

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master’s Thesis

Junction-aware Multicriteria Bicycle Route Planning

Pavol Žilecký

Supervisor: Jan Hrnčíř

Study Programme: Open Informatics

Field of Study: Artificial Intelligence

May 11, 2015

iv

v

Aknowledgements
At first, I would like to thank my supervisors Jan Hrnčíř and Michal Jakob for their guidance
and support. Also, I wish to thank Jan Nykl and Sebastián García for their feedback. Last
but not least, a huge “Thank you!” goes to my parents and Zuzka Baronová for their support
and encouragement.

Also, I greatly appreciate the access to computing and storage facilities owned by par-
ties and projects contributing to the National Grid Infrastructure MetaCentrum, provided
under the programme “Projects of Large Infrastructure for Research, Development, and In-
novations” (LM2010005).

vi

vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on May 11, 2015 .

viii

Abstract

Navigating the cyclists in larger cities is often challenging due to cities’ fragmented cycling
infrastructure and/or complex terrain topology. Cyclists would thus benefit from intelligent
route planning that would help them discover routes that best suit their transport needs
and preferences. The studies of cyclists’ route choice reveal that the cyclists are sensitive to
difficult manoeuvres at junctions. Therefore, to address this issue, we proposed a method to
extend a graph structure with an advanced junction representation. Also, to account other
cyclists’ route-choice criteria, we employ multi-criteria route search. Direct application of
optimal multi-criteria route search algorithms is, however, not feasible due to their prohibitive
computational complexity. In this thesis, we formalise a multi-criteria bicycle route planning
problem and propose several solution methods together with pruning heuristics for speeding
up the multi-criteria route search. We evaluate our methods on a real-world cycleway network
of the city of Prague and discuss the difference between the bicycle routes planned on the
extended graph and the standard graph. The evaluation shows that speedups of up to
three orders of magnitude over the multi-criteria Dijkstra’s algorithm are possible with a
reasonable loss of solution quality.

Abstrakt

Navigace pro cyklisty ve větších městech je často náročná vzhledem k roztříštěné cyklistické
infrastruktuře nebo složité topologii terénu. Inteligentní plánovač cyklistických tras pomůže
cyklistům objevit trasy, které nejlépe vyhovují jejich potřebám a preferencím. Studie volby
tras cyklistů ukazují, že cyklisté jsou citliví na obtížné manévry na křižovatkách. Pro řešení
tohoto problému jsme navrhli grafovou strukturu s rozšířenou reprezentací křižovatek. Pro
zohlednění více kritérií při volbě trasy, jsme použili vícekriteriální algoritmy na hledání ne-
jkratší cesty v grafu. Přímá aplikace optimálních vícekriteriálních vyhledávacích algoritmů je
vzhledem k jejich velké výpočetní složitosti nemožná. V této práci jsme proto formalizovali
vícekriteriální plánovací problém pro hledání cyklotras a navrhli několik způsobů řešení spolu
s heuristikami pro urychlení vícekriteriálního vyhledávání. Navrhované metody jsme otesto-
vali na cyklistické síti města Prahy a porovnali jsme rozdíly mezi trasami plánovanými na
standardním grafu a na grafu s rozšířenou reprezentací křižovatek. Vyhodnocení ukazuje, že
je možné urychlení o tři řády vzhledem k vícekriteriálnímu Dijkstrovu algoritmu s rozumnou
ztrátou kvality řešení.

ix

x

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Thesis . 2
1.3 Structure of the Thesis . 2

2 Related Work 5
2.1 Route Choice Criteria for Cyclists . 5
2.2 Single Criterion Shortest Path Problem . 6
2.3 Multi-Criteria Shortest Path Problem . 6
2.4 Turns Handling . 8

3 Problem Specification 11
3.1 Cycleway Graph . 11
3.2 Extended Cycleway Graph . 12
3.3 Multi-criteria Bicycle Planning Problem . 12

3.3.1 Scalarised Multi-criteria Bicycle Planning Problem 14
3.4 Criteria and Cost Functions Definition . 14

3.4.1 Distance . 14
3.4.2 Travel time . 15
3.4.3 Comfort . 16
3.4.4 Quietness . 16
3.4.5 Elevation Gain . 17
3.4.6 Bike Friendliness . 17

4 Solution Method 19
4.1 Scalarised Multi-Criteria Solution Method . 19

4.1.1 Profiles . 19
4.2 Multi-Criteria Solution Method . 20

4.2.1 Pruning Enabled Multi-criteria Dijkstra algorithm 22
4.2.1.1 Ellipse . 22
4.2.1.2 ε-dominance . 23
4.2.1.3 Buckets . 23
4.2.1.4 Bounded search . 25

xi

xii CONTENTS

5 Implementation 27
5.1 Data . 27
5.2 Graph construction . 31

5.2.1 General Graph . 31
5.2.2 Bicycle Planning Graph . 38

5.3 Application . 39
5.3.1 Nearest node . 40
5.3.2 Algorithms . 40
5.3.3 RESTful API . 41

5.4 Real Deployment . 42

6 Evaluation 47
6.1 Multi-Criteria Method . 47

6.1.1 Evaluation Metrics . 47
6.1.2 Evaluation Settings . 48
6.1.3 Results on Prague A, B, C Subgraphs 51
6.1.4 Results on the Whole Prague Graph 53

6.2 Junction Extension . 54
6.3 Summary . 55

7 Conclusion 59

A Tables 65

B CD content 71

“When I see an adult on a bicycle,
I do not despair for the future of human race.”

H.G.Wells, English author

Chapter 1

Introduction

1.1 Motivation

People have been using a bicycle since 19th century [1]. Since then, it has become an impor-
tant part of life of millions of people around the world. They use the bicycle for commuting
purposes like travel from home to work, to school, and also for non-commute trips, e.g., shop-
ping, errands. At last, cycling has also turned into a way of exercise and recreation.

In today’s society where the number of civilization diseases is enormously increasing
every year and worldwide obesity has doubled since 1980 according to World Health Or-
ganization [2], cycling presents a reasonable and easy solution. It is a workout which has
a great impact on the cardiovascular system. In developed countries, the bicycle is favoured
as a “green” machine that can help reduce cyclist’s weight and cities’ traffic congestion.
It is an affordable mode of transport that can significantly reduce the cost of travel. More-
over, cycling does not require oil-based fuels. As such, harmful emissions are reduced with
the presence of fewer motor vehicles. Cycling also reduces a noise pollution in urban areas [3].
Besides, bicycle commuters often find they save time because they can breeze past the traffic
and do not need to hunt for a parking space for their vehicle. In fact, commuters also save
a small fortune in gasoline, car’s maintenance and repairs. To summarize, bicycling is a way
to sharply lower emissions and increase the quality of life.

To promote cycling in cities, we decided to develop a cycle planner application. A user
will use the cycle planner to decide which path to take in order to successfully travel from
an origin to a destination. Such a planner would be particularly useful for inexperienced
cyclists with a limited knowledge of their surroundings. It could help them to discover
routes that best suite their preferences. Furthermore, experienced cyclists would benefit
from an automated bicycle route planning software to fine-tune their everyday paths [4].
In contrast to car drivers, cyclists consider a significantly broader range of factors when
deciding about their routes. To properly cover cyclists’ needs and preferences, and to model
cycleway transport network features, multiple planning criteria and rich world representation
are required. Therefore, the bicycle route planning is a challenging Artificial Intelligence
problem.

1

2 CHAPTER 1. INTRODUCTION

1.2 Aim of the Thesis

The aim of the thesis is to build a cycle planner application capable of planning bicycle
routes while considering multiple criteria which affect the bicycle ride and taking into account
an complexity of junctions.

To successfully provide such a outcome, we did the following steps. First, we analyse ex-
isting methods for solving the multi-criteria shortest path problem and describe the solution
methods widely used in a transportation domain. Particularly we focus on a bicycle route
planning problem.

Second, we model a network of ways allowed for cyclists (i.e., a cycleway network) as
a graph structure and then extend it with a advance representation of junctions. The advance
representation is needed to cover factors that have a significant impact on a ride through
the junction. After a proper definition of the cycleway network, a mathematical formalisation
of the multi-criteria bicycle route planning problem is introduced.

We aim to use multi-criteria algorithms which take all criteria into account equally.
A group of these algorithms return multiple alternative bicycle routes between an origin and
a destination location. Each one of the alternative paths provides different properties based
on specified criteria. Providing multiple alternatives is an advantage, because the relative
importance of criteria vary widely among cyclists. On the other hand, as described in follow-
ing Section 2.3, running time of these algorithms is much worse than algorithms considering
only one criterion. Also, a number of alternative routes may grow exponentially with respect
to a number of criteria and a distance between the origin and the destination.

We require to compute the solution routes in a reasonable time for real-time services. To
fulfil this condition, we implement the multi-criteria algorithm and introduce several pruning
techniques.

Eventually, we evaluate the techniques with respect to the running time and a route
quality. In the end, we take the best implemented method and shows all alternative routes
in a web application for the city of Prague.

This work builds on the Marcel Német’s bachelor’s project [5] developed in 2013. We
extend his work in the following directions. First, the cycleway graph structure is extended by
the advanced representation of junctions. Second, Német used for solving the multi-criteria
shortest path problem a single criteria algorithm by taking into account weighted sum of
the criteria values. We use the proper multi-criteria algorithms which provides multiple
alternative bicycle routes. Third, we focus to enhance a plan quality by improving the data
processing and the graph data structure construction steps.

1.3 Structure of the Thesis

To begin with, the background of the multi-criteria shortest path problem together with
the related work is given in Chapter 2. Then we proceed to the specification of the multi-
criteria bicycle route planning problem as the graph search problem in Chapter 3. Chapter 4
proposes a multi-criteria algorithm and speedups to solve the bicycle route planning problem
and is followed by the implementation of the algorithm and the map data processing in

1.3. STRUCTURE OF THE THESIS 3

Chapter 5. The performance of the implemented solution methods is evaluated in Chapter
6. Finally, Chapter 7 presents the conclusion deduced from the obtained results.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

This thesis deals with a multi-criteria bicycle route planning problem in an urban environ-
ment. In general, the route planning problem is an application of the shortest path problem
in a road network. Graph theory defines the shortest path problem as the problem of finding
the shortest path between two nodes in a graph. The graph consists of nodes and edges that
connect them. Furthermore, each edge is associated with a cost, which is usually a real num-
ber depending on the problem and the algorithm used to solve the problem. Thus, the path,
i.e., the sequence of edges, is the shortest one if it minimizes the sum of costs of its edges.
In the route planning problem, the graph is the road network, the nodes are intersections,
the edges are individual roads between these intersections, and the distance between them
could be the cost of each edge.

The cost does not have to be only the distance between intersections. For example
in public transport domain, it could be the number of transfers. We refer to the cost
as the value of a criterion for what we search the shortest path. Notably, in a car route
planning problem, the criteria could be a distance, a travel time or a fuel consumption.
In the bicycle route planning problem, we are going to optimise a much wider set of criteria,
because cyclists consider a broader range of factors when deciding about their routes.

Therefore, next section will introduce criteria considered by cyclists while selecting routes.
After that, the shortest path problem considering only the single criterion is described,
followed by the description of the multi-criteria problem which searches for the shortest path
optimising multiple criteria at the same time. Lastly, the methods of turns penalisation on
junctions in the route planning domain are presented.

2.1 Route Choice Criteria for Cyclists

To find out what criteria are crucial for cyclists in an urban environment, we get inspired by
studies [6, 7]. These employed questionnaires and GPS tracking and have found that cyclists
are sensitive to trip distance, turn frequency, slope, junction control, surface quality, noise,
pollution, scenery, and traffic volumes.

Results from [6] also reveal interesting facts about cyclists’ attitude to intersections. On
a 1 mile commute trip, a cyclist would be willing to travel about 5.9% and 9.1% farther to
avoid a crossing and a left turn, respectively, at an unsignalized intersection with a cross

5

6 CHAPTER 2. RELATED WORK

traffic averaged 10,000–20,000 vehicles per day. This percentage is even larger for non-
commute trips. Such an outcome is essential in a bicycle route planning problem.

2.2 Single Criterion Shortest Path Problem

The single criterion shortest path problem finds the path between two nodes in the graph
minimising only one cost value at a time. The cost determines a value for the criterion.
For example, to solve the single criterion shortest path problem for cars, only the travel time
but not the fuel consumption nor the distance can be considered.

The standard solution to the single criterion shortest path problem in route planning
domain is Dijkstra’s algorithm [8]. In each iteration, the algorithm sets a label to a node
with its current cost from the origin node. The algorithm maintains a priority queue of
labels ordered by the cost. One node may have multiple labels assigned to it, and each label
represents different path to the node, but only the best label is expanded from the priority
queue while the others are discarded. Once a label is expanded from the priority queue,
the algorithm has found the shortest path from the origin to the node to which the label
belongs.

In last decades there have been many studies improving the Dijkstra’s algorithm, par-
ticularly in the route planning domain [9, 10]. These improvements mostly aim to decrease
the size of the algorithm’s search space. For example, a bidirectional search simultaneously
runs forward search from the origin and backward search from the destination. The A* al-
gorithm [11] is a representative of a goal directed search technique that guides the search
toward the destination. For each node, the A* algorithm employs a heuristic function pro-
viding a lower bound of the cost of a path from the node to the destination. This causes
that the nodes closer to the destination are going to be expanded first. In some literature,
the Dijkstra’s algorithm and its variations are also referred as label-setting algorithms [12].

Contraction Hierarchies [13] is an advanced algorithm and a proof of the progress in route
planning domain. The idea behind the algorithm is to skip over “unimportant” nodes. It
employs the hierarchical aspect of the road network by augmenting the graph with shortcuts
while preserving the shortest path relation between nodes. The speed-up against the stan-
dard goal directed solutions for the route planning queries is over a magnitude.

An alternative method for computing the shortest path is the Bellman-Ford [14, 15]
algorithm. Each round in the Bellman-Ford algorithm browses all edges and looks for an im-
provement in nodes’ path from the origin. It belongs to a group of label-correcting algorithms,
because at each round it checks and eventually corrects those labels whose cost have been
improved. Therefore, it may scan one node multiple times. In contrast to the Dijkstra’s
algorithm, the Bellman-Ford algorithm works also with negative costs.

2.3 Multi-Criteria Shortest Path Problem

All mentioned methods so far only consider the single cost value, i.e., algorithms are able
to find the shortest path with respect to only one criterion. In the bicycle routing problem,
we instead aim to consider multiple criteria. A cyclist may consider at the same time a trip

2.3. MULTI-CRITERIA SHORTEST PATH PROBLEM 7

distance, a traffic volume and a quality of surface, e.g., she is willing to travel a little further
in order to avoid busy roads with cobblestone surface.

To solve the multi-criteria planning problem, authors in [16] proposed a general label-
setting multi-criteria extension of Dijkstra’s algorithm. The algorithm is operating on labels
that have a cost vector −→c instead of a single cost value as in the original Dijkstra’s algorithm.
The cost vectors contain one value for each considered criterion.

To compare the cost vectors we define a partial order relation ≺ called dominance,

∀−→c ,−→c ′ −→c ≺ −→c ′ iff ci ≤ c′i ∀i 1 ≤ i ≤ k ∧ cj < c′j ∃j 1 ≤ j ≤ k

The cost vector −→c dominates other cost vector −→c ′, if and only if it is strictly better in at least
one criteria value and not worse in any of criteria values. In particular, imagine a bi-criteria
problem, a cost vector (2,3) dominates (2,4), but no dominance relation exists between cost
vectors (2,3) and (3,2) [17]. Similarly, dominance holds for labels, a label dominates another
label if and only if the same holds for cost vectors assigned to them. Note that, two vectors
−→c ,−→c ′ are non-dominated, if and only if −→c ⊀ −→c ′ and −→c ′ ⊀ −→c .

The multi-criteria Dijkstra’s algorithm stores for each node a bag of non-dominated la-
bels. In contrary to the original Dijkstra’s algorithm, one node may have been expanded
multiple times, because it is not guaranteed that there will not be any other label dominating
currently expanded one. At the end, the algorithm terminates with a Pareto set [18] of solu-
tions, i.e., all routes to the destination whose cost vectors are non-dominated to each other.

The multi-criteria search is computationally more expensive than the single criterion one.
The number of label expansions can grow exponentially with the distance from the origin,
even for the two objective case [19]. This makes the problem unusable in real-time appli-
cations. Therefore, the problem has attracted recent attention of researchers that aim to
find the set of routes similar to the optimal one in a reasonable time. To prune the algo-
rithm’s search space, authors in [20] used an elliptical bounding box around the origin and
the destination. In [21], they introduced a near admissible multi-criteria search algorithm
by introducing an ε parameter that weakens the relation between labels. The proposed al-
gorithm guarantees to find a solutions within a factor (1 + ε) from the best solutions. Note
that the Pareto set of solutions in the optimal multi-criteria solution method grows exponen-
tially but with the introduced ε parameter the growth become polynomial. At last, in [22],
authors developed several heuristic speedups, e.g., they put criteria into buckets and instead
of comparing the criteria they compare the buckets.

An alternative approach is represented by MOA* [23], NAMOA* [17], and Tung-Chew [24]
algorithms that are multi-criteria extensions of the standard A* algorithm. The extension
lies in using a vector of heuristics that contains, for each criterion, an estimate value to
the destination. MOA* and NAMOA* algorithms define a data structure for storing unex-
panded labels called an OPEN. During the expansion of a label, the algorithm first finds
a subset of non-dominated labels in OPEN and then from the subset it expands a random
label or the smallest label in a lexicographical order within criteria. It is proven [17] that
the algorithm does not expand such a label that would be dominated by any label from
the destination node’s bag of labels. This is an interesting property from a perspective of
the search space size.

The NAMOA* algorithm recently achieved reasonable results for a bi-criteria route plan-
ning [25] on continent size networks. For the computation of heuristic values, authors used

8 CHAPTER 2. RELATED WORK

a modified method that was proposed in [24]. Basically, before the multi-criteria search, they
compute single costs values from destination to each node and then use this value as heuris-
tic estimate. Also, there have been proposed an improvement of NAMOA* using parallel
search [26]. In [27], authors proposed to decrease a number of iterations of the NAMOA*
algorithm by sorting the subset of non-dominated labels in OPEN with respect to labels’
crowding distance. A non-dominated label with the lowest crowding distance is expanded,
i.e., the algorithm expands a label which has a lot of other labels around; therefore, it must
be in a decent region to explore. The results showed that in average, the sort helps to
decrease a number of expanded nodes to half in contrary to NAMOA*.

Existing bicycle route planning approaches transform multi-criteria search to single-
criterion search either by optimising each criteria separately [28, 29] or by using a weighted
combination of all criteria [30, 31]. Unfortunately, the scalarisation of multi-criteria problems
using a linear combination of criteria may miss many optimal routes [32, 33] and consequently
reduce the quality and relevance of suggested routes. It also requires the user to weight the
importance of individual route criteria a priori.

To avoid the scalarisation, authors in [34] proposed speedups for a bi-criteria Best Com-
promise A* (BCA*) method and effectively applied it to the bicycle route planning problem.
Two of the considered criteria were distance and insecurity, and with the best speedup they
achieved a ten times less number of expanded labels than with the standard BCA*. Re-
cently, in [35], authors explored the use of optimal multi-criteria shortest path algorithms
for multi-criteria bicycle routing. They proposed a route selection method within the Pareto
set of solutions.

According to wiki pages of an open source multi modal trip planner called OpenTrip-
Planner [36], it uses the MOA* algorithm with the ε parameter and the Tung-Chew [24]
heuristic to plan only walk-transit and bike-transit trips. Therefore, to our best knowledge,
there is no openly available bicycle route planner which uses multi-criteria algorithms such
as the multi-criteria Dijkstra’s algorithm, MOA*, or NAMOA*.

2.4 Turns Handling

Certain manoeuvres on intersections take less time than the others, e.g., a left turn is more
challenging than a right turn due to the traffic in an opposite direction. Also, in case of
the bicycle route planning, turning left or handle u-turn is also much dangerous than going
straight or turning right. Also, junctions may have restricted certain turns.

To declare turn penalties and disallow turns, a few researchers [37, 38] used a model called
an edge-based graph. Researchers took the standard graph representing the road network
(described above) and they modelled road segments as nodes and edges as possible connec-
tions between a pair of successive road segments. Example of such a transformation is shown
in Figure 2.1. The disadvantage of the edge-based graph is that a naive implementation takes
much more space than the standard graph. In [9], authors avoid this problem by introduc-
ing an interface which produces on-the-fly conversion from the standard to the edge-based
representation during the bidirectional Dijkstra search.

Other approach dealing with the problem of the edge-based graph is described in [39].
Authors proposed to use a compact representation in which each intersection is a single

2.4. TURNS HANDLING 9

node associated with a turn table, where each row represents node’s incoming edge and each
column represents node’s outgoing edge. Then, an element of the table contains the cost for
the turn to get from the incoming edge to the outgoing one.

Figure 2.1: Example of node-base graph and its transformation to edge-based graph, source
[37]

10 CHAPTER 2. RELATED WORK

Chapter 3

Problem Specification

In this chapter we specify the multi-criteria bicycle route planning problem in an urban
environment as the shortest path problem in the graph data structure. In order to do that, we
first present the formal model of cycleway network, i.e., cycleway graph, originally developed
in [5, 30]. Then, we extend this model in order to address the issue with sensitiveness
of cyclists to difficult manoeuvres at intersections. As a consequence, we will be able to
penalize actions such as left turns on frequented junctions. Furthermore, we define multi-
criteria bicycle routing problem as a k-criteria graph search problem and specify criteria with
appropriate cost functions. Criteria have been designed to cover important factors affecting
a bike ride based on studies [6, 7] of real-world cycle route choice behavior.

3.1 Cycleway Graph

The cycleway network is represented by a directed weighted cycleway graph
G = (V,E, g, h, l, F, f,−→c), where

• V is the set of nodes representing start and end points (e.g., cycleway nodes) of cycleway
segments,

• E = {(u, v)|(u, v ∈ V) ∧ (u 6= v)} is the set of directed edges representing cycleway
segments,

• the function g : V → R2 assigns a latitude and a longitude values to each node v ∈ V ,

• an altitude value is assigned to each node by the function h : V → R,

• the horizontal length of each edge (u, v) ∈ E is given by the function l : E → R+
0 ,

• F is the set of all possible features of edges reflecting certain properties (e.g., a surface
of a cycleway segment, a road type)

• the function f : E → Fn returns the features associated with each edge (u, v) ∈ E.
Note that the edge (u, v) can have multiple features assigned to it, thus f((u, v)) ⊆ F
with the number of elements in interval 1 ≤ |f((u, v))| ≤ |F | .

11

12 CHAPTER 3. PROBLEM SPECIFICATION

• the cost of each edge −→c = (c1, c2, . . . , ck) is a k-dimensional vector of cost functions,
where each cost function returns value for a criterion it represents

For the given edge (u, v) ∈ E, the cost vector −→c = (c1, c2, . . . , ck) contains only the non-
negative values. Each element ci of the vector −→c belongs to a criterion value and it is
computed by a particular cost function ci : E × Fn → R+

0 . The function ci integrates the
influence of map features f((u, v)) together with length, elevation and other properties of the
edge (u, v), with respect to i-th criterion. For example, the features indicating that the edge
is a residential street with bad surface quality will have a negative influence on the speed of
cyclists when travel time is considered as a criterion. The cycleway graph is directed due to
the fact that some cycleway segments in the map are one-way only.

3.2 Extended Cycleway Graph

This section defines extension of the cycleway graph G to cover the structure of junctions.
We present different approach than used in the literature (Section 2.4), e.g. an turn table.
Contrary to turn table method, we aim to not change the execution of the standard graph
search algorithms.

Therefore, let us define a set of junction nodes Vjunction ⊆ V . We say that a node
v ∈ Vjunction is a junction, if all of its incoming and outgoing edges represent a motor vehicle
infrastructure and the number of its neighbours is greater than two. Each junction v is
modelled as a small subgraph composed of a junction entrance node set Vin(v), a junction
exit node set Vout(v), and an inner edge set Einner(v) = {(vin

i , v
out
j)|(vin

i ∈ Vin) ∧ (vout
j (v) ∈

Vout(v))}.
As shown in Figure 3.1, junction node v is extended to an eight node subgraph with the

entrance node set Vin(v) = {vin1 , vin2 , vin
3 , v

in
4 } and exit node set Vout(v) = {vout

1 , vout
2 , vout

3 , vout
4 },

and for every node vini ∈ Vin(v), there exists a directed edge from vin
i to vout

j ∈ Vout(v). We
connect the subgraph to the graph G by replacing all v’s incoming edges (xi, v) , where
xi ∈ V , by the new incoming edges (xi, v

in
i) and by replacing all v’s outgoing edges (v, yi),

where yi ∈ V by the new outgoing edges (vout
i , yi) and the original junction node v is replaced

by all created entrance nodes vin
i and exit nodes vout

i .
The extended cycleway graph G′ = (V ′, E′, g, h, l, F ′, f,−→c) in contrast to G contains

• V ′ = (V \ Vjunction) ∪ {Vin(v) ∪ Vout(v) | ∀v ∈ Vjunction}

• E′ = (E \ {∀(x, v) ∧ (v, y) | x, y ∈ V, v ∈ Vjunction}) ∪ Einner

• F ′ = F ∪Fjunction, i.e. F ′ consists of all features F in the original graph G and features
influencing ride through a junction. Junction features are furthermore described in
Section 5.2.2

3.3 Multi-criteria Bicycle Planning Problem

The multi-criteria bicycle planning problem is defined as a triple C = (G′, o, d):

3.3. MULTI-CRITERIA BICYCLE PLANNING PROBLEM 13

Figure 3.1: (a) junction node v ∈ Vjunction, (b) extension of junction node v, in the graph
incoming edges are coloured in green, outgoing edges in blue and inner edges in gray

• G′ = (V ′, E′, g, h, l, F ′, f,−→c) is the cycleway graph

• o ∈ V ′ is the route origin

• d ∈ V ′ is the route destination

In order to determine a solution to the multi-criteria bicycle planning problem, we must
define several terms first. A bicycle route π(u, v) is a finite sequence of cycleway segments
between a node u ∈ V ′ and a node v ∈ V ′ in the extended cycleway graph G′. A set of all
such possible routes Π(u, v) is then define as

Π(u, v) = {π(u, v) | π(u, v) = 〈(u1, u2), . . . , (un−1, un)〉} ui ∈ V ′, u1 = u, un = v

In general π will indicate a bicycle route between arbitrary cycleway nodes and individual
criteria values of the cost vector −→c (π) are equal to the sum of criteria values of its component
cycleway segments:

−→c (π) =

 |π|∑
j=1

c1((uj , uj+1)), . . . ,

|π|∑
j=1

ck((uj , uj+1))

Any bicycle route from the origin o ∈ V ′ to the destination d ∈ V ′ will be denoted

as a solution bicycle route and referred as π′ = π(o, d). Then, a set of all possible solution
bicycle routes will be characterize as

Π′ = {π′ | π′ = 〈(u1, u2), . . . , (un−1, un)〉} ui ∈ V ′, u1 = o, un = d

14 CHAPTER 3. PROBLEM SPECIFICATION

In Section 2.3 we define the dominance relation among vectors expressed by the symbol≺.
In particular, the cost vector −→c dominates other cost vector −→c ′, if and only if it is strictly
better in at least one criteria value and not worse in any of criteria values. Thus, in multi-
criteria cycle planning problem, a bicycle route πp dominates another bicycle route πq if and
only if −→c (πp) ≺ −→c (πp).

In particular, imagine a bi-criteria problem, a cost vector (2,3) dominates (2,4), but no
dominance relation exists between cost vectors (2,3) and (3,2) [17].

The solution of the multi-criteria cycle planning problem is a set of non-dominated bicycle
routes Π∗ defined in the following way,

Π∗ = {π∗p ∈ Π′ | @π′q ∈ Π′ ∧ −→c (π′q) ≺ −→c (π∗p)}, Π∗ ⊆ Π′

We will also refer to the set of non-dominated solutions Π∗ as a Pareto set. Note that some
algorithms may not find optimal Pareto set, i.e. there might exist such a sulution π′q ∈ Π′,
but the algorithm is not be able to find it.

3.3.1 Scalarised Multi-criteria Bicycle Planning Problem

Alternatively, we can specify the scalarised multi-criteria bicycle planning problem as a quad-
ruple C = (G′, o, d,−→w). Additional vector −→w = (w1, . . . , wk) represents the weights of the
criteria (profile). This vector determines the importance of the individual criterion value
ci ∈ −→c . A bicycle route π∗ is then a solution to the multi-criteria cycle planning problem if
and only if the solution π∗ minimizes the total cost

c(π∗) =

|π∗|∑
j=1

−→w · −→c ((uj , uj+1)), uj , uj+1 ∈ V ′

Note that the vector −→w must have the same dimension k as a cost vector −→c . In other words,
it must hold |−→c | = |−→w | = k.

3.4 Criteria and Cost Functions Definition

This section provides definitions of criteria suitable for bicycle route planning problem and
their appropriate cost functions. We define the criteria based on the study of cyclists’ route
choice behaviour [6, 7].

3.4.1 Distance

The study [6] reveals the fact that commuting cyclists are relatively more sensitive to distance
and less sensitive to most other variables. The distance criterion represents a cycleway
segment’s length in a real-world. It describes, how far cyclists will travel in order to get from
one a cycleway node u ∈ V ′ to another cycleway node v ∈ V ′. It is the simplest possible
criterion, but it preserves the fact that cyclists will mostly choose the shortest route among
two equally comfortable ones. The cost function for the distance criterion is defined in the
following way:

3.4. CRITERIA AND COST FUNCTIONS DEFINITION 15

cdist((u, v)) = l((u, v))

3.4.2 Travel time

The travel time criterion captures the preference towards routes that can be travelled in
a short time. Travel time is a sensitive factor in cyclists’ route planning especially for
commuting purposes. In order to express how much will a certain set of features f((u, v))
decreases a cyclist’s speed on a given edge (u, v) ∈ E, we develop function rtt : Fn → R+

0 .
A road covered by cobblestones is a typical example of a feature that slows down cyclists.
Further, to model the slow down caused by obstacle features such as stairs or crossings
(e.g., an additional constant time is needed before each crossing of a road or for a waiting time
at traffic lights), we define the slowdown function q : Fn → R+

0 which returns the slowdown
in seconds on the given edge (u, v) ∈ E with a set of features f((u, v)).

l((u, v))
h(u)

h(v)

a((u, v))

(a) uphill

l((u, v))

h(u)

h(v)

d((u, v))

(b) downhill

u uv v

Figure 3.2: (a) Positive vertical ascend a. (b) Positive vertical descend d. Source [30]

Besides, changes in the elevation may affect the cyclist’s speed and hence affect travel
times. Going uphill reduces speed and require additional energy. On the other hand, riding
downhill usually means a speed-up, the possibility to stop pedaling and rest. For the case
of uphill rides, we define the positive vertical ascend a : E → R+

0 (cf. Figure 3.2) and
the positive ascend grade a′ : E → R+

0 for a given edge (u, v) ∈ E as follows:

a((u, v)) :=

{
h(v)− h(u) if h(v) > h(u)
0 otherwise

a′((u, v)) :=
a((u, v))

l((u, v))

Similarly, for the case of downhill rides, we define the positive vertical descend d : E → R+
0

(cf. Figure 3.2) and the positive descend grade d′ : E → R+
0 for a given edge (u, v) ∈ E as

follows:

d((u, v)) :=

{
h(u)− h(v) if h(u) > h(v)
0 otherwise

d′((u, v)) :=
d((u, v))

l((u, v))

To model the speed acceleration caused by vertical descend for a given edge (u, v) ∈ E, we
define the downhill speed multiplier sd : E × R+ → R+ as:

sd((u, v), sdmax) :=

{
sdmax if d′((u, v)) > d′c,
(sdmax−1)d′((u,v))

d′c
+ 1 otherwise

16 CHAPTER 3. PROBLEM SPECIFICATION

where sdmax ∈ R+ is the maximum downhill speed multiplier, and d′c ∈ R+ is the criti-
cal d′ value over which a downhill ride would use the multiplier of sdmax. This reflects the
fact that the speed acceleration is remarkable for the ride on a steep downhill (compared
to a mild one), however, it is limited due to safety concerns, bicycle physical limits and air
drag.

Considering the integrated effect of edge length, the change in elevation and its associated
features, the travel time criterion is defined as:

ctt((u, v)) =
l((u, v)) + al · a((u, v))

s · sd((u, v), sdmax) · rtt(f((u, v)))
+ q((u, v)),

where s is the average cruising speed of a cyclist, and al is the penalty coefficient for uphill
rides. Intuitively, ctt((u, v)) can model the travel time of flat rides, uphill rides, and downhill
rides with sd((u, v), sdmax) = 1 for uphill and flat scenarios and a((u, v)) = 0 for downhill
and flat scenarios.

3.4.3 Comfort

The comfort criterion aims to provide a comfortable route from an origin to a destination.
This criterion penalizes bad road surface, hard turns (especially left turn from main road to
side road), obstacles such as steps, and places where the cyclist needs to dismount his or her
bicycle.

To identify how much a given edge (u, v) ∈ E is or is not comfortable, we define function
rco : Fn → R+

0 . The purpose of the function rco is to penalize edges containing features
disturbing comfortability of a ride. Edges with small values of rco indicates great comfort
for riding. It is based on the recognition that cyclists feel their travel time is shortened as
they relish travel on comfortable cycleways (rco is lower than 1). After all, the rco value is
weighted by the travel time ctt spent on traversing the edge.

To cover hardness of manoeuvres on a particular junction, we define function
p : Fnjunction → R+

0 returning what distance are cyclists willing to travel additionally,
in order to avoid an intersection. To keep a value of the criterion in seconds, we divide
a value of the function p(f(u, v)) by cyclist’s average cruising speed.

The comfort cost function is therefore defined as:

cco((u, v)) = ctt((u, v)) · rco(f((u, v))) +
p(f((u, v)))

s

3.4.4 Quietness

The goal of the quietness criterion is to find a quiet route with low traffic or an absence of
traffic. The function rqu(f((u, v))) : Fn → R+

0 assigns small values to edges representing
an infrastructure dedicated for cyclists and large values to motor roads and crossings. The
value of rqu is also weighted by the travel time ctt spend on traversing the edge. Such
function for quietness is defined as:

cqu((u, v)) = ctt((u, v)) · rqu(f((u, v)))

3.4. CRITERIA AND COST FUNCTIONS DEFINITION 17

3.4.5 Elevation Gain

The elevation gain criterion captures the preference towards flat routes with minimum uphill
segments. The criteria function for elevation gain takes into account the positive vertical
ascend a and it penalizes uphill rides by the equivalent flat distance al · a((u, v)) of the
segment with a vertical ascend of a((u, v)), and with uphill penalty coefficient al similarly
defined in Section 3.4.3. The cost function for the elevation gain is defined as:

ceg((u, v)) =
al · a((u, v))

s

In case of flat or downhill cycleway segments ceg((u, v)) = 0.

3.4.6 Bike Friendliness

The bike friendliness criterion captures the preference towards routes suitable for cycling,
i.e., a good-quality surface, a low traffic and a dedicated infrastructure.

We use functions rco((u, v)), p(f((u, v))) and rqu((u, v)) defined in Section 3.4.3 and
Section 3.4.4. The comfort criteria feature function rco((u, v)) is employed to penalize bad
road surfaces, obstacles such as steps, and places where the cyclist needs to dismount his/her
bicycle, with small values indicating cycling-friendly surfaces. The quietness criteria feature
function rqu((u, v)) measures traffic volumes by considering the infrastructure for cyclists
(e.g., dedicated cycleways), the type of roads, and the junctions, where low-traffic cycleways
are assigned a small coefficient value. The maximum value returned by rco((u, v)) and
rqu((u, v)) is used here to avoid the cycleway segments that negatively affect suitability for
cyclists. The maximum is then weighted by edge length l((u, v)), i.e., 500 m of cobblestones
is worse than 100 m of cobblestones. To capture complexity of ride through a junction, we
add the value returned by function p(f((u, v))) defined in Section 3.4.3. Therefore, the final
cost function for bike friendliness criterion is defined as:

csuit((u, v)) = max
(
rco((u, v)), rqu((u, v))

)
· l((u, v)) + p(f((u, v)))

18 CHAPTER 3. PROBLEM SPECIFICATION

Chapter 4

Solution Method

This chapter illustrates how the multi-criteria bicycle routing problem is solved. First, we
present a solution approach using a single cost shortest path algorithm and then we introduce
a multi-criteria search algorithm in order to obtain the full Pareto set of bicycle routes.

4.1 Scalarised Multi-Criteria Solution Method

First of all, we solve scalarised multi-criteria cycle planning problem C = (G′, o, d,−→w) (de-
fined in Section 3.3) by employing single cost shortest path Dijkstra algorithm.

A single cost value is defined as a dot product of a cost vector of criteria values −→c and
a profile −→w

c((u, v)) = −→w ((u, v)) · −→c ((u, v)), u, v ∈ V ′

When searching for a bicycle route, users may have various preferences as it is summarized
in section 2.1. In order to the cover the majority of cyclists’ preferences, we decide to use
the following four criteria presented in section 3.4: Travel Time, Comfort, Quietness and
Elevation Gain. These criteria are the best candidates to be used in a single cost shortest
path algorithm, because they all returned values with the same unit (seconds). Therefore,
they can be incorporated together in a weighted sum.

4.1.1 Profiles

A profile, i.e., a vector −→w (u, v) = (w1, . . . , wk) of criteria weights wi ∈ R+
0 for an edge

(u, v) ∈ E′, reflects the fact that for various users, certain factors of the path have different
importance. Therefore, we define four profiles, each providing a bicycle route relevant for
different types of cyclists. In our case, the profile consists from four elements, where each wi
belongs to one of the selected criteria: travel time, comfort, quietness, and elevation gain.

The Fast profile −→w = (1, 0, 0, 0) uses only travel time criterion to provide a route with the
shortest possible duration. A solution to this profile might have contain bad road surface,
steps or steep cycleway segments. Though, users of this profile should be experienced riders
equipped with a bicycle that can handle worse conditions.

19

20 CHAPTER 4. SOLUTION METHOD

The Commuting profile −→w = (3, 5, 1, 1) is designed for people who use a bicycle for daily
traveling to work or school. This profile attempts to find a comfortable and quick, but also
reasonably quiet and flat route. A solution to this profile is a quick route prioritizing good
surface and avoiding frequented roads and steep ascends where possible.

The Bike friendly profile −→w = (0, 1, 3, 1) is proposing a path that is primarily quiet
(prefers designated bicycle routes and avoids high traffic roads) and secondary comfortable
and without steep climbs. In contrast with the commuting profile, this profile is designed
for non-commuting people who usually do not tolerate sharing a road with motor vehicles.

The Flat profile −→w = (0, 1, 1, 8) is designed for cyclists that want to avoid going uphill
as much as possible. The other comfort and quietness criteria are also considered to provide
a route suitable for cyclists.

4.2 Multi-Criteria Solution Method

To solve the multi-criteria cycle planning problem C = (G′, o, d), we employ the optimal
multiobjective version of Dijkstra’s algorithm, i.e. the multi-criteria Dijkstra (MCD) algo-
rithm. It uses several data structures: a label L defined as triple (u,−→c (π(o, u)), Lpred), where
u denotes a node to which L is assigned to, the cost vector −→c (π(o, u)) describes criteria val-
ues of bicycle path from origin o to node u and Lpred is L’s predecessor label. We store the
previous label to be able to reconstruct a solution, i.e., a bicycle route π(o, d) from origin
o to destination d. Moreover, we define the multi-set data structure Bag(u) for each node
u ∈ V ′ to maintain the non-dominated labels pointing to u. For managing all unexplored
labels created during the search, we define a priority queue Q. Labels are in a lexicographical
order by criteria values in the cost vector.

The pseudocode of the MCD algorithm is given in Algorithm 1 except for the line 13
which will be introduced in a following subsection. First, we initialize priority queue Q and
Bag(u) for each node u from the set of all nodes V ′. Then we create an initial label Lorigin

assigned to an origin node o, with a zero cost vector and no predecessor label. We insert
this label to the priority queue Q and the multi-set Bag(o).

Algorithm terminates when there is no label left in Q. It returns content of multi-set
Bag(d) which is equal to sol(Π′).

On the other hand, if queue Q contains some label Lcurrent, we expand it by taking a node
u to which is assigned and for each edge (u, v), we compute new cost vector −→c (π(o, v)) by
adding criteria values of the edge −→c ((u, v)) to the current label cost vector −→c (π(o, u)).
Using the node v, the cost vector −→c (π(o, v)), and the predecessor label Lcurrent we create
a new label Lnext.

Function checkDominance called in Algorithm 1 at line 14 and described in Algorithm 2,
controls the dominance relation ≺ between the cost vector of label Lnext and all labels
inside Bag(v). If cost vector of Lnext is not dominated by any of the cost vectors of labels
pointing to node v, the algorithm inserts it into Bag(v) and Q. Also, if some label L inside
Bag(v) is dominated by Lnext, it will be eliminated from the multi-set data structure and
not considered in future search.

4.2. MULTI-CRITERIA SOLUTION METHOD 21

Algorithm 1: Multi-criteria Dijkstra algorithm

Input: extended cycleway graph G′ = (V ′, E′, g, h, l, F ′, f,−→c),
origin node o ∈ V ′, destination node d ∈ V ′

Output: full Pareto set of labels

1 Q := empty priority queue
2 Bag(∀v ∈ V ′) := empty set
3 Lorigin := (o, (0, 0, . . . , 0), null)

4 Q.insert(Lorigin)
5 Bag(o).insert(Lorigin)

6 while Q is not empty do
7 Lcurrent := Q.pop()
8 u := Lcurrent.getNode()
9 −→c (π(o, u)) := Lcurrent.getCost()

10 foreach outgoing edge of u, (u, v) ∈ E′ do
11 −→c (π(o, v)) := (c1(π(o, u)) + c1((u, v)), . . . , ck(π(o, u)) + ck((u, v)))
12 Lnext := (v,−→c (π(o, v)), Lcurrent)
13 if skip(Lnext) then continue
14 if checkDominance(Lnext) then
15 Bag(v).insert(Lnext)
16 Q.insert(Lnext)

17 end
18 end
19 end
20 return Bag(d)

Algorithm 2: function checkDominance(label Lnext)
v := Lnext.getNode()−→c ′(π(o, v)) := Lnext.getCost()
foreach label L ∈ Bag(v) do
−→c (π(o, v)) := L.getCost()
if −→c (π(o, v)) ≺ −→c ′(π(o, v)) then return false
if −→c ′(π(o, v)) ≺ −→c (π(o, v)) then remove L from Bag(v) and Q

end
return true

22 CHAPTER 4. SOLUTION METHOD

d′
o d

v
|ov| |vd|

b
a

Figure 4.1: Geometry of the ellipse pruning condition.

4.2.1 Pruning Enabled Multi-criteria Dijkstra algorithm

As mentioned in Section 2.3, the multiple criteria search problem is computationally much
harder than the single criterion one. Therefore, in order to decrease computational com-
plexity of the MCD algorithm, we introduce a pruning enabled multi-criteria label setting
algorithm. We add an invocation of skip function in Algorithm 1 at line 13 (highlighted by
green colour). The pruning enabled algorithm contains only one additional line in comparison
to the original algorithm as shown in Algorithm 1. Modification of functions checkDominance
and skip let us to speed up the search process. In the next subsections, we describe these
modifications and its potential advantages and disadvantages.

4.2.1.1 Ellipse

The first pruning heuristic, inspired by [20], prevents multi-criteria Dijkstra algorithm from
searching the whole cycleway graph. This is very crucial, because MCD always expands
all cycleway nodes at least once (often multiple times, due to more non-dominant path) no
matter the distance between an origin and a destination node. In contrast to single criterion
Dijkstra algorithm, MCD cannot stop search when it reaches the destination. There is no
guarantee that the solution will not be dominated by any other solution found later. The
heuristic permits visiting only the nodes that are within a predefined ellipse. Unfortunately,
the method may miss some of the solution’s from an optimal Pareto set of bicycle routes
Π∗ and yield to sub(Π∗). In the worst case, in some unusual cycleway network topology it
might not find a solution at all.

As shown at Figure 4.1, the focal points of the ellipse correspond to the origin o and the
destination d of the bicycle route. We derive a length of a semi-major axis a and a semi-minor
axis b from a constant ratio a

b , obtained as an input parameter for the ellipse method. The
distance between origin o and a peripheral point on the main axis of the ellipse is represented
by d′. In addition, to improve the ellipse’s performance for short origin-destination distances,
we keep a minimum value d′min for the length of d′. During the search, the function skip
checks whether an edge (u, v) has its target node v inside the ellipse. This is done by checking
the inequality |ov|+|vd| ≤ 2a, in other words, node v lies inside the ellipse if sum of distances
between v and o and v and d is lower or equal to two times the length of a semi-major axis
a.

4.2. MULTI-CRITERIA SOLUTION METHOD 23

4.2.1.2 ε-dominance

We use the method initially proposed in [21], to approximate the set of Pareto optimal bicycle
routes. The approach guarantees to find a solution that is within a factor of (1 + ε) from
the optimal solution. Approximation of Pareto optimality relies on the use of ε-dominance
relation between cost vectors defined as

−→c (πp) ≺ε −→c (πq) ⇐⇒ −→c (πp) ≺ (1 + ε) · −→c (πq)

Difference between dominance and ε-dominance in a bi-criteria problem is illustrated
in Fig. 4.2. All points filled in grey colour at (a) are dominated by the black point, respec-
tively, all grey points at (b) are ε-dominated by the black point.

Figure 4.2: a) dominance relation, b) ε-dominance relation

To integrate this method to MCD algorithm we exchange ≺ relation to ≺ε relation
in the checkDominance function.

4.2.1.3 Buckets

Buckets method originally defined in [22] discretizes the cost space using buckets for the cri-
teria values. Figure 4.3 indicates how cost vectors are mapped into buckets. In epsilon
dominance method, we set only one ratio for all criteria, but in buckets method, we are able
adjust the bucket size for individual criteria.

The speed up is executed in the checkDominance function (cf. pseudocode in Algo-
rithm 3). The function bucketValue assigns a bucket to each criteria value based on defined
bucket size for a particular criterion.

24 CHAPTER 4. SOLUTION METHOD

Figure 4.3: Mapping a point in cost space to buckets. Bucket size for criterion X is equal to
two and for criterion Y is equal to three.

Algorithm 3: Buckets: function checkDominance(label next)

v := Lnext.getNode()−→c ′(π(o, v)) := Lnext.getCost()

foreach label L ∈ Bag(v) do
−→c (π(o, v)) := L.getCost()

if bucketV alue(−→c (π(o, v))) ≺ bucketV alue(−→c ′(π(o, v))) then
return false

end
if bucketV alue(−→c ′(π(o, v))) ≺ bucketV alue(−→c (π(o, v))) then

remove L from Bag(v) and Q
end

end
return true

4.2. MULTI-CRITERIA SOLUTION METHOD 25

Figure 4.4: black points represent single cost solutions, light grey area is a available cost
space for solutions, and dark grey represents area where no label will be expanded and is
defined by (a) single cost solutions, and by (b) a found solution (grey point)

4.2.1.4 Bounded search

The last pruning method bounds cost space, in order to not let MCD expands labels with no
chance to reach Pareto set of bicycle routes Π∗. We introduce a set of cost vectors COSTS,
similarly as in MOA* [23] or NAMOA* [17], that records all cost vectors found for destination
node. Once a solution is known, its cost vector can be used to prune labels. To bound a
search space from start of the MCD, we solve a single criteria bicycle routing problem for each
criterion individually and insert resulted cost vectors to the COSTS set. The computational
cost for solving the single criteria solutions is small opposed to the benefits it brings to MCD.

Illustration of the bounded cost space for bicycle routes is shown in Fig. 4.4.
We integrate the method in function skip, where the algorithm checks whether a cost

vector of label Lnext is not dominated by any of vectors from COSTS set. If there exists
such a solution cost vector, the algorithm will no longer consider Lnext for future search.

26 CHAPTER 4. SOLUTION METHOD

Chapter 5

Implementation

This chapter provides an inside of important parts of the cycle planner. We show what
kind of data we use, and how they are processed in order to build the cycleway graph G′

defined in Section 3.2. We also describe what values are returned by functions defined for
cost functions in Section 3.4, based on features obtained from the map data. The insight
into main part of the cycle planner application is presented in Section 5.3.

5.1 Data

OpenStreetMap To build the cycleway graph G′, we need data containing information
about a real world route network. To fulfil this requirement, we are going to work with
an OpenStreetMap (OSM) project that creates and provides free geographical data of Earth.
It is being built by volunteers and is released with the open-content license.

OSM data are distributed in various formats. The basic one, osm is an XML format and
due to its large size is mainly distributed compressed. The most popular format is pbf, which
is a binary format and in general takes half of the size of the compressed osm file. When
we combine advantages of osm and pbf we obtain o5m format which provides high-speed
processing that uses pbf coding and has the same structure as osm. Moreover, there exists
other formats, e.g., OSM JSON or Level0L, but they are not so widely used and not all OSM
tools support them.

To obtain OSM data, we can either download planet.osm file containing all data of Earth
(approximately 39GB in compressed osm format) or smaller files called extracts, containing
data for individual continents, countries, and metropolitan areas1.

OSM data consists of three basic elements. Node represents a point in space, way defines
a linear feature (road or boundary) or area (river, square or building). Third element,
relation consists of an ordered list of one or more members of the relation (nodes, ways,
and/or other relations) and describes logical or geographic relations between its members.
A typical example of relation is a bus route, official bicycle route, or multipolygon denoting
an island or a lake. All mentioned OSM elements can contain various tags. The tag describes
the features of the element to which are attached and consists of two text attributes key and

1http://wiki.openstreetmap.org/wiki/Planet.osm

27

28 CHAPTER 5. IMPLEMENTATION

value. We denote the tags using triple element::key::value, e.g., way::highway::primary
represents a primary road that often links larger towns.

OpenStreetMap project groups together a massive number of people, whether users,
contributors, or developers. The community develops a variety of tools for creating, updating,
rendering and processing OSM data.

iD and Potlach 2 are online map editors written in JavaScript and Flash, respectively.
Both are available from OSM website2 under menu item “Edit”. For analysing OSM, we
use desktop map data editor JOSM 3, where we are able to inspect extracts of OSM data
created by ourselves. JOSM also extensively supports filters that give a user option to disable
unnecessary OSM elements. In Figure 5.1 a left part a shows only official bicycle routes and
b shows all road segments where is possible to ride a bicycle. Both pictures are showing a
filtered OSM file in JOSM application for the Prague city region.

Figure 5.1: (a) a official bicycle routes in Prague in OSM (b) cycleway network in Prague in
OSM

OSM data preprocessing A majority of OSM data is not essential for constructing
the cycleway network (e.g., buildings, region boundaries, rivers, etc.). The main intention is
to preserve only part of a physical world suitable for a bicycle ride. In other words, we are
looking for a subset of OSM data, that forms a cycleway network.

After detailed study of all OSM map features4 represented by tags and analyzing map
data with JOSM, we specify guidelines for extracting cycleway network from OSM:

2http://www.openstreetmap.org/
3https://josm.openstreetmap.de/
4http://wiki.openstreetmap.org/wiki/Map_Features

5.1. DATA 29

• Keep only objects attached with tag node::highway::* or way::highway::* except
those with tags way::highway::motorway, way::highway::trunk where bikes are dis-
allowed by legislation and with way::highway::proposed, way::highway::construction
representing roads in plan or under construction. Also, we exclude ways associated
with way::highway::bus_guideway and way::highway::raceway, these roads are not
suited for regular traffic by design.

• Keep all elements with tags way::highway::*_link. For navigation purposes, we want
to preserve correct number of exits on a roundabout or a junction.

• Elements containing a tag way::highway::pedestrian are allowed only in combina-
tion with tag way::bicycle::yes

• Exclude elements with a tag way::motorroad::yes. This tag is used to describe roads
having motorway-like access restrictions but are not motorways.

• Exclude elements with a tag way::bicycle::no

• Exclude elements with a tag way::area::yes, these are declaring boundaries of closed
space e.g. square. Therefore, they are not relevant for routing purposes.

• Exclude way::route::ferry or relation::route::ferry. For effective planning it
would require to integrate a timetable.

• Keep ways containing one of the following tags way::access::no,
way::access::private or way::access::customers only in mix with
way::bicycle::yes, way::bicycle::permissive or way::bicycle::dismount.

• Avoid triple of tags way::highway::steps, way::tunnel::yes and way::layer::*,
where value for key=layer is lower than zero. Objects attached with this triple describe
steps to an underground station.

• Exclude elements representing underground parking garages. These can be detected
by way::highway::service and way::layer::*, where value for key=layer is lower
than zero.

• Keep all members of relation with a tag relation::route::bicycle, which repre-
sents either official or proposed cycle routes (proposed by cycling communities, e.g.,
Auto*Mat, and maintained by local authorities).

• Exclude all other relations than those with tags relation::route::bicycle or
relation::type::restriction.

• Remove ways not recommended for bicycle ride by professionals or experienced cyclists
(e.g., roads such as Sokolovská, Legerova in Prague). We enumerate such ways by hand
and filter them from the final OSM by their identifiers.

Another tool that we use to process OSM data files is command line Java application
Osmosis5. We focus on routing in city environment, therefore we primarily use the Osmosis

5http://wiki.openstreetmap.org/wiki/Osmosis

30 CHAPTER 5. IMPLEMENTATION

to crop country size OSM extracts to contain only elements for supported cities. In example
below, we show how to use the Osmosis application for cropping the city of Prague area from
the Czech Republic OSM extract.

$./osmosis --rx file=czech-republic.osm --bounding-box left=14.333400
right=14.550400 top=50.136200 bottom=50.022500 completeWays=yes
--used-node --wx prague.osm

Parameter completeWays=yes ensures that for ways that have at least one node in the
bounding box, all their nodes will be included as well. Also, we employ the Osmosis in the
version 0.43.1 as a library within cycle planner Java application to help manipulate OSM
objects in Java code.

Osmfilter6 is a free command line application created to filter OSM data files by specific
tags. Application lets the user to define various criteria to select OSM objects, which are
currently in his/her area of interest and either to keep only selected objects or to remove
them from an output OSM file. As input and output format, it supports osm and o5m file
formats. The best practise to fast data processing is to use the compact o5m format at least
as an input file. In order to convert our data file to o5m format we use another lightweight
tool called osmconvert.

We use osmfilter to apply guidelines defined above to obtain OSM data representing only
the cycleway network. Filtered OSM data file in the osm format has a size of 86% of the
original OSM, which makes it important for loading to cycle planner Java application. The
lower the size of the input file, the faster it becomes to build a planning graph. The size will
be reduced even more, if we delete redundant information such as author, current version,
and time of the last modification from all OSM elements.

An example below shows a usage of osmfilter tool. First argument is the input file,
in this case europe.o5m. Then, we declare that filter should keep all nodes/ways/relations
containing tag with the key equals to highway without restriction to the value. Next, from all
preserved objects, osmfilter must drop those containing tag with key=access and value=no.
At last, we have to specify output file goodways.osm.

$./osmfilter europe.o5m --keep="highway=" --drop="access=no" -o=goodways.osm

To summarize, this filter example preserves all OSM objects representing road network on
Europe continent with allowed access rights.

Osmfilter supports supplying parameters through a separate file. This useful feature
allows to specify multiple parameters in a more complex way and still preserves readability
and comprehensibility of the filter. File containing parameters to select cycleway network
from OSM data is shown in Figure 5.2 and it is structured in a following way. First, we
specify all object types (nodes, ways, and relations) which will be kept if they meet the filter
criteria based on tags and then all objects which will be dropped regardless of meeting the
keep filter criteria. All specified criteria apply to dependent objects, e.g., nodes in ways,
ways in relations, relations in other relations. In the end, we determine output file format.
We use osm, because the main cycle planner Java application uses the Osmosis library for

6http://wiki.openstreetmap.org/wiki/Osmfilter

5.2. GRAPH CONSTRUCTION 31

parsing OSM data files which does not support o5m format. On the other hand, osm format
is human readable, which is a great advantage. To run osmfilter with a parameter file from
Figure 5.2, we use following command

$./osmfilter prague.osm --parameter-file=cycle-osmfilter.params
-o=cycle-prague.osm

Shuttle Radar Topography Mission (SRTM) SRTM is an international research effort
that obtained digital elevation models on a near-global scale to generate the most complete
high-resolution digital topographic database of Earth. Currently, available elevation model
of Europe is sampled at 3 arc-seconds which is 1/1200th of a degree of latitude and longitude,
or about 90 meters. In most cases such a resolution is sufficient for routing purposes. To
import SRTM data to OSM file we use osmosis application which provides a plugin for
attaching elevation to OSM nodes.

$./osmosis --rx file=cycle-prague.osm --write-srtm --wx
srtm-cycle-prague.osm

5.2 Graph construction

The goal of this section is to demonstrate the construction of the graph G′ using OSM data
in the cycle planner Java application. First, we construct a general graph which contains all
necessary data in a raw format and is designed to easily manipulate with nodes and edges
(optimised for add and remove operations). Also, we present a couple of methods on top
of the general graph in order to prepare the data for the bicycle planning problem. Then
from the general graph, we construct a bicycle planning graph which contains only processed
data, i.e., values for individual criteria (e.g., the travel time, the comfort, etc.). This graph
is later used by planning algorithms.

5.2.1 General Graph

We define two objects: GeneralNode and GeneralEdge, where the GeneralNode is an equiv-
alent to a cycleway node u ∈ V ′ and the GeneralEdge is an equivalent to a cycleway segment
(u, v) ∈ E′ in the extended cycleway graph G′.

Geographical location of the GeneralNode is represented by latitude and longitude values
and stored in two coordinates systems. The first is the World Geodetic System (version WGS
84), a standard geographic coordinate system type. The second is a projected coordinate
system, in particular for the Czech Republic we use the spatial reference system “S-JTSK
(Ferro) / Krovak”. Storing coordinates’ projected values is beneficial in case of computing dis-
tance between two nodes. Calculation of Euclidean distance is over a magnitude faster than
computing Harvesine distance, which gives exact great circle distance between two points
represented by latitude and longitude values and takes into account curvature and average
radius of the Earth. To be able to compute an uphill or a downhill slope (Section 3.4.2), we
save the elevation along with location information. Moreover, the GeneralNode stores tags

32 CHAPTER 5. IMPLEMENTATION

--keep=
(highway=primary or
highway=secondary or
highway=tertiary or
highway=unclassified or
highway=residential or
highway=service or
highway=*_link or
highway=living_street or
(highway=pedestrian and bicycle=yes) or
highway=track or
highway=road or
highway=footway or
highway=cycleway or
highway=bridleway or
highway=steps or
highway=path) and
((access!=private and access!=no) or
((access=private or access=no) and
(bicycle=yes or bicycle=permissive or bicycle=dismount)))

--keep-relations=
route=bicycle

--drop=
(motorroad=yes and highway!=*_link) or
route=ferry or
bicycle=no or
area=yes or
(highway=steps and tunnel=yes and layer<0) or
(highway=service and layer<0) or
access=customers

--drop-relations=
type= and
type!=route and
route!=bicycle

--out-osm

Figure 5.2: cycle-osmfilter.params – parameters file for osmfilter tool

5.2. GRAPH CONSTRUCTION 33

of a corresponding OSM node and tags of relations of which is the node member. The same
applies to the GeneralEdge, but instead of node it stores tags of corresponding ways and
relations.

In the following paragraphs, we present processing and optimising methods for the graph
consisting of GeneralNode and GeneralEdge objects in order to obtain a graph suited for
planning purposes.

Delete loops It is really common that OSM data contains faults which are not visible on
the rendered maps, but are crucial for routing purposes. Such a case are edges with the same
start node and end node. We declare, that nodes are the same if they have either equal OSM
identifier or geographical coordinates. This kind of edges are redundant in cycle planning
problem, because they have a zero length.

Traffic lights positioned out of junction We penalize traffic signals and pedestrian
crossings by the static slowdown constant (Section 3.4.2). In OSM, there exist cases where
traffic signals for motor vehicles are represented by a node before a pedestrian crossing
node. In other words, there may occur a sequence of connected nodes in the following order:
a traffic light node, a pedestrian crossing node (zebra), and a junction node. This causes
a phenomena that for cyclists would be more profitable to use a pavement and then enter
a junction from a zebra as shown in Figure 5.3. Consequently, cyclists would avoid the traffic
light node containing the slowdown constant.

To solve this issue, we decide to move the traffic light node closer to a junction. Specifi-
cally, if there exists an edge between the traffic light node associated with tag
node::highway::traffic_signals and with only two neighbours, and the zebra node, then
we move all tags related to traffic signals from the traffic light node to the zebra node.

Figure 5.3: Traffic light positioned out of junction

Node tags Tags in OSM are not only assigned to ways, but also to nodes and relations.
However, the function f (defined in Section 3.1) only returns features associated to the
cycleway segment.

34 CHAPTER 5. IMPLEMENTATION

Therefore, we have to ensure that relevant tags saved into the GeneralNode,
e.g. node::crossing::traffic_signals, node::highway::stop, node::barrier::gate
etc., are migrated to the proper GeneralEdge.

We distinguish the node’s tags to three categories: whether they belong to a motor vehicle
infrastructure, a pedestrian or bicycle infrastructure, or to whole cycleway network. It is
important to correctly select the category, in order to move the tag to an appropriate set
of edges. For example, the tag node::crossing::traffic_signals belongs to pedestrian
network, but node to which the tag is assigned may be also part of edges of the motor vehicle
infrastructure.

Interpolating From a user experience view, a utility for finding a nearest node in the graph
for a selected geographic location of an origin and an destination is a critical factor. However,
the utility is highly dependent on nodes’ density. Especially, some edges might be really long,
e.g., maximal length of an edge in the Prague city graph is approximately 700 meters.

To improve this utility, we propose to interpolate edges with nodes separated by a distance
greater or equal than dmin. Thus, we define a vector of the edge (u, v) ∈ E′ and its normalized
form norm(

−−−→
(u, v)) as

−−−→
(u, v) = (vlon, vlat, velev)− (ulon, ulat, uelev)

norm(
−−−→
(u, v)) =

−−−→
(u, v)

‖−−−→(u, v)‖

then the i-th interpolated node wi of the edge (u, v) is defined as

(wlon
i , wlat

i , welev
i) = (ulon, ulat, uelev) + (i · d) · norm(

−−−→
(u, v)),

where i = 1, 2 . . . n, n = b l(u, v)

dmin
c − 1, and d =

l(u, v)

n

For each such a node wi, we create a GeneralNode and instead of the original edge (u, v) we
create two GeneralEdge objects equivalent to edges (u,wi) and (wi, v).

In order to not create unnecessarily short edges, we are going to interpolate only edges
longer than threshold t = 2dmin. Figure 5.4a shows a graph without interpolated edges and
Figure 5.4b shows a graph with interpolated edges.

Simplification If a node u has only one incoming edge (v, u) and only one outgoing edge
(u,w) , where u 6= v 6= w and f((v, u)) = f((u,w)), i.e., all tags/features are the same, then
we can contract such a node u and create a new edge (v, w).

The imported graph from OSM elements contains more than a half of nodes meeting
declared property. This is caused by the fact that even cycle network OSM data contain
more nodes than are necessary for bicycle planning purposes. On other hand, these nodes are
inevitable for rendering a bicycle route to map or computing edge’s cost related to elevation.
Therefore, we are not removing the nodes completely, we are just contracting them, i.e., we
store them inside newly created edge and use them when they are demanded.

5.2. GRAPH CONSTRUCTION 35

(a) without interpolated edges (b) with interpolated edges

Figure 5.4: Example of graphs

By contracting those nodes, we are able to lower the number of nodes and edges to half
without any information loss. This has an impact on memory consumption and also on
the running time of the shortest path algorithm, because the asymptotic complexity of Di-
jkstra’s algorithm implemented with a priority queue depends on the number of both nodes
and edges. Figure 5.5a shows an graph without contracting nodes and Figure 5.5a shows an
graph after applying contraction.

(a) before simplification (b) after simplification

Figure 5.5: Example of graphs

36 CHAPTER 5. IMPLEMENTATION

Opposite direction During the OSM import phase we create only GeneralEdge objects
with respect to the order of nodes within the way.

If the edge is one-way, it must contain a tag way::oneway::yes declaring that ride is only
allowed in current direction or a tag way::oneway::-1 declaring that ride is only allowed in
opposite direction to current (in such case we must reverse the edge).

As long as no tag specifies one-way restriction, we assume that cyclists are allowed to
ride on a way in both directions. Also, we create an opposite edge to each GeneralEdge
if it contains one of the following tags, declaring that on a particular edge is allowed to
ride a bicycle in opposite to direction defined by OSM way: way::cycleway::opposite,
way::cycleway::opposite_lane, way::cycleway::opposite_track, and
way::bicycle:backward::yes. The last mentioned tag allows cyclists to travel in both
directions on a one-way street.

To allow ride in opposite direction on some calm one-way roads, we create reversed
GeneralEdge objects for all one-way edges except those with tags
way::highway::primary, way::highway::primary_link or way::highway::secondary,
way::highway::secondary_link and assign them a tag way::oneway::opposite. How-
ever, the tag way::oneway::opposite will be strictly penalized.

Junction Extension To construct the extended graph G′ defined in Section 3.2, we do
the following actions for each junction node v ∈ Vjunction.

Each incoming edge (u, v) of the junction node v is redirected to a new entrance node
vin whose coordinates are created in the following way.

vin.lon = v.lon+
(u.lon− v.lon) · r · cos(θ)

l(u, v)
+

(u.lat− v.lat) · r · sin(θ)

l(u, v)

vin.lat = v.lat+
(u.lat− v.lat) · r · cos(θ)

l(u, v)
− (u.lon− v.lon) · r · sin(θ)

l(u, v)

Also each outgoing edge (v, w) of the junction node v is redirected from a new exit node
vout whose coordinates are created in following way.

vout.lon = v.lon+
(u.lon− v.lon) · r · cos(θ)

l(u, v)
− (u.lat− v.lat) · r · sin(θ)

l(u, v)

vout.lat = v.lat+
(u.lat− v.lat) · r · cos(θ)

l(u, v)
+

(u.lon− v.lon) · r · sin(θ)

l(u, v)

After successful creation of all entrance nodes Vin and exit nodes Vout for a particular
junction, we build junction inner edges from all nodes vin ∈ Vin to all nodes vout ∈ Vout. To
apply turn restriction defined by OSM relations, we can delete inner edges which represent
restricted turn. The difference between the standard graph and the extended graph is shown
in Figure 5.6.

Furthermore, to be able to classify junctions, we define tags taking into account four
aspects influencing a ride through a junction. First aspect is a presence of traffic signals. Even
though, traffic lights cause delay and cyclists often tend to avoid them, it was shown in [6]

5.2. GRAPH CONSTRUCTION 37

that if they are forced to cross an intersection with a high traffic volume, they will rather use
one with a traffic control device. Consequently, we must consider possible actions to take
on a junction: right turn, keep straight, left turn, and u-turn. Another important aspect is
an amount of vehicles crossing a junction per day. We divide the traffic volume per day to
four categories: 1, 5, 10, and 20, where the number is approximated amount of cars times
one thousand per day. The last aspect is to distinguish a direction to a street with the
same or lower traffic volume (parallel), or to a street with the higher traffic volume (cross).
Following example shows two from 64 possible tags for junction inner edges:

• way::turn::left_20parallel describes left turn from high traffic street on junction
without traffic lights and with traffic volume higher than 20k vehicles per day

• way::turn::traffic_lights_straight_5cross describes going straight through an con-
trolled junction with traffic volume approximately 5k vehicles per day and where cross-
ing street has higher traffic volume than incoming street to an intersection.

For the sake of clarity, we say that an cycleway segment belongs to a motor vehicle
infrastructure (mentioned in the Section 5.2.1) if it contains at least one of the following tags

way::highway::living_street, way::highway::primary,
way::highway::primary_link, way::highway::residential,
way::highway::secondary, way::highway::secondary_link,
way::highway::tertiary, way::highway::tertiary_link,
way::highway::service, way::highway::unclassified, way::highway::road

(a) without junction extension (b) with junction extension

Figure 5.6

38 CHAPTER 5. IMPLEMENTATION

5.2.2 Bicycle Planning Graph

After successfully applying all techniques introduced above, we construct the bicycle planning
graph from the general graph. The bicycle planning graph consists from CycleNode and
CycleEdge objects. In contrast to the GeneralEdge, the CycleEdge contains instead of
OSM tags just the cost vector of cost values for individual criteria. Next two paragraphs
describe two issues we need to solve in order to construct the planning graph. First, we
describe how we use OSM tags to compute criteria values. Second, we have to ensure that
the final graph is a strongly connected component.

Map OSM Tags to Criteria In order to pre-compute criteria values and store them
into CycleEdge objects, we have to map OSM tags, i.e., map features, with defined cost
functions in Section 3.4. To remind, not all proposed criteria taking into account additional
features describing e.g., surface or dedication of road. The distance and the elevation gain
criteria considers only geographical factors as length and elevation. In following paragraphs,
we describe how we integrate map features obtained from OSM into the travel time, the
comfort, the quietness, and the bike friendliness criteria.

The cost function for the travel time criterion defines two functions rtt and q both ex-
pressing factors which slows down cyclists. The value of functions rtt and q depend on all
features associated with an edge, therefore, we define additive functions depending only on
one feature. All tags that affect cyclists’ speed (e.g., road segments with a bad surface or
segments where cyclists must dismount a bike) together with its penalization value for an
additive function r′tt : F → R+ are shown in Appendix A in Table A.1. Table A.2 shows
an additive function q′ : F → R+ which assigns a delay in seconds to each tag considered
as a static slowdown factor (e.g., steps, crossing, traffic signals, etc.). Therefore, the total
effect of all features of an edge (u, v) ∈ E′ given by function f((u, v)) for functions rtt and
q is defined as:

rtt((u, v)) = min{r′tt(x) | x ∈ f((u, v))}
q((u, v)) = max{q′(x) | x ∈ f((u, v))}

The comfort criterion and the bike friendliness criterion depend on two functions. First,
the function rco penalizes edges with features disturbing comfortability (e.g., surface covered
by cobblestones). Second, the function p returns what additional distance are cyclists willing
to travel to avoid a busy intersection. Similarly, as in previous case, both functions depends
on all features returned by the function f((u, v)). Therefore Table A.3 shows map features
associated with an additive function r′co : F → R+ for rco together with values it obtains.
Also, we introduce a function p′ : F → R+ which is an additive function for p and the
Table A.5 shows features related to p′ together with values. Then, the functions rco and p
are defined as:

rco((u, v)) = max{r′co(x) | x ∈ f((u, v))}
p((u, v)) = max{p′(x) | x ∈ f((u, v))}

The values for the function p′ were derived from Table 5.1, which represents in percent
how much are cyclists willing to travel farther on one mile commute trip to avoid the junc-
tion with certain properties. The values was derived by [6], where authors study cyclists’
behaviour taken from GPS tracks.

5.3. APPLICATION 39

S ST L LT R RT U UT
5P 0 2.1 6 2.1 0 0 6 5
10P 0 2.1 9.1 2.1 0 0 9.1 5
20P 0 2.1 23.1 2.1 0 0 23.1 5
1C 1 1 2 1 0 0 2 5
5C 4.1 2.1 4.1 2.1 2 0 4.1 5
10C 5.9 2.1 5.9 2.1 3.8 0 5.9 5
20C 32.2 2.1 32.2 2.1 3.8 0 32.2 5

Table 5.1: Percentage of 1-mile that are cyclists willing to travel in order to avoid junction
with defined parameters, source [6] (1, 5, 10, 20 – times 1000 cars per day; P – parallel; C –
cross; T – traffic signals; R – right turn; S – straight; L – left turn; U – u-turn)

The quietness and the bike friendliness criteria defines the function rqu which prefers
an infrastructure dedicated for cyclists, e.g., cycleways and cycle lanes. Consequently, we
define an additive function r′qu and all values it can obtain are shown in Table A.3. Sup-
pose the function f((u, v)) returns all features associated with an edge (u, v) ∈ E, then
the function rqu is given by:

rqu((u, v)) =

∑∀x∈f((u,v)) r′qu(x)

|f((u, v))|

Strongly connected components The constructed bicycle planing graph does not have
to be strongly connected, i.e., each node u is reachable from every other node v. Instead, the
graph consists of multiple strongly connected components. We find and use only the largest
strongly connected component in the constructed bicycle planing graph to ensure that there
will exist a bicycle route between all pairs of nodes in the graph. To identify the largest
strongly connected component we use code from a library developed at Agent Technology
Center (ATG) that is based on Kosaraju’s algorithm.

5.3 Application

This section provides an insight to implementation of the cycle planner application. We
introduce the utility for searching nearest nodes in the planning graph and provide important
parts on the implementation of the planning algorithms. In the end we describe the RESTful
API and usage of the cycle planner in applications used by people in the Czech Republic.

The cycle planner application is implemented in Java 7. It consists of five Maven7 modules
which are described below and Figure 5.7 shows dependencies between these modules.

• cycle-planner – contains all algorithms and API; its main responsibility is to plan
the bicycle route

• cycle-planner-core – consists of base data structures common for the whole applica-
tion, e.g., CycleNode, CycleEdge

7https://maven.apache.org/

40 CHAPTER 5. IMPLEMENTATION

• cycle-city-data-builder – all optimisation methods on the general graph are imple-
mented here; it builds the cycleway graph consisting of CycleNode and CycleEdge
objects

• cycle-city-data-storage – contains cycle city data built by the cycle-city-data-builder
module

• osm-import – imports OSM data to Java application and constructs the general
graphs structure

osm-importer

cycle-city-data-builder

cycle-city-data-storage

cycle-planner

cycle-planner-core

saves cycle-city-data

Figure 5.7: Cycle planner application modules

5.3.1 Nearest node

To find the nearest node among both visible graph nodes and contracted nodes (nodes
disabled during the simplification process of the general graph) we employ Java implementa-
tion of KD-tree with two dimensions: longitude and latitude. The utility returns five nearest
nodes at maximum, but all of them must have distance equal or lower to the distance from
an origin to the nearest node plus some ε distance.

If some of the nearest nodes is the contracted node, we create a new CycleNode and two
new CycleEdge objects referred as a first mile if the node is from the set of the nearest nodes
to an origin, or a last mile if the node is from the set of the nearest nodes to a destination.

5.3.2 Algorithms

Scalarised Multi-Criteria Solution Method We modify the implementation of the
Dijkstra’s algorithm in a library provided by ATG to support multiple origins and multiple
destinations. Such a problem occurs when multiple nearest CycleNode objects in the graph
G′ are found to a location specified by the user. Modification consists of inserting all origins
into a priority queue during the initialisation and of changing a terminal condition to stop
the search when bicycle routes to all destinations are found. In the end, from several options
we select the bicycle route with the minimal cost value.

5.3. APPLICATION 41

The implementation of Dijkstra’s algorithm uses a binomial heap representation of the pri-
ority queue and returns a complex object GraphPath from a common Java graph library
JGraphT. The GraphPath wraps all objects in order to reconstruct the bicycle route and
also provides information about the route’s cost value, and number of expanded nodes by
the algorithm.

Multi-Criteria Solution Method The implementation of the multi-criteria Dijkstra’s
algorithm (MCD) uses the standard Java implementation of the priority queue and returns
object called ParetoSet containing collection of lists of CycleEdge or CycleNode objects,
i.e., Java representation of Pareto set where all non-dominated routes between an origin and
a destination are represented either as sequence of nodes or sequence of edges.

5.3.3 RESTful API

A client application is responsible for sending the user’s request and showing received bicycle
routes in an appropriate way. A server application is responsible for the planning of bicycle
routes. To separate the client from the server application, we design the cycle planner
in Representational State Transfer (REST) software architecture style. The server
supports gzip encoding in order to decrease a size of the transferred data between the client
and the backend. That is important mainly for mobile applications where the size of the
received data matters a lot.

All planned bicycle routes and feedback received from clients are stored in NoSQL
database to enable data persistence and ability to provide statistics. We use NoSQL docu-
ment type database MongoDB, because it supports saving and loading files in JSON format.
Therefore, without any transformations we can store and retrieve bicycle routes and feedback
in JSON format. The database behaves as a cache for the planned routes, therefore, the
cycle planner is not overwhelmed when the user wants to see earlier bicycle routes. Previous
cycle planner implementation did not support it and web client application sends the same
request multiple times.

The server communicates with clients over Hypertext Transfer Protocol (HTTP). The
following API base URI together with supported HTTP method (GET or POST) are used
by the server:

POST api/v2/journeys It consumes request in JSON format shown in Figure 5.8
and starts planning a bicycle route between an origin, waypoints if defined, and a destination.
By default, if no profile is specified, it plans a bicycle route for four profiles defined in
Section 4.1.1. If the planner successfully finds bicycle routes it sends HTTP 201 response
with journeyId under which the routes can be retrieved from the API. In case of failure, it
returns HTTP 400 when request JSON format is invalid and HTTP 404 when application
was unable to store the routes in the database.

GET api/v2/journeys/test Returns HTTP 200 with routes in JSON format as
shown in Figure 5.9 between arbitrary points in Prague city. This URI serves to ensure that
server is answering and is functional.

GET api/v2/journeys/mc The URI expects five parameters: latitude and longitude
for an origin and a destination and the name of the multi-criteria algorithm to use. It returns

42 CHAPTER 5. IMPLEMENTATION

a JSON list of edges where each edge is associated with a width and a colour representing
the number of occurrences in the Pareto set.

GET api/v2/journeys/journeyId Returns a bicycle routes stored under the speci-
fied journeyId in JSON format specified in Figure 5.9.

POST api/v2/feedback Accepts only feedback in JSON format shown in Figure 5.10
and returns HTTP 201 if it was successfully stored.

Request

client

origin latE6

lonE6

elevation

type: { origin }

destination

lateE6

lonE6

elevation

type: { destination }

[waypoints]

latE6

lonE6

elevation

type: { waypoint }

city

average speed km/h

profile
elevation gain weight

quietness weight

comfort weight

travel time weight

Figure 5.8: JSON schema of the API request

5.4 Real Deployment

Cyclists are able to plan a bicycle route with our cycle planner through the web page <http:
//cykloplanovac.cz>, which provides four alternative paths and displays elevation profile

http://cykloplanovac.cz
http://cykloplanovac.cz

5.4. REAL DEPLOYMENT 43

of routes. A screenshot of the web application is shown in Figure 5.11.
Other usage of our cycle planner application is the Android application named “Cyklo-

plánovač” developed as the bachelor’s project by Jan Linka [40]. As shown in Figure 5.12,
the Android application provides turn-by-turn navigation. Also, the Android application
and cycle planner are part of the competition “Do práce na kole”. Since the start of the
competition on May 4, 2015, the cycle planner serves 200 requests per day on average and
the Android application has over 700 downloads. Currently, the application is able to plan
bicycle routes in 25 cities in the Czech Republic.

44 CHAPTER 5. IMPLEMENTATION

Response

region

[plans]

elevation drop

duration

bounding box

plan ID

elevation gain

description

length

consumed energy

[steps]

surface: { unpaved /
paved smooth /
paved cobblestone }

road type: { primary /
secondary / tertiary /
footway / cycleway /
steps / road }

bicycle route number

travel time to next step

distance to next step

street name

angle

coordinate

latE6

lonE6

elevation

type: {origin / waypoint /
destination}

response ID

status

ok

out of bounds

plan not found

planner exception

Request

creation timestamp

Figure 5.9: JSON schema of the API response

5.4. REAL DEPLOYMENT 45

Feedback

rating

response ID

plan ID

bad map data

bad profile correspondence

dangerous places

forbidden maneuvers

pavement when not needed

textual feedback

[tracked journey]
timestamp

coordinate

latE6

lonE6

elevation

type: { origin / waypoint / destination }

Figure 5.10: JSON schema of the API feedback to API request

46 CHAPTER 5. IMPLEMENTATION

Figure 5.11: Web frontend of the cycle planner – cykloplanovac.cz

Figure 5.12: The Android application – “Cykloplánovač”

Chapter 6

Evaluation

To evaluate our solution methods presented in Chapter 4, we consider the real cycleway net-
work of the city of Prague constructed as described in Section 5.2. Prague is a challenging
experiment location due to its complex geography and fragmented cycling infrastructure,
which raises the importance of proper multi-criteria routing. Also, Prague has a large com-
munity of cyclists who massively contributes to OSM project, therefore the map data are
considered to be precise.

This chapter evaluates the proposed pruning heuristics for the multi-criteria Dijkstra’s
algorithm (MCD) and the junction extension.

6.1 Multi-Criteria Method

This section starts with a definition of the evaluation metrics which are used to compare
the quality of various implemented pruning heuristics. Then, we present how parameters for
the pruning heuristics and whole evaluation process are set up.

The evaluation of the multi-criteria solution method is split into two phases. First, we
evaluate all methods on three medium-sized regions of Prague in order to compare a quality
of solution routes (not just a running time). Due to the reasonable size of the graphs, even
the pure multi-criteria Dijkstra algorithm is able to solve a query in a short enough time.
Second, we take the methods with a potential to scale well and evaluate them on the whole
Prague graph.

We also evaluate combinations of the pruning heuristics. For instance, the ellipse and
the ε-dominance or the bounded search and the ε-dominance, etc., are easily combined
because they speedup the search in different parts of the MCD algorithm. Also, the bounded
search plus the ellipse heuristic can be combined naturally, the bounded search bounds the
search in the cost space and the ellipse in the physical space.

6.1.1 Evaluation Metrics

We consider two categories of evaluation metrics: speed and quality. We use the following
metrics to measure the algorithm speed:

47

48 CHAPTER 6. EVALUATION

• Average speedup over the standard, optimal multi-criteria Dijkstra’s algorithm in terms
of algorithm runtime.

• Average runtime t in ms for each origin-destination pair together with its standard
deviation σt.

Some of the proposed pruning heuristics are unable to find the full Pareto set of bicycle
routes Π∗ (defined in Section 3.3). Therefore, we have to define metrics to measure quality
of returned routes with respect to full Pareto set:

• Average distance dc(Π∗,Π) of the heuristic Pareto set Π from the optimal Pareto set Π∗

in the cost space. Distance dc(π∗, π) between two routes π∗ and π is measured as the
Euclidean distance in the unit three-dimensional space of criteria values normalized to
the [0, 1] range.

dc(Π
∗,Π) :=

1

|Π∗|
∑
π∗∈Π∗

min
π∈Π

dc(π
∗, π)

• Average distance dJ(Π∗,Π) of the heuristic Pareto set Π from the optimal Pareto
set Π∗ in the physical space. Jaccard distance dJ(π∗, π) [41] is used to measure the
dissimilarity between Pareto routes. For routes π∗ and π, i.e., sequences of edges, the
physical distance is computed by dividing the difference of the sizes of the union and
the intersection of the two route sets by the size of their union.

dJ(π∗, π) :=
| (π∗ ∪ π) | − | (π∗ ∩ π) |

| (π∗ ∪ π) |

dJ(Π∗,Π) :=
1

|Π∗|
∑
π∗∈Π∗

min
π∈Π

dJ(π∗, π)

• Average number of routes |Π| in the Pareto set Π together with its standard devia-
tion σ|Π|.

• The percentage of Pareto routes Π% in heuristic Pareto set Π that are equal to routes
in the optimal Pareto set Π∗.

6.1.2 Evaluation Settings

To evaluate the proposed pruning heuristics within the multi-criteria solution method we
consider four graphs. We use three different medium-sized cycleway graphs corresponding
to three distinct areas of the city of Prague. We have chosen parts Prague A, Prague B,
and Prague C to be different in terms of network density, nature of the cycling network, and
terrain topology so as to evaluate the performance of heuristics across a range of conditions.
The size of the medium size evaluation graphs allows us to run the multi-criteria Dijkstra’s
algorithm without any speedups, which is crucial for comparing the quality of heuristic and
optimal solutions. The fourth graph belongs to the whole Prague city, which we use to
evaluate the scalability of the best pruning heuristics. The sizes of the evaluation graphs
together with the specifics of the areas are described in Table 6.1.

6.1. MULTI-CRITERIA METHOD 49

Table 6.1: Graph sizes for the experiments.

Graph Nodes Edges Area
Prague A 9709 22928 This graph covers a flat city centre area of the Old Town with many nar-

row cobblestone streets and Vinohrady with the grid layout of streets
Prague B 6733 5218 This graph covers a very hilly area of Strahov and Brevnov with many

parks.
Prague C 9834 22798 This graph covers residential areas of Liben and Vysocany further from

the city centre. There are many good cyclepaths in this area.
Whole Prague 141117 323114 The whole city of Prague.

In order to solve multi-criteria problem we consider three criteria: the distance, the bike
friendliness and the elevation gain. These criteria do not depends on each other, e.g., the
comfort and the quietness use the travel time value, therefore they are the best candidates
to be used in the multi-criteria approach.

Three of four proposed pruning heuristics needs to set up their parameters to run effi-
ciently. To select the correct values for the specific parameters we consider two factors: the
running time and the average cost space distance dc between the pruning methods’ Pareto
set and the multi-criteria Dijkstra’s Pareto set (see more detailed description in Section 6.1.1
above). All experiments for considering various pruning techniques’ parameter values were
run on all medium-sized graphs.

The ellipse pruning heuristic expects at the input the constant ratio a
b between a semi-

major axis a and a semi-minor axis b. Figure 6.1 shows results for three values of parameter
a
b . We select the value a

b = 1.5 due to small derivation from the optimal Pareto set and huge
speed up over the value a

b = 1.25. The difference between values a
b = 1.5 and a

b = 1.75 is
insignificant and we prefer one with better quality.

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

20000

25000

30000

35000

40000

45000

1,25 1,5 1,75

d
is

ta
n

ce
 d

c
 in

 c
o

st
 s

p
ac

e

ru
n

n
in

g
ti

m
e

[m
s]

a/b

Average running time

Average minimal distance in cost space from optimal Pareto set

Figure 6.1: Ellipse a
b parameter settings

50 CHAPTER 6. EVALUATION

The ε-dominance pruning heuristic uses the ε value to approximate the optimal Pareto
set. We choose three values to assign to ε: 0.01, 0.025, and 0.05. Results in Figure 6.2
shows that the distance from optimal Pareto set linearly grows and the running time strictly
drops, with larger values for ε parameter. For the future evaluation of ε-dominance pruning
heuristic, we consider the value ε = 0.025 for its still acceptable value for distance metric
and feasible running time.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,00

200,00

400,00

600,00

800,00

1000,00

0,010 0,025 0,050

d
is

ta
n

ce
 d

c
 in

 c
o

st
 s

p
ac

e

ru
n

n
in

g
ti

m
e

[m
s]

ε

Average running time

Average minimal distance in cost space from optimal Pareto set

Figure 6.2: ε-dominance parameter settings

At last, in the buckets pruning heuristic we have to define size of the individual buckets.
We have proposed the 3-criteria bicycle routing problem (distance, bike friendliness, elevation
gain), therefore 3 bucket’s sizes are needed. For the buckets we consider the following sizes:
the travel time ({32, 80, 160}, the bike friendliness {448, 1120, 2240}, and the elevation gain
{2, 5, 10}). The sizes have been derived from the observation of the optimal Pareto set criteria
values. On average, the ratio between the criteria values in Pareto set was 16 : 224 : 1. The
running time and the distance from optimal Pareto set for all possible combination of bucket
sizes are plotted in Figure 6.3. For the future evaluation of the buckets pruning heuristic
we consider buckets sizes (80, 1120, 2), due to relatively good compromise between both
considered metrics.

Each evaluation process was run on a single core of a 2.60GHz Intel Xeon E5-2650v2
processor of server machine running Debian operating system. For each evaluation on the
medium-sized graphs, it was allocated 5GB of RAM and for each evaluation on the whole
Prague graph, it was allocated 10 GB of RAM.

For each graph evaluation area, a set of origin-destination pairs generated randomly with
a uniform spatial distribution was used. We generated 105 origin-destination pairs for each
graph. The minimum origin-destination distance is set to 500 m and the maximum origin-
destination distance for medium-sized graphs is 4.5 km and for the whole Prague graph is
12 km. After successful evaluation, we discard first 5 results, which we consider as a warm
up period for Java virtual machine.

6.1. MULTI-CRITERIA METHOD 51

0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35

0,00
200,00
400,00
600,00
800,00

1000,00
1200,00

d
is

ta
n

ce
 d

c
 in

 c
o

st
 s

p
ac

e

ru
n

n
in

g
ti

m
e

 [
m

s]

bucket sizes

Average running time

Average minimal distance in cost space from optimal Pareto set

Figure 6.3: Buckets parameter settings

The parameters in the cost functions were set as follows. The average cruising speed is
s = 14 km/h, the penalty coefficient for uphill is al = 13 (according to the route choice model
developed in the user study [6]), the maximum downhill speed multiplier is sdmax = 2.5, and
the critical grade value is d′c = 0.1.

6.1.3 Results on Prague A, B, C Subgraphs

Table 6.2 summarises the evaluation of the multi-criteria Dijkstra’s algorithm and the pro-
posed pruning heuristics using the graphs Prague A, B, and C. Columns dc, dJ and Π%

are calculated with respect to the optimal Pareto set Π∗ returned by the MCD algorithm
which is used as a baseline for the evaluation of the proposed pruning heuristics and their
combinations.

Pruning Heuristic speedup t [ms] σt |Π| σ|Π| dc dJ Π%

MCD 0 153 494 200 452 326 582 - - 100.00
MCD_Bounded 4 35 695 87 389 326 582 0 0 100.00
MCD_Ellipse 7 20 731 70 158 314 565 0.008 0.012 99.77
MCD_Bounded_Ellipse 10 15 882 64 713 314 565 0.008 0.012 99.77
MCD_Buckets 369 415 347 14 15 0.160 0.301 58.62
MCD_Bounded_Buckets 815 188 196 14 15 0.165 0.304 58.90
MCD_Ellipse_Buckets 2 108 73 161 14 14 0.168 0.310 58.88
MCD_Bounded_Ellipse_Buckets 1 801 85 140 13 14 0.171 0.312 59.14
MCD_Epsilon 1 023 150 74 9 7 0.175 0.334 64.73
MCD_Bounded_Epsilon 1 073 143 106 9 7 0.180 0.337 65.12
MCD_Ellipse_Epsilon 3 955 39 42 9 7 0.184 0.341 64.90
MCD_Bounded_Ellipse_Epsilon 2 239 69 53 9 7 0.187 0.343 65.25

Table 6.2: Evaluation of the pruning heuristics performance on the Prague A, B, C graphs.

52 CHAPTER 6. EVALUATION

The MCD algorithm returned the optimal Pareto set with an average size of 326 routes
at the cost of a prohibitively high running time. In contrast to MCD, the MCD_Bounded
pruning heuristic computes the same amount of routes four time faster without the loss of
optimality.

The MCD_Bounded, the MCD_Ellipse, and the MCD_Bounded_Ellipse perform best
in the quality of the solutions. The running time is between 15-35 seconds on average which is
a rapid speed up compare to 135 seconds of the MCD algorithm. Note that theMCD_Ellipse
and the MCD_Bounded_Ellipse do not return the full optimal Pareto set, but the quality
loss is negligible (99.77% of the routes in the heuristic Pareto set Π are equal to the ones in
the optimal Pareto set Π∗).

Figure 6.4 shows heuristics in increasing order by the average distance of the Pareto
sets in the cost space. We observe that combinations with MCD_Ellipse has better run-
ning time than MCD_Bounded_Ellipse, this could be caused either by the cost for pre-
computing single criteria solutions by the Dijkstra’s algorithm or by additional dominance
relation checks against already found routes to destination. The line showing the values
of the average distance of Pareto sets in the cost space contains sharp increase between
MCD_Bounded_Ellipse and MCD_Buckets. This increase is a proof of that the ellipse
pruning heuristics prunes only the real outliers from the Pareto set unlike the buckets or the
ε-dominance.

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

0,180

0,200

1,00

10,00

100,00

1000,00

10000,00

100000,00

d
is

ta
n

ce
 d

c
 in

 c
o

st
 s

p
ac

e

lo
g 1

0
(r

u
n

n
in

g
ti

m
e

[m
s]

)

Algorithms

Average running time Average distance in cost space from optimal Pareto set

Figure 6.4: Running time and the average distance of the Pareto sets in the cost space metric
dc of the pruning heuristics on the Prague A, B, C graphs.

Figure 6.5 shows changes in distribution of cycleway segments in a Pareto set of a three

6.1. MULTI-CRITERIA METHOD 53

pruning methods from the Pareto set of MCD algorithm. The wider and lighter the cycleway
segment is, the more times it appeared in routes in the Pareto set. The ellipse pruning
techniques does not change the Pareto set, but the buckets and the ε-dominance seem to
lower the number of the solutions. In a dense area were MCD provides a lot of alternatives,
the buckets and the ε-dominance provide only a few.

(a) MCD (b) MCD_Ellipse (c) MCD_Buckets (d) MCD_Epsilon

Figure 6.5: Distribution of cycleway segments in the physical space within a Pareto set of
particular algorithm

6.1.4 Results on the Whole Prague Graph

In this section, the pruning heuristics with the best performance on the medium size graphs
are evaluated on the whole Prague cycleway graph. The results are shown in Table 6.3. We
set the maximum running time for one query to 15 minutes. Therefore a column “In 15 min”
shows how many queries were finished in 15 minutes.

We observe that the buckets pruning heuristic with the particular setting of the buckets’
sizes did not scale well to the whole Prague graph. Only theMCD_Bounded_Ellipse_Buckets
heuristic was able to finish all queries before the time limit and had the running time 46
seconds on average which is 3 times slower than MCD_Epsilon.

All combination with ε-dominance pruning heuristics yield to a reasonable running time
(below 15 seconds) and all have the same average size of the Pareto set which means that
ε-dominance mainly effects the final solutions and the ellipse and the bounded search prunes
only unimportant labels from the search space.

To compare, the scalarised approach using multiple origins and multiple destinations
version of the Dijkstra’s algorithm (Section 5.3.2) achieves on the same origin-destination
pairs an average running time 265 milliseconds while considering the Commuting profile.

The application that solves the multi-criteria bicycle route planning problem by the
fastest pruning techniques (MCD_Buckets, the MCD_Bounded_Buckets, and
the MCD_Ellipse_Buckets) is available to try at a live deployment1. The Pareto set is
shown in a form of the distribution of cycleway segments in the physical space.

1http://its.felk.cvut.cz/cykloplanovac-mlc/

54 CHAPTER 6. EVALUATION

Table 6.3: Evaluation of the pruning heuristics’ performance on the whole Prague graph.

Pruning Heuristic In 15 min Runtime [ms] σruntime |Π| σ|Π|
MCD_Ellipse_Epsilon 100 2325 2731 12 6
MCD_Bounded_Ellipse_Epsilon 100 3941 3808 12 6
MCD_Bounded_Epsilon 100 7426 4958 12 6
MCD_Epsilon 100 14010 4316 12 6
MCD_Bounded_Ellipse_Buckets 100 46084 99831 158 160
MCD_Ellipse_Buckets 99 63553 127411 154 153
MCD_Bounded_Buckets 93 125850 130808 138 128
MCD_Buckets 36 540912 228385 140 111

6.2 Junction Extension

To evaluate the planning on the extended cycleway graph, we describe the cycle planner’s
behaviour on a chosen set of plans. Particularly, we look at the commuting profile (purple
colour) in the scalarised multi-criteria solution method. Plans on the extended cycleway
graph, i.e., junction aware plans, should avoid left turn and u-turn manoeuvres unless the
junction is controlled by traffic signals. The proposed method for the graph extension pro-
vides trade-off between a more precise model of junctions and the number of edges and nodes
in the graph. The extended cycleway graph for the whole Prague contains 141 117 nodes
and 323 114 edges in contrast to the standard cycleway graph which contains 68 058 nodes
and 186 554 edges. The edge-based graph used in the literature (see 2.4) would have 186 554
nodes.

In Figure 6.6, the junction aware plan uses the traffic signals to cross the street “Evropská”
and to turn to street “Milady Horákové”. All the described manoeuvres are highlighted in
blue circle. It did not follow the path planned on the standard graph, because the path is
crossing the street “Jugoslávských partyzánů” at junction without traffic signals and from
the street with a much lower priority. However, the junction aware plan forces to cyclist
pointlessly ride uphill along “Svatovítská” street.

Figure 6.7 shows other example of different routes on the extended and the standard
cycleway graph. On the one hand, the junction aware plan avoids to ride on street “Na
Slupí” by using the official bicycle route and then it uses junctions with traffic lights when
it needs to cross the road. On the other hand, the commuting plan planned on standard
cycleway graph contains several left turn manoeuvres (on street “Vyšehradská”, “Na Moráni”,
and “Trojanova”).

However, Figure 6.8 shows a case of an unfavourable manoeuvre. The case is caused
by inappropriate setting of the straight manoeuvre parameter on that particular junction.
This can be fixed by a more practical evaluation in order to set parameters for cycleway
segments inside the junction properly. The bicycle routes planned on the standard graph
can be viewed at web page2 and the junction aware routes are avaliable here3.

2cykloplanovac.cz
3its.felk.cvut.cz/cykloplanovac-its/

6.3. SUMMARY 55

6.3 Summary

The evaluation of the proposed pruning heuristics shows that the combination of the ellipse
and the ε-dominance is 4000 times faster then the pure multi-criteria Dijkstra’s algorithm.
This combination of pruning heuristics, also scale well and achieved the average running
time 2.3 seconds on the whole Prague graph. Such a running time is a remarkable result,
because it shows that the method is suitable to be used in real-time applications. On the
other hand, the buckets heuristic yields to not sufficient results on the whole Prague graph.
This could be caused by inappropriate setting of the bucket sizes.

The empirical evaluation of the extended cycleway graph confirmed that the model fulfils
the requirements for which was designed except for the rare manoeuvres as shown in Figure
6.8. The cycle planner definitely behaves differently in commuting profile which prefers the
comfort criteria.

56 CHAPTER 6. EVALUATION

(a) the extended cycleway graph

(b) the standard cycleway graph

Figure 6.6: Comparison of the commuting profile (purple route)

6.3. SUMMARY 57

(a) the extended cycleway graph

(b) the standard cycleway graph

Figure 6.7: Comparison of the commuting profile (purple route)

58 CHAPTER 6. EVALUATION

Figure 6.8: Unfavourable manoeuvre

Chapter 7

Conclusion

The primary aim of the thesis was to build a junction-aware cycle planner application ca-
pable of providing the multi-criteria search. In order to achieve this goal, we proceeded in
the following steps.

First, we modelled a cycleway network as a graph structure and extended it to support
turn penalisation on junctions. We introduced new entrance and exit nodes instead of
the node representing the junction. Then, we connect these new nodes in order to create
an edge representing a manoeuvre (e.g., left turn). This approach is different than methods
described in Section 2.4 because we wanted to preserve the typical graph structure in order
to not change the implemented algorithms.

To provide the multi-criteria search we started by proposing the scalarised solution
method together with profiles describing the importance of individual criteria. Also, we pro-
posed the pruning enabled multi-criteria Dijkstra’s algorithm (MCD) together with 11 com-
binations of pruning heuristics in order to lower the MCD’s running time. Although the prun-
ing heuristics are relatively simple, their application in the context of bicycle route planning
problem is novel and their effect is very significant.

In the implementation part, we described methods for more detailed OSM data prepro-
cessing and methods for improving and optimising the cycleway graph in order to enhance
the plan quality. To see the differences in bicycle routes based on the detailed data prepro-
cessing and the new graph construction methods, visit the former1 and the current2 version
of the cycle planner application. We also described how we implemented the junction exten-
sion procedure and we presented some of the important details of the whole cycle planner
application and the algorithms. We show that the cycle planner is currently used in 25 cities
in the Czech Republic and serves approximately 200 requests per day through web and
Android frontends.

The evaluation part demonstrated that three of eleven proposed pruning heuristics
(MCD_Ellipse_Epsilon, MCD_Bounded_Epsilon, and MCD_Bounded_Ellipse_Epsilon)
are able to return the Pareto set in less then 10 seconds on a graph consisting of 323 000
edges and covering the whole region of Prague city. The best speed up over the MCD al-
gorithm on the medium-sized graphs (containing around 20 000 edges) was almost 4 000

1http://transport.felk.cvut.cz/cykloplanovac-2014
2http://transport.felk.cvut.cz/cykloplanovac

59

60 CHAPTER 7. CONCLUSION

and was achieved by the combination of the ellipse and the ε-dominance pruning heuristics.
These are significant results because we are now able to return a much wider set of bicycle
routes than in a scalarised approach.

Bicycle routes planned on the extended graph support the required properties such as
avoiding left turn and u-turn manoeuvres unless the junction is controlled by traffic signals.
However, it can be shown that manoeuvre penalisation parameters are not yet properly set.
A disadvantage of this approach lies in the size of the graph. It increases with respect to
the number of junction nodes, therefore, this could be critical in an environment with a low
memory.

The multi-criteria search produces often large Pareto sets with many similar routes. As
a future work, we plan to provide a filtering method that would extract several representative
routes from a potentially very large set of Pareto routes. We aim to tune the penalisation
parameters in the junction aware cycleway graph to improve the plans quality and to make
this graph usable in a live deployment of the cycle planner application. The correct infor-
mation about the traffic volume would improve this model fundamentally and make it more
reliable. The data collected from the Android application could be used to improve the plan
quality by taking into account the routes which cyclists prefer.

Bibliography

[1] D. Herlihy, Bicycle: the history. Yale University Press, 2004.

[2] W. H. Organization, “Obesity and overweight.” <http://www.who.int/mediacentre/
factsheets/fs311/en/>, Jan. 2014.

[3] J. Woodcock, P. Edwards, C. Tonne, B. G. Armstrong, O. Ashiru, D. Banister, S. Beev-
ers, Z. Chalabi, Z. Chowdhury, A. Cohen, et al., “Public health benefits of strategies to
reduce greenhouse-gas emissions: urban land transport,” The Lancet, vol. 374, no. 9705,
pp. 1930–1943, 2009.

[4] Filler, V. (AUTO*MAT) Private communication, 2013-11-18. Why a cycle planner is
important for cyclists.

[5] M. Német, “Otevřený plánovač cyklistických tras,” 2013.

[6] J. Broach, J. Dill, and J. Gliebe, “Where do cyclists ride? a route choice model devel-
oped with revealed preference gps data,” Transportation Research Part A: Policy and
Practice, vol. 46, no. 10, pp. 1730–1740, 2012.

[7] M. Winters, G. Davidson, D. Kao, and K. Teschke, “Motivators and deterrents of bicy-
cling: comparing influences on decisions to ride,” Transportation, vol. 38, no. 1, pp. 153–
168, 2011.

[8] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” in NU-
MERISCHE MATHEMATIK, pp. 269–271, 1959.

[9] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engineering route planning algo-
rithms,” in Algorithmics of large and complex networks, pp. 117–139, Springer, 2009.

[10] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wag-
ner, and R. Werneck, “Route planning in transportation networks,” in Technical Report
MSR-TR-2014-4, Microsoft Research, Microsoft Corporation, 2014.

[11] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4,
pp. 100–107, Feb. 1968.

[12] F. B. Zhan and C. E. Noon, “A comparison between label-setting and label-correcting
algorithms for computing one-to-one shortest paths,” Journal of Geographic Information
and Decision Analysis, vol. 4, no. 2, pp. 1–11, 2000.

61

http://www.who.int/mediacentre/factsheets/fs311/en/
http://www.who.int/mediacentre/factsheets/fs311/en/

62 BIBLIOGRAPHY

[13] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction Hierarchies: Faster
and Simpler Hierarchical Routing in Road Networks,” in Proceedings of the 7th interna-
tional conference on Experimental algorithms, WEA’08, pp. 319–333, Springer-Verlag,
2008.

[14] R. Bellman, “On a routing problem,” tech. rep., DTIC Document, 1956.

[15] L. R. Ford Jr, “Network flow theory,” tech. rep., DTIC Document, 1956.

[16] E. Q. V. Martins, “On a multicriteria shortest path problem,” European Journal of
Operational Research, vol. 16, no. 2, pp. 236–245, 1984.

[17] L. Mandow and J. L. P. De La Cruz, “Multiobjective A* search with consistent heuris-
tics,” Journal of the ACM (JACM), vol. 57, no. 5, p. 27, 2010.

[18] Wikipedia, “Pareto efficiency.” <http://en.wikipedia.org/wiki/Pareto_
efficiency>, Apr. 2015.

[19] P. Hansen, “Bicriterion path problems,” in Multiple criteria decision making theory and
application, pp. 109–127, Springer, 1980.

[20] L. Han, H. Wang, and W. Mackey Jr., “Finding shortest paths under time-bandwidth
constraints by using elliptical minimal search area,” Transportation Research Record:
Journal of the Transportation Research Board, vol. No. 1977, pp. 225–233, 2006.

[21] P. Perny and O. Spanjaard, “Near admissible algorithms for multiobjective search.,”
2008.

[22] D. Delling, J. Dibbelt, T. Pajor, D. Wagner, and R. F. Werneck, “Computing multimodal
journeys in practice.,” in SEA, pp. 260–271, Springer, 2013.

[23] B. S. Stewart and C. C. White III, “Multiobjective A*,” Journal of the ACM (JACM),
vol. 38, no. 4, pp. 775–814, 1991.

[24] C. T. Tung and K. L. Chew, “A multicriteria pareto-optimal path algorithm,” European
Journal of Operational Research, vol. 62, no. 2, pp. 203–209, 1992.

[25] E. Machuca and L. Mandow, “Multiobjective heuristic search in road maps,” Expert
Systems with Applications, vol. 39, no. 7, pp. 6435–6445, 2012.

[26] P. Sanders and L. Mandow, “Parallel label-setting multi-objective shortest path search,”
in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium
on, pp. 215–224, IEEE, 2013.

[27] M. Haqqani, X. Li, and X. Yu, “A multi-objective a* search based on non-dominated
sorting,” in Simulated Evolution and Learning, pp. 228–238, Springer, 2014.

[28] H. H. Hochmair and J. Fu, “Web Based Bicycle Trip Planning for Broward County,
Florida,” in ESRI User Conference, 2009.

http://en.wikipedia.org/wiki/Pareto_efficiency
http://en.wikipedia.org/wiki/Pareto_efficiency

BIBLIOGRAPHY 63

[29] J. G. Su, M. Winters, M. Nunes, and M. Brauer, “Designing a route planner to facilitate
and promote cycling in Metro Vancouver, Canada,” Transportation Research Part A:
Policy and Practice, vol. 44, no. 7, pp. 495–505, 2010.

[30] J. Hrncir, Q. Song, P. Zilecky, M. Nemet, and M. Jakob, “Bicycle route planning with
route choice preferences,” 2014.

[31] R. J. Turverey, D. D. Cheng, O. N. Blair, J. T. Roth, G. M. Lamp, and R. Cogill,
“Charlottesville bike route planner,” in Systems and Information Engineering Design
Symposium (SIEDS), 2010.

[32] D. W. Corne, “The good of the many outweighs the good of the one: evolutionary
multi-objective optimization,” IEEE Connections Newsletter, pp. 9–13, 2003.

[33] D. Delling, J. Dibbelt, T. Pajor, D. Wagner, and R. F. Werneck, “Computing and Eval-
uating Multimodal Journeys,” Tech. Rep. 2012-20, Faculty of Informatics, Karlsruhe
Institut of Technology, 2012.

[34] G. Sauvanet and E. Neron, “Search for the best compromise solution on multiobjective
shortest path problem,” Electronic Notes in Discrete Mathematics, vol. 36, pp. 615–622,
2010.

[35] Q. Song, P. Zilecky, M. Jakob, and J. Hrncir, “Exploring pareto routes in multi-criteria
urban bicycle routing,” in Intelligent Transportation Systems (ITSC), 2014 IEEE 17th
International Conference on, pp. 1781–1787, IEEE, 2014.

[36] A. Byrd, “Opentripplanner: Routing bibliography.” <https://github.com/
opentripplanner/OpenTripPlanner/wiki/RoutingBibliography>, 2014.

[37] L. Volker, “Route planning in road networks with turn costs,” Studienarbeit, Universität
Karlsruhe, Institut für theoretische Informatik, 2008.

[38] R. Geisberger and C. Vetter, “Efficient routing in road networks with turn costs,” in
Experimental Algorithms, pp. 100–111, Springer, 2011.

[39] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, “Customizable route plan-
ning,” in Experimental Algorithms, pp. 376–387, Springer, 2011.

[40] J. Linka, “Bachelor’s project: Android app for bicycle route planning and navigation,”
2015 (to appear).

[41] M. Levandowsky and D. Winter, “Distance between sets,” Nature, no. 5323, pp. 34—-35,
1971.

https://github.com/opentripplanner/OpenTripPlanner/wiki/RoutingBibliography
https://github.com/opentripplanner/OpenTripPlanner/wiki/RoutingBibliography

64 BIBLIOGRAPHY

Appendix A

Tables

OSM element key value r′tt
way footway crossing 0.5
way bicycle dismount 0.5
way footway sidewalk 0.5
way highway footway 0.5
way highway "footway;path" 0.5
way highway pedestrian 0.5
way highway steps 0.1
way highway bridleway 0.7
way access agricultural 0.8
way access forestry 0.8
way smoothness bad 0.9
way smoothness very_bad 0.8
way smoothness horrible 0.7
way smoothness very_horrible 0.4
way smoothness impassable 0.4
way surface wood 0.9
way surface cobblestone 0.8
way surface paving_stones 0.8
way surface setts 0.8
way surface sett 0.8
way surface unpaved 0.7
way surface dirt 0.7
way surface grass 0.7
way surface gravel 0.7
way surface ground 0.7
way surface mud 0.4
way surface sand 0.4
way oneway opposite 5

Table A.1: The r′tt function values

65

66 APPENDIX A. TABLES

OSM element key value q′

node crossing traffic_signals 15
node highway traffic_signals 15
node highway stop 8
node crossing island 8
node crossing uncontrolled 8
node crossing unmarked 8
node crossing yes 8
node crossing zebra 8
node highway crossing 8
node highway elevator 38
node highway steps 8
node barrier yes 8
node barrier block 8
node barrier chain 8
node barrier rope 8
node barrier cycle_barrier 8
node barrier motorcycle_barrier 8
node barrier gate 8
node barrier lift_gate 8
node barrier swing_gate 8
node traffic_calming yes 2
node traffic_calming bump 2

Table A.2: The q′ function values

67

OSM element key value r′co
way footway crossing 1.5
way bicycle dismount 1.5
way footway sidewalk 1.5
way highway footway 1.5
way highway "footway;path" 1.5
way highway pedestrian 1.5
way highway steps 5
way highway bridleway 2
way access agricultural 2
way access forestry 2
way smoothness excellent 0.5
way smoothness good 0.8
way smoothness intermediate -1
way smoothness bad 2
way smoothness very_bad 3
way smoothness horrible 4
way smoothness very_horrible 5
way smoothness impassable 5
way surface asphalt 0.5
way surface concrete 0.8
way surface paved -1
way surface compacted -1
way surface wood 2
way surface cobblestone 3
way surface paving_stones 3
way surface setts 3
way surface sett 3
way surface unpaved 4
way surface dirt 4
way surface grass 4
way surface gravel 4
way surface ground 4
way surface mud 5
way surface sand 5
way oneway opposite 4

Table A.3: The r′co function values

68 APPENDIX A. TABLES

OSM element key value r′qu
way footway sidewalk 0.9
way highway footway 0.9
way highway "footway;path" 0.9
way highway pedestrian 0.9

relation route bicycle 0.2
way bicycle designated 0.2
way highway cycleway 0.2
way cycleway track 0.4
way cycleway lane 0.4
way cycleway:left lane 0.4
way cycleway:right lane 0.4
way cycleway share_busway 0.6
way cycleway:left share_busway 0.6
way cycleway:right share_busway 0.6
way cycleway shared_lane 0.8
way cycleway:left shared_lane 0.8
way cycleway:right shared_lane 0.8
way highway living_street 0.7
way highway primary 5
way highway primary_link 5
way highway secondary 3
way highway secondary_link 3
way oneway opposite 5

Table A.4: The r′qu function values

69

OSM element key value p′

way turn straight_5parallel 0
way turn traffic_lights_straight_5parallel 34
way turn left_5parallel 97
way turn traffic_lights_left_5parallel 34
way turn right_5parallel 0
way turn traffic_lights_right_5parallel 0
way turn u_turn_5parallel 97
way turn traffic_lights_u_turn_5parallel 80
way turn straight_10parallel 0
way turn traffic_lights_straight_10parallel 34
way turn left_10parallel 146
way turn traffic_lights_left_10parallel 34
way turn right_10parallel 0
way turn traffic_lights_right_10parallel 0
way turn u_turn_10parallel 146
way turn traffic_lights_u_turn_10parallel 80
way turn straight_20parallel 0
way turn traffic_lights_straight_20parallel 34
way turn left_20parallel 372
way turn traffic_lights_left_20parallel 34
way turn right_20parallel 0
way turn traffic_lights_right_20parallel 0
way turn u_turn_20parallel 372
way turn traffic_lights_u_turn_20parallel 80
way turn straight_1cross 16
way turn traffic_lights_straight_1cross 16
way turn left_1cross 32
way turn traffic_lights_left_1cross 16
way turn right_1cross 0
way turn traffic_lights_right_1cross 0
way turn u_turn_1cross 32
way turn traffic_lights_u_turn_1cross 80
way turn straight_5cross 66
way turn traffic_lights_straight_5cross 34
way turn left_5cross 66
way turn traffic_lights_left_5cross 34
way turn right_5cross 32
way turn traffic_lights_right_5cross 0
way turn u_turn_5cross 66
way turn traffic_lights_u_turn_5cross 80
way turn straight_10cross 95
way turn traffic_lights_straight_10cross 34
way turn left_10cross 95
way turn traffic_lights_left_10cross 34
way turn right_10cross 61
way turn traffic_lights_right_10cross 0
way turn u_turn_10cross 95
way turn traffic_lights_u_turn_10cross 80
way turn straight_20cross 518
way turn traffic_lights_straight_20cross 34
way turn left_20cross 518
way turn traffic_lights_left_20cross 34
way turn right_20cross 61
way turn traffic_lights_right_20cross 0
way turn u_turn_20cross 518
way turn traffic_lights_u_turn_20cross 80

Table A.5: The p′ function values

70 APPENDIX A. TABLES

Appendix B

CD content

Attached CD contains source files of the cycle planner Java application.
To run the experiments specified in the evaluation chapter copy the following jar file to

you local directory:

code/experiment/target/MCExperiment.jar

and then run e.g., ε-dominance pruning heuristic on the Prague medium-sized graph A type:

$ java -jar MCExperiment.jar -alg mc_dijkstra_epsilon -reg praguemediumajunction
-aOverB 1.5 -buckets 80 1120 2 -epsilon 0.025 -r 105

The results will be stored in the csv file in the directory

results/praguemediumajunction/mc_dijkstra_epsilon

71

72 APPENDIX B. CD CONTENT

Figure B.1: CD content

	Introduction
	Motivation
	Aim of the Thesis
	Structure of the Thesis

	Related Work
	Route Choice Criteria for Cyclists
	Single Criterion Shortest Path Problem
	Multi-Criteria Shortest Path Problem
	Turns Handling

	Problem Specification
	Cycleway Graph
	Extended Cycleway Graph
	Multi-criteria Bicycle Planning Problem
	Scalarised Multi-criteria Bicycle Planning Problem

	Criteria and Cost Functions Definition
	Distance
	Travel time
	Comfort
	Quietness
	Elevation Gain
	Bike Friendliness

	Solution Method
	Scalarised Multi-Criteria Solution Method
	Profiles

	Multi-Criteria Solution Method
	Pruning Enabled Multi-criteria Dijkstra algorithm
	Ellipse
	-dominance
	Buckets
	Bounded search

	Implementation
	Data
	Graph construction
	General Graph
	Bicycle Planning Graph

	Application
	Nearest node
	Algorithms
	RESTful API

	Real Deployment

	Evaluation
	Multi-Criteria Method
	Evaluation Metrics
	Evaluation Settings
	Results on Prague A, B, C Subgraphs
	Results on the Whole Prague Graph

	Junction Extension
	Summary

	Conclusion
	Tables
	CD content

