
CZECH TECHNICAL UNIVERSITY IN PRAGUE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FACULTY OF ELECTRICAL ENGINEERING
DEPARTMENT OF MICROELECTRONICS

FAKULTA ELEKTROTECHNICKÁ
KATEDRA MIKROELEKTRONIKY

MEASUREMENT OF EVAPORATION AND EVALUATION
OF CHANGES OF THE MECHANICAL PROPERTIES OF
CARBON COMPOSITE ON NANOSATELLITE MINICUBE
MISSION QB50

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

2015 Bc. MARTIN URBAN





CZECH TECHNICAL UNIVERSITY
IN PRAGUE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FACULTY OF ELECTRICAL ENGINEERING
DEPARTMENT OF MICROELECTRONICS

FAKULTA ELEKTROTECHNICKÁ
KATEDRA MIKROELEKTRONIKY

MEASUREMENT OF EVAPORATION AND EVALUATION
OF CHANGES OF THE MECHANICAL PROPERTIES OF
CARBON COMPOSITE ON NANOSATELLITE MINICUBE
MISSION QB50
MĚŘENÍ EVAPORACE A VYHODNOCENÍ ZMĚN MECHANICKÝCH VLASTNOSTÍ
UHLÍKOVÉHO KOMPOZITU NA NANOSATELITU MINICUBE MISE QB50

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. MARTIN URBAN
AUTOR PRÁCE

SUPERVISOR Ing. LADISLAV SIEGER, CSc.
VEDOUCÍ PRÁCE

Prague 2015





České vysoké učení technické v Praze 
Fakulta elektrotechnická 

katedra mikroelektroniky 
 

ZADÁNÍ DIPLOMOVÉ PRÁCE 

Student:                    Bc. U R B A N   Martin 

Studijní program:      Komunikace, multimédia a elektronika 
Obor:                        Elektronika 

Název tématu:         Měření evaporace a vyhodnocení změn mechanických vlastností 

                                uhlíkového kompozitu na nanosatelitu miniCube mise QB50 

Pokyny pro vypracování: 

1) Prostudujte problematiku vyhodnocení spektrálních vlastností pomocí FFT exponenciálně 
    tlumeného signálu vznikajícího kmitáním uhlíkového kompozitu.  
2) Navrhněte algoritmus vyhodnoceni spektrálních vlastností reálně měřeného signálu. 
3) Prostudujte vlastnosti použitých čidel a senzorů vlkosti HYT 271, HYT 939 a HAL2.  
4) Navrhněte Payload pro použití čidel a senzorů z 3) pro nanosatelit miniCube mise QB50. 
5) Proveďte kalibraci a změření teplotní závislosti čidel a senzorů z 3) pro použití ve vesmíru. 
6) Navrhněte komunikační protokol pro komunikaci mezi čidly a hlavním počítačem 
     nanosatelitu. 
7) Zhodnoťte vhodnost použitých postupů, poznatky a jejich možnosti dalšího využití. 
 
Seznam odborné literatury: 

[1] JAN, J. Číslicová filtrace, analýza a restaurace signálů. 2nd ed. Brno: VUTIUM, 2002. 427 
     p. ISBN 80-214-2911-9 
[2] TŮMA, J. Zpracování signálů získaných z mechanických systémů užitím FFT. Praha: 
     Sdělovací technika, 2000. 168 p. ISBN 80-901936-1-7 
[3] HANA, P., INNEMAN, A., DANIEL, V., et al. Mechanical properties of Carbon Fibe 
    Composites for applications in space. Proc. SPIE 9442, Optics and Measurement 
    Conference 2014, 2015, , no. 1, DOI: 10.1117/12.2175925 
[4] Bell, S. Guide to the Measurement of Humidity. http://www.npl.co.uk/publications/guide- 
     to-the-measurement-of-humidity 

Vedoucí:                         Ing. Ladislav Sieger, CSc. 

Platnost zadání:             31. 8. 2016 
 
 
 
 
                                                                    L.S. 

prof. Ing. Miroslav Husák, CSc. 
vedoucí katedry 

 prof. Ing. Pavel Ripka, CSc. 
děkan 

V Praze dne 16. 2. 2015 





ABSTRACT
The content of this master’s work is
an introduction to the problematics of
CubeSat nanosatellites and the con-
struction of a mesurement tasks to
use in space, as a part of nanosatel-
lite VZLUsat-1. This work deals in
more detail with testing of suitability of
newly developed carbon composite for
the space use, mainly from the point
of mechanical aging and evaporation.
The first part of this thesis deals with
choosing a proper procedure for evalua-
tion of mechanical changes of the com-
posite using Fast Fourier Transform.
The goal is to use suitable digital sig-
nal processing and with the most accu-
racy to evaluate the changes in struc-
ture of the carbon composite. The sec-
ond part deals with the issue of evap-
oration of previously mentioned mate-
rial. This part describes the process of
constructing the measurement, sensor
calibration and evaluation of measured
data. VZLUsat-1 probe will be launched
is 2016 during QB50 mission.

KEYWORDS
Calibration, CubeSat, DSP, Digital
Signal Processing, Evaporation, Fast
Fourier Transform, FFT, HAL2, Humid-
ity, Mission QB50, Nanosatellite, Re-
search, Space, VZLUsat-1

ANOTACE
Obsah této diplomové práce je sezná-
mení se s problematikou nanosatelitů
CubeSat a konstrukce měřicích úloh
vhodných pro použití ve vesmíru na
satelitu VZLUSat-1. Tato práce se
konkrétněji zabývá testováním vhod-
nosti nově vyvinutého karbonového
kompozitu pro vesmírné účely, přede-
vším z hlediska mechanického stárnutí
a evaporace. První část práce se
věnuje výběru vhodného postupu vy-
hodnocení mechanických změn mate-
riálu, a to za použití Rychlé Fourierovy
Transformace. Cílem je vypočítat
s co nejvyšší přesností změny ve
struktuře uhlíkového kompozitu vzniklé
dlouhodobým pobytem v orbitálním
vakuu pomocí vhodného způsobu čí-
slicového zpracování signálu. Ve druhé
části práce je rozebírána problematika
uvolňování plynů ze zmiňovaného uhlí-
kového kompozitu. Tato část popisuje
celý proces získávání dat, od konstrukce
meřicího přípravku, přes kalibraci sen-
zorů po vyhodnocení výsledků. Družice
VZLUSat-1 bude vypuštěna v roce 2016
společně s dalšími satelity mise QB50.

KLÍČOVÁ SLOVA
CubeSat, CZS, Číslicové zpracování
signálu, Evaporace, FFT, HAL2, Kali-
brace, Mise QB50, Nanosatelit, Rychlá
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Vlhkost, Výzkum, VZLUsat-1
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1 Introduction

The measurement environment in space is different from the standard measure-
ments performed on the ground in laboratory. The system design specification has
a large constraint in size, weight and power consumption by the limits of space
probes. Each task has to work automatically and without operator intervention. [2]

This master’s thesis describes problematic of the Small standard nanosatellite of
dimensions 10 × 10 × 10 cm per unit (CubeSat). Main part of this thesis is about
measurement of evaporation and evaluation of mechanical changes. These tasks are
part of tasks which are contained in Nanosatellite from VZLÚ a.s. (VZLUSat–1).

One of the main goals for VZLUSat–1 is testing and verifying carbon fiber ma-
terial which could be used as new construction material for space satellite in future
and replaced heavy wolfram shielding. Some sensors and devices are also tested for
space use and changes of their properties are analyzed during the time.

Evaporation from carbon fiber material is evaluated throught analog capacitance
HAL2 humidity sensors from company Thin-film Technology Service (TTS s.r.o.)
and digital humidity sensors HYT from company Innovative Sensor Technology
(IST s.r.o.). Each digital sensor has integrated thermometer. Information from
analog HAL2 sensors is evaluated by small board with microprocessor PicoCap2.

Evaluation of changes of the mechanical properties of carbon composite is us-
ing Fast Fourier Transform. There is a carbon fiber cantilever for testing purposes,
which is reguraly excitated by a coil. These mechanical damped vibrations are
sensed by piezo-element and changed to electric signal. Evaluation process of me-
chanical changes consists of Digital Signal Processing using Fast Fourier Transform
and attenuation of the signal.

More details about sensing of mechanical vibrations, evaluation of signal atten-
uation and program implementation to the chip are included in the thesis Mea-
surement of changing mechanical properties of carbon composite on nanosatellite
miniCube mission QB50 [1], author Bc. Ondřej Nentvich with whom I cooperated.

Nanosatellite has also payload, which deals with the measurement of radiation
resistance of the composite. This issue is described in the Bc. Veronika Stehlíková’s
thesis Radiation resistance measurement on nanosatellite miniCube mission QB50 [3].

Most measurements were performed in company Rigaku Innovative Technologies
Europe (Rigaku s.r.o.).
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2 Mission QB50

The Mission of nanosatellites of CubeSat category (QB50) will demonstrate the
possibility of launching 50 CubeSats built and designed by Universities Teams as
student’s projects and by companies for commercial purpose all over the world,
as nanosatellite with low-cost launch, to perform first-class science in the largely
unexplored lower thermosphere.

Due to the low orbit of the satellites, their orbital lifetime is limited.. With
respect to this property, space agencies are not supporting a satellite network from
industrial standard satellites for in-situ measurement in the lower thermosphere,
because the cost of a network of 50 satellites would be extremely high.

Extremly high cost and limited lifetime are reasons why no in-situ measurements
has been carried out. This should be justifiable and realised by using low-cost
satellites, one of the options are CubeSat class satellites.

Fig. 2.1: QB50 Mission Objectives [4]
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2. Mission QB50

2.1 CubeSat

CubeSat is a miniaturised satellite, consisting of one or more Standardized
Unit (U). This Standardized Unit has precisely defined a dimensions and weight
(Tab. 2.1). These units can be assembled to larger satellite, but only in integral
multiples of U. You can start with 1U and put together 2U, 3U or 6 U which will
provide more interior space and flexibility for the used measurement.

CubeSat offers all functions of standard satellite such as telecommunications,
measurement, power subsystem from battery or solar panel and attitude determi-
nation and control. One of the advantages of CubeSat are existing standardized
Hardware (HW) boards, for example (e.g.) On Board Computer (OBC), Radio
Board, Electrical Power System (EPS) with battery pack and solar board. [5]

The cost of HW for CubeSat is usually in range of 50 – 100 thousands Euro, but
it also can be more expensive, up to 500 thousands Euro. [4]

Tab. 2.1: Standardized Unit Properties [6]

Property Value
Dimensions 4 × 4 × 4 inch → approx. 10 × 10 × 10 cm per unit
Weight up to 3 lbs → 1.3 kg per unit
Units in this mission up to 3 Units in a row (30 × 10 × 10 cm)

One of the goals of QB50 CubeSat is to realize atmospheric research in the lower
thermosphere with altitude between approximately (approx.) 200 – 380 km. It is
the least explored part of the atmosphere. Sounding rocket provide only short time
in-situ measurements. Time spent on the in-situ measurement in lower layers of
thermosphere is only several minutes.

Another way is measurement by methods for remote sensing, which are very
powerfull and they are using the reflected signal from atmospheric discontinuities.
These methods can’t be used, because atmosphere is so sparse and returned reflected
signal is weak from lower thermosphere. The same property is true for measurements
from Earth observation satellites in higher orbits and from the Earth’s surface radars.

QB50 nanosatelites bring oportunity to create relatively cheap multi-point in-
situ measurements network. This network of CubeSats can carry out more accurate
in-situ measurement than one-point measurement using rockets. [4]
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2.1 CubeSat

Each of the QB50 nanosatellites carries one of the three different types of science
sensors, which is compulsory part of a start set. All types of science sensors are
equipped with a thermometer such as Thermistor, Thermocouple, . . .

Tab. 2.2: Science sensors

Label Designation
INMS Ion-Neutral Mass Spectrometer
FIPEX Flux-Φ-Probe Experiment
m-NLP multi-Needle Langmuir Probe

Ion-Neutral Mass Spectrometer (INMS) is a miniaturised analyser de-
signed for sampling of low mass ionised and neutral particles in the spacecraft ram
direction with the instrument resolutions optimised for resolving the major con-
stituents in the lower thermosphere, it is, Atomic oxygen (AO), Molecular oxygen
(O2), Nitric oxide (NO) and Nitrogen (N2).

The key sensor components consist of a collimator/ion filter, an ioniser and a
charged particle spectrometer. When is this instrument active can generate high
voltages up to 2500 V. [19]

Flux-Φ-Probe Experiment (FIPEX) is able to distinguish and measure the
time resolved behavior of atomic oxygen as a key parameter of the lower thermo-
sphere.

Atomic oxygen is the dominant species in these regions and therefore its measure-
ment is crucial in the correlation and validation of atmosphere models. Moreover,
erosion of spacecraft surfaces due to interaction with atomic oxygen is a serious
concern and merits in-situ study in its own right.

The measurement is based on solid oxide electrolyte micro-sensors. For oxygen
conducting solid state electrolytes, e.g. yttrium-doped zirconia, the conductivity
starts at high temperatures and so the sensor operates at an elevated temperature
of 600 – 700 °C, heated by an electrical resistance. Oxygen is “pumped” from one
electrode to the other by an applied direct voltage and in accordance with Fara-
days’ law; the measured current is proportional to the mass flux by electrolysis. To
distinguish between Atomic oxygen (AO) and Molecular oxygen (O2) sensor ele-
ments with different cathode materials are used. [18]
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2. Mission QB50

multi-Needle Langmuir Probe (m-NLP) works by measuring the current
collected individually from four needle probes, placed in front of the satellite’s shock
front. The collected current is converted to voltage, filtered, digitalized and then
sent to the central telemetry system. By using data from four fixed-bias Langmuir
needle probes, sampled at the same time, the plasma electron density can be derived
with high time resolution without the need to know the electron temperature and
the spacecraft potential. With the selected needle probe design and the estimated
electron densities, the instrument is to be capable of measuring currents ranging
from 1 nA to 2 µA. [20]

Fig. 2.2: m-NLP deployed instrument [20]

Next of many goals is another type of payload. These are new technologies, sen-
sors and materials which should be tested and qualified in space. Because normal
big satellites are too expensive, they have to have verified and reliable components
and materials. There is no place for mistakes and experiments e.g. with new shield-
ing material, which could endanger the whole mission and satellite in the price of
millions.

6/107



3 CubeSat VZLUSat–1

The probe belongs to the family of nanosatellites called CubeSat. This project
is a joint work of several companies and universities from Czech Republic. Its goals
are to get an experience with this type of device, try to operate and communicate
with it and if the mission proves successful, to get the data about new materials as
well. Main part of construction and testing takes place in VZLÚ a.s., but we were
also using a lot of other specialised workplaces. There are about 40 people from
different branches connected to this project, who are working on universal tasks like
Software (SW) or on single measurements and sensors. Results of this experiment
should be used in the next generation of VZLUSat–1, which is possible to come in
case of VZLUSat–1’s success.

HM panel

Deployable 
Solar panel

HKR board

HM board

PWR

XRB diodes

Measure 
board

OBC

Antenna

X-ray detector

Radio

Solar panel

X-ray optics

HRRA

Volatiles

FIPEX

Fig. 3.1: CubeSat VZLUSat-1
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3. CubeSat VZLUSat–1

3.1 Parameters

There are several restrictions, resulting from the character of QB50 mission.
The main problem for all the space missions is the weight, which can be carried
to the orbit. QB50 is only a next part of classical mission, so the weight was lim-
ited to 1 kg per U. Our satellite consists of two units, so the final possible weight
is 2 kg. This restriction determines an application of lightweight materials, reduc-
tion of superfluous construction parts and, unfortunately, also the lower quality of
radiation shielding, which is usually made from heavy metals. Rules for Mission of
nanosatellites of CubeSat category do not allow using a reaction engine for solid,
liquid or gaseous fuels as well, this problem is solved by the possibility of interaction
between stabilising coils and the Earth’s magnetosphere. Another limitation applies
to power per a unit, which makes 1 W. Because of that, our two watt satellite will
switch between tasks to manage power consumption over time.

Tab. 3.1: VZLUSat–1 Properties

Property Value
Dimensions 2 U → approx. 20 × 10 × 10 𝑐𝑚 as folded

3 U → approx. 30 × 10 × 10 𝑐𝑚 (almost) when expand
Weight total up to 2 𝑘𝑔

Power total up to 2 𝑊

3.2 Experiments

This section describes individual tasks and board, which VZLUSat–1 is carrying.
They are stacked one above the other inside the probe, interconnected by standard-
ized connectors dedicated for CubeSats.
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3.2 Experiments

3.2.1 X-Ray Optics and Medipix

On the top of the satellite is an extendible part carrying X-Ray optics. This
optics creates a picture by reflecting on narrow walls, not by refraction. It has focal
length of approx. 20 cm and it focuses X-Rays on Medipix, a special Complemen-
tary Metal–Oxide Semiconductor (CMOS) silicone detector for low-energy Roentgen
radiation. As the name suggests, this device, originally developed for European Or-
ganization for Nuclear Research (CERN), is today used as a medical equipment as
well. Orientation of this system to the Sun will be tested by Infra-red (IR) and two
Ultraviolet (UV) diodes. Main reason why the probe has two UV diodes is that one
is sensitive in maximum radius of approx. 80°, second one has sensitive radius re-
duced to approx. 15° by a small tube. The first one is looking for sources in wide
angle and the second one has narrower angle for more precise designation of their
position. If both sensors have strong UV signal then Medipix will start up and take
a picture.

Fig. 3.2: Medipix board with labels
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3. CubeSat VZLUSat–1

3.2.2 HM system

Heath monitor system is used for testing mechanical properties of a carbon-
fibre composite. This system has two parts, one is tilting panel located at the top
of the probe. It is made of the mentioned material with milled cantilever. It has
glued permalloy on its open end. There is coil for excitation of the cantilever located
above the permalloy. The beam produces damped oscillations which are measured
by a piezo.

The Coil and the piezo are connected to the HM board, where MCU is located.
It processes all measurements and communication with other boards.

Results of this experiment are natural frequencies of cantilever gained by the
FFT. From these values Young’s modulus of elasticity is computed and it determines
the quality of the carbon-fibre composite over time. The main reason for testing the
quality is the radiation influence in space.

(a) Heath monitor board with descriptions (b) HM panel

Fig. 3.3: Heath monitor system

3.2.3 Measurement of Radiation Resistance

The Measurement of radiation resistance consists of two boards, measure board
and X-Ray Background (XRB) board. These boards are a pair of plates, which will
test the effect of irradiation on parts and materials and also the shielding quality of
the new carbon-fibre material.
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3.2 Experiments

Measure board carries a row of thermosensors, which should serve for several
other measurements, a microprocessor unit and CdTe detector. This detector is,
compared to Medipix and XRB diodes, more sensitive to high-energy particles, and
it needs 200 V power supply. CdTe is quite a new type of material for detecting
radiation, because for a long time, it was too difficult to made large sensors from
this material in sufficient quality.

(a) Board with XRB diodes (b) Measure board

Fig. 3.4: Measurement of radiation resistance

Attached to the Measure board is the XRB board, where are three PIN diodes.
Each of them has different radiation shielding, one has none, one is hidden behind
a Tungsten sheet and the middle one will be protected by the tested carbon-fibre.
The results from single channels will be compared and the efficiency of shielding
studied. Design of low-noise amplifiers on XRB board and testing of this system
was as a part of work of my colleague Veronika Stehlíková [3].

3.2.4 HKR Board

This board is the last version of simple technical system for releasing the folding
part of the spacecraft. This system burns off on orbit and it unlocks the antennas,
a part of solar panels, HM panel and X-Ray optics as well.

3.2.5 Hollow Retro Reflector Array

This panel helps to identify the position of the satellite. There are six corner
reflectors made of glass with thin metal layer situated on the probe. The main
attribute of mirrors in such a spatial arrangement is, that incident ray reflects ever
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3. CubeSat VZLUSat–1

right to its source, no matter how the reflector is oriented.

3.2.6 On Board Computer

This board operates all the other measurements, sets the order of single tasks
and drives the power supply. Because the energy for the whole satellite is only 2 W,
it is necessary to switch among tasks and to combine them appropriately. OBC will
also communicate with the Pilsen radio station through the Radio board.

3.2.7 Radio

The radio board is a product of the University of Western Bohemia in Pilsen
and it will provide a communication with the probe on radio-amateur free frequency
of 436 MHz. In Pilsen, they will download the results from the probe during a short
connections (approximately 10 minutes every 12 hours) and it will be possible to set
new configurations of measurements as well.

3.2.8 Electronic Power System

Power supply is limited by QB50 project prescription, that is only 1 W per
an unit. VZLUSat–1 will be powered by three-layer solar panels, which can use a
wider part of spectre than the usual solar cells to generate energy. Each od them
can produce up to 2.4 V and 500 mA in loaded and 2.7 V in open-circuit case or
520 mA as short-circuit. These panels have the efficiency of approx. 30 % for power
density 1367 𝑊/𝑚2. There will be Lithium accumulators for storing energy during
the flight and on the dark side of orbit as well. Power board serves to control the
energy consumption on the whole satellite, when a reserve in accumulators drops
under a critical value, this board has to cut all the others safely and when the energy
supply is restored, restart them.

3.2.9 Volatiles board

Volatiles board consists of the humidity sensors which are looking for residual
humidity or evaporation from the whole probe, mainly from the tested carbon-fibre
materials. There are three types of sensors. Two types of them are digital sen-
sors and third is analog. Analog sensors are connected to the board with a driver
called PCap02A. All HYT and PCap02A sensors communicate via I2C bus con-
nected directly to the OBC. Problematic about humidity sensors and measurement
is described in this thesis.
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3.2 Experiments

3.2.10 Fipex

Each of the CubeSats in project QB50 should have one of the science experiments
shown in Tab. 2.2 on board. This set of experiments study the lower thermosphere
and the results will help to improve the atmospheric models, which are important for
meteorology and other branches all around the world. For VZLUSat–1 the FIPEX
was chosen, a device that studies atomic oxygen, dominant element in this layer of
atmosphere. The device is based on solid oxide electrolyte micro-detector.

(a) FIPEX board (b) Detail of sensors

Fig. 3.5: Flux-Φ-Probe Experiment [18]
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4 Evaluation of Mechanical Changes

One of the tasks placed on the board will be responsible for measuring mechanical
changes during space mission of Nanosatellite from VZLÚ a.s. (VZLUSat–1).

There are many different approaches to evaluate mechanical changes of the ma-
terial. One of them is the evaluation using exact model of the vibrating beam. This
model is described by Finite element method (FEM). As input variables for this
model of composite cantilever are, in addition, the beam dimensions and material
constants of the used material also the resonant and natural frequency and attenua-
tion coefficient of the vibrating beam. On the following pages a topic about damped
oscillations id outlined, elementary calculation example for string and simple model
of cantilever with one fixed side.

4.1 Damped Oscillations

In Fig. 4.1 is an illustration of damped oscillations system with spring. Oscillat-
ing mass is represented as hanged Weight of the Mass (𝑚). This mass oscillates on a
spring with 𝑘 as Spring constant. Deviation of the entire system is referred to as 𝑥.

k

m

x

Fig. 4.1: Picture of basic damped oscillations

There is a basic equation for description of this oscillations (4.1).

𝐹i + 𝐹d + 𝐹r = 0 (4.1)
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4. Evaluation of Mechanical Changes

The forces mentioned in the equation (4.1) are Inertial force (𝐹i), Damping
force (𝐹d) and Reverse force (𝐹r). Each of these forces can be calculated as:

𝐹i = 𝑚
d2𝑥

d𝑡2 (4.2)

𝐹d = 𝑏
d𝑥

d𝑡
(4.3)

𝐹r = 𝑘𝑥 (4.4)

When equations (4.2 – 4.4) are put into equation (4.1), it gets differential second
order equation (4.5).

𝑚
d2𝑥

d𝑡2 + 𝑏
d𝑥

d𝑡
+ 𝑘𝑥 = 0 (4.5)

Where 𝑏 is Damping constant. This formula has constant coefficients and zero
right side. It means that, the oscillation system does not have periodic excitation
and thus is damped.

After modifying to the general mathematical form

d2𝑥

d𝑡2 + 2𝛿
d𝑥

d𝑡
+ 𝜔2

0𝑥 = 0 ⇐⇒ 𝑥(t) = 𝑥0𝑒
−𝛿𝑡 sin

(︂
𝑡
√︁

𝜔2
0 − 𝛿2

)︂
(4.6)

and substitution of 𝜔 for
√︁

𝜔2
0 − 𝛿2. It gets prescription for damped sine oscillations

𝑥(t) = 𝑥0𝑒
−𝛿𝑡 sin (𝜔𝑡) (4.7)

In these equations 𝛿 is Attenuation of system, 𝜔0 is Angular frequency of natural
oscillations and 𝜔 is Angular frequency of oscillations.
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Fig. 4.2: Simulated damped signal
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4.3 Cantilever Oscillations

4.2 Elementary Oscillator

Elementary oscillator could be described on simplified example as a string. For
this case can be applied following equation (4.8) for examination Young’s modulus
of elasticity.

𝑣 =
√︃

𝐸

𝜌
(4.8)

Elastic Modulus is designated as 𝐸, Velocity of propagation as 𝑣 and 𝜌 is Material
Density. Velocity of propagation is defined as

𝑣 = 𝜆𝑓 (4.9)

where 𝜆 is Wavelenght and 𝑓 is Frequency of oscillations, which is obtained using
of Angular frequency of oscillations (𝜔) from equation

𝑓 = 𝜔

2𝜋
(4.10)

In this case it is possible to determine that 𝜆 = 4𝐿, where 𝐿 is length of string
illustrated in Fig. 4.3.

λ

L

Fig. 4.3: Length of string L vs. wavelength 𝜆
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4. Evaluation of Mechanical Changes

4.3 Cantilever Oscillations

A more precise approach to real situation is in our case a simple cantilever with
one fixed side and one freely hanged as is in the Fig. 4.4.

L

W

Fig. 4.4: Picture of Cantilever

The oscillating cantilever could be described by a few equations. At first it is
necessary to find out own roots of frequency equation (4.11), next is computing
natural frequencies.

cosh (𝛽𝑛𝐿) · cos (𝛽𝑛𝐿) + 1 = 0 (4.11)

where 𝛽𝑛 is Own root of frequency equation, 𝐿 is Cantilever length [27].

The solution for this formula is possible only by a numeric method. Computing
natural frequencies 𝜔𝑛 of cantilever shows the following equation

𝜔n = (𝛽n𝐿)2

𝐿2 𝑐0𝑗 (4.12)

For this equation it is required to know computed roots and some other param-
eters. These parameters are in Tab. 4.1 and when they are inserted into equation
(4.14).
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4.3 Cantilever Oscillations

𝜔n = (𝛽n𝐿)2

𝐿2

√︃
𝐸

𝜌

√︃
𝐽

𝐴
= (4.13)

= (𝛽n𝐿)2

𝐿2

√︃
𝐸

𝜌

√︃
ℎ2

12 (4.14)

where 𝑗 is Quadratic sectional radius, 𝑐0 is Velocity of longitudinal waves, 𝐽 is
Quadratic torque-section and 𝐴 is Cross sectional area.

Tab. 4.1: Cantilever parameters

Description Symbol Value
Cantilever length 𝐿 13.2 mm
Cantilever width 𝑊 64.4 mm
Cantilever height ℎ 1.2 mm
Elastic Modulus 𝐸 3.8 · 1010 Pa
Material Density 𝜌 2300 kg ·𝑚−3

For creating the FEM model and its detailed description, cooperation with
RNDr. Petr Hána from Technical University of Liberec have been established, results
of this method were almost the same as when using equation (4.14) [8, 12,27,28].

Fig. 4.5: Example of cantilever simulated by FEM [8]
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4. Evaluation of Mechanical Changes

From the equation (4.14) with parameters from Tab. 4.1 natural frequencies are
obtained. These first three frequencies are listed in the following Tab. 4.2.

Tab. 4.2: Natural frequencies

Natural resonace Value
First natural frequency 171.6 Hz

Second natural frequency 1075 Hz
Third natural frequency 3011 Hz

4.4 Young’s Modulus of Elasticity

Young’s modulus is a synonym for elastic modulus 𝐸. It is a material property,
that describes its stiffness and is therefore one of the most important properties of
solid materials. Modulus is characterized as ratio of stress to strain. From measured
frequencies it is possible to get back Young’s modulus and that would measure
quality of the material.
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5 Construction of Material Ageing
Measurement

During space mission, material aging measurement is provided by payload HM
which contains HM board with HM panel. This panel is testing and measuring the
changes of carbon composite beam properties. The tested material is exposed to
free space and cosmic radiation which can change material properties.

Mechanical properties of the material are checked by Resonant frequency (𝑓res)
and vibration attenutation 𝛿 of the carbon fiber cantilever. From these values can
be recursively calculated elastic modules and other properties.

This thesis describes the procedure and Digital Signal Processing needed to get
better resolution in frequency 𝑓res with respect to the computational complexity,
Hardware (HW) and Software (SW) requirements.

Details about mechanical vibrations sensing, evaluation of signal attenuation
and implementation of program to microcontroller describes thesis Measurement
of changing mechanical properties of carbon composite on nanosatellite miniCube
mission QB50 [1].

5.1 Construction of HM Panel

Mechanical properties are tested on HM panel which is made from carbon com-
posite material. Within this carbon-fiber material is formed to cantilever, on which
property changes are tested by a composite health monitoring system. Drawing of
this panel is in Fig. 5.1.

HM panel is mounted as a hinged panel. It is folded to the wall of the satellite
when VZLUSat–1 is in the shuttle and when it is launching. In free space it will be
unlocked and it will pop up to Space where the material will be tested. Unfolded
state of satellite is shown in Fig. 3.1.

Panel consists of several parts like glued permalloy magnet on the free end of
tested beam. By using this tiny permalloy strip oscillation of the cantilever are
excited. Oscillations are caused by an electric pulse to the small coil, located above
the strip.
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5. Construction of Material Ageing Measurement
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Fig. 5.1: Drawing of HM panel

Surface of each side part is covered by a thin layer of reflective materials. There
is golden a compound on one side and on the other side is compound of nickel.
These materials should reflect thermal radiation for example from the Sun. This
reflectivity is studying through platinum thermometers.

Temperature is measured on HM panel as well. There is a measuring network
consisting of many platinum temperature sensors PT1000. We need to have infor-
mation about temperature on carbon composite cantilever, because with the change
in temperature, there can also be a change in properties of the beam and in results
of measurement as well.

(a) Front side (b) Back side

Fig. 5.2: Photo of HM panel
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5.2 Sensed Signal

5.2 Sensed Signal

For verifying natural frequencies and hence also Elastic Modulus (𝐸), it is needed
to get oscillating signal from the beam. The basic principle is to use a converter
from mechanical quantity into electrical quantity. There are two methods how this
can be performed. One is through acceleration by accelerometer and the second one
is through deformation by a piezoelectric plate. [12]

5.2.1 Sensing through Accelerometer

Accelerometer must be situated into the place with the highest acceleration.
In this place is thus the highest signal variation. Unfortunately, this position is at
the end of cantilever. Although, accelerometers are usually small and lightweight
components, weight of accelerometer and his wires caused hight signal distortion on
a lightweight beam [12].

5.2.2 Sensing through Piezo Element

Another method how to measure oscillations is based on Piezoelectricity. It is
an effect when certain solid material can generate electric signal in response to ap-
plied mechanical stress.

From principle, the location where the piezo-element should be placed is clear.
Required position for better sensing is the place with the mechanical stress of the
measured material [12].

This position is at the fixed end of the cantilever which means, that the piezo
element is glued on opposite side of the composite beam than the excited coil. When
piezo is stressed, it produces electrical voltage which is measured and it corresponds
to mechanical oscillations.
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5. Construction of Material Ageing Measurement
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Fig. 5.3: Signal waveform in time domain with 𝑓s= 8 kHz

Measured signal sensed by the piezoelectric sensors glued on beam is shown in
Fig. 5.3. This signal is connected to HM board where is converted to digital form
by Microcontroller (MCU). Converting an analog signal to digital is done through
the Analog to Digital Converter (ADC) with Sampling frequency (𝑓s) 8 kHz.
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6 Fast Fourier Transform

To find the 𝑓res Fast Fourier Transform (FFT) will be used. The FFT is a method
used to obtain the frequency spectrum of signal. The spectrum is representation
of the signal in the frequency domain. This chart does not show time change of signal
amplitude, as it is in time domain, but the amplitude and the phase of the signal
for each occupied frequencies.

From the sampled discrete-time signal, the spectrum can be obtained by two
ways: Discrete Fourier Transform (DFT) or Fast Fourier Transform (FFT). Exam-
ples of basic signals and their two-sided spectra can be seen in the Fig. 6.1
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(b) Spectrum of a sinusoidal signal
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Fig. 6.1: Examples of the waveform and its two-sided spectrum
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6. Fast Fourier Transform

6.1 Comparison of DFT and FFT

For numerical computations of spectrum from digital signal discrete version
of the Fourier transform is used, it is Discrete Fourier Transform (DFT) (6.1).

𝑌𝑘 = 1
𝑁

𝑁−1∑︁
𝑟=0

𝑦𝑟

[︃
cos

(︃
2𝜋𝑟𝑘

𝑁

)︃
− 𝑖 sin

(︃
2𝜋𝑟𝑘

𝑁

)︃]︃
(6.1)

𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥) (6.2)
After substituting the equation (6.2) into (6.1) we get shorter form:

𝑌𝑘 = 1
𝑁

𝑁−1∑︁
𝑟=0

𝑦𝑟𝑒
−𝑖2𝜋𝑟𝑘

𝑁 (6.3)

= 1
𝑁

𝑁−1∑︁
𝑟=0

𝑦𝑟𝑒
−𝑖( 2𝜋𝑟𝑘

𝑁 ) (6.4)

Where 𝑦r is Discrete signal, 𝑟 is Discrete sample point, 𝑌k is Discrete spectrum
and 𝑘 is Discrete frequency [13,16].

This calculation method of spectrum by DFT requires 2𝑀 complex multiplica-
tions.

Fast Fourier Transform algorithm is based on principle of decimation. Decimation-
in-Time (DiT) where the input sequence is decimated or Decimation-in-Frequency
(DiF) where the output sequence is decimated . This decimation involves decompo-
sition of original time (frequency) sequence into smaller parts. As shown in equation
(6.5), a DFT of Length of signal (𝑁) can be rewritten as sum of two similar DFTs
(6.6). Each of these Discrete Fourier Transforms has length 𝑁/2. One calculates
with the odd-indexed points from N of the original signal and the other with even-
indexed points (6.7). In order to maintain symmetry, required original signal length
must be 𝑁= 2𝑀 , as is shown in Fig. 6.2.

FFT method for calculation of the spectrum requires 𝑁 log2 𝑁 number of oper-
ations.

𝑌𝑘 = 1
𝑁

𝑁−1∑︁
𝑟=0

𝑦𝑟𝑒
−𝑖( 2𝜋𝑟𝑘

𝑁 ) (6.5)

= 1
𝑁

⎧⎨⎩
(𝑁/2)−1∑︁

𝑟=0
𝑦2𝑟𝑒

−𝑖[ 2𝜋(2𝑟)𝑘
𝑁 ] +

(𝑁/2)−1∑︁
𝑟=0

𝑦2𝑟+1𝑒
−𝑖[ 2𝜋(2𝑟+1)𝑘

𝑁 ]
⎫⎬⎭ (6.6)

= 1
𝑁

⎧⎨⎩
(𝑁/2)−1∑︁

𝑟=0
𝑦2𝑟𝑒

−𝑖[ 2𝜋𝑟𝑘
(𝑁/2) ] + 𝑒−𝑖( 2𝜋𝑘

𝑁 )
(𝑁/2)−1∑︁

𝑟=0
𝑦2𝑟+1𝑒

−𝑖[ 2𝜋𝑟𝑘
(𝑁/2) ]

⎫⎬⎭ (6.7)
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Fig. 6.2: Decimation in time of a length-N DFT into two length-N/2 DFTs [17]

If is defined 𝑊𝑁 as
𝑊𝑁 = 𝑒−𝑖( 2𝜋

𝑁 ) (6.8)

the equation (6.4) for DFT can be rewriten as

𝑌𝑘 = 1
𝑁

𝑁−1∑︁
𝑟=0

𝑦𝑟𝑊
𝑘𝑟
𝑁 𝑘 = 0, 1, 2, · · · 𝑁 − 1 (6.9)

and equation (6.7) for FFT

𝑌𝑘 = 1
𝑁

(𝑁/2)−1∑︁
𝑟=0

𝑦𝑒
𝑟𝑊 𝑘𝑟

𝑁/2 + 1
𝑁

𝑊 𝑘
𝑁

(𝑁/2)−1∑︁
𝑟=0

𝑦𝑜
𝑟𝑊 𝑘𝑟

𝑁/2 𝑘 = 0, 1, 2, · · · 𝑁 − 1 (6.10)

where 𝑦𝑒
𝑟 and 𝑦𝑜

𝑟 represent even and odd order samples of 𝑦r.

The computational efficiency is usually expressed by the number of complex
multiplications and additions, or simply, by the number of operations [11]. A simple
representation of the computational cost of DFT compared with the FFT is shown
in Fig. 6.3. From this figure is obvious that when comparing the number of the
operations and therefore the processing time, is FFT more advantageous than the
DFT.

𝑁2 >
(︂

𝑁

2

)︂2
+
(︂

𝑁

2

)︂2
+ 𝑁 (6.11)

𝑁2 >
𝑁2

2 + 𝑁 (6.12)
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Fig. 6.3: Number of operations

For more iterations of decomposition, the total number of necessary operations
declines and thus the computational complexity will also decrease. The whole pro-
cess of FFT calculation is faster in comparison with DFT and is even quicker with
an increasing number of iterative decompositions for each FFT.

This is illustrated in Fig. 6.4 and by the derivation of the equations (6.13) to
(6.16).

1 : 𝑁/2 =⇒ 2
(︂

𝑁

2

)︂2
+ 𝑁 = 𝑁2

2 + 𝑁 (6.13)

2 : 𝑁/4 =⇒ 2
[︃
2
(︂

𝑁

4

)︂2
+ 𝑁

2

]︃
+ 𝑁 = 𝑁2

4 + 2𝑁 (6.14)

3 : 𝑁/8 =⇒ 2
{︃

2
[︃
2
(︂

𝑁

8

)︂2
+ 𝑁

4

]︃
+ 𝑁

2

}︃
+ 𝑁 = 𝑁2

8 + 3𝑁 (6.15)

... ... ...

𝑀 : 𝑁/2𝑀 =⇒ 𝑁2

2𝑀
+ 𝑀𝑁 = 𝑁2

𝑁
+ 𝑁 log2 𝑁 (6.16)

where 𝑁/2𝑀 = 1.

In equation (6.16) dominates final term therefore, generally the computational
complexity of FFT is cited in simplified form as:

𝑁 log2 𝑁 (6.17)

for comparison of computional acceleration, Efficiency gain [11] s defined as:

Efficiency gain = 𝑁2

𝑁 log2 𝑁
(6.18)
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For 𝑁 = 1024 efficiency gain is approx. 100 and for 𝑁 = 8196 Fast Fourier
Transform is more than 600 times faster.

Fig. 6.4: FFT sequence for 𝑁 = 8
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↓ ↓
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k N/4 = 2
↓ ↓ ↓ ↓

𝑌 eee
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k 𝑌 eoe
k 𝑌 eoo

k 𝑌 oee
k 𝑌 oeo

k 𝑌 ooe
k 𝑌 ooo

k N/8 = 1

For previously mentioned reasons, the calculation of the resonant frequency by
FFT is used .

The following Matlab code (Code 6.1) shows the simplest example of Digital
Signal Processing using fft function in Matlab R2014b environment.

Waveform sensed by piezo element is used as a source of signal and shown in
Fig. 5.3 on page 24. This signal was sensed as one of the first on the development
board with HM panel. Waveform signal was converted by Analog to Digital Con-
verter with Sampling frequency 𝑓s = 8 kHz. The original idea was that the signal
is converted as accurately as possible, due to the processing of its envelope to de-
termine the attenuation. Sampling frequency was limited by the capacity of SRAM
memory and the processor time required for Digital Signal Processing (DSP).

Result of this process is half of two-sided amplitude spectrum in figure Fig. 6.5.
However, when you use this simple method, the resulting spectrum has only

a low resolution. The distance of each spectral lines, which is defined as Frequency
step (Δ𝑓), is approx. 3.9 Hz, because the signal length is only 𝑁 = 2048 samples.

Δ𝑓 = 𝑓𝑠

𝑁
(6.19)
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6. Fast Fourier Transform

Code 6.1: Example of simple FFT
clear all
close all
clc

%% Input signal
[FileName ,pathname ]= uigetfile(’*.csv’);
fid=fopen(fullfile(pathname ,FileName ));
Data=textscan(fid ,’%f’,’HeaderLines ’, 1);
fclose(fid);

sig = Data {1}(: ,1); % Data in 1 column
sig = sig -mean(sig); % Elimination DC offset

fs = 8000; % Sample frequency
ff = 0:fs/length(sig):fs -fs/length(sig);% Frequency axis

FFT = abs(fft(sig)); % FFT calculation

figure ()
plot(ff(1: length(ff)/2) ,20* log10(FFT (1: length(FFT )/2)))
xlabel(’Frequency␣(Hz)’);
ylabel(’Magnitude␣20␣log_ {10}|Y(k)|’);
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Fig. 6.5: Two-sided spectrum of the real signal in Fig. 5.3 from 0 to fs/2
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6.2 Effects of Zero Padding

As shown in previous section, using the basic FFT, without further adjustments,
we only get very rough estimate of spectral resolution of the actual signal in Fig. 5.3.
Detail of spectral segment of this signal is in Fig. 6.7a. Frequency step in this case
is approx. only 3.9 Hz.

According to the equation (6.19) there are two ways to improve the Frequency
step.
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Fig. 6.6: Example of interpolation principle

First of them is to reduce the numerator of a fraction, thus the Sampling fre-
quency. However, application of this approach is not advantageous with regard to
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6. Fast Fourier Transform

the waveform and quality of the signal recorded for further processing (e.g. attenu-
ation calculation).

Next one is to increase the number of signal samples 𝑁 . This method is called
Interpolation and it is based on zero padding (Fig. 6.6). For spectral analysis, signal
padding by zeros corresponds to oversampling original spectrum with several times
greater Δ𝑓 . If the length of padded zeros is defined as 𝑄 that are added behind
a signal of length 𝑁 , then new Frequency step is (𝑁 + 𝑄)/𝑁 times greater.

Δ𝑓 = 𝑓𝑠

𝑁 + 𝑄
(6.20)

With this method of adding zeros behind a signal, the number of signal sam-
ples 𝑁 can be supplemented to the correct length to comply condition for symmetry
of the FFT. It is the most common and simple way to adjust a signal in order
to satisfy the condition of Length of signal= 2𝑀 .

Code 6.2: Example of interpolated FFT
...
Ni = 8192; %Q+N
iFFT = abs(fft(sig ,Ni)); %Interpolated FFT
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(a) Detail spectrum of the real signal
in Fig. 5.3 before interpolation
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(b) Detail spectrum of the signal in Fig. 5.3
after interpolation to N = 8192

Fig. 6.7: Comparison of the spectrum after using interpolation

Because used SRAM memory has a capacity 1 Mbit, which corresponds to 128 kB,
then in order to respect the condition of symmetry, maximum used window size can
be 64 kB, therefore 𝑁= 8192 samples. Comparing the spectra before and after the
signal interpolation is shown in Fig. 6.7. New interpolated spectrum in Fig. 6.7b
has Frequency step approx. Δ𝑓= 0.98 Hz, ( equation 6.20 ).
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6.3 Decimation

Final resolution of the signal from previous section get significantly more accu-
rate result. However, the resolution based on the equation (6.20) does not provide
sufficiently accurate results.

As previously mentioned, to improve the resolution of Δ𝑓 , two basic principles
can be used. The one with the addition of zeros after the signal has already been
described and applied in the section 6.2 Effects of Zero Padding. Further im-
provement through scanning the signal with sensing lower sampling frequency 𝑓s is
unacceptable, as already mentioned.

But, fortunately, except limiting by HW there is the possibility of SW implemen-
tation solutions to reduce the sampling rate 𝑓s. A system component that performs
this reducing of the 𝑓s is called a decimator.

Decimation principle such as Digital Signal Processing consists in selecting each
𝐷th sample.
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Fig. 6.8: Example of decimation principle
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Code 6.3: Example of decimation
t = 0:.025:1; % time axis
x = sin(2*pi*1*t); % signal
y = decimate(x,4); % decimated signal by D = 4

As shown in Fig. 6.8, decimated signal looks like a signal sampled by quarter-
frequency. New Decimated sample frequency (𝑓 ′

s) is therefore

𝑓 ′
𝑠 = 𝑓𝑠

𝐷
(6.21)

where 𝐷 is integer Decimation factor and 𝑓s is original sample rate.

By this approach the original signal can be decimated to much lower Sampling
frequency. The disadvantage of this process is that it still must comply with Nyquist-
Shannon sampling theorem. That means that with the reduction of sample rate 𝑓s,
the ability to show the higher spectral lines decreases.

Under these circumstances, the highest spectral line can be displayed on position
with maximum frequency, equals 𝑓 ′

𝑠/2. Mirroring of spectrum occurs around 𝑓 ′
s.

If this method is used on the original signal in Fig. 5.3 sampled by 𝑓s= 8 kHz and
Length of signal equals to 2048 samples, where decimation is performed to the fre-
quency of 500 Hz, then, while maintaining the same window as in the case in Fig. 6.5,
accomplished Δ𝑓 is 0.24 Hz.

This frequency 𝑓 ′
s was chosen with respect to the main beam resonance, which is

about 190 Hz. Decimated sample frequency is in conformity with Nyquist-Shannon
sampling theorem. This theorem provides a prescription for the nominal sampling
interval required to avoid aliasing. It can be simply stated as follows:

The sampling frequency should be greater than
twice the highest frequency contained in the signal.

Minimum Sampling frequency for correct display of the signal at a frequency
185 Hz is

𝑓𝑠 > 2 × 190 (6.22)

Because the frequency can be changed and to sufficiently fulfill the conditions (6.22)
with reserve, 500 Hz was determined as adequate Sampling frequency.

The Decimation factor is therefore

𝐷 = 𝑓𝑠

𝑓 ′
𝑠

= 8000
500 = 16 (6.23)
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Code 6.4: Example of decimated FFT
...
dec_to = 500; % new sample frequency (decimate)
D = fs/dec_to; % decimade koeficient;

dec_sig = zeros(floor(( length(sig)/D)),1);
j=0;
for i=1:D:(( length(sig)))

j=j+1;
dec_sig(j) = sig(i);

end
dFFT=abs(fft(dec_sig ,2048));
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(a) Detail spectrum of the real signal
in Fig. 5.3 before decimation
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(b) Detail spectrum of the signal in Fig. 5.3
after decimation with the ame window

Fig. 6.9: Comparison of the spectrum after using decimation
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Fig. 6.10: Two-sided spectrum decimated 𝑓s 8000 Hz → 𝑓 ′
s 500 Hz from 0 to 𝑓 ′
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One of the adverse characteristics of the decimation is mirroring of spectral lines
and hence possible change of the whole appearance of the spectral domain.

The standard spectrum is periodic with period 1/𝑓s. General appearance of such
a spectrum is shown in Fig. 6.11.

0-fs fs

Y[k]

f (Hz)f -fs mfm-fm-f +fs m-f -fs m f +fs m

Fig. 6.11: Periodic spectrum with fulfilled sampling condition

Basically, three relation between 𝑓s and 𝑓m may occur where 𝑓s is Sampling fre-
quency and 𝑓m is Maximum contained frequency in signal.

In case of Fig. 6.11 is

𝑓𝑚 < 𝑓𝑠 − 𝑓𝑚 → 𝑓𝑚 <
𝑓𝑠

2 (6.24)

This condition (6.24) ensures that there is no overlap of spectra.
When the signal is downsampling these curves move together until

𝑓𝑚 = 𝑓𝑠 − 𝑓𝑚 → 𝑓𝑚 = 𝑓𝑠

2 (6.25)

In this situation, the condition is on limit usability.

With further decrease of the Sampling frequency the condition (6.24), respec-
tively (6.22) can not continue to be fulfilled.

If the situation arises where the 𝑓s is correlated with the 𝑓m

𝑓𝑚 > 𝑓𝑠 − 𝑓𝑚 → 𝑓𝑚 >
𝑓𝑠

2 (6.26)

then multiplexing of individual spectral components occurs, which decreases the
usability and accuracy of the spectral diagram as shown in Fig. 6.12.
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0-fs fs-2fs 2fs

Y[k]

f (Hz)f -fs m fm-fm -f +fs m f +fs m-f -fs m

Fig. 6.12: Periodic spectrum with unfulfilled sampling condition

This handicap can be minimized by using a filtered input signal. There are
several ways to do this.

The higher frequency components of the signal can be removed by using the
analog Low-pass filter (LP filter) before the digitization of the signal by Analog to
Digital Converter. However, this solution requires adjustments already in hardware
design of Printed circuit board (PCB).

Another possibility is for example a digital Finite impulse response filter (FIR fil-
ter). This type of filter does not require any changes on PCB. This filter is purely
issue of SW. FIR filter has no parallel in the analog wiring and enables simple de-
sign of steep filters of higher orders. It also has a linear phase characteristics, that
means, it retains the shape of the signal in the passband and it is always stable. [15]

The difference between filtered and unfiltered decimated signal from Fig. 6.21
with new 𝑓 ′

s = 1000 Hz is shown in figure Fig. 6.13. In figure Fig. 6.13b is shown the
spectral peak in the frequency range, around 80 Hz, where there is no power increase,
in Fig. 6.13a is shown as a reference spectrum of the filtered signal to comparison.
Shown peak is mirrored from the frequency 1030 Hz as can be seen in Fig. 6.23.
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(a) Decimated spectrum after limitations
by FIR filter
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(b) Decimated spectrum without filter
limitations

Fig. 6.13: Comparison of the spectrum after using filtration
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6.4 Windowing

Amplitude ambiguity arises when window length is not an integer multiple of pe-
riod of the signal. For aperiodic signal, the window length is theoretically equal to
infinity, in practice it is required to have finite length of record. For processing
either an aperiodic, random or signal with variable frequency, it is recommended
to use windowing function. Most of these signals do not have a period and Fast
Fourier Transform applied to such a signal’s finite record length produces leakage
in its spectrum [16].

This leakage is caused by the discontinuities near start and end of window
(Fig. 6.15a). These artificial discontinuities show up in the FFT as high-frequency
components not present in the original signal (Fig. 6.15b). These discontinuities
may also arise with change of signal frequency which would not be integer multiple
of the window length. The spectral power, which should have been concentrated on
a single harmonic, has leaked to neighbouring harmonics [11]. This effect can be re-
duced by using a windowing application. This procedure effectively minimalizes the
amplitude of signal near the discontinuities at the beginning and end of the signal.
Example of using windows is in Fig. 6.20.
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(b) Spectral domain

Fig. 6.14: Sinusoidal waveform of the same length as the window.

The effect of windowing function in the time domain corresponds to multipli-
cation of the signal with the selected window (Fig. 6.20a). In the spectrum it
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6.4 Windowing

corresponds to convolution of two FFT, one of the signal and other of the selected
windowing function.

Before applying window function, it is necessary to consider the need for using it.
Because the usage of different window type than basic rectangle, for signal where it is
not essential, is disadvantageous. Under these circumstances the picket-fence effect
occurs. This means that the main spectral peaks splits up into more frequencies.
Thus, windowing function may help with leakage, but incorrect usage could cause
the distortion of the spectrum such as amplitude ambiguity and frequency leakage.

This effect of distortion can be reduced either by increasing the window length
over more periods of the signal by combinating of original signal with smooth tran-
sition window function. [11]
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Fig. 6.15: Sinusoid spectral leakage
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6.4.1 Rectangle Window

It is not true that no window can be used. Always, when "no window" is used,
then in fact basic rectangular window is applied to the signal. It is the simplest
window sometimes known as the boxcar or Dirichlet window.

The table below shows some of the Boxcar properties (Tab. 6.1) and in Fig. 6.16
is shown waveform and spectrum of Rectangle window.

𝑤[𝑟] = 1 for 𝑟 = 0, . . . , 𝑁 − 1 (6.27)

Tab. 6.1: Parameters of Rectangle window [13]

Property Value
Width of the main lobe 1 · Δ𝑓

The highest side lobe -13 dB
Equivalent noise width 1 · Δ𝑓

Width of the main lobe and equivalent noise width are related to Frequency
step (Δ𝑓) according to equation (6.19).
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Fig. 6.16: Rectangular window
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6.4.2 Hamming Window

In Fig. 6.17 is shown waveform and spectrum of the window.
This window type is optimized to minimize the first side lobe (Fig. 6.17b). This

side lobe is usually maximum and nearest lobe to the main lobe for Rectangle
Window (see 6.4.1) as is shown in Fig. 6.16b.

In the Fig. 6.17a is presented the progress of the window. Near beginning and end
of signal can be noticed that although there is signal attenuation but not complete
zeroing.

The Tab. 6.2 shows some of the Hamming window properties.

𝑤[𝑟] = 0.54 − 0.46 cos 2𝜋𝑟

𝑁
for 𝑟 = 0, . . . , 𝑁 − 1 (6.28)

Tab. 6.2: Parameters of Hamming window [13]

Property Value
Width of the main lobe 2 · Δ𝑓

The highest side lobe -43 dB
Equivalent noise width 1.5 · Δ𝑓

Width of the main lobe and equivalent noise width are related to Frequency
step (Δ𝑓) according to equation (6.19).
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Fig. 6.17: Hamming window
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6.4.3 Hann Window

The Hann window also known as the Hanning’s or the raised cosine window.
Hanning window is not similar to Hamming Window (see 6.4.2) only by name but
also by shape. One difference is the attenuation value at the beginning and the end
of signal. This window reduces leakage and improve amplitude accuracy, however,
frequency resolution is reduced.

In the Tab. 6.3 are listed some of the Hanning window properties and the wave-
form and spectrum of this window is shown in Fig. 6.18.

𝑤[𝑟] = 1
2

(︂
1 − cos 2𝜋𝑟

𝑁

)︂
for 𝑟 = 0, . . . , 𝑁 − 1 (6.29)

Tab. 6.3: Parameters of Hanning window [13]

Property Value
Width of the main lobe 2 · Δ𝑓

The highest side lobe -32 dB
Equivalent noise width 1.36 · Δ𝑓

Width of the main lobe and equivalent noise width are related to Frequency
step (Δ𝑓) according to equation (6.19).
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Fig. 6.18: Hanning window
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6.4.4 Blackman Window

The Blackman window has a narrower waveform and therefore is useful for single
tone measurement, because it has low maximum side lobe level.

Some of the Blackman window properties are shown in Tab. 6.4 and in Fig. 6.19
is shown waveform and spectrum of this window.

𝑤[𝑟] = 0.42 − 0.5 cos 2𝜋𝑟

𝑁
− 0.8 cos 4𝜋𝑟

𝑁
for 𝑟 = 0, . . . , 𝑁 − 1 (6.30)

Tab. 6.4: Parameters of Blackman window [13]

Property Value
Width of the main lobe 3.5 · Δ𝑓

The highest side lobe -58 dB
Equivalent noise width 1.73 · Δ𝑓

Width of the main lobe and equivalent noise width are related to Frequency
step (Δ𝑓) according to equation (6.19).
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Fig. 6.19: Blackman window
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6.4.5 Windowing Summary

There are many types of windows, each of them has different properties and is
suitable for different application. Some of them are more effective for specific types
of signal. Some improve frequency resolution and other improve amplitude accuracy.

Windows reduce the leakage effects, but can not eliminate leakage entirely. In
fact, they only change the shape of the leakage. As already mentioned, the relation-
ship between the signal and the used window in the time domain is multiplication
and therefore in spectral domain it is a convolution. From this perspective, the sig-
nificant sidelobes, which appear in the windows spectra, depending on the shape
of the window in the time domain. Windows with narrower and "smooth" wave-
form have more significant attenuation of side lobes. However, with this feature
also increases the width of the main lobe, which ultimately results in blurring of the
spectral estimation Δ𝑓 and splitting of spectral lines (picket-fence effect).
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Fig. 6.20: Windowing effect (Hanning with signal Fig. 6.15a )

It is clear that finding a suitable window is a compromise of more properties,
which depends on the practical application.

In the case of CubeSat VZLUSat–1, when choosing a suitable window, there are
several requirements that must be reflected. Among other things, such as computa-
tional complexity, SW and time requirements that restrict the application of satellite
measurements.
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6.5 Final Result

Digital Signal Processing is not a simple procedure, which could be solved ac-
cording to a single universal process. Each signal type requires a slightly different
approach and applied procedure.

During the Hardware and Software development for the measurement of mechan-
ical material aging, there was a change in the mechanics of the measured HM panel.
Consequently, this change led to a time extension signal as is shown in Fig. 6.21.
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Fig. 6.21: Signal waveform in time domain with 𝑓s= 4 kHz

6.5.1 Frequency Resolution

Thanks to mentioned changes, Frequency resolution (𝐵) in the spectral
diagram was improved. Frequency resolution is an ability of a method to distinguish
details in the spectrum. It can therefore be described as the ability to distinguish two
nearby spectral lines in the spectrum belonging to the two close frequency harmonic
signals 𝑓1 and 𝑓2.

If the calculation method has sufficient resolution, relative to the intervals of con-
tained harmonics, narrow spectral lines belonging to these signals appears in the
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6. Fast Fourier Transform

spectrum. [14]
𝐵 = |𝑓1 − 𝑓2| (6.31)

Width of the resulting lines is inversely proportional to the Length of signal (𝑇0)
and directly proportional to the type of window, respectively Window constant (𝑐).

𝐵 = 𝑐

𝑇0
(6.32)

Therefore, with increasing length of the recorded signal 𝑇0 is frequency resolution
of 𝐵 improves. Window constant 𝑐 dependes on the type of used window and
therefore on the extent signal distortion of its use. Overview of constants for above
mentioned windows is in the Tab. 6.5.

Tab. 6.5: Window constants 𝑐

Type of window Constant value
Ractangle 1
Hamming 2.5
Hanning 2.5

Blackman 3

It should be noted that, the Frequency resolution indicates something else than
Frequency step. Frequency step Δ𝑓 is determined by the number of used spectral
lines 𝑁 , the thickening of the spectrum is an effort to get minimal Δ𝑓 .

Whereas, the frequency resolution 𝐵 is the ability to distinguish individual de-
tails in the spectrum. [14]

If it is true that 𝐵 < Δ𝑓 can be talk about the precise identification of the in-
dividual spectral lines. But if 𝐵 > Δ𝑓 the determination is only approximate.

In this case of 𝑇0 = 1.024 s, using a rectangular window appears, with regard to
the Tab. 6.5, as the best decision.

𝐵 = 1
1.024 = 0.98 Hz (6.33)
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6.5.2 Used Window

As mentioned above, using of windowing has many advantages and disadvan-
tages.

With compare the effect of the different windows on the signal spectrum, it is
first necessary to use normalization on these signals, the maximum will be assigned
a value of 1, and them bring then to a common graph, Fig. 6.22.

As shown in Fig. 6.22a, each window is reducing the spurious side lobes of spec-
trum differently. In this case of application, when only looking for the value of res-
onance frequency (respectively natural frequency of oscillation), spectrum leakage
into neighborhood is not important but on the other hand the width of the main lobe
(ramp slope) is. As is clear from Fig. 6.22b and tables in section 6.4 Windowing
this property is best when using the Boxcar window.
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Fig. 6.22: Comparison of the windows in the area of spectrum

This type of window, has in comparison with the others, minimum picket-fence
effect. Which could distort the results. Another significant advantage is, as stated in
subsection 6.5.1 Frequency Resolution, low Window constant 𝑐. Finally, com-
puting requirements and memory allocation should be taken into consideration, with
respect to the use of the 8-bits MCU. Rectangle has lower requirements compared
with other windows.
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6.5.3 Interpolation and Frequency Stepping

As previously mentioned, there have been several changes during the develop-
ment on HW side as well as on SW side. One of them was change in the sampling
frequency 𝑓s. This change was made based on a compromise with my collaborator
Ondřej Nentvich and his thesis about attenuation measurements [1]. Sampling fre-
quency was reduced from 8 kHz to 4 kHz, which was classified as sufficient resolution
for further processing of attenuation.

This change, besides reducing the amount of stored data, means a reduction
(improvement) of the frequency step Δ𝑓 .

By using 𝑓s = 4 kHz, 𝑁 = 4096 samples is obtained from the signal about length
of 𝑇0 = 1.024 second. These samples in combination with the effect of zero padding,
as is described in the section 6.2, lead, after substituting into the formula (6.20) to
the final frequency step Δ𝑓 = 0.48 Hz.

Δ𝑓 = 𝑓𝑠

𝑁 + 𝑄
= 4000

8192 = 0.48Hz (6.34)

6.5.4 Decimation Effect

Decimation factors can have a positive effect in many applications to improve
the Frequency step. Unfortunately, it also reduces the observed frequency range
and without the use of a suitable filter, it increases spectrum distortion. Which is
caused by superimpose of higher frequencies that cause spurious spectral peaks in
lower frequency.

In this situation, the use of decimation only restricts readability of spectral results
without any noticeable improvement. An adequate densification of spectral lines has
already been accomplished by the combination of a lower sampling frequency and
interpolating the signal at 8192 samples. Considering the additional requirement for
measurement of at least two natural frequencies, decimation is directly inappropriate
due to their values. (Tab. 4.2).

These values of natural frequencies will be used to more accurately describe the
exact model of the measurement beam.
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6.5.5 Summary

From the signal sensed from the oscillating beam, spectrum of oscillations
was obtained by Fast Fourier Transform. By using Digital Signal Processing, which
containes, besides actual FFT also application of a rectangular window and inter-
polation, everything of which was described above, a partial overview of natural
oscillations of the beam but also resonances of the structure was obtained.

Overview of the measurement results is shown in Tab. 6.6.

Tab. 6.6: Properties of measured signal and spectrum

Property Value
Sampling frequency (𝑓s) 4000 Hz

Length of signal (𝑇0) 1.024 seconds
Length of signal (𝑁) 4096 samples

Number of interpolation samples (𝑁+𝑄) 8192 samples
Frequency step (Δ𝑓) 0.49 Hz

Frequency resolution (𝐵) 0.97 Hz

Due to spectrum frequency range, it will not be a problem to determine at least
the first two natural frequencies of the beam. These frequencies are automatically
searched by the program in the MCU on board of the satellite.

For time to time, on schedule stored in the Planner, or on demand, the whole
raw signal will be sent to Earth. This will enable further analysis and potential
changes in measurement parameters (e.g. Search limits, Sampling frequency).
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Fig. 6.23: Final two-sided spectrum of the real signal in Fig. 6.21 from 0 to fs/2
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7 Evaporation

Part of properties verification of the new carbon fiber composite material is
besides, the radiation resistance measurement [3], measurement of mechanical prop-
erties [1] and evaluation of changes (see chapters 4 – 6), also in addition evaporation
measurement of water vapour and other gases from the material.

Water vapour in the air (or empty space, or any other gas) is generally called
humidity, in liquid and solid materials it is usually designated as moisture.

Water and water vapour can be found everywhere. Water molecules has asym-
metrical distribution of their electric charge, it means that, they are easily absorbed
on almost any surface [11].

When water vapour starts to release from part of the satellite and vaporize in
space it could be a problem. It is because these evaporated water molecules can
condensate on other pieces of electronics. This humidity on contacts on PCB can
cause short-circuit on board of the satellite and damage the whole device.

Molecules can also condense on optics lens or chips for image scanning. In this
case it could be X-Ray Optics and Medipix board (see 3.2.1).

Fig. 7.1: Volatiles board
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7. Evaporation

7.1 Water in Space

The Earth is one of extremely rare and special places in the Universe where
water can stably exist as a liquid. Water and its vapour are also one of the main
constituents gases of the Earth’s atmosphere. It therefore has a large share of
the total atmospheric pressure. This Pressure (𝑃 ) can be expressed, according to
Dalton’s law, as the sum of partial pressures (7.1).

𝑃total = 𝑃𝑁2 + 𝑃𝑂2 + 𝑃𝐻2𝑂 + 𝑃other gases (7.1)

If the total system pressure is changed by compression or expansion, each of
partial components will changed the pressure by a similar factor to 𝑃total. With
increasing altitude the overall pressure decreases, and thus the partial pressure of
the individual constituents. If there’s not enough force for pressing the water into
a liquid phase, then there’s no force binding the water molecules together. If the
pressure decrease further, water molecules will evaporate and diffuse away. This
change of state from liquid to gas happens only as change in pressure, but not in
the temperature, which is constant.

Laws of thermodynamics describes this issue which contends the phase diagram
for any materials.

Fig. 7.2: Water phase diagram [21]
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7.1 Water in Space

In the vacuum, the pressure is equal to basically zero. With regard to this dia-
gram (Fig. 6.3), in a vacuum, most liquids have such a low boiling point that they
vaporize almost instantly. But one of things what we know about space that it is
the coldest which means that, water should to get frozen not evaporate. In reality,
the effect of boiling is much faster than the effect of freezing. Water molecules from
material will first evaporate and next the vapour passes immediately into the solid
state. This type of change, directly from gas to solid material, is called desublima-
tion. For that reason, most substances exist in space in either the gaseous or the
solid state.

This cloud of very fine crystals of frozen water is very dangerous for the whole
satellite.
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8 Humidity Sensors

Humidity sensors have gained an increased number of applications in industrial
processing and environmental control. There are many domestic applications, such
as intelligent control of the living environment in buildings. In generally industry,
humidity sensors are used for humidity control in dryers, ovens and in storage. Hu-
midity control is also important in many industrial processes as is semiconductor
industry, etc.

There are many possibilities for a measurement of humidity. Each of them has
advantages and disadvantages, applications in each field require different operating
conditions.

8.1 HYT Sensors

HYT sensors are a kind of Humidity and Temperatures modules from IST s.r.o.
company. These sensors have a digital interface and they are calibrated already in
the production. This kind of sensors is mechanically robust and has chemical and
condensed water proof sensing area.

(a) HYT 271 (b) HYT 939

Fig. 8.1: Used type of HYT sensors
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8.1.1 HYT 271 and HYT 939

HYT 271 and HYT 939 are capacitive polymer humidity sensors with digi-
tal interface. These sensor types have integrated signal processing in the module.
Integrated electronics completely processes the measured data, corrects linearity er-
ror and temperature drift through "OnChip" computation and directly transmit the
parameters of relative humidity and temperature as digital values.

For integration with a micro-controller, the humidity module uses an Inter-
Integrated Circuit (I2C) compatible interface which supports both standardised
speeds 100 kHz and faster 400 kHz. Sensors also have low power consumption about
22 µA during operation [22].

(a) Typical and maximal tolerance for
temperature sensor

(b) Typical and maximal tolerance at 23°C
for relative humidity

Fig. 8.2: HYT characteristics [22]

Tab. 8.1: HYT sensor’s parameters [22]

Properties HYT 271 HYT 939
Temperature measuring range -40 ... 125 °C -40 ... 125 °C
Temperature accuracy ± 0.2 °C ± 0.2 °C
Humidity measuring range 0 ... 100 % 0 ... 100 %
Humidity accuracy ± 1.8 % ± 1.8 %
Humidity resolution ± 0.03 % ± 0.2 %
Humidity response time < 4 s < 10 s
Resolution 14 bits 14 bits
Operating voltage 2.7 . . . 5.5 V 2.7 . . . 5.5 V
Normal operation < 22 µA < 22 µA
Sleep mode < 1 µA < 1 µA
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8.1.2 Address Changing

All HYT sensors have been programmed with default slave address 0x28. It is
necessary to change this address if more of these sensors should work on the same
bus. Address can be adjusted in the address range for 7 bits addresses (0x00 to
0x7F). The 8th bit is Read/Write bit. Therefore, up to 128 sensors can operate on
the same bus.

For a change of address the module must be switched to Command-Mode. The
switching is performed by sending the start-command-mode message 0xA0. This
command must be send within 10 ms after reset/power on. Each message in
command-mode is 4 bytes long.

Code 8.1: Example of address changing
#include "Wire.h"
#define OldAddress 0x28
#define NewAddress 0x42
int power = 2; // Power port
void setup() {pinMode(power, OUTPUT);} // I/O setting
void loop(){ // Main loop
digitalWrite(power, HIGH); // Sensor power ON
Wire.beginTransmission(OldAddress); // Start Command mode
Wire.write(0xA0);
Wire.write(0x00);
Wire.write(0x00);
Wire.endTransmission();
Wire.beginTransmission(OldAddress); // Address changing
Wire.write(0x5C);
Wire.write(0x00);
Wire.write(NewAddress);
Wire.endTransmission();
Wire.beginTransmission(OldAddress); //Set Normal mode
Wire.write(0x80);
Wire.write(0x00);
Wire.write(0x00);
Wire.endTransmission();
digitalWrite(power, LOW); // Sensor power OFF
while (1){}

}
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Change of address was conducted on the Arduino Duemilanove. Arduino Duemi-
lanove is a microcontroller board based on the ATmega328. Code 8.1 is written for
this development kit. Digital output 2, power port, switch power supply to the sen-
sor. This step ensures the fulfillment of the 10 ms conditions for switching to the
Command-Mode.

To verify a successful change of address or to check the attached sensors, it is
recommend to use I2C bus scanner (Code 8.2).

Code 8.2: Example of I2C bus scanner
#include "Wire.h"
int power = 2; // Power port
void setup() // I/O setting
{

pinMode(power, OUTPUT);
Wire.begin();
Serial.begin(57600);

}

void loop() // Main loop
{

digitalWrite(power, HIGH); // Power ON
Serial.println("Scanning in range 0x00 - 0x7F..."); // Scanning
for (uint8_t add = 0X0; add < 0X80; add++) {

Wire.requestFrom(add, (uint8_t)1);
if (Wire.available()) {

Serial.print("Device found at: ");
Serial.println(add, HEX);

}
}
digitalWrite(power, LOW); // Power OFF
Serial.println("Done...");
while (1){}

}
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8.1.3 Value Reading

The most of the time sensors are in sleep mode to minimise the current con-
sumption. New measurement starts after command Measurement request (MR) is
received. This MR command terminates the sleep mode and module starts the
measurement cycle.

The measurement cycle begins with the temperature measurement and continues
with humidity measurement. After that follows Digital Signal Processing such as
linearising and temperature compensation. After the measurement cycle has been
completely done, the measured and processed values are made available in outputs
registers.

S 6 5 4 3 2 1 0 W

A

S

S Start Condition 3 Slave address W
Read/Write bit
(Write = 0) A Acknowledge S Stop Condition

Master

Slave

Fig. 8.3: Measuring request

The MR command begins by Start condition and the address of HYT module
with last Read/Write bit set to 0 (Write). The sensor sends Acknowledge (ACK)
as an answer to inform that the measurement has started. Master terminates the
communication with Stop condition. This description is shown in Fig. 8.3.

Data values are read from output registers using Data Fetch (DF). This command
is send with Read/Write bit as 1 (Read). Master can read up to four bytes of
measured data after ACK. The first two data bytes contain the humidity value
in 14 bit resolution and two status bits. These status bits are transferred in the first
byte as Most significant bit (MSB). Second two bytes contain temperature in 14 bits
resolution, the last two bits are not used and should be masked away. Master
terminates the communication by No-Acknowledge (NACK). This data fetching is
shown in Fig. 8.4.

This response can be send after each of bytes. Therefore, it is possible to read
only humidity values or complete relative humidity with temperature in 8-bit reso-
lution. [22]

59/107



8. Humidity Sensors

S Start Condition 3 Slave address R
Read/Write bit
(Read= 1)

A AcknowledgeS Stop Condition

S 6 5 4 3 2 1 0 R

A 15 14 13 12 11 10 9 8

A

7 6 5 4 3 2 1 0

A

15 14 13 12 11 10 9 8

A

7 6 5 4 3 2 1 0

N S

1 Humidity

3 Temperature

15 Status bits

N Noacknowledge 0 Non used bits

Master

Slave

...

...

Fig. 8.4: Data fetch

8.1.4 Temperature

One of the most significant measurements on the probe is gaining of the tem-
perature. Not only due to determine the temperature but also its influence to the
surrounding sensors and other measured values.

As was mentioned above, temperature values are gained from HYT sensors as
3th and 4th read bytes. That is 16 bits value but real temperature has only 14 bits
resolution. Which means, that this value has to be modified and recalculated to
temperature in degrees of Celsius according to (8.1).

𝑇 (℃) = 165
214 − 1𝑇𝑟𝑎𝑤 − 40 (8.1)

Example of temperature recalculation is in the Code 8.3. It is according to
equation (8.1) and communication process in Fig. 8.4.

Code 8.3: HYT temperatures
...
Traw = (raw[2] << 6) | (raw[3] >> 2);
Temp = (165/(pow(2,14)-1))*Traw-40;
...
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8.1.5 Relative Humidity

Relative humidity is generally defined as the ratio of the actual vapour pres-
sure to saturation vapour pressure over a plane liquid water surface at the same
temperature (8.2)

𝑅𝐻(%) = 𝑃𝑣

𝑃𝑠𝑣

100 % (8.2)

where 𝑃v is Actual vapour pressure and 𝑃sv is Saturation vapour pressure. [10]

The relative humidity is highly dependent on the temperature. It is because,
the pressure could change with temperature and in the equation for calculating
of Relative humidity (𝑅𝐻), it is actually twice (8.2). That is the reason, why
the temperature must be measured in the same time. This temperature drift and
linearity error are corrected directly on chip in sensor.

𝑅𝐻(%) = 100
214 − 1𝐻𝑟𝑎𝑤 (8.3)

Relative humidity value is saved in first two read bytes from the sensor. This
value is as well as in previous case in 14 bits resolution as is shown in Fig. 8.4.

First two MSBs are status bits. These bits are masked and resultant value
is scaled into physical measurement units according to (8.3). This procedure is
implemented in Code 8.4.

Code 8.4: HYT humidity
...
Hraw = (raw[0] << 8) | raw[1];
Hraw = (Hraw &= 0x3FFF);
Relative_humidity = (100/(pow(2,14)-1))*Hraw;
...

8.1.6 Dew Point

Dew point (𝐷𝑃 ) is the temperature at which the moisture in the air forms
visible drops of water.

Technically, it is the temperature at which the water vapour in a sample of air at
constant barometric pressure condenses into liquid water at the same rate at which
it evaporates.

There are bonds among the conversion of Relative humidity, Temperature and
Dew point temperature.
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𝑃sv means Saturation vapour pressure and it computes pressure of vapour steam
in the air. Constants A, B, C depend on measured Temperature (𝑇 ). When 𝑇 is
less than zero degrees of Celsius, these constants are in Tab. 8.2.

𝑃𝑠𝑣 = 𝐴𝑒
𝐵·𝑇
𝐶+𝑇 (8.4)

Tab. 8.2: Constants for computing dew point [9]

Constants 𝑇 < 0 𝑇 > 0
A 610.714 610.78
B 22.44294 17.08085
C 272.44 234.175

By using equations (8.5,8.6) the Dew point of water vapour is computed. Equa-
tion (8.6) depends on value of LENKO! (𝑃𝑃 ) from (8.5). When 𝑃𝑃 is less than
610.714 (same value as A(𝑇<0)), constants A, B, C match by first column in Tab. 8.2
(𝑇<0), otherwise to the second. [9]

𝑃𝑃 = 𝐻𝑢𝑚

100 · 𝑃𝑠𝑣 (8.5)

𝐷𝑃 =
𝐶 ln 𝑃 𝑃

𝐴

𝐵 − ln 𝑃 𝑃
𝐴

(8.6)

This conversion can be implemented into the Matlab as a following Code 8.5.

Code 8.5: Calculation of the Dew point [9]
A = [610.714 , 610.78];
B = [22.44294 , 17.08085];
C = [272.44 , 234.175];

for i=1: length(C10)
if Temp(i) < 0
Psv(i) = A(1) * exp(B(1) * Temp(i)/(C(1) + Temp(i)));

else
Psv(i) = A(2) * exp(B(2) * Temp(i)/(C(2) + Temp(i)));

end
end
PP = 0.01 * Hum .* Psv ’;
for i=1: length(C10)
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if PP(i) < 610.78
DP(i) = C(1) / (B(1) / log(PP(i) / A(1)) - 1);

else
DP(i) = C(2) / (B(2) / log(PP(i) / A(2)) - 1);

end
end

8.2 HAL2 Sensors

HAL2 sensors are the type of Aluminium oxide (Al2O3) moisture sensors. The
present Al2O3 sensors are usually fabricated through anodization. This process is
easy and performed at low voltage (<100 V), thus it is also low cost. Low voltage
anodization forms Al2O3 layer consisting of hexagonal cylindrical pores perpendicu-
lar to the surface (Fig. 8.5). That applies in case this process is preformed in acidic
electrolyte in unchanging conditions. They are always characterized by long term
period of anodization at a constant voltage. [29]

Fig. 8.5: Honeycomb structure of anodic aluminium oxide [29]
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8.2.1 Construction

These sensors have three layer structure. The basic aluminium layer is applied
on the small corundum ceramic plate. This plate is only supporting substrate. On
the bottom aluminium electrode is porous Al2O3 film. A thin coating of gold is
applied above the Aluminium oxide layer by means of sputter deposition like water
permeable top electrode. Schematic view of HAL2 structure is shown in Fig. 8.6.

Corundum
Al O2 3Gold

Aluminium

Fig. 8.6: Structure of HAL2 sensors

Basically it is like a capacitor. Structure of this capacitor consists of a aluminium
bottom electrode, a dielectric from an anodized porous Al2O3 film and a thin water
permeable gold top electrode.

When the water vapour is transported through the gold layer, a change of the
Al2O3 permittivity occurs. Hence, the capacity of sensor is changed as well as its
conductivity.

Fig. 8.7: Principle of HAL2 sensors

64/107



8.3 Capacitance Measuring by PCap02A

8.3 Capacitance Measuring by PCap02A

PCap02A is from PicoCap® family and is used to measuring especially of a small
capacitances. To the chip is able to connect up to 8 capacitors in grounded mode or
up to 4 capacitors in floating mode. One of them is usually used as reference. De-
vice is using discharge time measurement to determinate capacitance which is called
Capacitance to digital converter (CDC). In case of requirement of measurement
temperature dependences of capacitance at same conditions, the chip has also tem-
perature measurement unit called Resistance to digital converter (RDC). PCap02A
has integrated DSP unit for processing of capacitances and temperature. The con-
troller could be connected to the other device using Serial peripheral interface (SPI)
or I2C bus. In the following Tab. 8.3 are picked up some important properties of
PCap02A.

Tab. 8.3: PCap02A parameters [23]

Properties Values Notes
Operating voltage 2.1 . . . 3.6 V
Current consumption < 2.5 µA At 2.5 Hz with 13.1 bit resolution
Output ration 0 . . . ≈ 8 Measurement value to reference
Resolution 24 bits
Temperature range – 40 ... + 125 ℃
I2C bus frequency 100 kHz
SPI bus frequency 20 MHz

In the Fig. 8.8 is basic circuit of the PCap02A chip with voltage converter on
I2C bus. The power supply of the chip is up to 3.6 V, but input power has 5 V. So
it is necessary to convert voltage down using low drop step down regulator.

In the Fig. 8.9 is shown PCB of previous mentioned circuit with PCap02A. At
the top of picture is located communication connector with power supply. In the
middle of board is placed six holes for three measured capacitors, two holes for each.
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Fig. 8.8: Schematic of board for HAL2 sensors

Fig. 8.9: Board for HAL2 sensors

8.3.1 Capacitance Measurement

The capacitors can be connected in four different circuits and with different
maximum number of capacitors. These circuits can be seen in Fig. 8.10.

The basic connection single grounded mode can have up to 7 capacitors and one
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Fig. 8.10: Capacitors connection

reference, where one side of them is connected to the ground and second one is to
the chip, port PCx.

Next is single floating mode, can has up to four capacitors connected, which one
of them is reference. Using this method has advantageous, that current do not flow
through the ground and resultant capacitance is not affected by interference from
other devices over ground as in previous case.

The differential methods are using to gain ratio of capacitances, for example in
accelerometers which has interdigital structure (two capacitors with one common
electrode) to determinate acceleration.

�

(a) Pre-charge cycle
�

(b) Fast-charge cycle

Fig. 8.11: Cycles of measuring capacity in PCap02A

Capacitance measurement is based on Time to digital converter (TDC) and is
divided into two or three steps. First step is pre-charge where capacitor is charged
through the serial resistor to reduce current where this condition is necessary. The
required is for example in MEMS devices.
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Second step is full-charge where measured capacitor is charged to the power
supply without serial resistor to reduce current.

Last step is discharge of the capacitor. During this step is measured discharge
time as in Fig. 8.11, where can seen difference between pre-charge mode and fast-
charge mode. The fast-charge mode has omitted pre-charge step and has only full-
charge and discharge step.

Measurement time is counted from fully charged capacitor to the predefined
threshold voltage.

Resultant ratio is computed from this time and time of reference capacitor. When
is known reference capacitance, it is possible calculate measured capacity. Require-
ments for reference capacity should has high temperature stability, that do not affect
measurements.

8.3.2 Temperature Measurement

Temperature measurement is similar to the capacitance measurement. Differ-
ent measured parameter is resistance instead of capacitance. It is required to add
externally one 10 nF capacitor.

For measuring temperature could be used internal aluminium thermistor or up
to three external sensors (PT0 – PT2), for example PT1000. Input PT0 could be
used as reference alternately. Also as reference can be used internal Poly-Si with
temperature dependence close to zero.

Resultant ratio can be determinate from internal Poly-Si reference or external.
During operation could be switched. Also can be mixed external and internal ther-
mometers.

8.3.3 Value Reading

Measured values are stored in many registers. Every result has three resultant
bytes with own ratio in range from 0 to 7.9999995, where first three bits are digit
part and last 21 bits is decimal part of number. From this point of view is enough to
read first byte or two, but for more precision is possible to transfer all three bytes.
To read data from PCap02A is used I2C bus altogether with HYT sensors.

8.3.4 Communication with PCap02A

Communication with PCap02A has a few commands. Namely: Initialize, CDC
Start Measurement, Write Data to SRAM and next.

First what is needed to send to the chip is Initialize. It has operation code 0x8A
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in hexadecimal form. When PCap02A do not have programmed internal one time
programmable memory with program, it is necessary to send it. Communication of
writing program to internal SRAM is according to following diagram Fig. 8.12 and
analysed signal Fig. 8.16.

S Start Condition 3 Slave address R
Read/Write bit
(Write = 0)

A AcknowledgeS Stop Condition

S 0 1 0 1 0 0 0 0

A

1 0 0 1 x x x x

A

x x x x x x x x

A

A

7 6 5 4 3 2 1 0 S

x Operation Code

x SRAM Address

x Data

Master

Slave

...

...7 6 5 4 3 2 1 0

Data packet 1 Data packet n

A

Fig. 8.12: Write program to SRAM to the PCap02A

After slave address follows four bits (light blue boxes) which according to oper-
ation code. Next 12 bits (pink boxes) represents address position of internal SRAM
which is automatically incremented with incoming data.

Third thing is necessary to send configurations parameters. These are saved in
78 registers. For simplification and right configuration are sent all registers except
the last one, where is stored run bit. Operation code of write configuration has 9
bits and it begins by 0xC0 then follows one more zero and 7 bits which represents
configuration register.

To start measurement chip has start CDC command with operation code 0x8C.
When results are ready to read it, here are 45 output registers for all measured data
including status. Reading process is illustrated in the following diagram Fig. 8.14.

Read results command has 7 bits (up to 128) to set beginning position of register.
Usually are read all 45 bytes, but it is not necessary when is important only for
example one value. Internal pointer of result is automatically incremented as in
previous case, write to SRAM.

For simplification in our case are read all registers and then picked up only
important ones.

8.3.5 Connection Testing
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S Start Condition 3 Slave address R
Read/Write bit
(Read = 1)

A AcknowledgeS Stop Condition

S 0 1 0 1 0 0 0 1

A

1 1 0 0 0 0 0 0

A

0 x x x x x x x

A

7 6 5 4 3 2 1 0 S

x Operation Code

x Address of config register

x Data

Master

Slave

...

...7 6 5 4 3 2 1 0

Data packet 1 Data packet n

A

N Noacknowledge

N

...

Fig. 8.13: Write configuration to the PCap02A

S Start Condition 3 Slave address R
Read/Write bit
(Write = 0)

A AcknowledgeS Stop Condition

S 0 1 0 1 0 0 0 0

A

0 1 0 0 0 0 0 0

A

0 0 x x x x x x

A

7 6 5 4 3 2 1 0

S

x Operation Code

x Result register number

x Data

Master

Slave

...

...7 6 5 4 3 2 1 0

Data packet 1 Data packet n
AS 0 1 0 1 0 0 0 1

A

N Noacknowledge

N...

Fig. 8.14: Read results from PCap02A

Communication with PCap02A was tested very first with MBED development
kit. It is an easy programmable kit with powerful core. To verify connection was
used digital analyser, because at beginning implementing were problems with com-
munication and right configuration of the chip. Finally problem was solved and
PCap02A communicate very well. In the following screenshots of the analyser could
be seen initialization sequence in Fig. 8.15 and on the second one is write program
to the internal SRAM in Fig. 8.16.

jss
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Fig. 8.15: Analysed communication with PCap02A - Initialize

Fig. 8.16: Analysed communication with PCap02A - Write to SRAM
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9 Volatiles board

Sensors for humidity and temperature measurement are being on Volatiles board.
Volatiles measurement is not standardized for CubeSat, therefore was PCB designed
and made directly for use on VZLUSat–1. Drawings of the board is on the following
Fig. 9.1.

Fig. 9.1: Drawings of Volatiles board

9.1 I2C Interface

Communication on Volatiles board is ensured by Inter-Integrated Circuit (I2C)
interface. This bus was chosen with regards to common communication interface
for all sensors on board.

This second I2C bus is running from On Board Computer through the board
with humidity sensors to the radio and the second magnetometer. The first one
goes from OBC through others payloads as main communication bus.

Generally, the I2C bus is consists of two wires Serial data (SDA) and Serial clock
(SCL) with common ground. These wires are shared for all devices as shown in
Fig. 9.2.
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Fig. 9.2: Schematic of I2C connection - edit from [30]

This bus can works as singlemaster or multimaster. This bus is connected as
singlemaster and has only one master device. The multimaster type can connect
several devices of master or slave type. Master devices control communication, cre-
ate start and stop condition and generate a clock signal and must listen to the bus
before starting of communication to prevent collision with other masters.

When bus is idle, positive voltages are on SDA and SCL wires. Communications
starts with start condition by master, a falling edge on the SDA line when SCL is
still in logic 1. Generally, follows 7-bits address, this means, that on one bus can
be theoretically connected up tu 128 devices. The address has to be unique for
each device. The last eight bit of this byte is Read/Write bit, which determinates
following action, reading (high) or writing (low). Each byte is acknowledged by
ACK. After this initialisation procedure can starts data transfer. The direction of
the following byte or bytes transmitted, from master to slave or conversely, depends
on the Read/Write bit. Right value of bits are transferred with the rising edge of
SCL. When transmission is ending, master sends NACK bit instead of ACK and
after that communication is terminated by stop condition, a rising edge on the SDA
while SCL is in high.

Data bytes are transmitted on SDA line, for the conditions, that the change of
the Serial data line can be realize with consider on Serial clock which has to be in
logical 0. Communication via I2C is illustrated in Fig. 9.3.

Because the SCL is always made as open collector, can be set on low level even
if other device tries to set high level. This property is used, when some device is
slow and do not managed the communication.

Open collector requires pull-up resistors connected between power supply and
wires SDA and SCL. These resistor ensure high level on bus also in the time when
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Fig. 9.3: Chart with communication via I2C [30]

bus is idle. In this case, resistors are not located directly on Volatiles board but
they are placed on OBC board where is also the same bus connected.

9.2 PCB Design

Of course, sensors and other devices require power supply as well. This mean
that although for I2C are needed only two wires (SDA and SCL) for correct function
of the whole system are required at least four conductors. This minimum of wires is
enough for every used components, therefore is wired four conductors bus over the
Volatiles board.

With regard to Volatiles board location is needed to consider EMC radiation.
This radiation can interfere to others payloads. On neighbouring board is, for ex-
ample, very sensitive analogue cascade amplifier which can be as victim.

This disruption can be minimized by correct principles and rules of PCB design.
In the following sections are listed some of them.

9.2.1 Spilled Copper

Before starts to design the PCB it is necessary to choose how many layers
should the board have. In this case it is the simple circuit, thus there are not a large
demandingness for space.

On this board is only one I2C bus and some sensors, for all of that is enough
dimensions of one side of board. But according the Fig. 9.1 are some sensors from
top and others from bottom side of the board. With regarding to crosstalk and
radiation from board is this solution of design not advantageous.

One of the factors which affect the radiation is size of current loop. It is recom-
mend to make it a small is possible to reduce the radiation, voltage peaks, current
peaks . . .

In Fig. 9.4a is shown area of loop for case where is ground and signal wired as
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single conductor on one side of the board. This area of loop is remarkable larger
than in Fig. 9.4b, where is used spilled copper layer for common ground at one side
of PCB. Loop area is in this case remarkable smaller because is made up only of
Height of PCB (𝐻) and length of signal wire.

Power or Signal

Ground

RF
Power or Signal

Ground
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Ground
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(a) Ground as a wire
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Ground 20H

H

Power or Signal

Ground
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Ground
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IC1 IC2

Signal

Ground

IC1 IC2

(b) Ground as a layer

Fig. 9.4: Area of current loop

9.2.2 Longitudinal Radiation

For minimize longitudinal radiation is important to have crossover of power or
signal layer over the ground layer.

In the case, that the both layer have the same dimension , the longitudinal
radiation is maximum as in Fig. 9.5a. To reduce of radiation close loop of electric
field to the ground layer (spilled copper). Enough crossover for this situation has
to be at least twenty-times higher than the 𝐻. This case is shown in the Fig. 9.5b.
Standard double sided PCB with 𝐻 = 1.5 mm the crossover should be at least 3 cm,
which is too much. With regarding to this property is used adjustment which is
represented in Fig. 9.5c. There is whole board encircled by 1 mm width wire ring
with regular vias placement to ground. [33]
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Fig. 9.5: Longitudinal radiation

9.2.3 Radiation Emission
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In case of parallel conductors leading, when one is closer to the other, appears
crosstalk. This mean, that signal from one wire can be measured on the other which
is not connected to the same path.

These crosstalks and interferences are caused by parasitic capacity 𝐶p of the
signal way. Because the I2C bus is a voltage bus, thus the information is transmitted
by voltage level change. Combination of this Parasitic capacity (𝐶p) between wires
and speed of time change of voltage generates parasitic noisy current 𝐼n (9.1).

𝐼𝑛 = 𝐶𝑝
𝑑𝑈

𝑑𝑡
(9.1)

Due to this equation (9.1) is 𝐼n raising in depends on raising 𝐶p or slew rate of
signal. This disturbing can be minimized by decreasing of slew rate, which is set by
communication speed. Other way is decreasing 𝐶p or if is possible to decrease bus
voltage.

Parasitic capacity depends on Permittivity of vacuum (𝜀0), Relative permittiv-
ity (𝜀𝑟), cross section of longitudinal cut and distance of wires. It is similar to
capacitance of plain capacitor (9.2).

𝐶𝑝 = 𝜖0 · 𝜖𝑟 · 𝑆

𝑙
(9.2)

where 𝑆 is Dimension of capacitor boards and 𝑙 is Distance of capacitor boards.
For standard PCB core of type FR4 is 𝜀𝑟 = 4.7.

In this case, the capacitance can be reduced only by distance between wires.
For sufficient attenuation of crosstalk is length 𝑙 too high. Hence, there are added
protective parallel wires. These wires enclose each of the critical signal wire and
they are connected to ground layer at many places by vias. This way is created
conductor which is behaves slight like coaxial cable, it decrease the radiation level
of wires and risk of crosstalk [33].

9.2.4 Final Design

For final design of the Volatiles board is considering all features which are men-
tioned above. On the top side of board is spilled copper as power layer with signal
paths. Each signal path is enclosed by parallel grounded wires which create coaxial
cable. This edit allow decrease the crosstalk. Whole circuit design is encircuited by
ground ring with vias, which minimize longitudinal radiation. This ring is connected
to bottom spilled ground layer.

All these improvements contribute to the better electromagnetic susceptibility
and the lower electromagnetic interference.
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Vias to 
ground
layer

IC1

IC2

Signal

Fig. 9.6: Example of coaxial cable on PCB

According to Fig. 9.1 are sensors located at both side of board. After first probe
composing has to been made some changes in placement of other components. Final
component placement is in the Fig. 9.7.

ADD 0x2C

ADD 0x2A

1

Connector connection
1 SCL
2 SDA
3 VCC
4 GND

MU_2/2/2015

Volatiles Board_2.0_TOP

1

1

1

I2C_TO_ANT I2C_TO_MAG_SEC

IC3

IC5

HYT271

HYT939

(a) Top side

ADD 0x29

ADD 0x28

ADD 0x2B

IC1

HAL2

IC2

IC4

HYT271

HYT939

(b) Bottom side

Fig. 9.7: Component placement of Volatiles board

From each side of board is placed one from pair of HYT modules and one from
three of HAL2 sensors. The active layer of third HAL2 is takeout from probe.
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On the board are located two four-pins connectors as well. First I2C_TO_ANT
is input connector from radio board respective from OBC. Second connector with
name I2C_TO_MAG_SEC is plugged in to the second magnetometer on the same
I2C bus, first one is on OBC board.

1

Connector connection
1 SCL
2 SDA
3 VCC
4 GND

Volatiles Board_2.0_TOP

MU_2/2/2015

1

ADD 0x2C

ADD 0x2A

1

Connector connection
1 SCL
2 SDA
3 VCC
4 GND

MU_2/2/2015

Volatiles Board_2.0_TOP

1

1

1

I2C_TO_ANT I2C_TO_MAG_SEC

IC3

IC5

HYT271

HYT939

(a) Top side

Volatiles Board_2.0_BOT

MU_2/2/2015

ADD 0x29

ADD 0x28

ADD 0x2B

IC1

HAL2

IC2

IC4

HYT271

HYT939

(b) Bottom side

Fig. 9.8: Complete design of Volatiles board

Each of HAL2 sensors has a thermometer PT1000. One of them is evaluated
by PCap02A (more information about it is in the section 8.3.2 Temperature
Measurement) and others around Measure board (see 3.2 Experiments).

Pull-up resistors (𝑅PU) for I2C bus are not located on Volatiles board, they are
placed on OBC board and connected between power supply and SDA respective
SCL line. There are not placed addition blocking capacitor as well. This capacitors
are integrated directly in HYT sensors, board for HAL2 sensors has own additional
power converter with these capacitors (Fig. 8.8).

Volatiles board has also glued coil. This coil is one of six others coils in the probe,
which are ensuring stabilization of the nanosatellite, with help of Earth’s magnetic
field, because the CubeSat has not allowed to use an active engines.
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(a) Top side (b) Bottom side

Fig. 9.9: Photo of Volatiles board
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10 Calibration

Every sensors, which are on probe board have to be calibrated before using
in space. All sensors with the aim of measurement the outgassing of part of the
VZLUSat–1 satellite in space. There are two HYT 939, two HYT 271 and three
HAL2 sensors on Volatiles board, in this case. As was mentioned, HYT sensors
communicate via I2C and HAL2 sensors are connected to board with PCap02A (see
8.3). This board is communicate via I2C as well.

Calibration has to be done before complementation of probe and definitely before
launching probe to the space.

Without this procedure it would be measured some data but it will be not
possible to exactly determinate what they mean.

10.1 Preparing

It is required to change the addresses on almost all sensors, because all of them
has as default factory address 0x28. PCap02A has defined this address in hardware.

Process of address changing is described in section 8.1.2 Address Changing
for HYT sensors.

Tab. 10.1: Used address on Volatiles board

Device Address Position on board
PCap02A 0x28 IC1
HYT 271 0x29 IC2
HYT 271 0x2A IC3
HYT 939 0x2B IC4
HYT 939 0x2C IC5
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10.1.1 Mbed

During calibration and testing procedures, except situation when was Volatiles
board connected directly to OBC on VZLUSat–1, was board connected by I2C line
to Mbed development kit and read out data were further transferred to computer
via USB.

Mbed is developing platform based on ARM processor designed for rapid pro-
totyping. This platform is based on the 32-bit ARM Cortex-M3 core running at
96MHz. Whole developing kit has include 512 kB FLASH, 32 kB RAM. On board is
lots of interfaces like Ethernet, SPI, I2C and more as well. There are also analog-to-
digital and digital-to-analog converters. Can be used lot of digital I/O interfaces.

Developing board is powered from USB but can be connected to external power
source as well.

Programs for this developing kit is required in C/C++ languages. [31]

In this case is Mbed used only to writing configuration to PCap02A and next to
reading values from Volatiles board via I2C.

Fig. 10.1: Mbed developing board [31]

10.2 Function Test

As a first step for calibration is connecting and verifying of function each sensor.
If are all sensors still alive and communicate with program.
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10.3 Atmospheric Pressure

Functional test of these sensors consist of measurement the response of humidity
sensors on Volatiles Board in closed box with dry air inlet (the air brings to the box
is desiccate by molecular sieve). As can be seen in Fig. 10.2a Volatiles Board is, in
this case, placed in a plastic box in a way that none of its sides touched the box and
sensors on each side of the board had enough space around them.

Dry air inlet was installed so that the flow of dry air would be approximately
the same on both sides of the board. In the wall of the box opposite to dry air inlet
is a small hole through which I2C line entered to the box that also served as a vent.
Whole arrangement of full functional test can be seen in Fig. 10.2b.

(a) Volatiles board in box (b) Arrangement of Functional test

Fig. 10.2: Construction of Function tests

This test was intended to show functionality of the sensors after environmental
tests, not to calibrate them. Initial temperature and relative humidity was not
controlled and depended on ambient conditions.

(a) Results form HYTs (b) Results form HALs

Fig. 10.3: Sample of function test measurement

Initial values of sensors are slightly differed, which could be caused by their
different position in measuring chamber, but other results shown that the response
of the sensor to the humidity change is correct. Small differences in measured values
was most probably caused by their position on different sides of Volatiles board.

10.3 Atmospheric Pressure

As a first step, sensors had to be calibrated at atmospheric pressure for lower
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10. Calibration

humidity. Sensors were placed to the calibration chamber and their response to
lower humidity in various temperatures was tested.

Special calibration chamber that allows controlled changes of temperature in the
range of 20 °C to 70 °C was made for the measurement and can be seen in Fig. 10.4.
All sensors are placed on aluminium block heated by Peltier plate. There are two
HYT 271 sensors, two HYT 939 sensors, three HAL2 and one Pt1000. Detailed view
on the placement of the sensors can be seen in Fig. 10.5.

Fig. 10.4: Calibration chamber

Measurement of HAL2 sensors and Pt1000 ensures board with PCapO2A. This
board is connected through I2C together with HYT sensors to Mbed development
kit and read out data were further transferred to computer via USB. Data from
all humidity sensors were read out simultaneously. HAL2 sensors were read out as
capacitances relative to reference capacitance 2.2 nF.

The sensors were calibrated at set Dew point 10, 0, -10,-20, -30, -40 and -70°C.
Because of outgassing of components inside the calibration chamber and possible
leaks we were not able to achieve lowest possible dew point generated by dew point
generator (-70°C). The lowest dew point measured in the outlet was -49 °C.

At first, the sensors were calibrated at room temperature (Peltier plate turned
off). Next step of a calibration consisted of measuring their dependence on tempera-
ture. After stabilisation of the atmosphere inside calibration chamber, temperature
was consecutively set to 20, 30, 40, 50, 60 and 70 °C. Calibration at increased tem-
perature wasn’t done at lowest humidity level (-70 °C 𝐷𝑃 ).

Each measurement was the average of 10 consecutively read out values, recorded
after stabilisation of conditions inside the calibration chamber. Signal of the sensors
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10.4 Vacuum Chamber

(a) Whole system (b) Detail on placement

Fig. 10.5: Heating block with sensors

was related to output values of dew point.
The values of measured temperature and Dew point at calibration points are

summarized in Tab. 10.2 and Tab. 10.3. Temperature from two HYT 271 is averaging
and taken as a reference, because they had similar position as HAL2 sensors and
Pt1000 sensor connected to HAL2 board was not calibrated before.

Tab. 10.2: Temperature measured at calibration points

Set temperature Set dew
Room 20 °C 30 °C 40 °C 50 °C 60 °C 70 °C point
21.253 20.176 29.237 38.936 48.155 57.485 66.738 10 °C
21.052 20.245 29.557 38.879 47.902 57.534 67.09 0 °C
20.813 20.083 29.517 38.721 48.368 57.461 66.992 -10 °C
20.648 20.135 29.208 38.515 48.073 57.607 66.816 -20 °C
20.552 20.246 29.371 38.584 48.047 57.475 66.896 -30 °C
20.449 19.949 29.351 38.786 48.194 57.562 66.739 -40 °C
20.431 20.111 -70 °C

𝑥̄ 20.74 20.14 29.37 38.74 48.12 57.52 66.88
𝛿𝑥 0.29 0.1 0.13 0.15 0.14 0.05 0.13

Results from atmospheric calibration are also in following graphs.
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10. Calibration

Tab. 10.3: Dew point measured at calibration points

Set dew point Set
10 °C 0 °C -10 °C -20 °C -30 °C -40 °C -70 °C temperature

8 0 -6.1 -17.1 -27.7 -34.9 -43 Room
7.9 0.4 -9.4 -19 -30.3 -38 -47.8 20 °C
8.2 0.2 -9.4 -19.1 -30.8 -37.7 -48 30 °C
8.3 0 -9.7 -19 -31.1 -37.6 -48.7 40 °C
8.4 0 -9.6 -19 -31.3 -37.5 -49 50 °C
8.6 0 -9.6 -18.9 -31.4 -37.4 -49.1 60 °C
8.7 0.1 -9.4 -18.8 -31.2 -37 -49 70 °C

𝑥̄ 8.35 0.12 -9.52 -18.97 -31.02 -37.53 -48.6
𝛿𝑥 0.26 0.15 0.12 0.09 0.37 0.3 0.51

(a) Measurement of HYT sensors at various
temperatures 1.part

(b) Measurement of HYT sensors at various
temperatures 2.part

(c) Measurement of HAL sensors at various
temperatures 1.part

(d) Measurement of HAL sensors at various
temperatures 1.part

Fig. 10.6: Calibration on Atmospheric pressure

10.4 Vacuum Chamber

After calibration in atmospheric pressure follows testing in vacuum chamber.
This part of calibration procedure should help to get an image of sensor’s behaviour
on orbit. In this case sensors were tested in wide temperature range from -25 °C to
80 °C at low pressure.

For this measuring was necessary to make and adjust measurement vacuum
equipment. It was required uniform heating for all sensors which is fundamental
for comparison characteristics of sensors. This arrangement is shown in Fig. 10.7

All sensors were again placed on aluminium block. This block was temperature
connected with Peltier plate. Aluminium block with sensors and plate were placed
into vacuum chamber. I2C bus was connected through bushing out from the chamber
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10.4 Vacuum Chamber

Fig. 10.7: Sensors in vacuum chamber

same as power supply for Peltier plate.
As first time vacuum chamber was pumped out to low pressure approx. ·10−4 mbar

with tested block of sensors inside. Then Peltier plate was connected to power sup-
ply and sensors were heated. During pumping out and after pressure stabilization
values from sensors were read as well.

After sensors had been tempering to maximum allowed temperature than tem-
perature had been slowly decreasing to room temperature. This temperature cycle
was repeated several times without venting of the vacuum chamber. After these
measurements cycles vacuum chamber was venting and whole test was repeated
with enough time delay.

After this part of measurement was necessary to change Peltier plate for testing
at low temperature below zero degree of Celsius. For this temperature range were
also used above mentioned procedures.

10.4.1 Results from Vacuum Measurement

Reading and measurement values are pre-processed and processed on several
levels. The value of digital sensors HYT is after reading the raw data from the
sensor, computing converted into digital format relative humidity and temperature
directly by development kit Mbed. Data from measurement in vacuum chamber were
read through bushing on chamber. Next step is data processing in MatlabR2015a.
During pumping out the chamber was register pressure inside as well. These data
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10. Calibration

Fig. 10.8: Arrangement of Vacuum test

have to be write down by hand because there is not output from pressure meter.

Fig. 10.9: Decreasing pressure during pumping

Points of pressure were spline to curve by MatlabR2015a as well. For this
processes was used following Code 10.1.

Code 10.1: Spline by pressure
close all
clear all
clc

Presures = [ %Pressure (sample_mbar; ...)
4 4.6e2;
6 2.2e2;
7 1.2e2;
8 7.4e1;
9 2.2e1;
10 6.3e0;
11 2e0;
12 1e-1;
13 1.2e-3;
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10.4 Vacuum Chamber

];

line=Press (1 ,1):0.1: Press(length(Press ),1); % New axis
Presspline=spline(Press (:,1),Press (:,2),line); % Spline

Sensor response of HYT type slowly decreases during evacuating the chamber.
Response from HAL sensors shows changes but signal was still strong enough. Data
from HALs are very noisy and it is recommended to make Digital Signal Processing
on them.

One possibility how to make the shape smooth is moving average. This method
is very simple and used for smooth out short-term fluctuations. Disadvantage of
this process is that, it is make the slower response of signal. Principle of this based
on equation (10.1).

𝑥𝑖 = 1
𝑘

𝑘+𝑖∑︁
𝑛=𝑖

|𝑥𝑛| 𝑖 ∈ Z, 𝑖 ∈ ⟨0; 𝑁 − 𝑘) (10.1)

Where 𝑥 is Point of signal, 𝑁 is Number points of signal and 𝑘 is Number points
of moving averages.
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11 Pre-flight Preparations and Testing

Testing of VZLUSat–1 was made in several phases and different approaches were
applied. The payloads were replaced by dummy, like any sensors, by qualification
engineering models or proto-flight models. Every board have to pass the line of test
before can be used for space mission. Some of these tests are used only once but for
opposite side the boards have to pass multiple times of others.

11.1 Engineering Qualification Model

Before then the final version of satellite will be set up is necessary to make
Engineering qualification model (EQM) testing. In this part of testing procedure is
test of boards mechanical and electrical compatibility.

After that, is whole probe underwent environmental testing — vibration, shock
and thermal vacuum tests.

After these tests were made the mentioned changes on PCB design of Volatiles.

11.1.1 Vibration and Shock Test

VZLUSat–1 was fully assembled, adjusted and inspected. Verification consisted
of different vibration tests — the device was exposed to sinusoidal and random
vibrations in mounted axes. Next test block were shock tests, when shocks in tests
axis were applied. After each of these test was done complete resonance search in
all axis. [32]

11.1.2 Thermal Vacuum Test

Because the experiments will process on orbit, there were also thermal vacuum
tests. The probe placed in vacuum chamber, functional tested there, next baked out
and thermal vacuum tests became cycling. It consisted of four test for low and for
high temperature. Then were made again the functional tests, at first at minimum,
then at maximum operational temperature. Then was done a perform bake out test,
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11. Pre-flight Preparations and Testing

Fig. 11.1: Vibration and shock testing [32]

the device put out from the vacuum chamber and final functional tests executed. [32]

11.1.3 Other Tests

After all these invasive assays, more subtile EMC test followed. In this phase
were examined bonding and isolation tests to find out, if something did not break
during the vibrations and baking out. EMC was studied for radiated emissions in
E and H field. The spacecraft had to be in tolerance band all time.

Also so called end to end situations were simulated. That means, situations
when any part does not work completely, for example when a switch or connector
does not work or extendible part did not tilt.

In the end of each of test or of a subtest, functional test and visual inspection
were examined, in the end full functional tests were done. These tests were prepared
in standard environment – room temperature, ambient pressure and humidity and
cleanroom class 100 000 and verify the functionality and parameters of each board. It
verifies interaction between individual boards as well as their behaviour as integrated
complex. [32]

11.2 Function test after EQM
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11.2 Function test after EQM

Fig. 11.2: Thermal vacuum testing [32]

As was mentioned, after EQM testing in thermal vacuum chamber, vibration
and shock testing is necessary to make function test. This type of test is described
in 10.2 Function Test.

(a) Before EQM testing (b) After EQM testing

Fig. 11.3: Results form HYT sensors

From these results can be seen that from electrical point of view all sensor sur-
vived. All HW parts of whole board survived as well. But when Fig. 11.3a and
Fig. 11.3b are compared, there can be seen a difference between charts of one sen-
sor. Although this HYT sensor with address 0x29 measures but was probably me-
chanical damaged. This damage may have occurred during manipulation with the
Volatiles board when the probe was assembled.
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11. Pre-flight Preparations and Testing

(a) Sensor with contaminations (b) Sensor with a scratch

Fig. 11.4: Examples of damage [22]
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12 Conclusion

Shrnutí, co už to přineslo, potenciál, ...
Článek, poster, konference ..
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A List of CubeSats of the current mis-
sion QB50

The list of the current CubeSats in the QB50 project. Last update 1st April 2015.

Fig. A.1: List of CubeSats [4]
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B Odkladová plocha

• INMS – Ion-Neutral Mass Spectrometer
• FIPEX – Flux-Φ-Probe Experiment
• m-NLP – multi-Needle Langmuir Probe

before considering accomplished circumstances leakage
either observation such distorted comprising superimpose spurious restricts ta-

pered
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C The content of enclosed CD/DVD

Nezapomeňte uvést, co čtenář najde na přiloženém médiu. Je vhodné okomento-
vat obsah každého adresáře, specifikovat, který soubor obsahuje důležitá nastavení,
který soubor je určen ke spuštění atd. Také je dobře napsat, v jaké verzi software
byl kód testován (např. Matlab 2010b).
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