
Bachelor’s thesis

Web Front-End for Student Data Analysis
Application

Jonas Vaclavek

May 2015

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

České vysoké učení technické v Praze
Fakulta elektrotechnická

Katedra kybernetiky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Jonáš V á c l a v e k

Studijní program: Otevřená informatika (bakalářský)

Obor: Informatika a počítačové vědy

Název tématu: Webový front-end aplikace pro analýzu studentských dat

Pokyny pro vypracování:
1. Seznamte s aktuální verzí aplikace pro analýzu studentských dat (informace o projektu
 a veškeré materiály jsou k dispozici na [1]). Analyzujte slabiny systému z hlediska webové
 prezentace a analyzujte požadavky na rozšíření stávající funkčnosti front-endu aplikace.
2. Na základě provedené analýzy navrhněte úpravy a rozšíření aplikace.
3. Vámi navržené řešení implementujte.
4. Ověřte funkčnost navrženého front-endu.
5. Zhodnoťte dosažené výsledky a další možné pokračování tohoto projektu.

Seznam odborné literatury:
[1] OU Analyse project, analyse.kmi.open.ac.uk
[2] Fielding Jonathan - Beginning Responsive Web Design with HTML5 andC SS3 - Apress
 2014
[3] Few Stephen - Information Dashboard Design: The Effective Visual Communication
 of Data - O'Reilly Media 2006
[4] Souders Steve - High Performance Web Sites: Essential Knowledge for Front-End
 Engineers - O'Reilly Media 2007

Vedoucí bakalářské práce: Ing. Jakub Kužílek, Ph.D.

Platnost zadání: do konce letního semestru 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
vedoucí katedry

 prof. Ing. Pavel Ripka, CSc.
děkan

V Praze dne 2. 12. 2014

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Jonáš V á c l a v e k

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Web Front-End for Student Data Analysis Application

Guidelines:

1. Familiarize with current version of student data analysis application (all required information
 available at [1]). Analyse system weaknesses with respect to web presentation and analyse
 requirements for application front-end development.
2. Suggest changes and improvements of application according to analysis.
3. Implement these suggestions.
4. Test functionality of newly created front-end.
5. Evaluate achieved results and outline future development of project.

Bibliography/Sources:
[1] OU Analyse project, analyse.kmi.open.ac.uk
[2] Fielding Jonathan - Beginning Responsive Web Design with HTML5 andC SS3 - Apress
 2014
[3] Few Stephen - Information Dashboard Design: The Effective Visual Communication
 of Data - O'Reilly Media 2006
[4] Souders Steve - High Performance Web Sites: Essential Knowledge for Front-End
 Engineers - O'Reilly Media 2007

Bachelor Project Supervisor: Ing. Jakub Kužílek, Ph.D.

Valid until: the end of the summer semester of academic year 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, December 2, 2014

Poděkování
Děkuji PhD. Jakubu Kužílkovi za odborné konzultace, připomínky a cenné rady, které
mi předal při vypracovávání bakalářské práce. Děkuji své rodině, která mi poskytla
potřebnou podporu po celou dobu mého studia.

Prohlášení autora práce
Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informační zdroje v souladu s Metodickým pokynem o dodržování etických
principů při přípravě vysokoškolských závěrečných prací.

V praze dne 21.5.2015 BROUCAAAAA ...
Podpis autora práce

v

Abstract
OU Analyse je webová aplikace vyvíjena na Open University ve Velké Británii. Zabývá
se predikováním úspěchu studentů v kurzech. V této bakalářské práci je analyzován
její dashboard z hlediska výkonu, podpory webových prohlížečů a mobilních zařízení.
Aplikace je nejdříve zkoumána vzhledem k požadavkům projektu. Poté je porovnána s
běžně používanými postupy při vývoji webových aplikací. Na základě provedené analýzy
jsou navržena řešení problémů a vylepšení nedostatků, která vedou ke zvyšené rychlosti
aplikace, vyšší multiplatformní kompatibilitě a zvýšené přehlednosi webových stránek
při prohlížení z odlišných zařízení. V závislosti na navržených změnách, je vytvořena
nová verze aplikace, která je porovnána s původní verzí.

Klíčová slova
OU Analyse; Webová aplikace; Front-end; Responsivní design; Multiplatformní kompa-
tibilita

vi

Abstract
OU Analyse is a web application developed under The Open University in Great Britain,
which aims at prediction of success of students in a course. In this thesis, dashboard
of the application is analysed from the performance, cross platform compatibility and
mobile device support point of view. The application is analysed with respect to the
requirements of the OUA project and then with respect to the general practices used
while developing web applications. Based on the analysis, solutions of the problems
and improvements of the weaknesses are suggested, which leads to increased speed
on the web site, higher cross-platform compatibility and layout improvements, when
accessing the application from different devices. These suggestions are implemented
and comparison between the old and the new version is made.

Keywords
OU Analyse; Web application; Front-end; Responsive design; Cross-platform compati-
bility

vii

Contents

1 Introduction 1
1.1 Open University . 1
1.2 OU Analyse . 2

2 Theoretical part 3
2.1 Web application . 3
2.2 Front-end . 3

2.2.1 Hypertext Markup Language . 4
2.2.2 Cascading Style Sheet . 5
2.2.3 JavaScript . 6
2.2.4 Implementation in browsers . 6

2.3 Back-end . 6
2.4 Hypertext Transfer Protocol . 7

2.4.1 Types of HTTP request . 7
2.4.2 HTTP header fields . 8

2.5 JavaScript Object Notation . 8
2.6 AJAX . 9
2.7 JavaScript libraries and frameworks . 10

2.7.1 Libraries . 10
2.7.2 Framework . 12

2.8 Best practices . 12
2.8.1 Minimize number of images . 12
2.8.2 Minimize number of JS and CSS files 12
2.8.3 Use browser cache . 13
2.8.4 Write external JS and CSS . 13
2.8.5 Compress HTTP response . 13
2.8.6 Minify JS code . 13
2.8.7 Use a content delivery network 13
2.8.8 Put your style sheets in the document HEAD 13
2.8.9 Move JS scripts to the bottom of the page 14

2.9 Responsive design . 14

3 OU Analyse web application 15
3.1 Contents of OUA dashboard . 15

3.1.1 Module overview . 17
3.1.2 Student overview . 18

3.2 Technologies behind the components . 19
3.3 Analysis of OU Analyse . 20

3.3.1 Best practices . 20
3.3.2 Responsiveness of OUA . 21
3.3.3 Compatibility across multiple browsers 22

3.4 Summary . 23

4 Practical part 25
4.1 CSS framework . 25

4.1.1 Choosing a framework . 25
4.1.2 New project info . 25

viii

4.1.3 New login page . 25
4.1.4 New permission denied and general error pages 26
4.1.5 New module and student overview pages 26

4.2 Solving IE8 compatibility issues . 28
4.3 Performance improvements . 29

4.3.1 Expires header . 29
4.3.2 Gzip . 29
4.3.3 Minification . 29
4.3.4 Others . 29

4.4 New features . 30
4.4.1 Mustache.js . 30
4.4.2 Owl carousel . 31
4.4.3 Votes indicator . 32
4.4.4 Time machine . 33
4.4.5 Tour . 34

5 Testing 35

6 Conclusion and future plans 37

Appendices

Bibliography 40

ix

1 Introduction

In last years, web applications (WA) have become one of the very common way peo-
ple interact with computers thanks to the increasing internet speed. WA are capable
of more complex operations and provide various functionalities. In many instances
they tend to replace classic desktop applications for many reasons, e.g. cross-platform
compatibility support or ability to be easily updated and maintained. However, while
providing many advantages, there are certain weaknesses of which one has to be aware
when implementing such application. The main disadvantage stems from the fact that
developer does not know what the hardware, software and network the application will
run on. For example, a general drawback of WA is their slower response to user ac-
tions when compared to a reaction speed of desktop applications. It is often caused by
inappropriate front-end development [1].

In my thesis, I focus on front-end development with the main goal to increase WA
performance, make WA more user friendly and create WA compatible with a multiple
browsers. Also, I add new functionalities to enhance user experience while using WA. I
have taken a real world example of a WA developed at the Open University (OU) and
focused on improving this application’s front-end. Both OU and the WA are presented
in the rest of this chapter. Chapter 2 provides a technical introduction into the problem
(what is a web application, what technologies are used, etc). Chapter 3 shows the OU
Analyse application in details and problems in the current iteration are pointed out
with a main focus on front-end development. Chapter 4 is dedicated to solving of the
previously found problems and implementing new features. Finally, testing of the newly
created version is taken and results are compared to the original version in last part.

1.1 Open University

The Open University is one of the largest distance learning universities in the United
Kingdom with more than two hundred thousand students. It offers hundreds of distance
learning courses, which can be studied both as part of the university degree or as
standalone module. Students use Virtual Learning Environment (VLE) accessible via
Internet to access study materials, for submitting their assignments, accessing forum,
etc. Students of one module are typically divided into several study groups of no more
than twenty persons. Every study group is assigned an associate lecturer (also called
tutor), who guides students throughout the module.

The OU has implemented several interventions in order to increase student retention.
Since number of students in each module can be more than few thousand, the inter-
ventions have to be carefully planned. Right intervention is important mainly for two
reasons. Firstly, students who are at risk of failing a module can be offered appropriate
help. Because one module at the Open University costs up to 1200 pounds, such help
can also lead to significant financial savings for these students. Secondly, more precise
intervention management can help to increase student retention therefore to increase
income of the university and also decrease money spent on interventions made. [2]

1

1 Introduction

1.2 OU Analyse
OU Analyse (OUA) project is being developed at the OU to help module teams and
tutors to manage the interventions. It aims at predicting students at risk of failing. This
prediction is based on demographic data about students, legacy data about the module
and data collected from the VLE. All collected data are evaluated by four predictive
models using machine learning methods to create list of students, who are likely to fail
the module. The module team receives weekly updated lists of students predicted as
at-risk. VLE is also used for modelling of all possible study trails which students can
follow throughout the module and which lead to success. Based on that student can
be recommended an activity in order to improve his performance in the course. Simple
diagram of the process can be seen in Fig. 1.

Figure 1 OU Analyse data analysis process [3]

Dashboard for OUA has been implemented to simplify access to predictions of stu-
dents’ results and other student data. It offers course overview showing what is the
average VLE activity, details about previous presentations of same course, etc. It also
shows a list of students attending the course and their predictions for the next assign-
ment along with their final result.

The dashboard is mainly used by module teams and tutors to access data about
students. It is important that tutors do not struggle to use the dashboard and so
dashboard has to be as user friendly and well-organized as possible. Because every
dashboard is different from case to case, it can not be simply copied from an already
existing system. Therefore, it takes some time to find a proper way to structure, style
and implement interactions with a dashboard. The design process is usually iterative
and comes with problems of many types [4].

2

2 Theoretical part

This section briefly summarizes the concepts on which OUA and my work are based
on. It shortly explains what is web application, which parts it consists of and also
underlines the most important technologies used for development of WA.

2.1 Web application

WA can be described using simple client-server model (Fig. 2). WA is an application
using a web browser as a client. Client communicates over the Internet with a server
using Hypertext Transfer Protocol (HTTP) in order to deliver content of WA to a user,
who interacts with a browser (client). More details about client, server and HTTP can
be found in sections 2.2, 2.3 and 2.4 respectively.

Using browser as a client has many benefits. One of the most important is fact that
updates of WA need to be made only on server side. When users access an application
after an update, new version of WA is automatically used. This removes the need of
installing new version of the application on potentially thousands of client computers.
It also makes cross-platform compatibility support easy to accomplish. Finally, users
do not need to own high performance computers, since only browser is needed for using
WA. Other benefits usually depend on the type of WA.

Figure 2 Simple web application architecture using client-server model.

2.2 Front-end

Development of client side of WA is called front-end development and front-end (FE)
itself is then understood as every content user can see and can interact with in a browser
[5]. It is usually a mixture of Hypertext Markup Language (HTML), Cascading Style
Sheet (CSS) and JavaScript (JS). All these languages are interpreted and controlled
by a web browser resulting in a web page - interface user can interact with. Set of all
available web pages is called web site [6].

3

2 Theoretical part

2.2.1 Hypertext Markup Language

HTML is a mark-up language used to create web pages [7]. It belongs to a family of
declarative programming languages [8], which means that HTML specifies content of a
web page and its structure, but does not specify how this content is styled or behaves.
Parts of HTML document are labelled by using HTML tags, each tag specifies type
of content. It consists of a tag name wrapped together with tag attributes in angle
brackets, i.e. "<name attributes>". Then, HTML element is a combination of opening
and closing tags enclosing the content. Structure of a web page is created by nesting
HTML elements inside of one another. Fig. 3 shows simple HTML document with
mandatory tags marked.

1 <html > // mandatory
2 <head > // mandatory
3 <title >Example page </title > // mandatory
4 </head >
5 <body > // mandatory
6 <ul class="list">
7 Item 1
8 Item 2
9

10 <button id="example -btn" type=" button ">
11 I am button
12 </ button >
13
14 OU Analyse web site
15
16 </body >
17 </html >

Figure 3 Example HTML code

Before browser renders a page, HTML file is parsed and Document Object Model tree
(DOM) is created for inner representation of the HTML document inside a browser [9].
DOM is an interface of HTML elements to other languages like JS. This interface
enables access to HTML elements but also enables dynamic changes in HTML code.
Fig. 4 shows DOM tree created from HTML code from Fig. 3.

Figure 4 Example of DOM tree

Once the DOM is created a page is rendered in a browser Fig. 5.

4

2.2 Front-end

Web sites and their pages are connected using Hypertext method, which allows user
to navigate from page to another page. Navigation to other page is done by clicking
on a special element which has a link to the page specified as a part of HTML tag, an
example of such element is <a> tag from previous figure.

Figure 5 Rendering of example HTML code Fig. 3

2.2.2 Cascading Style Sheet

It is a good practice to separate page structure from its design. To do so, CSS is
used as a styling language. It defines layout, color, size and other attributes of page
elements. CSS document is a text file containing a set of CSS rules, where rule consist
of selector and declaration block. Each rule affects page content specified in selector
pointing either to:

∙ All elements of one type in a DOM, e.g. all tags.

∙ Elements of a same class or id (both are tag attributes). In CSS, these rules
start with dot (.) and hash (#) for classes and ids, respectively, e.g. ".list" and
"#example-btn".

∙ Elements in a special state, e.g. mouse over the element [10].

∙ Elements based on relative position in a DOM tree. These are specified as a
combination of previous types of selectors, e.g. ".list li" matches only list items
 of ".list" class elements.

Declaration block is a semicolon separated list of individual style declarations in a
form: "property name" : "value" , e.g. "color : red".

CSS can be included to HTML file by using one of the following methods:

∙ External style sheet, CSS is written into external file and included using <link>
tag in <head> of HTML file.

∙ Internal style sheet, CSS rules are written as a part of <style> tag directly in
HTML code.

∙ Inline style, CSS rules are applied to single element using "style" attribute of the
relevant tag.

Fig. 6a demonstrates result of CSS styling Fig. 6b applied on code Fig. 3.

5

2 Theoretical part

a) Result of CSS applied on HTML snippet
(Fig. 5)

1 .list li{
2 list -style -type: none;
3 padding : 5px;
4 background : grey;
5 display : inline ;
6 }
7 #example -btn{
8 height : 50px;
9 font -style: italic ;

10 }
11 a{
12 text - decoration : none;
13 font - weight : bold;
14 }

b) Example CSS code

Figure 6 Demonstration of using CSS to style HTML document

2.2.3 JavaScript

JS is interpreted programming language generally used at client side to control user
input, control browser actions, load additional content to a browser and make changes
to the DOM. In short, it gives functionality to a page. JS code can be added to HTML
document in two ways:

∙ Inline JavaScript, JS code is written as content of HTML document between
opening and closing <script> tag.

∙ External JavaScript, JS code is written in external file and reference to the file
is defined in <script> tag attribute. Any content enclosed by the <script> tag is
not executed.

When HTML <script> element is reached, during parsing of HTML document, the
JS code defined by the tag is immediately executed in a browser using built-in JS
interpreter.

2.2.4 Implementation in browsers

Even though HTML, CSS and JS are standardized [11], [12]. It can be shown (e.g.
charts at portal "Can I use" [13]) that their implementation across available browsers is
not the same and so it is challenging to create WA which behaves identically (at least
very similarly) in all possible browsers. Tab. 1 lists the most popular web browsers and
their market share.

Name Chrome Internet Exlorer Firefox Safari Opera Others
Usage 46.5% 20.4% 17.5% 10.5% 1.4% 3.7%

Table 1 The most popular web browsers on the market [14].

2.3 Back-end
Back-end (BE) is server side of WA. Even if understanding of BE in today’s WA is
fairly more complex than shown in Fig. 2, BE is not in the main concern of this thesis
and thus I will describe parts relevant to FE development and at a level necessary to
understand how it influences FE performance.

6

2.4 Hypertext Transfer Protocol

BE usually consists of three parts:
∙ Web server, a computer running all necessary software to convey communication

between user and web application possible.
∙ Database, stores data and reacts to a Create, Read, Update, Delete (CRUD)

operations of application.
∙ Application scripts and services, decide what actions should be carried out

and how should they be done with respect to a current state of application.
Model of WA with extended back-end can be seen in Fig. 7.

Figure 7 Web application model with extended server-side

2.4 Hypertext Transfer Protocol
HTTP is a protocol describing how browsers and servers communicate with each other
over the Internet in order to exchange data. The process works as follows [15]:

1. Establishment of a connection between client and WA server.
2. If the connection is successful request is sent by the client. It is a message

requesting data from a WA server. The data can be of various types - web pages,
images, client-side scripts, confirmation of user authentication and more.

3. The server then sends response which contains requested data together with a
status code. There are several types of status codes depending on success or failure
of the requested operations.

4. Last step closes the connection by either both parties.
Both, request and response, are text based messages, each message has three parts [15]:

∙ an initial line, defines mainly source of information,
∙ header, zero or more lines specifying additional parameters of the request (see

2.4.2),
∙ an optional message body, contains data sent by client/server.

2.4.1 Types of HTTP request

When user access the WA for the first time, browser sends an unconditional HTTP
requests to a server. Server sends back the requested data and the browser may cache
the data for later use, if the response’s header allows it.

If a subsequent request is made, expires and max-age parameters of the copied re-
sponse are checked in order to determine whether the resource is fresh or not. If the
cached copy is not expired, it is used and no HTTP request is made.

7

2 Theoretical part

On the other hand, if the resource is expired, the browser sends a conditional request
to a server to check whether the resource has been modified since last request or not.
The request contains If-modified-since header field indicating last version of the resource
in a cache. The server returns either response containing Not Modified header, signalling
that the cached copy is up to date and therefore can be used, or response containing
new data in a body of the response.

2.4.2 HTTP header fields
Following is a list of HTTP header fields whose setting relates to a performance of FE:

∙ Expires field containing date/time information when the response becomes stale.
∙ Cache-control specify the maximum time in seconds to cache response in a

client’s memory. If browser supports expires and cache control and both are
present, according to HTTP specification [15], cache control parameter is pre-
ferred.

∙ Last-modified information specifying date/time of last modification of requested
file.

∙ If-Modified-Since used when conditional request is made (see 2.4.1).
∙ Accept-Encoding is list of compression algorithms supported in a browser.

Definition of all available header fields can be found on [16].

2.5 JavaScript Object Notation
As mentioned in section 2.4, HTTP responses/requests can serve for sending data.
JavaScript Object Notation [17], mostly called JSON, is a human-readable lightweight
data-interchange format using two structures to transmit data from server to client,
those are:

∙ Object - a collection of name/value pairs, where individual pairs are separated
by a comma. An object is wrapped into curly brackets "{" and "}" (see Fig. 8).

∙ Array - an ordered list of comma separated values. An Array is wrapped into
square brackets "[" and "]" (see Fig. 9).

1 {
2 "name":"value",
3 "name":"value",
4 ...
5 }

Figure 8 JSON object example

1 [
2 value,
3 value,
4 ...
5]

Figure 9 JSON array example

Values, either in object or array structure, can be of following data types:

∙ String
∙ Number

∙ Object
∙ Array

∙ boolean values
∙ null

8

2.6 AJAX

More complex object are created by nesting values. Example JSON consisting of
objects, arrays and nested values is shown in Fig. 10.

1 {
2 "JSON":{
3 "name" : " Example JSON",
4 "type" : " object ",
5 "array" : [
6 {"name" : "First", "type" : " nested "},
7 {"name" : " Second ", "type" : " nested "},
8 {"name" : "Third", "type" : " nested "}
9],

10 " itemsInArray " : 3
11 " isJSON " : true
12 }
13 }

Figure 10 JSON object example

This way of storing information permits data interchange among all programming
languages, therefore JSON can be used to send data between FE and BE regardless of
the technology used [18].

2.6 AJAX

AJAX [19], is an acronym for Asynchronous JavaScript and XML ([20]), is a group
of technologies working together in order to create web pages more interactive. Us-
ing AJAX allows browser to make asynchronous HTTP requests to a server, obtained
response is processed by provided AJAX APIs into a JS code and later the data can
be used to update web page content (e.g. using DOM operations) without reloading
the entire page. Fig. 11a demonstrates flow of user activity while normal HTTP call
is used. When request is made, browser is waiting for response from a server. During
this period it seems to the user that browser is not working. On the other hand, AJAX
makes HTTP calls asynchronously therefore user activity can be continuous as shown
on Fig. 11b. When event requesting HTTP call occurs, AJAX functions are called so
that request can be made, but browser does not become irresponsible. AJAX makes
HTTP call behind the scene and as soon as response from server is obtained client carry
out appropriate actions.

9

2 Theoretical part

a) User activity flow while using synchronous
HTTP calls.

b) User activity flow while using AJAX to
make HTTP calls.

Figure 11 Schema of typical HTTP call and HTTP call using AJAX

2.7 JavaScript libraries and frameworks

In this section JS libraries and frameworks are introduced with respect to FE develop-
ment and OU Analyse dashboard.

2.7.1 Libraries

JS library is a library of pre-written JS. It is very useful to use libraries while developing
WA since they make development of common features less time-consuming [21].

jQuery is the most popular JS library [22] for JS scripting emphasizing support of
all main browsers1. It provides plenty of functions for DOM operations, handling of
events, AJAX calls, JSON operations and more. jQuery library is also extendible for
providing functions not yet implemented or improving already implemented functions.
It can be done by using so called "plug-ins", which are basically another JS library
dependent on jQuery functions. jQuery functions can be called either using jQuery or
dollar $ sign. There are two types of jQuery functions:

∙ Object functions - when these functions are called, an jQuery object is returned.
This object can be used in another jQuery function, which makes chaining of
functions possible, because all object functions return jQuery object.

∙ Utility functions - these are useful for accomplishing routine programming tasks
[23]. Even though browsers natively implement some of these functions their be-
haviour differ from one to another and using jQuery removes these behaviour in-
consistencies. An example of this problem is function trim which removes whites-
pace characters from beginning and end of a string. This function is not imple-
mented by Internet Explorer 8, but using jQuery utility function trimming can be
achieved (Fig. 12).

1jQuery home page - http://jquery.com (visited on 19/05/2015)

10

2.7 JavaScript libraries and frameworks

1 $.trim(" To be trimmed "); Resulting in "To be trimmed "

Figure 12 Example of using utility function using trim function

Fig. 13 demonstrates a typical using of jQuery library. Other examples are used
throughout the rest of the work.

1 $(document)
2 .ready(function (){
3
4 var count = 0;
5
6 $.each(
7 $("ul").find("li"),
8 function (){count ++;}
9);

10
11 $(’body ’). prepend (
12 $(’<div >’).text(
13 "List with " + count + " items")
14);
15
16 $("#example -btn")
17 .css(" height ", "50px")
18 .css("font -style"," italic ");
19 });

Use jQuery and select HTML document
When document ready execute following

Variable count initialization

Iterate over elements defined in
first argument and apply function
specified in second argument on
each of them

Prepend to BODY element
DIV element
with following text

To elements with specified ID
Set following CSS styling

Figure 13 jQuery example code (left) and explanation (right)

Fig. 14 shows how example code (Fig. 13) changed the previously shown example of
HTML (Fig. 5).

Figure 14 Demonstration of jQuery functions

11

2 Theoretical part

2.7.2 Framework

JS libraries are often referred as frameworks and even though framework is also set
of pre-written JS codes there is a difference between them. If application calls library
function, its result is carried out by the application. On the other hand, framework deals
with all these steps and developer just specifies particular parameters of framework’s
behaviour.

2.8 Best practices

Following best practices are, in my experience, important while developing an applica-
tion. This section introduces best practices concerning the development of WA.

One of the measures of good quality WA is its response time [1]. According to [1]
only 20% of total response time is spent for retrieving the HTML document and the
rest (80%) is spent on parsing it, requesting additional page components (JS scripts,
CSS style sheets, images etc.) and putting all together.

Since loading every component means to establish one HTTP connection, reducing
number of connections leads to improved response time. First few best practices from
following list demonstrates how to reduce the number of connections. Second set of
best practices explains how to make the HTTP communication, itself, faster. Last few
best practices help to write HTML document in a way that downloading of additional
components (JS code, CSS styles, etc.) does not slow down web page in its rendering.

2.8.1 Minimize number of images

CSS sprites is method for reducing the number of images by combining them into less
files. This can reduce the number of HTTP requests needed to load all images to only
one request. Also, size of sprite file is often smaller than sum of file sizes of individual
images [1]. CSS sprite image2 combining two arrow images and CSS code needed to
using the sprite is shown on Fig. 15.

1 .arrow - parent {
2 background :url(arrows .png);
3 }
4 .green -down{
5 background - position : 0px 0px;
6 }
7 .green -up{
8 background - position : -18px 0px;
9 }

Figure 15 CSS sprite image of two arrows.

2.8.2 Minimize number of JS and CSS files

Reducing number of JS and CSS files saves another HTTP requests. It can be done by
using simple concatenation of files without the loss of any information. However it is
important to be aware of file dependencies.

2CSS sprite was created using online tool - http://csssprites.com (visited on 20/04/2015). File size of
the CSS sprite is 188 bytes, sum of file sizes of individual images is 482 bytes.

12

2.8 Best practices

2.8.3 Use browser cache
As mentioned earlier, components with an indication of expiration are cached and reused
in subsequent requests from a browser’s cache with no unnecessary HTTP requests. In
case the expiration is not set, conditional request is sent and even if the response
contains a few header lines (in case the cached copy had not been changed), those
conditional requests adds up. Proper setting of expires and max-age header field for all
types of resources can avoid conditional requests.

2.8.4 Write external JS and CSS
Saving JS and CSS code into external files rather than writing them as inline code [1] is
another good practice. Modern browsers support downloading about six files in parallel
[24] and even if it means more HTTP requests parallel download is generally faster than
sequential. Also, JS and CSS code is static and therefore suitable for caching.

2.8.5 Compress HTTP response
Vast amount of response time can be saved using compression. When HTTP request
is made, browser adds Accept-Encoding header field with list of supported file formats.
If server accepts any of these formats, file which is requested is compressed and sent in
response along with the type of compression method used in header. Gzip is the most
popular file format and application used for compression and decompression of files on
the web [25]. Using Gzip can save about 70% of file size resulting in reducing response
time about 50% [1].

2.8.6 Minify JS code
Second method helping to reduce size of files is minification. It is a process during which
unnecessary characters, mainly comments and white-space characters, are removed from
file [1]. The size of file is reduced and as a consequence the response time is improved.
Basically any component can be minified but [1] shows that only JS files are worth to
do so. Combination of minification and Gzip compression reduces size of original file
about 75%.

2.8.7 Use a content delivery network
Content delivery network (CDN) is network of interconnected computers across many
locations worldwide [26]. The goal of CDN is to response to a request as quickly
as possible by choosing server which is the most suitable at the moment of request.
The choice is based on location of client and server, number of redirection between
them, usage of a server and many more. Many libraries and frameworks can be found
on Content Delivery Network (CDN) servers and can be included to the project. It
decreases, in general, the response time of a page [1].

2.8.8 Put your style sheets in the document HEAD
In order to prevent unnecessary redraws if page style changes, some browsers do not
render a page until all CSS files are loaded [1]. During this time just white screen is
shown to a user, creating illusion nothing is happening. This problem can be resolved
by moving <link> tags into <head> of HTML document, which makes browser to
render page progressively [1].

13

2 Theoretical part

2.8.9 Move JS scripts to the bottom of the page
When JS files are downloaded, browser immediately executes them. While file is being
executed, browser stops rendering other content until execution of the script is finished.
It may result in the same problem as with CSS file - white screen. If script is in the
head of HTML document, parsing of HTML will be stopped and so nothing is shown
to a user. If all JS scripts are moved to the bottom of a page, browser will render entire
page and then JS files will start to be executed without influencing rendering of a page.

2.9 Responsive design
WA is accessed not only from computers but also from mobile devices [27]. These
devices have diverse screen sizes thus web pages might be rendered inappropriately.

Responsive design is a method of styling web pages depending on a screen size. It
can be implemented using CSS media queries [28], which are CSS rules for adjusting
content of web page optimally based on a screen parameters, e.g. some content can be
hidden on small screens while extra content is shown on big ones.

14

3 OU Analyse web application

This chapter introduces OUA web site. First part describes all web pages one by one,
second part presents technologies the web pages are based on and finally performance
analysis of the WA is made in last part.

3.1 Contents of OUA dashboard
Following is list of web pages the OUA WA consist of, content of each web page is
described component by component together with snapshots:

∙ Project info page - OUA introductory page consisting of project description,
buttons for accessing the dashboard application, introduction of members of the
OUA team, list of publications related to OUA and contacts to OUA team. Fig. 16
shows small part of the project info page.

Figure 16 Part of project info page (original version)

∙ Module and student overview pages - pages showing important information
about courses and students. Both consist of following parts:

– Top menu - contains project logo and menu used to navigate between mod-
ules and their presentations (Fig. 17).

15

3 OU Analyse web application

Figure 17 Top menu of module and student overview pages

– Left menu - contains other navigation options and servers as a space for
adding links to new features (Fig. 18).

Figure 18 Left menu of module and student overview pages

– Central part - contains main content of the page. While top and left parts
are the same for both types of pages, the main content is different, see sec-
tions 3.1.1 and 3.1.2 for more details about module and student overview,
respectively.

∙ Service pages - set of pages shown, when authentication is needed or in error
occurs during loading. OUA implements three service pages:

– Authentication page (Fig. 19)

Figure 19 Login form in original implementation

– Permission denied page (Fig. 20)

Figure 20 Error page in original implementation

– General error page (Fig. 21)

16

3.1 Contents of OUA dashboard

Figure 21 Error page in original implementation

3.1.1 Module overview

Module overview page contains three components:

∙ VLE graph - displays VLE activities of students in the current and previous
presentation. Graph also shows results of Tutor Marked Assignments (TMA) for
current and previous presentation (Fig. 22).

Figure 22 Graph of VLE activities and TMA results on module overview page.

∙ Trends - this component shows at a glance current state of a course both graphi-
cally and as text (Fig. 23), e.g. number of registered students, number of student
at risk of failing in next TMA etc.

Figure 23 Component emphasizing important trends in a course.

∙ Students table - lists all students attending course displaying their scores from
previous TMAs, prediction for the next TMA and prediction of the final result.
Students in the table can be filtered using various criteria - gender, occupation,
highest education and more (Fig. 24).

17

3 OU Analyse web application

Figure 24 Table displaying all students attending a course. Information about results of TMAs,
prediction for next TMA and prediction of final result are shown.

3.1.2 Student overview

By choosing particular student from the students table, user is redirected to student
overview page consisting of following components:

∙ VLE graph - student VLE activity and TMA results compared to whole cohort
of students in a course (Fig. 25).

Figure 25 Graph of VLE activities and TMA results of a student.

∙ Nearest neighbours - graph (Fig. 26a) of students who are the nearest ones to
the chosen student based on demographic data and VLE activities in a course [29].
Using slider at the bottom, user can give more weight to either demographic data
or VLE activities and consequently the component is updated (Fig. 26b).

18

3.2 Technologies behind the components

a) Nearest neighbours component. b) Weight given to the VLE.

Figure 26 Nearest neighbour component

∙ Score overview - table showing real and predicted results of TMAs together with
the justification of the prediction (Fig. 27).

Figure 27 Table showing real and predicted results of TMAs for particular student

∙ Recommender - set of activities student should do in order to succeed in the
course (Fig. 28). Control elements on both sides and at the bottom of the recom-
mender component serve to slide to more recommendations.

Figure 28 Component recommending activities activities aimed at helping students with pass-
ing the course.

3.2 Technologies behind the components

Tab. 2 divides components introduced in this chapter into several groups based on their
type.

19

3 OU Analyse web application

Type Component
HTML Project info page

Service pages
Navigation menu

Graph Module overview VLE
Student overview VLE
Nearest neighbours

Table Students table
Score overview

Carousel Trends
Recommender

Table 2 Components of OUA and their implementation method

Each category is implemented using different technology:

∙ HTML - Project info page design is based on HTML and CSS template available
at [30]. The other parts, namely trends and navigation menu, are coded by OUA
team.

∙ Graphs - are built on Highcharts JS library1.

∙ Table - jQuery plugin Datatable2 is used.

∙ Carousel - Another plugin bxslider3 is responsible for function of activity recom-
mender component. The trends component is coded by OUA team.

3.3 Analysis of OU Analyse

This section investigates OUA implementation, its responsiveness and compatibility
across browsers.

3.3.1 Best practices

YSlow [31] is a tool evaluating the rate of implementation of best practices introduced
in section 2.8. It grades each best practice by mark from A to F, where A is the best.
Tab. 3 shows results of YSlow tool applied on all OUA web pages4. It can be seen
that many of best practices are poorly graded therefore should be improved in order to
increase performance of the web site.

1Highcharts home page - http://www.highcharts.com (visited on 21/05/2015)
2Datatable plugin home page - http://datatables.net (visited on 21/05/2015)
3bxSlider home page - http://bxslider.com (visited on 21/05/2015)
4Grade in a table is calculated as average of partial grades on each page.

20

3.3 Analysis of OU Analyse

Best practice Grade
CSS Sprite F
Minimize number of JS and CSS files C
Expires & control-cache F
External JS and CSS A
Using Gzip F
Minified JS E
Using CDN servers F
CSS in head A
JS in bottom D
Cached AJAX A

Table 3 Table demonstrating scope of implementation of best practices based on YSlow tool
grades.

3.3.2 Responsiveness of OUA

The only responsive page on the OUA web site is project info page. HTML and CSS
code of the page is based on a template [32], which is a small framework providing
responsive design functionality. Fig. 29 displays different layout of the page viewed
from small screen devices (compare to Fig. 16). Without the layout reorganization
components would look distorted, e.g. it would be hard to read the text, because each
column of text would be too narrow.

Figure 29 Project info page view from small screen device.

21

3 OU Analyse web application

Other pages does not support responsive design. This leads to following issues, when
pages are viewed from small screen devices:

∙ Left menu is overlapping the main content - the table becomes too wide
to be completely shown on a screen, therefore user has to scroll to see hidden
content. When this happens, the left navigation menu is also overlapping and
partially covering other parts of the page (Fig. 30).

Figure 30 Module overview page viewed from small screen device.

∙ Components become too narrow - this issue concerns trends and recommender
components. One trend from the trends component is missing and the others are
too narrow. Also, trends overflow the specified area. (Fig. 31).

Figure 31 Trends component displayed on small screen device.

Even if recommender is implemented using Bxslider library, which claims to be
responsive, the individual recommendations become impossible to read (Fig. 32).

Figure 32 Recommender component displayed on small screen device.

3.3.3 Compatibility across multiple browsers
In majority of web browsers, the original version of OUA is displayed correctly. How-
ever, Internet Explorer browsers prior to version 9 do not support several CSS attributes

22

3.4 Summary

and JS functions are missing or behave differently than in other browsers. However,
it is vital that the OUA dashboard supports also Internet Explorer 8 (IE8), because
majority of OU staff, who are the main users of the dashboard, are required to use IE8.

Project info page in IE8 is almost without errors, the only problem is with naviga-
tion menu, which is positioned vertically instead of horizontally. Also, layout of some
components is incorrect (Fig. 33).

Figure 33 Project info page displayed using IE8.

Module and student overview pages do not work as expected, because of using un-
supported JS functions. When such function is reached, IE8 stops executing any other
JS code, which results in a blank space and other issues Fig. 34.

3.4 Summary
One of the main tasks of this work is to look into the weaknesses of the OUA project.
Following is a summary of the problems in the original implementation of OUA, which
are shown in this chapter:

∙ Design - The figures in section 3.1 shows, that web pages have different design
implementation, which may lead in confusion of the user in terms of using the web
site.

∙ Responsiveness - It has been shown that the web pages does not render on
devices with different screen sizes properly. Solution of design and responsiveness
problems is described in section 4.1

∙ IE8 compatibility - Since most of the users access the WA from IE8, its support
is a crucial requirement for the new version. Section 4.2 deals with the problem.

∙ Performance - YSlow analyser graded many of the web site properties poorly,
which leads to slow response time of the pages. These problems are tackled in
section 4.3.

23

3 OU Analyse web application

Figure 34 Project info page displayed using IE8. Problems are with navigation menu, which
is positioned vertically, as well as with the layout of some components.

24

4 Practical part

In this chapter new version of OUA application is implemented reflecting the weak
points demonstrated in chapter 3.

4.1 CSS framework

It can be seen from figures in previous chapter, that the design of OUA web pages is not
uniform, e.g. pallets of colors on project info page and dashboard pages are different.
One of my first tasks during the work on the OUA project was to choose the most
suitable CSS framework and convert the original version of OUA using new framework.
Using it significantly simplifies creating unified design across web site [27]. Also, unified
design across all pages of a web site can positively increase user experience [1].

4.1.1 Choosing a framework

Important criteria while choosing a new framework:
∙ Broad browser support - Framework should support major browsers (Tab. 1) in-

cluding IE8.
∙ Responsive design - framework is responsive across variety of available devices.
∙ Size - The smaller framework file size is, the faster a web page is downloaded,

therefore user can sooner interact with the page.
∙ Support - Large user community is useful when an issue occurred and help is

needed.
Of all frameworks supporting IE 8 [33], Bootstrap [34] is the one with the largest com-
munity of users. It also provides full supports for responsive design creation. The
disadvantage of Bootstrap is slightly bigger size compared to other frameworks provid-
ing similar number of functions. Despite that, I have chosen Bootstrap framework for
its IE8 support and broad support user community.

4.1.2 New project info

Syntax of the CSS framework1 used to built the project info page is similar to syntax
used in Bootstrap therefore conversion of project info HTML code was straightforward.
The conversion was done by swapping of corresponding CSS classes and HTML ele-
ments. Since one of the requirements of using a CSS framework was to keep the same
design of the page, new version looks the same.

4.1.3 New login page

In new version of OUA, users must login to WA using either OUA account or using uni-
versity account. Authentication with the university account can be done only through
university web site, therefore an additional button had to be added to the original form.

1Free Awesome Website Templates - http://www.styleshout.com (visited on 19/04/2015)

25

4 Practical part

Design of the form including the new button is shown in Fig. 35a. Furthermore, an
indication of a failed login (Fig. 35b) and a successful logout (Fig. 35c) has been added.

a) Normal b) Failed login c) Successful logout

Figure 35 Login forms implemented using Bootstrap framework.

4.1.4 New permission denied and general error pages

The other service pages remain almost same. Small design changes were made and
responsiveness was achieved by word wrapping text to screen size Fig. 36.

Figure 36 Responsive versions of permission denied page and general error page.

4.1.5 New module and student overview pages

Major changes were done to both overview pages for the sake of responsive and consol-
idated design of the web site:

∙ Making pages responsive - when page is viewed from small screen device, left
menu transforms into small button in top menu and thus whole screen can be used
to show main content. Any content from left menu becomes available when the
button is clicked (Fig. 37).

26

4.1 CSS framework

a) Original design

b) New design with closed navigation menu. c) New design with opened navigation menu.

Figure 37 New design of the navigation menu viewed from small screen device.

Position of nearest neighbours and score components in the original version are
strictly fixed next to each other on a line. New version is able to reflect the screen
size and move the score table under neighbours graph if they do not fit on a screen
next to each other (Fig. 38).

27

4 Practical part

Figure 38 Neighbour graph and score table position on small screen

∙ Design unification - To unify the design, the top navigation menu from the
project info page is used and the button elements from original top menu are
moved to the left menu, because they do not fit to the top menu. Colour pallet of
left menu and other components is chosen according to top menu styling (Fig. 39).

Figure 39 New layout of the top navigation and the left navigation menu.

∙ Other adjustments - Include mainly adjusting colour pallet to mirror project
page and adding variable text size in order to increase responsiveness of the pages.

4.2 Solving IE8 compatibility issues
Section 3.3.3 outlines problems of the original version in IE8. Issues on project info
page are fully removed by migrating to Bootstrap.

The overview pages do not work at all because they use JS functions which are not
available in IE8:

28

4.3 Performance improvements

∙ Trim - see Fig. 12
∙ Stringify - converts JS object into JSON string
∙ Parse - converts JSON string into JS object
∙ indexOf - searches for position in array of specified element

These had to be substituted, in order to make the page work. jQuery provides an
alternative to all of the listed functions. Therefore using of the jQuery functions instead
of the native ones solves the problem.

4.3 Performance improvements
Properties graded D and lower by YSlow tool (Tab. 3) has been improved in new version
of the WA to increase performance of the web site. This section describes how these
changes are achieved.

4.3.1 Expires header

OUA original version does not set neither expires nor max-age parameters in the HTTP
response. There are different ways how to set the response headers. Because OUA runs
in Apache Tomcat [35], change on the server needs to be done. Set of rules is defined,
where each rule consist of two parts:

∙ Content-type - defines file type rule applies to, e.g. images or JavaScript.
∙ Expiration - defines how long a response is valid from the moment it is sent.

These rules are set on the server and every time a request is made, response with both
parameters is sent based on the rules specified.

4.3.2 Gzip

Section 2.8.5 explains how WA can benefit from Gzip compression. The original version
of OUA does not support HTTP response compression. Gzip needs to be enabled on
the server in order to compress the HTTP response [36]. The server has defined a set
of file types, which should be gzipped in case a client supports this type of compilation.

4.3.3 Minification

YUIcompressor tool2 has been included into new version of OUA to accomplish minifi-
cation of selected files. These files are minified during build process of the application.
Furthermore, it can be set that minification procedure happens only for files which are
used in production version. This is very useful since minified code is hard to read and
it is more convenient to use not minified version during developing and debugging new
features.

4.3.4 Others

Other properties require just a small change in the original implementation:
∙ CSS Sprite - created using the process shown in section 2.8.1.
∙ Minimize number of JS and CSS files - Besides minification of files, YUIcom-

pressor tool provides another functionality - concatenation of files. In new version
of OUA JS and CSS files can be merged into one JS and one CSS files using
YUIcompressor.

2YUIcompressor home page - http://yui.github.io/yuicompressor (visited on 15/05/2015)

29

4 Practical part

∙ Using CDN servers - Unfortunately, CDN servers are quite expensive and so
whole OUA application cannot be moved entirely on CDN server. However, all the
JS frameworks and libraries used in new version can be found on free CDN servers.
Hence, new version download majority of JS and CSS files from one, namely [37].

∙ JS in bottom - 2.8.9 refer about importance including JS files at the bottom of
<body> tag. Overview pages of the original version include JS files in the <head>.
New version has all <script> tags at bottom of the HTML document as section
2.8.9 suggests.

4.4 New features

Previous sections of this chapter show implementation changes which deal with the
problems in original version of OUA. This section introduces extra features of the new
version, which help to increase user experience but also to simplify development of
another features.

While choosing a new framework, the same criteria applied while choosing the CSS
framework were considered, i.e. broad browser support, size of the framework files,
support community and ability to reflect the screen size. In addition, compatibility
with the already chosen frameworks, e.g. Bootstrap, is taken into account.

4.4.1 Mustache.js

OUA creates parts of HTML code dynamically both on server side and client side using
JavaServer Pages3 technology and JS, respectively. New version of OUA tries to move
creation of dynamic content to a client. Mustache.js4 is HTML template library used
to create dynamic HTML. Process of using the library follow:

∙ Mustache template - Mustache template is HTML code, where dynamically
changing parts of HTML are replaced with mustache tags. Tags are enclosed into
double curly brackets "{{ key }}", where key is the tag’s identifier.

∙ Data specification - JSON data to be put on a place of mustache tag identifier.

∙ Rendering - Conversion of Mustache template into fully functional HTML code
is done using Mustache render function. The function matches key identifiers in
JSON and Mustache template and assigns corresponding values.

∙ Add to DOM - HTML returned from render function is added to DOM, e.g.
using jQuery.

Simple example code demonstrating using Mustache can be seen on Fig. 40a. Returned
HTML code Fig. 40b is added to a DOM three resulting in Fig. 40c.

3JavaServer Pages is technology used on server side to create dynamic HTML content. See [38] for
more information.

4Mustache.js home page - https://github.com/janl/mustache.js (visited on 20/05/2015)

30

4.4 New features

1 <html >
2 <body >
3 <ul class="list">
4 <script id="example - template " type="x-tmpl - mustache ">
5 Item {{ position }}
6 </ script >
7 </body >
8 </html >
9

10 $(document).ready(function (){
11 var template = $("#example - template ").html ();
12 var result = [], position = 0;
13 for(position =0; position < 3; position ++){
14 var JSON = { position : position };
15 result .push(Mustache . render (template , JSON));
16 };
17 $("ul.list").html(result);
18 });

a) Code

1 Item 0
2 Item 1
3 Item 2

b) Resulting HTML code of list element c) Code from Fig. 40 rendered in browser

Figure 40 Example of using mustache

4.4.2 Owl carousel
Implementation of trends and recommender components turned out to be problematic in
terms of responsive design. Since both consist of variable number of elements coupled
into one component, they are reimplemented using Owl carousel5 framework (OC).
An element of trends (Fig. 41a) and recommender (Fig. 41b) has been created and
implemented using mustache templates.

a) Trend tile b) Recommendation tile

Figure 41 New design of individual elements in trends and recommender component

Rendering of trends and recommender component using OC is described on following
lines:

5Owl Carousel framework home page - http://owlgraphic.com/owlcarousel/index.html (visited on
21/05/2015)

31

4 Practical part

∙ Data - Data to be shown are obtained using AJAX in JSON form.
∙ HTML - Received JSON is adapted to fit mustache template, HTML code is

generated and appended to DOM.
∙ Carousel - OC carousel is created and based of screen size, carousel displays just

few elements so that they fit to the screen. The other are hidden and may be shown
using control buttons either on bottom or both sides of the carousel. Number of
elements and width of individual element depends on screen size. Fig. 42 and
Fig. 43 are examples of recommender and trends components displayed on big
screen, while Fig. 44 and Fig. 45 are rendered on a small screen.

Figure 42 New design of recommender component view from big screen

Figure 43 New design of trends component view from big screen

Figure 44 New design of recommender component viewed from small screen

Figure 45 New design of trends component viewed from small screen

4.4.3 Votes indicator

OUA uses four predictive models for predicting student success. While making pre-
dictions, each predictive model votes whether the student submit next TMA or not.
Then, voting is weighed and final decision is made. Individual decisions are shown
in the students prediction table, where each vote is shown in separate column and an

32

4.4 New features

additional column is added to indicate the sum of the votes (Fig. 46a). In order to
retain both information, simplify the table and at the same time provide a graphical
interpretation of the textual information, the original textual columns were substituted
by a bar indicator (Fig. 46b). If the bar is clicked, extra window appears and displays
the individual votes (Fig. 46c). Both information are presented in a table and table
is clear. Furthermore, if new predictive model is used, it will be simply added to the
extra window and the main table will remain without change.

a) Original implementation of votes columns b) Submission probability indication

c) Extra table showing individual votes

Figure 46 New design of the way predictions are displayed in the students table.

4.4.4 Time machine

The results of predictions are sent to the module teams on weekly basis. However,
the dashboard of the original version shows data just at current state of a course.
New version of OUA is able to display data from the previous weeks. Analysing the
former data may lead to increased precision while planning the interventions. This
functionality is available on both the module and the student overview pages. A slider
was added to the top of the page which allows the selection of the week which should
be displayed (Fig. 47).

Figure 47 Slider component used to switch weeks.

When week is changed, reloading entire is unnecessary, because only data in indi-
vidual component are different. Publish/subscribe pattern [39] is used to notify the
components about newly selected week and each component carry out appropriate ac-
tions. VLE graphs does not require additional data because they display cumulated
data for every week from the beginning of a course to the current state. Hence data
for previous weeks, can be extracted from already available data. It means no HTTP
request and update is almost instant. On the other hand data in other components are
not that related across weeks and cannot be grouped as it is in case of VLE graphs.
They have to be requested for every week individually. While new data is requested,
loading indicator is shown (Fig. 48).

33

4 Practical part

Figure 48 Trend component when content is loading from server. Rotating arrows are shown
as a indication of loading.

4.4.5 Tour
OUA has quite a big number of components and features. In some moments user can be
uncertain how to interact with them. In order to improve user experience, new version
of OUA introduces a tour, which guides the user through the dashboard showing its
features. It is built on Bootstrap Tour, plug-in to Bootstrap 6. The tour consists of
predefined steps, where each step explains one component or particular function of a
component. Fig. 49 shows one step of a tour, which describes a button for navigation
to the top of a page. Similarly, functionality of other components is explained. To
navigate over the steps of the tour, user can use either control buttons (bottom part of
Fig. 49) or left/right arrows on the keyboard.

Figure 49 One step of tour

6Bootstrap Tour home page - http://bootstraptour.com/ (visited on 21/05/2015)

34

5 Testing

One of the main goals during work on OU Analyse, was to increase the performance of
the original version of the OU Analyse web site. Previous chapters analyse weaknesses
of the original version of OUA, suggest changes which should be made and how the
changes have been implemented into the new version of the OUA WA. In this chapter,
testing of the new version is made and comparison between the original and the new
version is carried out.

Performance measurements of the web site were done using Network performance
meter implemented as a part of Mozilla Firefox browser 1. It measures response time
from the moment when user sends an initial request for a web page to the moment
when all content is loaded. Two results are obtained in one test:

∙ Empty cache response time - simulates the first access of a user and therefore
all resources are loaded using unconditional requests,

∙ Primed cache response time - simulates subsequent access of a user and so
cached files do not have to be downloaded again.

Response times of all web pages were measured in different versions of OUA WA, the
versions are as follows:

∙ Original version - version of WA introduced in chapter 3.
∙ New version - version of WA where all changes introduced in chapter 4 have

been applied except of the adding expiration header, gzip of HTTP response and
minification.

∙ Header version - new version with expires and max-age HTTP response header
set. Static files, e.g. JS files, expire after ten years from the moment request is
made. Dynamic content, e.g. data for VLE graphs, are set to expire one week
from the moment request is made.

∙ Gzip version - new version with gzipped HTTP response.
∙ Final version - new version with all previous changes applied.

Response time of each version was tested ten times on all three pages (results of the
testing are available Appendix A). Based on these data, average response time is com-
puted. Because response time depends on the speed of Internet connection. Tab. 4
shows only a comparison with the new version2 expressed as a percentage change. The
results are as follows:

∙ Original version - Neither original nor new version sets the expiration infor-
mation in HTTP response therefore caching is not used and measuring time with
primed cache is therefore irrelevant. Response time of project info page in new ver-
sion is 15% faster, because there are more HTTP requests in original version. On
the other hand overview pages are loaded faster, because the new version imple-

1Mozilla Firefox Network Monitor - https://developer.mozilla.org/en-US/docs/Tools/
Network_Monitor (visited on 21/05/2015)

2New version is chosen, because it has the same settings of the server as the original version. Besides
that new, header, gzip and final versions consist of the same files and therefore contribution of
individual improvement can be measured more precisely.

35

5 Testing

ments new features and uses new additions frameworks, which results in increased
page size and consequently longer response time.

∙ Header version - Loading pages with empty cache shows increase in response
time by units of percent. This is caused by expiration information in the HTTP
response, which makes the response size bigger hence more data is needed to be
transferred. On the other hand loading with primed cache improves the response
time by about 75% in case of overview pages and 95% in case of project info page.
Data needed for the main content components (VLE graph, trends, students table)
are not cached, because they change frequently and therefore it is necessary to load
them every time the page is loaded. This results in the 20% difference between
overview pages and project info page.

∙ Gzip version - Gzip version has also no difference in response times with empty
or primed cache so measuring primed cache speed is irrelevant. However the saving
compared to new version is about 60%. This is a result which confirms information
from 2.8.5.

∙ Final version - Results obtained for the final version are a combination of the
previously mentioned results for individual versions.

Original Header Gzip Final
Project info +10% / - +3% / -96% -60% / - -64% / -98%

Module overview -7% / - +1% / -73% -62% / - -64% / -78%
Student overview -12% / - +1% / -76% -65% / - -69% / -77%

Table 4 Average improvement of response time compared to new version of WA. Result with
empty cache on the left, results of primed cache on the right after slash.

36

6 Conclusion and future plans

Many desktop applications have been lately implemented as web applications (WA).
On one hand, they provide a number of benefits, like cross-platform compatibility or
easy way to update the existing application. On the other hand, there are also many
drawbacks, one of the biggest ones is slower response to user actions.

The WA introduced in this thesis is a part of OU Analyse (OUA) project that aims
at predicting students’ results in a course. The WA serves module teams and tutors
to display these predictions. Because users access the application from a broad scale
of device and browsers, the application should be compatible with a majority of them.
However, it has been shown that the original vision does not work properly in IE8, even
though using the browser is required by some users. The improvements introduced
in section 4.2 have been implemented in the new version, therefore the new version
supports all of the major browsers including the IE8. Another upgrade involves the
rendering problems of the original application while accessing from small screen devices.
The problem has been solved by applying the Bootstrap framework and Owl Carousel.
The Bootstrap has also been used to create a uniform design across the web site.

Furthermore, the performance weaknesses has been detected by YSlow tool. Section
4.3 provides a detailed exposition of changes implemented in the new version. The
YSlow tool graded B all pages of the web site of the new version, whereas the original
version was graded B on the project info page and D on the overview pages.

Finally, it turns out that all pages of the new version are loaded faster. When cache
is empty, it is by about 65%. When subsequent load is made, the project info page
loads by about 98% faster and both overview pages approximately by about 75%.

To sum up, many improvements have been achieved in order to provide a more reliable
and convenient application. However, there is still much that can be done.

Thanks to the growing computational possibilities of the mobile devices, a version of
OUA application created specially for them could provide additional features compared
to the original version, e.g. support for direct communication with students. Since
the WA is not accessible for students, they could use the mobile version to obtain
information about their results. Another improvement can involve the recommender
component that displays various types of activities. If a filter of activity types was
added, users would be able to search only the types they are interested in. The same
feature can be added to the trend component. Moreover, users might appreciate saving
filter settings to access them quickly in the future. Also, feedback from users could
make the prediction more accurate. An extra component could be added for evaluation
of the prediction by users. The OUA project has a potential to prevent students from
failing the course and therefore helps the OU to increase student retention. A simple
and well organized WA plays an important role in achieving the goal.

37

Appendix A

Project info page
Original Basic Header Gzip Final

2.55 2.25 2.28 1.02 0.78
2.48 1.92 1.96 1.05 0.87
2.78 2.28 2.31 1.12 0.89
2.01 2.43 2.59 0.75 0.83
2.88 2.40 2.36 0.91 0.85
2.92 2.51 2.46 0.77 0.82
2.03 2.36 2.47 1.11 0.88
2.56 2.13 2.34 0.81 0.75
3.00 2.30 2.74 0.79 0.78
2.02 2.47 2.22 0.81 0.73

Module overview page
Original Basic Header Gzip Final

2.96 2.38 4.00 1.17 1.59
4.30 3.73 4.73 1.30 1.34
3.52 3.76 3.65 1.15 1.34
3.30 4.06 3.42 1.30 1.31
3.51 3.56 3.64 1.25 1.08
3.48 3.90 3.93 2.61 1.05
3.52 4.01 4.13 2.34 1.34
3.49 3.99 3.82 0.97 1.41
3.54 4.26 3.75 1.19 1.26
3.46 4.19 2.91 1.12 1.75

Student overview page
Original Basic Header Gzip Final

4.77 4.56 3.55 1.03 1.36
3.64 3.90 3.54 1.33 1.21
3.01 4.80 3.52 1.20 1.11
2.90 3.55 4.62 2.16 0.98
2.88 3.99 3.59 1.49 1.11
3.11 3.95 3.87 1.33 1.14
2.83 3.01 3.39 1.05 1.23
3.06 2.44 3.76 1.26 0.97
3.08 3.53 3.61 1.01 1.16
3.19 3.32 3.63 1.15 1.13

Table 5 Response time results of various versions of OUA application with empty cache.

38

Project info page
Original Basic Header Gzip Final

2.52 2.22 0.09 0.99 0.04
2.42 1.86 0.08 1.02 0.05
2.75 2.23 0.08 1.09 0.05
1.98 2.39 0.08 0.72 0.05
2.85 2.13 0.09 0.88 0.04
2.90 2.32 0.14 0.74 0.06
1.98 2.33 0.08 1.08 0.04
2.53 2.00 0.08 0.78 0.04
2.97 2.27 0.08 0.76 0.05
1.99 2.42 0.08 0.78 0.06

Module overview page
Original Basic Header Gzip Final

2.96 2.34 1.12 1.13 1.00
4.30 3.69 1.01 1.26 0.82
3.52 3.72 0.99 1.11 0.94
3.30 4.02 1.00 1.26 0.89
3.51 3.52 0.96 1.21 0.74
3.48 3.86 1.00 2.57 0.89
3.52 3.97 1.01 2.30 0.69
3.49 3.95 0.94 0.93 0.65
3.54 4.22 1.20 1.15 0.78
3.46 4.15 0.89 1.08 0.65

Student overview page
Original Basic Header Gzip Final

4.77 4.52 0.88 0.99 0.76
3.64 3.86 0.87 1.29 0.94
3.01 4.76 0.78 1.16 0.79
2.90 3.51 1.23 2.12 0.89
2.88 3.95 0.88 1.45 0.87
3.11 3.91 0.79 1.29 0.86
2.83 2.97 0.88 1.01 0.85
3.06 2.40 0.84 1.22 0.86
3.08 3.49 0.85 0.97 0.80
3.19 3.28 0.81 1.11 0.83

Table 6 Response time results of various versions of OUA application with primed cache.

39

Bibliography

[1] Steve Souders. High performance web sites: essential knowledge for frontend en-
gineers. Edition 1. O’Reilly, 2007. isbn: 978-0-596-52930-7.

[2] J. Kuzilek. “OU Analyse: Analysing At-Risk Students at The Open University”.
In: Learning Analytics Review LAK15-1 (2015).

[3] OU Analyse website. url: www.analyse.kmi.open.ac.uk (visited on 21/05/2015).
[4] Few Stephen. Information dashboard design: the effective visual communication

of data. O’Reilly, 2006. isbn: 0-596-10016-7.
[5] Josh Long. I Don’t Speak Your Language: Frontend vs. Backend. url: http :

//blog.teamtreehouse.com/i-dont-speak-your-language-frontend-vs-
backend (visited on 08/04/2015).

[6] Whatis.com - online dictionary of tech definitions. url: http://searchsoa.
techtarget.com/definition/Web-site (visited on 08/04/2015).

[7] Ross Shannon. What is HTML. 2007. url: http://www.yourhtmlsource.com/
starthere/whatishtml.html (visited on 05/04/2015).

[8] Free online dictionary of computing. url: http://foldoc.org/declarative+
language (visited on 25/04/2015).

[9] Document Object Model. url: http://www.w3.org/DOM/ (visited on 08/04/2015).
[10] W3Schools. CSS Pseudo-classes. url: http://www.w3schools.com/css/css_

pseudo_classes.asp (visited on 05/05/2015).
[11] The World Wide Web Consortium. url: http://www.w3.org (visited on 05/04/2015).
[12] European Computer Manufacturers Association. url: http://www.w3.org (vis-

ited on 05/04/2015).
[13] Can I use - List of technologies supported in main modern browsers. url: http:

//caniuse.com (visited on 05/04/2015).
[14] StatCounter Global Stats- online visitor stats tool. url: http://gs.statcounter.

com (visited on 05/04/2015).
[15] Network Working Group. Hypertext Transfer Protocol – HTTP/1.1. 1999. url:

http://www.w3.org/Protocols/rfc2616/rfc2616.html (visited on 05/04/2015).
[16] W3 Consorcium. Header Field Definitions. url: http://www.w3.org/Protocols/

rfc2616/rfc2616-sec14.html (visited on 19/05/2015).
[17] JavaScript Object Notation. url: http://json.org/ (visited on 08/04/2015).
[18] The JSON Data Interchange Format. url: http://www.ecma-international.

org/publications/files/ECMA-ST/ECMA-404.pdf (visited on 08/04/2015).
[19] JavaScript Web APIs. url: http://www.w3.org/standards/webdesign/script

(visited on 10/04/2015).
[20] Extensible Markup Language. url: http://www.w3.org/TR/xml (visited on

10/04/2015).

40

www.analyse.kmi.open.ac.uk
http://blog.teamtreehouse.com/i-dont-speak-your-language-frontend-vs-backend
http://blog.teamtreehouse.com/i-dont-speak-your-language-frontend-vs-backend
http://blog.teamtreehouse.com/i-dont-speak-your-language-frontend-vs-backend
http://searchsoa.techtarget.com/definition/Web-site
http://searchsoa.techtarget.com/definition/Web-site
http://www.yourhtmlsource.com/starthere/whatishtml.html
http://www.yourhtmlsource.com/starthere/whatishtml.html
http://foldoc.org/declarative+language
http://foldoc.org/declarative+language
http://www.w3.org/DOM/
http://www.w3schools.com/css/css_pseudo_classes.asp
http://www.w3schools.com/css/css_pseudo_classes.asp
http://www.w3.org
http://www.w3.org
http://caniuse.com
http://caniuse.com
http://gs.statcounter.com
http://gs.statcounter.com
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.w3.org/standards/webdesign/script
http://www.w3.org/TR/xml

Bibliography

[21] W3Schools. JavaScript Libraries. url: http://www.w3schools.com/js/js_
libraries.asp (visited on 05/05/2015).

[22] W3 Techs. Usage of JavaScript libraries for websites. url: http://w3techs.com/
technologies/overview/javascript_library/all (visited on 19/05/2015).

[23] jQuery. jQuery list of utility functions. url: http://api.jquery.com/category/
utilities/ (visited on 19/05/2015).

[24] Browserscope - project for profiling web browsers. url: http://www.browserscope.
org/?category=network (visited on 19/04/2015).

[25] GNU Gzip. url: https://www.gnu.org/software/gzip/ (visited on 17/04/2015).
[26] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. “The Akamai network”.

In: ACM SIGOPS Operating Systems Review vol. 44.issue 3 (2010-08-17), pp. 2–.
issn: 01635980. url: http://portal.acm.org/citation.cfm?doid=1842733.
1842736.

[27] Beginning responsive web design with html5 and css3. Berkeley: Apress, 2014.
isbn: 978-143-0266-945.

[28] W3 Schools. CSS media rule. url: http://www.w3schools.com/cssref/css3_
pr_mediaquery.asp (visited on 19/05/2015).

[29] T. Cover and P. Hart. “Nearest neighbor pattern classification”. In: IEEE Trans-
actions on Information Theory vol. 13.issue 1 (1967), pp. 21–27. issn: 00189448.
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
1053964.

[30] Styleshout. Free website templates. url: http://www.styleshout.com/ (visited
on 19/05/2015).

[31] YSlow. YSlow the web page performance analyser. url: http://yslow.org/
(visited on 19/05/2015).

[32] Free Awesome Website Templates. url: http://www.styleshout.com (visited
on 19/04/2015).

[33] usabli.ca. A Collection of front end frameworks for web development. url: http:
//usablica.github.io/front- end- frameworks/compare.html (visited on
19/05/2015).

[34] Otto M. and Thornton J. HTML, CSS and JS framework for developing respon-
sive, mobile first projects on the web. url: http://getbootstrap.com/ (visited
on 19/05/2015).

[35] Apache Tomcat. Apache TomcatTM - an open source software implementation
of the Java Servlet and JavaServer Pages technologies. url: https://tomcat.
apache.org/index.html (visited on 19/05/2015).

[36] Viral Patel. Enable GZIP compression in Apache Tomcat. url: http://viralpatel.
net/blogs/enable-gzip-compression-in-tomcat/ (visited on 19/05/2015).

[37] Kirkman R. and Davis T. Free CDN servers. url: https://cdnjs.com/ (visited
on 19/05/2015).

[38] Oracle. JavaServer Faces Technology. url: http://www.oracle.com/technetwork/
java/javaee/jsp/index.html (visited on 19/05/2015).

[39] Patrick Th. Eugster et al. “The many faces of publish/subscribe”. In: ACM Com-
puting Surveys vol. 35.issue 2 (2003-06-01), pp. 114–131. issn: 03600300. url:
http://portal.acm.org/citation.cfm?doid=857076.857078.

41

http://www.w3schools.com/js/js_libraries.asp
http://www.w3schools.com/js/js_libraries.asp
http://w3techs.com/technologies/overview/javascript_library/all
http://w3techs.com/technologies/overview/javascript_library/all
http://api.jquery.com/category/utilities/
http://api.jquery.com/category/utilities/
http://www.browserscope.org/?category=network
http://www.browserscope.org/?category=network
https://www.gnu.org/software/gzip/
http://portal.acm.org/citation.cfm?doid=1842733.1842736
http://portal.acm.org/citation.cfm?doid=1842733.1842736
http://www.w3schools.com/cssref/css3_pr_mediaquery.asp
http://www.w3schools.com/cssref/css3_pr_mediaquery.asp
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1053964
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1053964
http://www.styleshout.com/
http://yslow.org/
http://www.styleshout.com
http://usablica.github.io/front-end-frameworks/compare.html
http://usablica.github.io/front-end-frameworks/compare.html
http://getbootstrap.com/
https://tomcat.apache.org/index.html
https://tomcat.apache.org/index.html
http://viralpatel.net/blogs/enable-gzip-compression-in-tomcat/
http://viralpatel.net/blogs/enable-gzip-compression-in-tomcat/
https://cdnjs.com/
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://portal.acm.org/citation.cfm?doid=857076.857078

	Introduction
	Open University
	OU Analyse

	Theoretical part
	Web application
	Front-end
	Hypertext Markup Language
	Cascading Style Sheet
	JavaScript
	Implementation in browsers

	Back-end
	Hypertext Transfer Protocol
	Types of HTTP request
	HTTP header fields

	JavaScript Object Notation
	AJAX
	JavaScript libraries and frameworks
	Libraries
	Framework

	Best practices
	Minimize number of images
	Minimize number of JS and CSS files
	Use browser cache
	Write external JS and CSS
	Compress HTTP response
	Minify JS code
	Use a content delivery network
	Put your style sheets in the document HEAD
	Move JS scripts to the bottom of the page

	Responsive design

	OU Analyse web application
	Contents of OUA dashboard
	Module overview
	Student overview

	Technologies behind the components
	Analysis of OU Analyse
	Best practices
	Responsiveness of OUA
	Compatibility across multiple browsers

	Summary

	Practical part
	CSS framework
	Choosing a framework
	New project info
	New login page
	New permission denied and general error pages
	New module and student overview pages

	Solving IE8 compatibility issues
	Performance improvements
	Expires header
	Gzip
	Minification
	Others

	New features
	Mustache.js
	Owl carousel
	Votes indicator
	Time machine
	Tour

	Testing
	Conclusion and future plans
	Bibliography

