures
	Contents of CD

