


Czech Technical University in Prague

Faculty of Electrical Engineeing

Using Sequence-Form Double-Oracle Algorithm for

Simplified Poker

Bachelor thesis

Martin Münch

Supervisor: Mgr. Branislav Bošansky, Ph.D.
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Abstract

Poker is one of the popular domains of game theory and it is used (in a simplified

form) as a benchmark domain for comparing the algorithms for solving finite sequential

games. In this thesis, we use sequence-form double-oracle algorithm, iterative approach

for finding an exact Nash equilibirum for extensive-form zero-sum games. Intiution

behind this agorithm is the following: firstly, it creates a game with restricted possible

sequences of actions for players. Secondly, it solves this restricted game, and finally,

it finds the best response against the solution of restricted game and expands the

restricted game by the best-response sequences. In poker performance of domain-

independent double oracle is not good. But the methods of the general algorithm

can be replaced by domain-specific methods. Therefore, the goal of this thesis is (1)

explore possible compact representation of Poker, (2) explore different methods for

selecting actions to expand the restricted game, (3) experimentally compare proposed

methods with general double oracle.



Abstrakt

Poker je jednou z populárńıch domén teorie her, která se často ve zjednodušené

formě využ́ıvá pro porovnáváńı a evaluaci algoritmů. V této práci použ́ıváme sequence-

form double-oracle algoritmus, což je obecný iterativńı algoritmus hledaj́ıćı řešeńı pro

extenzivńı hry s nulovým součtem. Intuice algoritmu je následuj́ıćı: nejprve se vytvoř́ı

omezená hra, kde hráči maj́ı omezené akce, které mohou zahrát. Najde se řešeńı této

omezené hry a následně se rozš́ı̌ŕı o nové akce odpov́ıdaj́ıćı nejlepš́ı možné strategii.

Rychlost obecného double oraclu neńı pro Poker ideálńı. Metody obecného algoritmu

jdou nahradit metodami využ́ıvaj́ıćı vlastnosti dané domény. Proto je ćılem této práce

(1) prozkoumat možnosti kompaktněǰśı reprezentace hry Pokru, (2) prozkoumat r̊uzné

možnosti pro výběr akćı, které rozš́ı̌ŕı omezenou hru a (3) experimentálně porovnat

navržené metody vzhledem k obecnému double oracle.
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Chapter 1

Introduction

Game theory is a part of applied mathematics, which aims to mathematically

describe competetive scenarios and find solution for them. Solution is a strategy or

behavior for player based on rational analysis of the scenario. These scenarios can

be situations from the real world, including scheduling inspections of gas stations,

checking passenger’s tickets in subway, also some cooperative usage in multiagent

conflicts as self-driving cars, multiple airplanes passing through same spot or drones

patrolling area. Most of algorithms and methods for game theory come from testing,

inspecting and experimenting of games like prisoner’s dilema, tic-tac-toe, chess, go or

poker.

In every competetive scenario or game, there are competitors and set of rules

they must follow. Competitors are usually called players or agents and they are the

one, who takes actions to progress the game and get payoff. Payoff is an expression

of game outcome and player’s interests. When we examine a game using game theory

and its tools, we are trying to find optimal solution for an agent. Optimal solution

or optimal strategy, is the solution maximizing payoff of the player. Nash equilibrium

is the mostly used concept of optimal solution. Optimal solution according to Nash

equilibrium for all players is a stable one, meaning no player wants to change his

strategy, because it would lead to worse payoff. Nash equilibrium expects all players

to act rationaly and if all players do, it guarantees to find optimal strategy for every

player.

Games differ in many properties. One of them is, if they are one shot games or

turn based, where players alternate between their actions. Poker is a sequential game,
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where game alternate between card dealing or card revealing and betting round, where

players take turns of betting. This property of a game leads to description using tree

graph (called game tree), where action, as bet or dealing card, is an edge and state of

game is a node. Some games have many possible actions in each node or many turns

and that make their game tree very large.

Poker game usually starts with more players, for example 8. And as the game

proceeds, players are eliminated, when they run out of chips. This eventually leads to

two player poker game called Heads up which is the main interest of this thesis. We

will describe, analyse and try to find optimal solution for Heads up poker. Therefore

we will restrict our definitions for 2 player games.

Poker interests game theory almost since its founding (see for example [5], [7]

or [10]), different aspects of poker were analyzed, at the early begining only by hand.

Since then, modern hardware is involved with great computational power [3]. Now

there are typically 2 options for evaluation of an extensive game strategy. First option

is to gather strategies and make a tournament between them, for example Annual

Computer Poker Competetion. The outcome of tournament between strategies is one

ultimate winner, on the other hand, interpretation of the resuts is not that clear.

Tournaments are the more popular choise between researchers and new aproximative

algorithm were invented due to the tournaments. Second option is to challenge strategy

against worst-case, where this choise suggests, strategy is robust to the choices of the

other player. [4] In this thesis we will use double-oracle algorithm for finding Nash

equilibrium for game of poker, which finds exact Nash exquilibrium, but for poker has

not reached its potential.

Computing of Nash Equilibrium on game tree of texas hold’em, which has ap-

proximately 9.17 ∗ 1017 game states, would require 10 years, if we could process 3

billion states per second [4]. This is the reason, why we need to explore more domain

specific features of large games and exploit its characteristics to find Nash equilibrium

on large games. In this paper we will explore Leduc Hold’em poker, which is very

small, approximately 1900 game states.
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Double-oracle algorithm is designed for two-player zero-sum extensive-form games

with imperfect information, where poker belongs. The main idea of this algorithm is

to firstly solve the restricted game, where players have only limited available sequences

of actions. Then finding the best response against solution of the restricted game and

adding this new sequences to the current solution [1].

1.1 Thesis Outline

Chapter 2 presents used terms of the game theory. Double-oracle algorithm with

description of its main parts is described in chapter 3. Chapter 4 povides poker-

specific best response. We presents our experiments and heuristics for the accelerated

best response in chapter 5. Lastly, chapter 6 is summary of the thesis and discussion

about possible extensions.
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Chapter 2

Game Theory

Games are various situations, conflicts, diplomatic negotiations, etc. They vary

in many properties, games can be turn-base or simultaneous, can end after one decision

or take many turns to end, and so on. Each game has its own properties, which makes

it unique, but all games has some properties in common.

Every game has player or players, whom are objects making decision based on

some rule or pattern, players try to maximise their payoff. Decisions in games are

called actions. Action can be move with chesspiece, betting in poker, placing your

sign in tic-tac-toe. Payoff or gain for player from the game is a function, decribing

preferences, interests, wins and losts. Payoff depends on played actions by the player

and his opponents.

The poker is a zero-sum game with imperfect information. Zero-sum games are

those, where gain for one player directly implies loss of the same value for the other

player. Imperfect information means, player does not know all information about

current state of the game. In our poker case, player does not know cards of the

opponents.

In this chapter we provide a formal definition of these essential game theoretic

concepts, that are necessary for following description of solution concepts and methods

for finding these solution, as player or action, game representation as normal-form

and extensive-form and finally with concepts as nash equilibrium, best response. All

essential definitions and concepts are based on Multiagent Systems written by Shoham,

Y. and Leyton-Brown, K. [9] and thesis of B. Bošanský [2]
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2.1 Games

Mostly used form of representing game in publications about game theory is the

normal form. Main reason for this popularity and usage is its straightforward notation

and that all finite games can always be represented in the normal form. Normal form

is a very general and does not use any structure of a game, not even alternation of

players on the move.

2.1.1 Games in Normal Form

Normal form is usually used for one shot games, where players decides simulta-

neously, what action to play and the game terminates immediately after the selected

actions are executed. Normal form uses matricies for representation of payoff function,

where for each possible action of player is assigned his utility.

Definition 1. Normal-form game for 2 players is a tuple (N, A, u), where:

• N is a set of two players, we use i to denote a player from N and −i to denote

his opponent

• A = A1 × A2, where Ai is a finite set of actions available to player i

• u = (u1, u2), where ui : A→ R is a payoff function for player i

This definition states, that normal-form game is a triplet, containing set of play-

ers, set of all possible game states and functions defining payoff (sometimes called

profit or utility) for each player for each state.

Using payoff functions is the dominant approach in game theory to model pref-

erences of players. There are no general requirements on payoff functions. But there

is a large set of interesting games called zero-sum games, which are defined as [9]:

Definition 2. A two-player normal-form game (N, A, u) is zero-sum if for each a ∈ A
applies u1(a) + u2(a) = 0.
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Example 1. We have rock-paper-scissors game with two players, where each player

can play rock, paper or scissors. Outcome depends on signs chosen by players. Rock

beats scissors, scissors beats paper and paper beats rock.

Let us call our two players Player 1 and Player 2, and actions will be denoted R

as rock, P as paper and S as scissors. Now we can describe rock-paper-scissors as a

normal-form game:

• N = { Player 1, Player 2 }

• A = A1 × A2 = {R,P, S} × {R,P, S}

Player 2
(u1, u2) R P S

Player 1
R 0, 0 -1, 1 1, -1
P 1, -1 0, 0 -1, 1
S -1, 1 1, -1 0, 0

Table 2.1: Payoff for players in rock-paper-scissors game

Table with payoffs for players represents function u = (u1, u2) from the definition

of normal-form game. u1 is gain for the first player and u2 for the second player. We

use payoff function with possible numbers 1, -1, 0 for denoting if player wins (1), loses

(-1) or draws (0).

The normal-form representation is often not suitable for the describing sequential

games. We should keep in mind, poker is a turn based game, which would be very

difficult to describe with matrix or matricies. It can be done, but it would consume

exponential amount of memory and time, than using extensive-form games. Therefore

we use the extensive form, which is more suitable representation using tree structures

to describe game.

2.1.2 Games in Extensive Form

As we stated before, extensive form is more suitable for poker and other sequen-

tial games, it uses tree graph to represent the game. Game tree represents actions as

edges, game states as nodes and outcomes of the game as leaves.
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Definition 3. Extensive-form game for 2 player is a tuple (N, H, Z, A, χ, p, u, ρ,

I), where [9]:

• N is a set of two players

• H denotes a finite set of nonterminal choice nodes

• Z is a finite set of terminal nodes, disjoint from H

• A is a set of actions

• χ : H → 2A is the action function, which assigns each choice node a set of

possible actions

• p : H → N ∪ {c} is the player function, which assigns to each nonterminal node

a player or Nature, who choses an action at that node, c denotes a Nature player

• u = (u1, u2), where ui : Z → R is a payoff function for player i for each terminal

node

• ρ : H × A → H ∪ Z is the successor function, which maps a choice node and

action to a new choice node or terminal node such that for all h1, h2 ∈ H and

a1, a2 ∈ A, if ρ(h1, a1) = ρ(h2, a2) then h1 = h2 and a1 = a2

• I are information sets, which we will define and describe next

Solution for the extensive form could be computed by converting the game

into the normal form. The normal form is exponentialy larger representation of

the extensive-form games, which would be ineffective. For solution of normal-form

imperfect-information games is very often used compact representation called sequence

form. Before definition of sequence form we need to define some more terms as imper-

fect information or strategy.

2.1.3 Perfect and Imperfect Information Games

Perfect-information games are those, where all players has every information

about the game. For example in chess, both players see the whole board and know

where every piece is and what actions the opponent plays. Poker, on the other hand,
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has some information public and some hidden. Cards on the table and chips of the

players is public information observable to every player. Cards in the player’s hand

are hidden, it is the private information.

Imperfect information causes uncertainity for a player, in which state he is in.

In our case, game state in poker depends on the cards of the other player. One player

only knows the probability for each card being in the opponent’s hand. Player can be

in one of the number of states as number of cards opponent may have.

The issue of imperfect information is addressed by information sets. Information

set contains all possible nodes, player can be in. Intuition behind informaion sets is,

that player knows which set he is in, but is not able to distinguish between nodes of

this information set. He also knows, what actions can he play. [8]

I from Definition 3 is defined as [2]:

Definition 4. I = (I1, ..., In), where Ii = (Ii,1, ...Ii,ki) is a set of equivalence classes

over nodes assigned to player i {h ∈ H : p(h) = i}. The nodes are indistinguishable to

the player i and each node has the same set of possible actions ∀h1, h2 ∈ Ii,ki : χ(h1) =

χ(h2).

Example 2. Figure 2.1 is an example of a game tree with the information sets for

a nameless game, where players do not know which action opponent plays. There are

4 information sets, one I2 for box player and two I1, I3, I4 for circle player. Box

player cannot distinguish between opponent’s action X, Y. Circle player remembers if

he played X, Y (he knows he is in I3 or I4), but does not know whether opponent

played A or B.

Figure 2.1: Information set example
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2.2 Strategy

Strategy for the player is a map of an actions for a player to play in any given

information set. This kind of strategy is called pure strategy [9].

Definition 5. Let G = (N, H, Z, A, χ, p, u, ρ, I) be an imperfect-information

extensive-form game. Then the pure strategy for player i consist of Cartesian product∏
Ii,j∈Ii χ(Ii,j)

Pure strategies for all players in the game are called pure strategy profile.

Since Nash equilibrium does not always exist in pure strategies for imperfect-

information games, we need to define mixed strategies that does not assign single action

for each game state, but assign set of actions with probabilities to each information

set:

Definition 6. Mixed strategy for extensive-form game [9]

Let G = (N, H, Z, A, χ, p, u, ρ, I) be an imperfect-information extensive-form

game and let ∆ be set of all pure strategies. Then for any set X let P(X) be the set

of all probability distributions over X. Then the set of mixed strategies for player i is

Si = P(∆)

2.2.1 Best Response

Assuming we know strategy of our opponent, then we can find optimal strategy

against his strategy. This optimal strategy is called best response.

Definition 7. Let Si be set of mixed strategies for player i, then the best response for

player i, denoted as bi, against opponent strategy σ−i is [4]:

bi(σ−i) = arg max
σ′i∈Si

ui(σ−i, σ
′
i) (2.1)

2.3 Nash Equilibrium

For finding solutions to Poker game, we will use Nash equilibria. Optimal strat-

egy profile according to Nash equilibrium is profile, where no player could get higher

payoff by choosing different strategy. We will restrict our definition only for 2 player

games:
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Definition 8. Nash equilibrium for 2 players [9]

A strategy profile σ = (s1, s2) is a Nash equilibrium if, for all players i = {1, 2},
si is a best response to s−i

Example 3. Example of Nash equilibria. Let G = (N, A, u) be normal-form game,

where N = {P1, P2}, A = {X, Y }× {X, Y } and function u = (u1, u2) is defined in the

following matrix:

(u1, u2) X Y
X 0, 0 -2, 2
Y 4, -4 0, 0

Nash equilibrium is strategy profile (Y, Y ), both players plays Y. If player 1 devi-

ate from the optimal strategy and playes X his payoff is −2. Similarly, player 2 would

get −4 after playing X.

2.3.1 Nash Equilibrium in Extensive-Form Games

Using the mixed strategies for the extensive-form games, Nash equilibria is de-

fined for the extensive form same way as for the normal form. Strategy from Nash

equilibrium is sometimes perceived as not rational behavior, because it cannot exploit

mistakes of opponent player. This is caused by assumption of Nash equilibrium, that

both players are rational, therefore we should not be able to reach part of the game

tree, where one player made mistake. [2]

When we consider only zero-sum games, if player i follows Nash equilibrium, he

cannot achieve lower utility than value of the game V , therefore player i gets at least

game value, even if the opponent −i is irrational.

2.4 Games in Sequence Form

As mentioned before, sequence form is useful mostly for representing extensive-

form imperfect-information games in order to compute Nash equilibrium. Defined as

follows [9]:
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Definition 9. Let G be an imperfect-information game, the sequence-form represen-

tation of G is a tuple (N, Σ, g, C), where:

• N is a set of two players

• Σ = Σ1 × Σ2, where Σi is the set of possible sequences for player i

• g = (g1, g2), where gi : Σ→ R is the payoff function for player i

• C = (C1, C2), where Ci is a set of linear constraints on the realization probabil-

ities of player i

2.4.1 Sequences

A sequence is an ordered list of actions, that player i has to take from the root

to the given node h. Sequences are defined as : [9]

Definition 10. A sequence of player i, denoted as σi, defined by a node h ∈ H ∪Z fo

the game tree, is the ordered set of player i’s actions that lie on the path from the root

to h. Let ∅ denote the sequence corresponding to the root. The set of all sequences for

player i is denoted as Σi.

2.4.2 Payoff Function

Payoff function extends the utility function to all nodes of the game tree. The

payoff function for the sequence form is defined in [1] as follows:

Definition 11. The payoff function gi represents utility value of all nodes reachable

by the pair of sequences σ.

gi(σi, σ−i) =
∑

h∈Z:∀N,σj=seqj(h)
ui(h) · C(h)

2.4.3 Realization Plan

Realization plan is a probability for a given sequence seqi of player i, that player

will play this sequence, when opponent plays actions that reach information sets, where

actions of the seqi are defined.
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2.4.4 Finding Solution for Sequence-Form Games

Finding solution for sequence form means finding a strategy profile, that satisfies

conditions of given solution concept. We are using Nash equilibria as solution concept,

where every player plays the best response against strategies of the opponent. We can

compute Nash equilibrium for sequence form, and thus for extensive form, using a

following linear program [9] of polynomial size in the size of the game tree:

Definition 12. Linear program for computing Nash equilibrium of two-player zero-

sum sequence-form game

max
r,v

vinf−i(∅)

vinf−i(σ−i)

∑
I′−i∈I−i:seq−i(I′−i=σ−i)

vI′−i
≤

∑
σi∈

∑
i

gi(σ−i, σi) · ri(σi);∀σ−i ∈
∑
−i

ri(∅) = 1∑
∀a∈A(Ii)

ri(σia) = ri(σi);∀Ii ∈ Ii, σi = seqi(Ii)

ri(σi) ≥ 0

(2.2)

Solution of this linear program is a realization plan for player i and expected value

v for each information set of the opponent player −i. Realization plan is constrained

by equation on the last three lines. Firstly, probability of playing empty sequence ∅
has to be 1. Secondly, probability of playing a sequence σi is the sum of sequences

extended by one action. Thirdly, probability of playing a sequence is non-negative

number.

Found realization plan is constrained by the best response of the opponent −i.
This is ensured by second equation, where the opponent plays action that minimizes

the expected utility vI−i
in each information set I−i.
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Chapter 3

Double Oracle for Computing Nash

Equilibria

Main algorithm used for computing Nash equilibria in this thesis is the double-

oracle algorithm. The algorithm is composed of two parts: the best response and

the restricted tree. Finding the best response is faster than finding Nash equilibrium,

and we usually do not have to compute Nash equilibrium for the complete game

tree. Therefore double oracle firstly computes the best response for realization plan

of the opponent, and then adds best-response sequences to the restricted game. The

restricted game is smaller than complete game tree and it is easier to compute Nash

equilibirum. Against Nash equilibrium realization plans we compute the best response

and iterate again.

Firstly, we describe double oracle for the normal-form games and then for the

extensive-form games. Although we use double oracle only for the extensive-form

games, explanation of core mechanics of double oracle is easier on the normal form.

Secondly, we describe the concept of the restricted game in double oracle for the

extensive-form games and algorithm for computing the best response in the extensive-

form games.

3.1 Double Oracle

Double oracle is an iterative algorithm [6] that computes an exact Nash equilib-

rium in the extensive-form zero-sum games with imperfect information. Double oracle
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is our choice for two reasons. Firstly, double oracle has not performed well on poker,

so there is space for improvement. Secondly, it uses best response, which is great for

exploiting domain-specific knowledge and heuristics.

Double-oracle algorithm is based on idea of constraint/column generation [1],

used for large scaled problems. Oracle algorithms exploit structure of the games in two

ways. Firstly, it is usually not necessary to search through all possible strategies to find

Nash equilibrium, but only small fraction of them. And secondly, it is computationaly

easier to compute best response than to compute Nash equilibrium.

3.1.1 Double Oracle for Normal-Form Games

As stated before, normal-form games use matricies, where rows are pure strate-

gies for one player and columns for the other one. Main loop of the double-oracle

algorithm iterates through these steps until convergence (ilustrated in Figure 3.1) [1]

1. Restricting the game by restricting the set of pure strategies for each player

2. Solving the restricted game for both players

3. Compute a pure best response for each player against the strategy of the oppo-

nent from the previous step; best response strategy is not limited by the restricted

game. This best response strategy is then added in the restricted game

Since the algorithm adds strategies for both players it is called double-oracle

algorithm. It is called single-oracle algorithm if it adds strategy for only one player.

The algorithm ends, when neither player can improve his payoff from the game

by adding a new sequences into the restricted game. This happens when both players

play best responses against the strategies of the opponent.

Figure 3.1: Double-oracle algorithm schema
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3.1.2 Double Oracle for Extensive-Form Games

We use variant of double-oracle algorithm specifically for the extensive form. The

most distinctive difference from double oracle for the normal form is in the approach

for defining the restricted game. The restricted game for the extensive form is a subset

of the complete game, defined by sequences. These sequences define actions available

for players and reachable nodes and informations sets for each player.

3.2 Restricted Game

Restricted game for a normal-form game is a selection of rows and columns from

matrix representing the whole game.

Restricted game for extensive-form games is defined by the set of available se-

quences for players, as we stated earlier [1]. This definition has two issues to resolve,

both coming from the possibility of not having actions or strategy defined for every

information set. Firstly, a strategy computed in the restricted game is not necessarily

full strategy in the complete game, because it may not prescribe actions for informa-

tion sets, that are not in the restricted game. Secondly, it may be impossible to play

action from sequence allowed in the restricted game, because in the restricted game

must be defined also compatible sequence of opponent, in order to reach a given state.

Second issue is targeted by creating temporary leaves in restricted game from inner

nodes of the complete game.

Restricted game is formally a subset of the original unrestricted game specified

by the set of possible sequences. We use definition from [1]:

Definition 13. Let G = (N,H,Z,A, p, u, C, I) be an unrestricted extensive-form

game, then we define restricted game as G′ = (N,H ′, Z ′, A′, p, u′, C, I ′), where:

• N, p and C remain the same

• H ′ = {h ∈ H : ∀i ∈ N, seqi(h) ∈
∑′}

• A′(h) = {a ∈ A(h) : ha ∈ H ′},∀h ∈ H ′

• Z ′ = (Z ∩H ′) ∪ {h ∈ H ′ \ Z : A′(h) = ∅}

• I ′i = {Ii ∈ Ii : ∃h ∈ Ii, h ∈ H ′ \ Z ′}
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and utility function u’:

u′(h) =

u(h), h ∈ Z ′ ∩ Z

u∗(h), h ∈ Z ′\Z

where u∗(h) is the outcome in the original game if the player i plays default strategy

πDEFi and opponent plays best response to this default strategy.

Strategy for the restricted game is defined as [1]:

Definition 14. Let r′i be a mixed strategy represented as a realization plan of player i

in the restricted game, then we define extended strategy r̄′i as r′i in nodes of restricted

game and as default strategy πDEFi in other nodes:

r̄′i(σi) =

r′i(σi), σi ∈
∑′

i

r′i(σ
′
i) · πDEFi (σi\σ′i), σi ∈

∑′
i;σ
′
i = arg maxσ′′i ∈

∑′
i;σ
′′
i vσi |σ

′′
i |

If the sequence is defined in the realization plan of player i, then it is also defined

in the extended strategy. If the sequence is not defined, then the extended strategy is

composed of the longest defined strategy from realization plan and the default strategy.

Double-oracle algorithm each iteration solves sequence-form linear program for

every player in order to compute a pair of strategies in the restricted game.

Example 4. Figure 3.2 shows example of the restricted game, defined by sequences

{YW, Y Z} for the first player and {A,B} for the second player.

3.2.1 Default Strategy

To resolve the first issue of restricted games (i.e. missing strategies for the com-

plete game) the concept of default strategy is used every time the algorithm gets in

the information set, without defined strategy. A default strategy can be predefined set

of actions for every information set, but that would consume unnecessary amount of

memory. It is more effective to use a rule-based default strategy instead. For example,

the first action from possible set of actions for given information set.

Definition 15. Default strategy for player i, denoted as πDEFi , is first action of de-

terministic method for generating ordered set of actions. [1]
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Figure 3.2: Restricted game example

3.2.2 Temporary Leaves

When there is no possible sequence for a given player from an information set

in the restricted game, this set will become temporary leaf. For this leaf we define

temporary utility value, which is needed for using this node as a leaf for linear program.

The algorithm computes temporary utility value from expanding this node further, by

playing default strategy for searching player and best response for the opponent. [1]

3.2.3 Solving Restricted Game

Restricted game is actually valid extensive-form game, therefore it can by solved

by sequence-form linear program defined in Definition 12.

Double oracle computes a Nash equilibrium of the restricted game be solving a

pair of linear programs. Optimal strategy for the restricted game can be translated as

s strategy for the complete game, by using pure default strategy to complete restricted

strategy, where restricted game is not defined. [1]

3.3 Best-Response Sequence Algorithm

In terms of game theory, best response is an optimal strategy for given player

against known opponent’s strategy. Best-response sequence algorithm is an algorithm
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computing this optimal strategy. In the context of double oracle, the best-response

sequence algorithm either generates new sequences for expanding restricted game, or

proves there are no sequences to be added to the restricted game. [2]

Algorithm is a depth-first search on a complete game tree, where the strategy of

the opponent is fixed in the realization plan r̄′−i. The algorithm differentiates between

two types of game tree nodes: searching player node and opponent’s or nature node.

Where searching player is the player for whom the best response is computed and

nature player is the environment. Pseudocodes for two node types are in Algorithm 1

and Algorithm 2 respectively. [1]

Other Player Nodes

Other player nodes are either opponent’s (player −i) or Nature (chance nodes).

In these nodes, the algorithm calculates the expected utility for a node according to

the strategy of the player. When the player is the opponent, we use his fixed strategy

given by extended realization plan r̄′−i on the beginning of the best-response algorithm.

When the player is Nature, we use stochastic environment (C).
Throughout the algorithm, w denotes variable of probability from realization

plan of the opponent and environment. Lastly, vh denotes expected utility for the

node.

When the algorithm is in the leaf, it returns probability of opponent reaching

that leaf and stochastic environment probability. Otherwise, the algorithm performs

depth-first search and returns sum of the results.

Algorithm 1 BRS in the nodes of the other players
Input:
i - searching player; h - current node; Iki - current information set;
r̄′−i - opponent’s strategy;

1: w ← r̄−i(seq−i(h)) · C(h)
2: if h ∈ Z then
3: return ui(h) · w
4: end if
5: vh ← 0
6: for a ∈ A(h) do
7: vh ← vh +BRSi(ha)
8: end for
9: return vh
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Searching Player Nodes

Different situation is in the nodes of the searching player. If the node is a leaf, it

returns the utility multiplied by the probability of reaching this node. Then algorithm

iterates over all actions for every game state in current information set, according

to the reaching probability in descending order. Reaching probability is given by

opponent’s realization plan and Nature. The algorithm recursivelly calls BRS on h′a.

Then, algorithm selects action with the highest possible utility, stores it and returns

payoff for playing this action.

Algorithm 2 BRS in the nodes of the searching player

Input: Same as in Algorithm 1
1: if h ∈ Z then
2: return ui(h) · r̄−i(seq−i(h)) · C(h)
3: end if
4: if vh is already calculated then
5: return vh

6: end if
7: H ′ ← {h′;h′ ∈ Ii}
8: va ← 0,∀a ∈ A(h);maxAction← ∅
9: for h′ ∈ H ′ do
10: for a ∈ A(h′) do
11: vh

′
a ← BRSi(h

′a)
12: va ← va + vh

′
a

13: end for
14: maxAction← arg maxa∈A(h′) va
15: end for
16: store vh

′
maxAction as vh

′∀h′ ∈ H ′
17: return vhmaxAction
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Chapter 4

Double-Oracle Algorithm for Poker

Poker is a sequential game, where the actions of players are observable, but the

cards of players are not and they are dealt randomly. Cards in player’s hands are the

only imperfect information in the game of poker. We can exploit this special structure

of poker game and modify double oracle to work more efficiently.

In this chapter we will describe improvements for the best response in the poker

games.

4.1 Accelerated Best Response

We can use the specific structure of poker games to improve the best-response

algorithm. To do that, we use a more compact representation termed public tree and

accelerated best response as described in [4]. We firstly formally define the public tree

and then describe the best-response algorithm that exploits this representation.

4.1.1 Public Tree

Public tree is a view of the game from the observer point of view. Nodes (called

public states) are defined by all information both players have: by the table cards and

played actions.
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Definition 16. We call a partition of the game states, P, a public partition and P ∈ P
a public state if

• no two game states in the same information set are in different public states

(i.e., if information is public, all players know it)

• two game states in different public states have no descendants in the same public

state (i.e., it forms a tree)

• no public state contains both terminal and non-terminal game states

Public tree is a game tree with public states as nodes, instead of game states.

Possible actions from public state are the same, because we basically traverse tree of

information sets. In the original game tree, player’s cards are resolved at the beginning

of the game, where it causes more branches. In the public tree, we traverse a smaller

tree, because we resolve outcomes for all possible cards in the leaves. Instead of

traversing branches for all possible card combinations, public tree traverses only one

branch.

Example 5. Example of public tree.

In Figure 4.1 (where all box nodes continues with 2 actions of first player: check,

bet; as indicated at the middle box node) and Figure 4.2 we show the game tree and

the public tree for first 3 actions of Leduc Hold’em poker. The deck of cards in Leduc

Hold’em consists 3 different values, 2 cards for each value. First action is dealing a

card to the first player, second action is dealing a card to the second player. Then the

betting round occurs (box state). There are 9 game states in 3 different information

sets in the game tree, which all continues the same until the end of game. But there

is only single public state in the public tree. The information set I1 is represented by

public state A1 and sets I2, I3, I4 are represented as A2. By this representation we

do not have to compute 9 branches, that are the same, we just compute one branch

and resolve player’s card in the leaves.
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Figure 4.1: Leduc Hold’em game tree

Figure 4.2: Leduc Hold’em public tree

4.1.2 Accelerated Best Response

Accelerated best response is a best response on a public tree. We divide the

description of the accelerated best response into three parts: states of opponent and
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nature player, states of searching player and leaves. Pseudocodes for these three parts

are in Algorithm 3, Algorithm 4 and Algorithm 5 respectively.

Other Players Public States

In these states, accelerated best response returns the sum of the recursive calls

results (lines 5-8). If the current player is the opponent, it also updates probs, when

the probabilities for given seqeuences exists in realization plan of the opponent (line

2-3), otherwise they remains the same.

Algorithm 3 ABR in the states of other players
Input:
s - current public state
probs - vector of probabilities for opponent of reaching this s
RealizationP lan - the realization plan of the opponent
Output:
v - vector of outcomes for every combinations of cards of searching player

1: v ← 0
2: if ∃s ∈ RealizationP lan then
3: update probs
4: end if
5: for a ∈ A(s) do
6: v ← v + ABR(sa, probs)
7: end for
8: return v

Searching Player States

In the states of searching player, we are searching for the best action for each

possible card of the player. Firstly, we recursively go through all possible actions for

the current public state s (lines 3-5). Secondly, we go through all returned vectors

and for every possible card of the player, we select the highest values (lines 6-8). If we

order all returned vectors in a matrix, where vectors are columns, we return a vector,

where values are highest numbers for each row separately. Returned value is a vector,

where values represent best outcomes for all possible actions for all possible cards of

the searching player.
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Algorithm 4 ABR in the states of searching player
Input:
s - current public state
probs - vector of probabilities for opponent of reaching this s
Output:
v - vector of the best outcomes for every combinations of cards of searching player

1: ∀a ∈ A(ps) : va ← 0
2: maxAction← ∅
3: for a ∈ A(s) do
4: va ← ABR(sa, probs)
5: end for
6: for c in All possible combinations of cards do
7: vc ← max argc va,c
8: end for
9: return v

Efficient Terminal Node Evaluation

Next acceleration of calculation is by exploiting knowledge of poker in the leaves.

Naive approach is to compute outcome for all possible combinations of cards in the

terminal node. More efficient is to sort combinations of cards by rank and then we

divide this sorted list into three parts: where a given hand of searching player is better,

equal or worse [4].

In a terminal node, we know the public state and the vector of probabilities for

every possible card combination, that opponent reaches this public state. We sort

combinations of cards by rank for each player (lines 1-2), starting with the weakest

and ending with the strongest combination. We keep two indicies for this sorted

vector: first (sameRank) at the combination, that has equal rank as combination of

searching player, second (higherRank) at the combination, that has higher rank than

combination of searching player.

For a given combination of searching player, we compute sum of probability

of the weaker combinations of the opponent and sum of probability of the stronger

combinations of the opponent. Outcome for this combination of searching player is

difference between those two sums, multiplied by half of the pot (lines 6-7). Then

we update the indicies up by one and continues with better combination of searching

player.
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Algorithm 5 ABR in the leaves
Input:
s - current public state
probs - vector of probabilities for opponent of reaching this s
pot - sum of bets during the game
Output:
v - vector of outcomes for every combinations of cards of searching player

1: searchingHandsSet← sorted list of combination of cards of searching player
2: oppHandsSet← sorted list of combination of cards of opponent
3: sameRank ← start of oppHandsSet
4: higherRank ← first better combination of cards in oppHandsSet, than the weak-

est possible combination of cards
5: for hand ∈ searchingHandsSet do
6: vhand ← (

∑sameRank
start oppHandsSet)− (

∑end
higherRank oppHandsSet)oppHandSet

7: vhand ← vhand × (pot/2)
8: sameRank ← sameRank + 1
9: higherRank ← higherRank + 1
10: end for
11: return v
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Chapter 5

Implementation

We have used GTLibrary (see Appendix A) with already implemented double-

oracle algorithm as a baseline, where we implemented accelerated best response (de-

scribed in previous chapter). Double oracle, as mentioned before, consists of three

main components (best response, expanding restricted game, solving restricted game),

which are implemented as three independent units. This separability allows us to

replace original best-response algorithm with accelerated best response.

We have implemented public tree traversing and best response using Public tree.

Subsequently we searched for patterns through best response outputs in Leduc Hold’em

poker.

5.1 Implementation

Implementation of the public tree for Leduc Hold’em is straightforward. Actions

of both players remains the same as in normal game tree. Main difference is in the

dealing cards, where on the beginning we deal a default card to each player. And after

first betting round we traverses through all possible table cards.

Leduc Hold’em poker usually has small number of different card values. There-

fore we implemented two variants of terminal node evaluation, in order to compare

their performance. First is efficient terminal node evaluation as described in previous

chapter (see Algorithm 5). Second variant uses a property, that matrix of outcomes for

every possible card combination is anti-symmetric. Matrix of outcomes is computed

from point of view of the searching player, where the rows represents his cards and the



CHAPTER 5. IMPLEMENTATION 27

columns represents cards of opponents. For a given card combination, we can evaluate

who wins. When we switch cards between the searching player and the opponent, the

outcome is the same with the opposite sign. Note, that all experiments with heuristics

were performed with the terminal node evaluation using matrix.

5.2 Experiments

Leduc Hold’em is a poker variant with a small game tree. Default deck consists

of 6 card, 3 different values 2 cards each. Betting rounds remains the same as in

Texas Hold’em. Firstly, both players are dealt one card, after first betting, table card

is dealt. After second betting round comes end of the game with resolving winning

player. There are only two possible combinations: High card or Pair. This poker is

very easily scalable, to more possible card values and number of occurences of each

value in deck, which we will use and explore more possible decks.

Important part of the poker game is the betting round, which occurs after dealing

cards to the players or dealing cards on the table. Each player can play 5 different

actions: check, bet, call, raise, fold. Check and bet can be played only if there was no

bet in this round yet. Call, raise and fold are played only after bet or raise. Through

played actions, players reveal their position and narrow possible cards they can have.

But until the end of game, neither of the players can certainly know, the card of the

opponent.

Firstly, we focus our experiments on comparison between original best response

and accelerated best response. Secondly, we compare original best response with accel-

erated best response with heuristics. We are mainly comparing number of iterations,

because as experiments in [1] shows, double oracle spends most of the time on solving

linear programs during computation of solution for poker game. With less number of

iterations, the algorithm will compute lower number of linear programs.

5.2.1 First Action Heuristics

Our hypothesis for Leduc Hold’em was, that player does not know, if his card is

good or bad, until the table card is revealed (for example, card of the highest value is

worse than pair of the lowest value cards). Therefore, it is better to be defensive in the

first betting round and than be aggresive in the case that table card is in player’s favor.
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Players are not in the same position, first player takes action first and is in a worse

position, because he must reveal his position and intentions before second player.

This heuristics is called in each searching player node in the accelerated best

response. The method for the actual searching player adds the sequence to the set of

sequences for the restricted game, if the conditions are met.

Heuristics for First Player

First player is playing check as his first action for every possible card he can

have. In the second betting round, he bets if his card is same or above table card. We

describe this more clearly in Algorithm 6.

Algorithm 6 First action heuristics for first player

Input: ps - current public state
1: if isP layersF irstState(ps) then
2: return sequence(ps) + “check′′

3: else if isF irstStateOfSecondBettingRound(ps) then
4: if playersCard ≥ tableCard then
5: return sequence(ps) + “bet′′

6: end if
7: end if

Heuristics for Second Player

Second player’s reaction on possible check of the first player is dependent on his

card. He is defensive, checks, if value of his card is half or lower then maximal value,

and aggressive, bets, in other cases. More clearly shown in Algorithm 7.

Algorithm 7 First action heuristics for second player

Input: ps - current public state
1: sequences← ∅
2: if isP layersF irstState(ps) AND lastAction = “check′′ then
3: if HighestPossibleV alue/2 < playersCard then
4: sequences← sequence(ps) + “bet′′

5: else if
6: thensequences← sequence(ps) + “check′′

7: end if
8: end if
9: return sequences
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Experimental evaluation

Count of iterations computed through experiments on 9 different Leduc Hold’em

deck settings for original best response, accelerated best response (abbreviated as

ABR) without heuristics and ABR with heuristics are in the Table 5.1.

Deck setting Number of iterations
Number
of card
types

Cards
of each
type

Original best re-
sponse

ABR without
heuristics

ABR with
heuristics

2 2 59 49 43
3 2 38 36 32
4 2 44 46 31
5 2 39 47 32
3 3 43 45 33
6 3 43 45 33
8 3 42 45 39
5 4 40 43 37
10 4 36 43 34

Table 5.1: Comparison of best responses with ABR with first round heuristics

Accelerated best response is traversing smaller tree than original best response,

but that does not influence number of iterations needed for computing Nash equi-

librium. Our assumption is, that we decrease number of iterations by adding more

sequences to the restricted game. We compare our two variants of best response againt

original best response (which will be our 100% baseline) in Table 5.2.

ABR without
heuristics

ABR with
heuristics

Percentual difference 3.91% 18.23%
Standard deviation 3.64 3.98

Table 5.2: Percentual comparison of best response implementations

Our best response performs with heuristics about 18% better, than original. But

it is suprising, that ABR without heuristics is similar, than original best response,

because it typically adds more sequences to the restricted game.
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5.2.2 Second Betting Round Heuristics

After implementing heuristics for first action of players, we focused on second

betting round, the round, where the players know table card. Our hypothesis is, that

best-response sequences from the second betting round are independent on seqeuences

for first round, therefore we add into restricted game all possible sequences for first

betting round concatenated with best-response sequences for second betting round.

This approach is ilustrated in Algorithm 8. This method is called after selecting best

actions in the node of searching node.

Algorithm 8 Second betting round heuristics

Input: ps - current public state
firstBettingRoundSequences

1: sequences← ∅
2: if isTerminalState(ps) AND tableCard 6= NULL then
3: for ∀seq ∈ firstBettingRoundSequences do
4: sequences← seq + sequenceSecondBettingRound(ps)′

5: end for
6: end if
7: return sequences

Experimental evaluation

We have run experiments either with First round heuristics or with both heuris-

tics presented in this section. Comparison of number of iteration is in following table

Table 5.3.



CHAPTER 5. IMPLEMENTATION 31

Deck setting Number of iterations
Number
of card
types

Cards
of each
type

ABR with first
round heuristics

ABR with both
heuristics

2 2 43 37
3 2 32 28
4 2 31 34
5 2 32 28
3 3 33 36
6 3 33 34
8 3 39 33
5 4 37 30
10 4 34 32

Table 5.3: Comparison of effect of first round heuristics and both heuristics

Then we again compared ABR with original best response, but now running ABR

with both heuristics. It performed about 25% better, than original best response (see

Table 5.4).

ABR with both
heuristics

Percentual difference 25.52%
Standard deviation 3.23

Table 5.4: Percentual comparison of first round heuristics and both heuristics

Subsequently, we have compare time performance of the original best response

with the accelerated best response, with following results (see Table 5.5):
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Deck setting Runtime [milliseconds]
Number
of card
types

Cards
of each
type

Original best re-
sponse

ABR with both
heuristics

2 2 2423 3289
3 2 5129 6947
4 2 13738 11769
5 2 19353 17344
3 3 6568 7827
6 3 37379 32196
8 3 77815 62640
5 4 22795 19741
10 4 106503 102475
12 4 269136 202510

Table 5.5: Time comparison of best responses

The accelerated best response performed 16.78% better than the original best

response. Generally, it has better time results in the bigger deck settings, whereas the

original best response performes better the smaller deck settings.

5.2.3 Terminal Node Evaluation

Lastly, we have compared the implementations of the terminal node evaluation.

We have compared both the number of iterations and runtime of ABR with both

heuristics with efficient terminal node evaluation and with evaluation in the matrix

(see Table 5.6).
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Deck setting
Efficient terminal node
evaluation performance

Matrix terminal node
evaluation performance

Number
of card
types

Cards
of each
type

Number of
iterations

Runtime Number of
iterations

Runtime

2 2 37 3323 37 3162
3 2 28 5985 28 5857
4 2 31 11305 29 10684
5 2 37 17052 37 14163
3 3 36 6346 34 6063
6 3 30 23355 35 26531
8 3 34 50950 33 54944
5 4 30 18509 30 17705
10 4 33 85642 32 87818

Table 5.6: Comparison of terminal node evaluation

These two possibilities for terminal node evaluation performed equally good.

The number of iterations is very similar, difference is about 0.34%. The changes

are probably cause by different precission, efficient terminal node evaluation passes

through the accelerated best response vector, while matrix evaluation passes matrix.

Runtime is also very similar, difference is about 2.00%. This similarity is caused by

the small size and simple structure of Leduc Hold’em. In larger poker variants (such

as Rhode Island Hold’em or Texas Hold’em), the efficient terminal node evaluation

should perform better, than matrix evaluation.
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Chapter 6

Conclusion

Poker is a popular domain for game theory, due to its specific structure and size.

It is a imperfect-information game with chance involved. We used the double-oracle

algortihm for finding Nash equilibria, which iteratively solves the restricted game,

computes best response against this solution and expands the restricted game by the

best response. We have exploited the characteristics of poker games in the imple-

mentation of the accelerated best response, which traverses compact tree structure.

We replaced implementation of accelerated best response instead of original best re-

sponse in the double-oracle algorithm for extensive-form games. Our accelerated best

response performs with equal results in the approximately same amount of iterations.

Improvement of the accelerated best response is, it traverses smaller tree than original

best response, which saves amount of memory needed by the double oracle.

Subsequently, we have examined results of accelerated best response for Leduc

Hold’em poker and searched for patterns. Several patterns were identified and we ex-

ploited them by creating a domain specific variants of accelerated best response. Two

heuristics rules were incorporated: first round heuristics and second betting round

heuristics. First round heuristics is based on idea, that poker player is playing de-

fensively before the table card is shown. Second betting round heuristics is based on

hypothesis, that the betting rounds of poker are independent. Therefore the best-

response sequence for second betting round should be the best-response sequence for

all possible first round sequences. The improvement in the number of iterations of

both these heuristics is approximately 25% from the original best-response sequence

algorithm.
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Lastly, we have compared two possible terminal node evaluation, which per-

formed equally well. This equality is caused by size of Leduc Hold’em, which is a very

small poker variant. The efficient terminal node evaluation will be faster, than matrix

terminal node evaluation, when used on larger games. (For Texas Hold’em poker it is

approximately 7.7 times faster, as stated in [4])

This improvement can have significant impact on bigger games, such as no-limit

poker, which usually requires hundreds of iterations, which we can save by using

accelerated best response with heuristics.

6.1 Further Work

This thesis provides implementations of accelerated best response and two heuris-

tics for simplified poker with two main directions for future work: further improve-

ments of the accelerated best response and implementation of larger variants of poker.

Improving the accelerated best response with other exploits of poker structure

as Isomorphisms or Parallel Computation as described in [4]. Isomorpishms make

some of the possible combinations of cards equally strong. Parallel computation uses

structure of public tree, where a level of the public tree is chosen and branches from

this level are solved in parallel.

Secondly, implementation of larger variants of poker (for instance Rhode Island),

with more specific heuristics and effective usage of memory. Usage of accelerated best

response should help to compute games, that were too large for domain-independent

double-oracle algorithm. These larger variant would also benefit from the efficient

terminal node evaluation.
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Appendix A

Content of CD

Content of CD attached to this thesis:

• doc/thesis.pdf Electronic version of this thesis

• src/gtlibrary/ GTLibrary used as baseline for this thesis. Important classes:

– PublicInformationSet.java contains implementation of public tree

– PublicTreeBR.java contains implementation of accelerated best response

on public tree

– WinLoseProbabilities.java contains matrix terminal node evaluation

– TerminalPublicTreeBR.java contains implementation of ABR using effi-

cient terminal node evaluation

– TerminalWinLoseProbabilities.java contains matrix terminal node eval-

uation

• src/experiments.sh bash script running the experiments with same deck set-

tings on original best response and accelerated best response

• src/analyse.sh divide results of experiments.sh into different file for better

readability
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Appendix B

GTLibrary

GTLibrary is a baseline for our implementation and experiments. Important

parts for this thesis:

• Double oracle implementation is in the package

algorithms.sequenceform.doubleoracle

• Generic poker, implementation of Leduc Hold’em with customizable deck settings

is in the package domain.poker.generic

• Accelerated best response is in the package

algorithms.sequenceform.doubleoracle.pokerdomained
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