
CZECH TECHNICAL UNIVERSITY IN PRAGUE

FACULTY OF ELECTRICAL ENGINEERING
DEPARTMENT OF CYBERNETICS

BACHELOR'S THESIS

Algorithms for Minesweeper Game Grid Generation

JAN CICVÁREK

Bachelor Project Supervisor: MSc. Štěpán Kopřiva, MSc.

May, 2016

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

BACHELOR PROJECT ASSIGNMENT

Student: Jan C i c v á r e k

Study programme: Open Informatics

Specialisation: Computer and Information Science

Title of Bachelor Project: Algorithms for Minesweeper Game Grid Generation

Guidelines:

1. Study the game of minesweeper, problem definition and complexity.
2. Study the constraint satisfaction problem and other relevant techniques.
3. Formalize the problem of solving the game and generating the game grid.
4. Propose an algorithm for solving the game when solvable, with emphasis on CPU time.
5. Implement the algorithm described above.
6. Evaluate the algorithm on different game instances.
7. Adapt the algorithm for gradual generation of solvable grid.
8. Evaluate the algorithm on different mine densities and grid dimensions.

Bibliography/Sources:
[1] Stuart Russel, Peter Norvig – Artificial Intelligence: A modern approach, 2nd edition - 2003
[2] Richard Kaye - Infinite versions of minesweeper are Turing complete - Birmingham, 2007
[3] Ken Bayer, Josh Snyder and Berthe Y. Choueiry - An Interactive Constraint-Based
 Approach to Minesweeper . - University of Nebraska-Lincoln, 2006

Bachelor Project Supervisor: MSc. Štěpán Kopřiva, MSc.

Valid until: the end of the summer semester of academic year 2015/2016

 L.S.

doc. Dr. Ing. Jan Kybic
Head of Department

 prof. Ing. Pavel Ripka, CSc.
Dean

Prague, January 14, 2015

Abstrakt

Minesweeper je videohra z roku 1990. Nalezení řešení jedné její instance nebo důkaz jeho

neexistence je NP úplný problém. V této práci prozkoumám algoritmy, které tento problém řeší v

polynomiálním nebo exponenciálním čase s různou úspěšností. Implementuji svůj vlastní algoritmus

s důrazem na vysokou úspěšnost a využitelnost při generování pole. Nakonec také implementuji

algoritmus, který je schopný generovat pole hry minesweeper, které je vždy řešitelné a zavedu nové

hodnocení obtížnosti, které tento algoritmus využívá.

NP úplné a NP těžké problémy jsou velmi frekventované, lze se s nimi setkat při zajišťování

kybernetické bezpečnosti, vývoji nových léků, alokaci zdrojů nebo například při obecném

prohledávání stavového prostoru. Hodně NP problémů jde řešit pomocí algoritmů s polynomiální

složitostí, které je řeší s vysokou úspěšností, ale nikomu se nepodařilo dokázat, že lze NP problémy v

polynomiálním čase vyřešit deterministickým automatem nebo naopak možnost řešení

deterministicky v polynomiálním čase vyloučit, proto je každé jejich studium přínosné.

Abstract

Minesweeper is a videogame, first introduced in the year 1990. To find a solution for one instance of

this game, or prove that it does not exist, is an NP-Complete problem. In this thesis, I will introduce

algorithms that can solve this problem in either polynomial or exponential time with varying success

rates. I will implement my own solver, with emphasis on high success rate and its possible utility in

gradual generation of the minefield. I will also implement an algorithm that can generate a minefield

that is always solvable and introduce new difficulty rating system that can also be used as an input

for this new minefield generator.

NP-Complete and NP-Hard problems are very common. We need to solve them in cyber-security,

when developing new medicine, optimizing resource allocation, or just when searching a statespace.

There are many algorithms that can search for solutions to the NP problems in polynomial time with

high success rate, but the NP problems have never been proved to be solvable with deterministic

automata in polynomial time or proven to be unsolvable in polynomial time with deterministic

approach. For that reason, any study can help us understand these problems better.

Prohlášení
Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité
informační zdroje v souladu s Metodickým pokynem o dodržování etických principu při
přípravě vysokoškolských závěrečných prací.

V Hradci Králové dne 24. 5. 2016 ..

Contents
1 What is minesweeper? 3

1.1 Formal definition . 3
1.1.1 Game parameters . 3
1.1.2 Initial state . 4
1.1.3 Goal test . 4
1.1.4 Successor function . 4

2 Generating solvable grid 5

3 Minesweeper solver 5
3.1 Single point solvers . 5
3.2 Depth-first search . 6
3.3 Constrain satisfaction problem . 6
3.4 Equation Strategy . 7

4 Technical background of my solution 7
4.1 Single point strategy and its variations 7
4.2 Depth-first algorithms . 8
4.3 Breadth-first algorithms . 8
4.4 Constraint satisfaction algorithms 8

4.4.1 Multiple constraint satisfaction problems 8
4.4.2 Gradual CSP with MRV and FVC heuristics 9

5 Implementation of the solver 9
5.1 Adapting the minefield . 9
5.2 Forming a cluster . 11
5.3 The main CSP . 12

5.3.1 Theoretical part . 12
5.3.2 Deciding if a move is the correct one 13
5.3.3 Using number of mines when main algorithm fails 15
5.3.4 Advancing by counting total mines, all mines on border . . . 15
5.3.5 Advancing by counting total mines, all inner variables are mines 16
5.3.6 Advancing by counting total mines, examples 16

5.4 Admissible heuristics . 18
5.4.1 Most constrained variable 18
5.4.2 Least restrictive field . 18
5.4.3 Variables bound to other variables 18

5.5 Inadmissible heuristics . 19
5.5.1 Time constraints . 19
5.5.2 Depth constraints . 19

1

6 Solver evaluation 20
6.1 Example of problematic minefield for Equation strategy 20
6.2 Example of problematic minefield for other CSP 21
6.3 Computation time . 22

7 Generator implementation 23

8 Generator evaluation 23

9 GUI demonstration 24

10 Inputting text minefield examples into the
application 25

11 Conclusion 25

Appendices 26

2

1 What is minesweeper?
Minesweeper is a small puzzle-solving single-player video game originally developed
by Robert Donner between years 1989 and 1990 [4]. Game was based on videogame
Mined-Out developed by Ian Andrew and released in 1983 [4]. Minesweeper game is
defined by grid, whose dimensions could be defined before the game starts. Dimen-
sions don’t have to be similar but minimum size of nine is applied for both, there is no
theoretical upper bound, minesweeper played on infinite grid could be solved by Turing
machine [1]. In this paper, I will only work with finite grid with no upper bounds. The
grid is filled with squares, each containing two information. First is number of mines
in vicinity, ranging from zero to eight. Second information tells us whether the square
contains a mine. Player can make move step by asking whether a square contains a
mine. If it does, the game ends and the player losses, if it doesn’t, player obtains num-
ber of mines in vicinity of chosen square. At the beginning of the game, player knows
the size of the grid, number of squares containing a mine and that square chosen in first
move will not contain a mine. Goal of the game is to select all squares containing no
mine and avoid all containing one. Solving this problem is NP-complete [2] and solv-
ability without guessing is not guaranteed for every grid generated. This is big problem
when instead of short time relaxation, player might get frustrated with problem he can-
not possibly solve. Each successfully solved game is evaluated by two conditions. First
is time from first move, second is 3BV [4], which counts the number of moves needed
to solve the game. This allows minesweeper to be played competitively and to appear
on various Tournaments [4].

1.1 Formal definition
Formal definition could prove more difficult than expected. First, we need to deter-
mine what is our goal. It could be locating all the squares with the mine, determining
solvability of the grid or to find a next move. In this case, we will take the player
perspective, to better explain the game in itself.

1.1.1 Game parameters

These parameters are not known to the player but are used to generate world with
successor function.

n,m ∈ N

n,m > 0

S = {s1,1, .., s1,m, .., sn,m}

si,j = {0, 1}

V = {v1,1, .., v1,m, .., vn,m}

vi,j =
∑

max(‖i−i2‖,‖j−j2‖)=1
si2,j2

3BV = {1, ..,m ∗ n}

3

Where si,j tells whether square on the grid contains mine, 0 for clear square and
1 for mine. vi,j is sum of si,j of the adjacent squares. 3BV is used to determine
difficulty[4].

1.1.2 Initial state

X = {x1,1, .., x1,m, .., xn,m}

xi,j = {−1, 0, 1}

∀i, j xi,j = −1

M =
∑

i,j
si,j

Where xi,j after initiation, each square has value assigned -1, which signifies that
it is undecided. Value 0 is for clear square and 1 for square with mine. M determines
the quantity of mines on the grid.

1.1.3 Goal test
Victory ∑

i,j
si,j =

∑
i,j

xi,j

xi,j = {0, 1}

Loss

∃i, j xi,j = 1 ∧ si,j = 1

1.1.4 Successor function

succ(xi,j , t) > xi,j = t

t ∈ Z

t ∈< −1, 1 >

Each change to the grid counts as one step with arc cost equal to 1.

4

2 Generating solvable grid
In this paper, I will be trying to find way to generate a grid that could be solved without
guessing. This means, the after each move, when game isnt won, the player must have
enough information to find one unrevealed square containing no mine. This problem
has been approached before. Mines-Perfect offers multiple solutions [3]. When cur-
rent knowledge doesn’t allow to determine next safe move, the program either adds
additional information (1), lets you choose mine and still continue in the game (2),
rearranges the mine, so your move is correct (3) or solves part of the game for you (4).
Each of this modes has it’s disadvantages and deviate from the original rules. In options
1,2,3 the player must prove that there is no safe move, which increases complexity. In
option 4, part of the game is solved automatically, not allowing player to play. All
of these approaches require implementation of solver that identifies the standoff state.
More advanced approach could be seen in Mines by Simon Tatham [5]. Random grid
is generated and solver ensures no standoff state. Solver in here incorporates many ap-
proaches, greedy approaches with lower complexity that are not guaranteed to solve for
all solvable grids and Depth-first search based algorithm when greedy approaches fail.
Due to time complexity, after n tries (100 is basic), 3BV value is lowered. This means
that in mean of 3BV of this generator and random generator that only excludes unsolv-
able games are different, leading to less complex games. It is apparent that solver is
very important, when generating solvable grid.

3 Minesweeper solver
We already know that solving minesweeper game is an NP-complete problem [2]. In
contradiction to most publicized solvers, we are not looking for solution with best
success rate, we simply want to know if it is necessary to guess in order to solve the
grid. For that reason, our solver doesn’t have to work with Markov chains in state
space, dealing with probabilities. We are only looking for deterministic state space
since we are only interested in 100

3.1 Single point solvers
These algorithms may be perceived as constrain satisfaction problem without constrain
propagation and if there is optimal solution, it is not guaranteed to find it. Each iteration
of the algorithm consists of two steps.

• For every clear square, the algorithm compares number of mines in vicinity and
number of marked mines in vicinity. If they equal and there are any undecided
neighbours, algorithm marks undecided neighbours as clear.

• For every clear, the algorithm square compares the number of undecided neigh-
bour squares and unrevealed neighbour mines. If the two numbers are equal,
algorithm marks all undecided neighbours as mines.

For each step of this algorithm, we have to go thru all of the clear squares. But
number of these squares is always below m*n and computing time needed to resolve

5

each of these squares within one step is constant. Thanks to this, we can make every
step in polynomial time. This algorithm terminates when the grid doesn’t change after
one step. In this case, we have to apply more complex solver, but after one step of more
complex solver, we can go back to single point solver and repeat this until solution is
found or we can say that there is no safe solution. Since we will be using this algorithm
in our solver, here is pseudocode of the implementation:

initialization;
while action made in last iteration do

for i = 0 to Height do
for j = 0 to Width do

if clear square then
if neighbour mines==marked neighbour mines &&
undecided ≥ 0 then

reveal neighbours
end
if neighbour undecided==unmarked neighbour mines &&
undecided ≥ 0 then

mark neighbours
end

end
end

end
end

Algorithm 1: Single point strategy

3.2 Depth-first search
Not very effective algorithm, but its concept makes it ideal for situation where we
rely on number of total mines as a constrain. Also behaves very similar to constrain
satisfaction problem in certain situation. When CSP needs to take more constrains in
consideration to achieve consistency. This algorithm is more viable for collecting data.
Mostly differences between iterations and procedures to solve fields that differ only in
one mine.

3.3 Constrain satisfaction problem
There are many ways to implement this problem. Especially in respect to arc consis-
tency and production of constrains. Ken Bayer, Josh Snyder and Berthe Y. Choueiry
use increasingly complex arc consistency algorithms, but don’t go exploring all the pos-
sible mine layouts in the entire field [8]. While this implementations is very efficient,
it could fail to find deterministic solution. Chris Studholme, PhD builds constrains for
each square in game and proceeds until viable layout is found [6]. Although, when lay-
out in compliance with the constrains is found, it is not guaranteed to be the only one
and since game accepts only one of the layouts, we have to find the other layouts that
satisfy the constrains. Studholme to calculate Markov probabilities for these layouts,

6

which we don’t have to do, since we only interest ourselves in 0 and 1 probabilities,
where 0 is square that was clear in every layout and 1 is square that was mine in every
layout. If we find at least one, we could proceed to another iteration, else we have
just proved that there is more than one admissible solution, which is more than game
accepts and grid is thus unsolvable.

3.4 Equation Strategy
Equation strategy was introduced by John D. Ramsdell in Programmers Minesweeper
[7]. Ramsdell utilizes fact, that number of each clear square is sum of its neighbours,
clear squares having 0 and mined ones having 1. Using this knowledge, he creates
set of linear equations for each undecided square with any clear neighbouring squares.
Similarly as with constrain satisfaction problem, we could run into underdetermined
system which is in many ways similar to multiple layouts in compliance with gen-
erated constrains. It is not surprising, considering that equation strategy’s approach
resembles that of constrain satisfaction problem, if we look on the linear equations as
on constrains.

Studholme’s implementation of constrain satisfaction problem was able to achieve
comparable, even slightly better results, with as much as twenty times less CPU time
needed [6], which doesn’t prove that equation strategy is inferior as it could be caused
by implementation.

4 Technical background of my solution
Minesweeper is drastically different from most problems, where CSP is used.
When new game is initialized, the number of correct solutions based on available in-
formation is

PSs =
(n ∗m)!

(n ∗m−
∑n

i=0

∑m
j=0 si,j)! ∗ (

∑n
i=0

∑m
j=0 si,j)!

In advanced setting, where n = 16, m = 30 and
∑n

i=0

∑m
j=0 si,j = 99, we get approxi-

mately 5.6 ∗ 10104 correct solutions.
This means, that while the problem definition written above is correct, an algorithm
that would try to employ it would have little chance of executing in realistic time.
The reason why minesweeper is still solvable is that it will provide additional informa-
tion almost every time the solver assigns 0 (not mine) to any field.
Solvability is compromised, when the current board only gives enough information to
prove one field does not hold a mine and by assigning 0 to that field no additional in-
formation is gained.

4.1 Single point strategy and its variations
This approach offers very good computation times, but doesn’t search the whole states-
pace, because it only uses simple constraints. I’ve decided to implement this algorithm

7

as a first stage of my solver for its speed, but later omitted it, as it wasn’t faster than my
the more complicated algorithm that was able to detect these easy passable successor
functions during the process of building the sets I use in when no simple solution was
find, rendering this algorithm redundant. It is still used in the Matlab GUI demonstra-
tion application, because of its simplicity.

4.2 Depth-first algorithms
Because of the number of passable solutions, this algorithm would need to cut branches
that would lead to solution, in order to execute in realistic time. time. This algorithm
will always find a solution, if there is one, but would often explore greater depths than
what is required[11] increasing CPU time and preventing it to be used in a real-time
application. It is very easy to implement and could be used to solve the beginner (9 by
9) field, but its low efficiency is not justifiable.

4.3 Breadth-first algorithms
This approach respects the nature of a Minesweeper, but is not sophisticated enough
to allow for easy heuristics to be implemented. I haven’t seen any implementation of
this algorithm for Minesweeper and didn’t attempt one myself since I didn’t consider
it optimal. But my final algorithm does use the basic idea of depth dependent analyse
of the statespace.

4.4 Constraint satisfaction algorithms
Minesweeper gameplay feels very much like a constraint satisfaction problem. Fields
with numbers provide information on adjacent fields and next move must be made so
that it satisfies these constraining fields. But when solving an constraint satisfaction
problem, we have an unchanging set if variables, which would be fields, set of do-
mains, mine and safe in the case of Minesweeper and the constraints. Incidentally, in
Minesweeper, they are provided to the solver based on every step he has done since the
game initiation. This causes the game to change constantly and prevents general CSP
algorithms to be utilized.

4.4.1 Multiple constraint satisfaction problems

While the constrain satisfaction algorithm seems to be one of the best methods of solv-
ing the minesweeper grid, my goal is to generate a solvable grid. This could be done
through trial and error, but the efficiency would not be suitable for a real time use.

success rates with advanced grid, randomly generated
Algorithm maps solved success rate
Single point strategy 0 0%
Equation strategy 64 6.4%
CSP Studholme 71 7.1%
My CSP 76 7.6%

8

This test was done on a sample of 1000 advanced maps. Each had the width of 30,
height of 16 and 99 mines. The maps were the same for all the algorithms. The algo-
rithms started from a same corner and in case the first constraint field wasn’t 0, the
map was discarded and another one generated. Single point strategy and Equation
strategy were capped at 10seconds, my CSP had cap of 2 seconds to make a move and
47 milliseconds to evaluate one step on current depth

success rates with intermediate grid, randomly generated
Algorithm maps solved success rate
Single point strategy 1 0.1%
Equation strategy 502 50.2%
CSP Studholme 502 50.2%
My CSP 637 63.7%

This test was done on a sample of 1000 intermediate maps. Each had the width of
16, height of 16 and 44 mines. The maps were the same for all the algorithms. The
algorithms started from a same corner and in case the first constraint field wasn’t 0,
the map was discarded and another one generated. Single point strategy and Equation
strategy was capped at 10seconds, my CSP had cap of 2 seconds to make a move and
47 milliseconds to evaluate one step on current depth

Based on these results, trial and error could be implemented for generating an in-
termediate minefield, but would not work in real-time application for advanced one.
Because of these results, I’ve decided to use a gradual generation and placing the mines
one by one, not all at once at random locations. This means that a lot of potential rep-
etition, that should best be avoided. That is why my solver doesn’t solve the whole
minefield, but new CSP, with clearly set variables, domains and constraints, for every
step. This will increase CPU time, but not complexity, as the number of steps grows
linear with the number of fields.

4.4.2 Gradual CSP with MRV and FVC heuristics

I wanted to avoid inadmissible heuristics, to avoid discarding solvable fields. Minimum
remaining values generally significantly lowers computation time[12] so I chose it as a
method of selecting which variables to try first. Forward checking was needed, because
the number of possible solutions in the 10100 realm would be impossible to evaluate
and FCH shows good results in most use cases[10][12].

5 Implementation of the solver

5.1 Adapting the minefield
First step is cheaply removing all the fields adjacent to constraint nodes with value 0.
The main algorithm can do this, but the Map is equipped with O(n*m) function neces-
sary for the GUI client, and is cheaper than the CSP of depth 1, which is O(n2 ∗m2).

9

The size of the statespace is dependent on a factorial of the number of elements, also
variables in CS problems. For this very reason, the second and most important step is
reducing the number of variables and the number of constraint fields.

initialization;
for each field in MineMap do

if field Xi,j == MARKED then
field(Xi−1; x+1,j−1; j+1) = field(Xi−1; x+1,j−1; j+1) - 1;
remove(Xi,j);

end
if field(Xi,j) == 0 then

if reveal neighbours == success then
continue(main loop);

end
remove(Xi,j);

end
if field(Xi,j) ¿ 0 then

addConstraint(Xi,j);
addNewNodesAround(Xi,j);

end
if field Xi,j == UNPROBED && NodeList.contains(Xi,j) == false then

field Xi,j = unconstrained variable;
end

end
Algorithm 2: Adapting the minefield

With the use of this algorithm, we can cut everything except for the constraint fields
and variables that are on the border of unvisited and probed fields. We also mark the
location of unconstrained variables for later use.

10

5.2 Forming a cluster
With exponential complexity, every way that decreases the size of the set of variables
is highly advantageous. Two clusters are sets of constraint fields and nodes, where no
node from the first set is adjacent to any constraint from the second set, no constraint
from the first set is adjacent to any node in the second set and vice versa.

0 | 0 | 0 | 2 | M | * | * | * |
0 | 0 | 0 | 2 | M | 3 | 2 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
M | M | 1 | 0 | 0 | 0 | 0 | 0 |

* | 3 | 1 | 0 | 0 | 0 | 0 | 0 |

* | 2 | 0 | 0 | 0 | 0 | 0 | 0 |

* | 1 | 0 | 0 | 0 | 0 | 0 | 0 |

Figure 1:Minefield with two clusters after several steps1

Minefield on Figure 1 contains two clusters, each with 3 constraint nodes and 3 vari-
ables. This problem can be solved at depth 1.

1Figure 1 can be passed onto any solver compliant with PGMS[7] as a minefield, see section 10 for more
information

11

5.3 The main CSP
The algorithm iterates through all the depths starting with one and ending with global
limit, that could be set as a variable when calling the play function.
The current depth signifies the number of guesses we make when trying to find a safe
step. If the depth is higher We get a problem that can be defined as a CSP problem.

5.3.1 Theoretical part

0 1 2 3
0 0 | 0 | 0 | 0 |
1 0 | 0 | 0 | 0 |
2 1 | 1 | 0 | 0 |
3 * | 2 | 0 | 0 |
4 * | 2 | 0 | 0 |
5 1 | 1 | 0 | 0 |

Figure 2:Simple minefield2

The minefield on Figure 2 can be defined as a CSP, with these parameters:

V ariables : x0,3, x0,4

Domains : Di = 0, 1

Constraints : x0,3 = 1, x0,4 = 1, x0,3 + x0,4 = 2

2Figure 2 can be, with slight modifications, passed onto any solver compliant with PGMS[7] as a mine-
field, see section 10 for more information

12

Data: Successor function:
for each variable in current cluster do

add undecided most constrained variable x on activeList;
permutations(activeList);

end
Algorithm 3: Pseudocode of a successor function

Data: Permutations with repetition function:
while permutation is max == false do

if last var is max == false then
Increase last variable;
push the new permutation;

end
if last var is max == true then

for every variable in permutation from back do
if current variable is max == true then

current variable = 0;
end
Ifcurrent variable is max == false increase current variable;
push the new permutation;
continue;

end
end

end
Algorithm 4: Pseudocode of a permutations with repetition function

But such an approach makes it very difficult to implement heuristics respecting
the nature of minesweeper, for that reason, my algorithm generates the constraints
dynamically from list of constraint fields.

5.3.2 Deciding if a move is the correct one

Instead, I make use of the small domain size in minesweeper. Every field is either a
mine or safe field. For depth n, I choose n fields and go through all their permutations
with repetition, which means 2depth instances. I use SPS algorithm in them and throw
out the instances that contradict themselves.
For example, this CS problem has 3 variables and 5 constraint fields.

13

0 1 2 3
0 0 | 0 | 0 | 0 |
1 0 | 0 | 0 | 0 |
2 0 | 0 | 0 | 0 |
3 1 | 1 | 1 | 0 |
4 * | * | 1 | 0 |
5 * | * | 1 | 0 |

Figure 3:Resolution step 1 3

Variable x1,4 is picked first and gets assigned the value C (safe field). SPS is run to
check consistency by cutting domain sets of active variables and find contradictions.

0 1 2 3
0 0 | 0 | 0 | 0 |
1 0 | 0 | 0 | 0 |
2 0 | 0 | 0 | 0 |
3 1 | 1 | ! | 0 |
4 H | C | 1 | 0 |
5 * | H | 1 | 0 |

Figure 4:Resolution step 2 3

Constraint fields with least active nodes are resolved first. For that reason x0,4 and x1,5

get assigned the H (unsafe) value.
When arc consistency reaches constraint field at (2,3), there is a contradiction and
whole resolution gets discarded.

0 1 2 3
0 0 | 0 | 0 | 0 |
1 0 | 0 | 0 | 0 |
2 0 | 0 | 0 | 0 |
3 1 | 1 | 1 | 0 |
4 C | H | 1 | 0 |
5 * | C | 1 | 0 |

Figure 5:Resolution step 3 3

We resolve the next permutation with repetition. This time x1,4 gets assigned the H
value. Resolution then assigns C to x0,4 and x1,5, the arc consistency successfully
finishes and the solution is added on the solutions set.

3Figures can be, with slight modifications, passed onto any solver compliant with PGMS[7] as a mine-
field, see section 10 for more information

14

Now our solution set of sets looks like this: { { x1,4 ,x0,4, x1,5 } }. Since we are at
depth 1 and one set got discarded, we have only 21 − 1 = 1 sets.
We can’t really prove any single one of our guesses to be true, but since we have as-
signed all the possible permutations with repetition to the selected variable, we can say
for sure, that we did resolve for a correct guess
Now we check, if there is any node that has been assigned the same value by all the
undiscarded(retained) solution sets, if that is so, it also means it is a product of reso-
lution based on a correct guess and it is safe to play implement all these domain cuts
for all of the resolved variables. In Figure 5, variables x1,4 ,x0,4 and x1,5 all had their
domain set size reduced, so we play all these changes, ending up with this gamestate:

0 1 2 3
0 0 | 0 | 0 | 0 |
1 0 | 0 | 0 | 0 |
2 0 | 0 | 0 | 0 |
3 1 | 1 | 1 | 0 |
4 1 | M | 1 | 0 |
5 * | 1 | 1 | 0 |

Figure 6:Resolution is complete, we get new CSP

With a new CSP, we start the whole process over.

5.3.3 Using number of mines when main algorithm fails

Upon initiation, solver is provided with a total number of mines on a minefield. Mark-
ing of mines is not a part of a win condition, but it is another constraint, I have been
avoiding so far.
Since the aim of this algorithm is to ultimately provide a solvable minefield using
gradual generation, number of mines needs to be clearly separated from the rest of the
resolution process.
When gradually building a minefield, situation where some variables will never get
into our active set, will be more common, than it is in the set of solvable minefields.
There are two main reasons for this, both of similar nature. To explain them, I need
to first explain the two distinct situations, where the total number of mines could be
used to advance a game minesweeper game. With both cases, the concept of clusters is
unused and all the border variables are seen as active.

5.3.4 Advancing by counting total mines, all mines on border

First type of advancing by counting the total number of mines occurs when all the
remaining mines lay on the border variables, those are the variables that have any con-
straints placed on them (apart from total mine count constraint).
There can be any number of clusters and any number of possible placement of mines,
as long, as all the possible permutations with repetition place all the remaining mines
on the border, we can safely assign 0 (safe) to all unconstrained variables. This al-
though does not guarantee solvability, as the unconstrained mines are not guaranteed

15

to provide information that would contradict all but one permutation of border mine
domain assignments.

5.3.5 Advancing by counting total mines, all inner variables are mines

The second solvable type occurs, when all the mines that are not constrained, are mines.
Again, there can be any number of clusters. All the passable permutations of the bor-
der mines must contain (remaining mines - unconstrained variables). Any permutation
where border fields have less than (remaining mines - unconstrained variables) con-
tradicts the rules, as all minds could not be places. Any passable permutation where
border fields have more than (remaining mines - unconstrained variables) but less then
the situation in previous section (all mines on border) are unsolvable.

5.3.6 Advancing by counting total mines, examples

This is an example that cannot be solved without the use of counting the total number
of mines:

0 | 0 | 0 | 0 | 0 | 2 | X | * | * | * | * |
2 | 3 | 2 | 1 | 0 | 2 | X | X | X | X | 2 |
X | X | X | 1 | 0 | 1 | 2 | 3 | 3 | 2 | 1 |
3 | * | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | * | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | * | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | * | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
X | X | X | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Figure 7:Unsolvable without minecount

The count of remaining mines in figure 7 is in the range from 3 to 5, less than 3 would
not satisfy the field constraints and more than 5 could not be fitted onto unvisited fields
while still respecting the field constraints. The constrained variables hold 3 mines in
every passable permutation, of which there are 4 (two permutations per each cluster).
If the number of remaining mines is 3, we know that all the unconstrained variables are
safe, which provides additional information and we can continue the resolution further,
ending at the state:

16

0 | 0 | 0 | 0 | 0 | 2 | X | 4 | 4 | X | 2 |
2 | 3 | 2 | 1 | 0 | 2 | X | X | X | X | 2 |
X | X | X | 1 | 0 | 1 | 2 | 3 | 3 | 2 | 1 |
3 | * | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | * | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | * | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | * | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
X | X | X | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Figure 8:Unsolvable with minecount

We have uncovered additional fields, but ultimately did not gain the information needed
to win.

If the number of remaining mines is 5, we know that all the unconstrained variables are
mines, which allows us to make a play and further the progress in a game, but does not
provide additional information and we are unable to uncover any additional fields.

0 | 0 | 0 | 0 | 0 | 2 | X | X | X | * | * |
2 | 3 | 2 | 1 | 0 | 2 | X | X | X | X | 2 |
X | X | X | 1 | 0 | 1 | 2 | 3 | 3 | 2 | 1 |
3 | * | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | * | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | * | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | * | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
X | X | X | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Figure 9:Unsolvable with minecount

If the number of mines is between 3 and 5 (only 4 in this example), we can do nothing,
since there are mines among the unconstrained fields, but they can be in any configu-
ration.
In cases where the number of mines on the border could not be determined even after
cutting the configuration exceeding or not reaching the limit amounts, the problem is
unsolvable, as there are at least two solutions compliant with the constraints and there
is only one correct solution in minesweeper.

17

5.4 Admissible heuristics
5.4.1 Most constrained variable

This fail-first heuristic allows me to recognize contradiction quickly and not effectively
decrease the size of the statespace.

0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 2 | 2 |
0 | 0 | 2 | * | * |
0 | 0 | 2 | * | * |

Figure 10

In the example shown on figure 10, the corner variable (x3,3) will be resolved for
first. Since there is most constraints on it, the chance of a contradiction is higher, and
indeed, assigning C (safe) value leads to a quick contradiction with constraint field
(x2,2), making the whole resolution more effective.

5.4.2 Least restrictive field

As I have said before, I don’t use a set of constraints, although I have defined this set,
but in practice, I generate it dynamically. The fewer variables limited by the constraint
field, the bigger the chance that either resolution or contradiction will appear, allowing
me to save computation time again.
When we go back to figure 10, thanks to this heuristic, the first constraint field after
trying to assign a domain to x3,3 is x2,2, that also gives us contradiction right away.

5.4.3 Variables bound to other variables

To prove there is no solution on given depth in a single cluster, I iterate through all
the combinations (size = depth) of the active variables in the actual cluster. For each
of these combinations, I have to go through all the permutations with repetition. This
process is costly, it is the reason why my algorithm has exponential complexity. But
some of the combinations aren’t perspective.

0 | 1 | M | 1 | 0 | 0 | 0 |
0 | 1 | 2 | 2 | 1 | 0 | 0 |
0 | 1 | 2 | M | 1 | 0 | 0 |
0 | 1 | M | 2 | 1 | 0 | 0 |
1 | 2 | 1 | 1 | 0 | 0 | 0 |
M | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |

Figure 11:minefield, requires multiple guesses

18

The minefield on figure 11 needs to go to depth 2 to be successfully resolved by my
CSP implementation. On depth 2 there are 8!

2!∗(8−2)! = 28 combinations, each with 4
permutations with repetition. This number of combinations is unnecessary and can be
cut down.
For example variables x2,0 and x2,1 are bound together. When one is assigned the
domain C (safe) the other gets H (unsafe) and vice versa. I can detect it at the cost
of n (8 in this case) when searching for solutions in depth 1. When I pick a variable
and try to assign one and then the other domain, whenever there is a node that gets its
domain size reduced both times, I remember it and in the higher depths, I check that my
current combination doesn’t have any variables that have each other blacklisted. When
the blacklist of variable A contains variable B, blacklist of variable B contains variable
A, which makes the checking easier. When I encounter this conflict, I can discard the
whole combination, since I already know that this one will resolve the same like the
combination one depth lower, that had all the same variables, except only one of the
conflicting two. In the current depth, I will just have twice as much resolutions, but
half will be discarded for contradiction and the other half will be identical to the lower
depth combination.

5.5 Inadmissible heuristics
Since this solvers purpose is to detect solvable minesweeper grids, I have hoped to
avoid any inadmissible heuristics, but I have been unable to achieve acceptable runtime
without them.

5.5.1 Time constraints

The algorithm is designed to be used in a real time application on various devices.
Being able to assure a realistic runtime is crucial, that is why the algorithm can present
result even when it is ended prematurely. The constraints limit how much time can be
spent iterating through one combination and how much time can be spent at one depth.

5.5.2 Depth constraints

Thanks to the similarities my algorithm shares with the way humans solve this problem,
depth is an excellent difficulty rating. Higher depths often get extremely computation
heavy, but occur very infrequently.

maximal and average depth of my CSP
minefield maximal depth average depth
9x9, 10 mines 2 1.02
16x16, 40 mines 9 1.8
30x16, 90 mines 9 1.24

My CSP was capped at the depth 9, had 200 milliseconds to solve a depth and 4.7
milliseconds to evaluate one combination current depth

19

6 Solver evaluation
In section 4.4.1, we have already seen that other algorithms don’t always detect a solv-
able minefield. I have proven this by solving it with my algorithm. It is improbable that
my CSP implementation can find all the passable solutions, as it also uses inadmissible
constraints, but I have nothing to test it against.

6.1 Example of problematic minefield for Equation strategy
0 | 1 | X | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |
0 | 2 | 3 | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |
0 | 1 | X | 3 | * | 3 | 2 | 1 | * | * | * | * | * | * | * | * | * | * |
0 | 1 | 3 | X | * | * | 2 | * | * | * | * | * | * | * | * | * | * | * |
0 | 0 | 2 | X | 3 | 1 | 2 | X | * | * | * | * | * | * | * | * | * | * |
2 | 2 | 2 | 1 | 1 | 0 | 1 | 3 | * | * | * | * | * | * | * | * | * | * |
X | X | 3 | 1 | 1 | 0 | 1 | 3 | * | * | * | * | * | * | * | * | * | * |
3 | X | 3 | X | 1 | 0 | 2 | X | * | * | * | * | * | * | * | * | * | * |
1 | 2 | 4 | 3 | 2 | 0 | 3 | X | * | * | * | * | * | * | * | * | * | * |
0 | 1 | X | X | 2 | 1 | 3 | X | 4 | * | * | * | * | * | * | * | * | * |
0 | 1 | 3 | X | 2 | 1 | X | 3 | 3 | * | * | * | * | * | * | * | * | * |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | X | * | * | * | * | * | * | * | * | * |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | * | * | * | * | * | * | * | * | * |
X | 2 | 1 | 1 | X | 2 | 2 | 1 | 2 | 2 | * | * | * | * | * | * | * | * |
3 | X | 2 | 2 | 3 | X | 2 | X | 2 | * | * | * | * | * | * | * | * | * |
X | 2 | 2 | X | 2 | 1 | 2 | 1 | 2 | * | * | * | * | * | * | * | * | * |

Figure 12:EQS gives up prematurely

0 | 1 | X | X | 2 | 2 | 1 | 1 | 0 | 1 | 3 | X | 3 | X | 1 | 0 | 0 | 0 |
0 | 2 | 3 | 4 | X | 2 | X | 1 | 0 | 2 | X | X | 4 | 2 | 1 | 0 | 0 | 0 |
0 | 1 | X | 3 | 3 | 3 | 2 | 1 | 0 | 2 | X | 4 | X | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 3 | X | 3 | X | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 3 | X | 2 |
0 | 0 | 2 | X | 3 | 1 | 2 | X | 3 | 2 | 1 | 0 | 0 | 2 | X | X | 4 | 3 |
2 | 2 | 2 | 1 | 1 | 0 | 1 | 3 | X | X | 2 | 1 | 0 | 2 | X | X | 3 | X |
X | X | 3 | 1 | 1 | 0 | 1 | 3 | X | 4 | X | 1 | 0 | 1 | 3 | 3 | 3 | 1 |
3 | X | 3 | X | 1 | 0 | 2 | X | 4 | 3 | 1 | 1 | 0 | 1 | 2 | X | 1 | 0 |
1 | 2 | 4 | 3 | 2 | 0 | 3 | X | X | 1 | 0 | 0 | 1 | 2 | X | 2 | 1 | 1 |
0 | 1 | X | X | 2 | 1 | 3 | X | 4 | 2 | 1 | 0 | 1 | X | 2 | 1 | 0 | 1 |
0 | 1 | 3 | X | 2 | 1 | X | 3 | 3 | X | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 2 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | X | 3 | 2 | 0 | 1 | 1 | 2 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 2 | X | 2 | 2 | 2 | X | 3 | X | 1 | 2 |
X | 2 | 1 | 1 | X | 2 | 2 | 1 | 2 | 2 | X | 3 | X | 3 | X | 2 | 1 | 1 |
3 | X | 2 | 2 | 3 | X | 2 | X | 2 | 2 | 3 | X | 2 | 3 | 2 | 3 | 2 | 4 |
X | 2 | 2 | X | 2 | 1 | 2 | 1 | 2 | X | 2 | 1 | 1 | 1 | X | 2 | X | X |

Figure 13:my CSP can solve this problem

20

The minefields aren’t complete and are missing the few of the columns on the right,
as I’ve run out of screen space, but EQS only has unknown variables there and my
algorithm has solved the whole minefield with only ever getting to depth 2.
Depth 2 is something even fairly inexperienced player can solve and should not be
omitted from the results.

6.2 Example of problematic minefield for other CSP
0 | 0 | 0 | 0 | 1 | X | 2 | X | 1 | 0 | 0 | 2 | X | * | * | * | * | * |
1 | 1 | 0 | 0 | 1 | 1 | 3 | 2 | 3 | 1 | 1 | 2 | X | * | * | * | * | * |
X | 1 | 0 | 1 | 1 | 1 | 2 | X | 4 | X | 1 | 2 | 3 | * | * | * | * | * |
3 | 3 | 1 | 1 | X | 1 | 2 | X | X | 2 | 1 | 2 | X | * | * | * | * | * |
X | X | 3 | 2 | 2 | 1 | 1 | 3 | 4 | 3 | 1 | 2 | X | 3 | * | * | * | * |
3 | X | 3 | X | 1 | 1 | 1 | 2 | X | X | 1 | 1 | 1 | 2 | * | * | * | * |

* | 2 | 2 | 1 | 1 | 2 | X | 4 | 3 | 3 | 1 | 1 | 1 | 3 | * | * | * | * |

* | 4 | 2 | 1 | 0 | 2 | X | 3 | X | 1 | 0 | 2 | X | 4 | * | * | * | * |
X | X | X | 1 | 0 | 1 | 1 | 2 | 1 | 1 | 0 | 2 | X | 4 | * | * | * | * |
X | X | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | * | * | * | * |
3 | 3 | 3 | 1 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 1 | 2 | 3 | * | * | * | * |
1 | X | 2 | X | 2 | 2 | X | X | 1 | 1 | 1 | 2 | X | X | * | * | * | * |
1 | 1 | 2 | 1 | 2 | X | 3 | 2 | 1 | 2 | X | 3 | 4 | X | * | * | * | * |
1 | 1 | 1 | 0 | 1 | 1 | 2 | 1 | 1 | 2 | X | 2 | 2 | X | 5 | * | * | * |
1 | X | 1 | 1 | 2 | 3 | 3 | X | 1 | 1 | 1 | 1 | 1 | 3 | X | * | * | * |
1 | 1 | 1 | 1 | X | X | X | 2 | 1 | 0 | 0 | 0 | 0 | 2 | X | * | * | * |

Figure 14:CSP gives up prematurely

0 | 0 | 0 | 0 | 1 | X | 2 | X | 1 | 0 | 0 | 2 | X | X | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 1 | 3 | 2 | 3 | 1 | 1 | 2 | X | 4 | 2 | 1 | 0 | 1 |
X | 1 | 0 | 1 | 1 | 1 | 2 | X | 4 | X | 1 | 2 | 3 | 4 | X | 1 | 0 | 2 |
3 | 3 | 1 | 1 | X | 1 | 2 | X | X | 2 | 1 | 2 | X | X | 2 | 1 | 0 | 2 |
X | X | 3 | 2 | 2 | 1 | 1 | 3 | 4 | 3 | 1 | 2 | X | 3 | 1 | 0 | 0 | 2 |
3 | X | 3 | X | 1 | 1 | 1 | 2 | X | X | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 1 |
2 | 2 | 2 | 1 | 1 | 2 | X | 4 | 3 | 3 | 1 | 1 | 1 | 3 | X | 3 | 1 | 0 |
X | 4 | 2 | 1 | 0 | 2 | X | 3 | X | 1 | 0 | 2 | X | 4 | X | X | 2 | 0 |
X | X | X | 1 | 0 | 1 | 1 | 2 | 1 | 1 | 0 | 2 | X | 4 | 4 | X | 3 | 1 |
X | X | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | X | 3 | X | 1 |
3 | 3 | 3 | 1 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 1 | 2 | 3 | 2 | 2 | 1 | 1 |
1 | X | 2 | X | 2 | 2 | X | X | 1 | 1 | 1 | 2 | X | X | 3 | 1 | 0 | 0 |
1 | 1 | 2 | 1 | 2 | X | 3 | 2 | 1 | 2 | X | 3 | 4 | X | X | 2 | 2 | 1 |
1 | 1 | 1 | 0 | 1 | 1 | 2 | 1 | 1 | 2 | X | 2 | 2 | X | 5 | X | 2 | X |
1 | X | 1 | 1 | 2 | 3 | 3 | X | 1 | 1 | 1 | 1 | 1 | 3 | X | 3 | 2 | 1 |
1 | 1 | 1 | 1 | X | X | X | 2 | 1 | 0 | 0 | 0 | 0 | 2 | X | 2 | 0 | 0 |

Figure 15:my CSP can solve this problem

21

The minefields aren’t complete and are missing the few of the columns on the right, as
I’ve run out of screen space, but the CSP by Dr. Studholme only has unknown variables
there and my algorithm has solved the whole minefield with only ever getting to depth
2.
Depth 2 is something even fairly inexperienced player can solve and should not be
omitted from the results.

6.3 Computation time
My algorithm doesn’t have the time as the main focus, but it is still very important,
unfortunately, it really isn’t at all competitive when compared to Equation strategy by
John D. Ramsdell and especially CSP by Dr. Studholme.

results for advanced game, 30x16 fields, 99 mines, 1000 tries
strategy average runtime [milliseconds] wins
Equation strategy 94.5 64
CSP Studholme 1.06 68
My CSP 206 70

The maps were the same for all the algorithms. The algorithms started from a same
corner and in case the first constraint field wasn’t 0, the map was discarded and an-
other one generated. The Equation strategy had 10 seconds to make a step. My CSP
was capped at the depth 9, had 200 milliseconds to solve one cluster at given depth
and 4.7 milliseconds to evaluate one combination current depth

results for intermediate game, 16x16 fields, 40 mines, 1000 tries
strategy average runtime [milliseconds] wins
Equation strategy 4.8 508
CSP Studholme 0.04 510
My CSP 9.3 518

The maps were the same for all the algorithms. The algorithms started from a same
corner and in case the first constraint field wasn’t 0, the map was discarded and an-
other one generated. The Equation strategy had 10 seconds to make a step. My CSP
was capped at the depth 9, had 200 milliseconds to solve a depth and 4.7 milliseconds
to evaluate one combination current depth

results for beginner game, 9x9 fields, 10 mines, 1000 tries
strategy average runtime [milliseconds] wins
Equation strategy 0.16 790
CSP Studholme 0.025 790
My CSP 1.47 790

22

The maps were the same for all the algorithms. The algorithms started from a same
corner and in case the first constraint field wasn’t 0, the map was discarded and an-
other one generated. The Equation strategy had 10 seconds to make a step. My CSP
was capped at the depth 9, had 200 milliseconds to solve a depth and 4.7 milliseconds
to evaluate one combination current depth

The results of My CSP and EQS by John D. Ramsdell are stable in relation to each
other, with my implementation taking twice as long to finish. This did not occur in the
smallest 9x9 setting, but that would be to my initiation times, that set everything up for
a gradual generation of solvable minefield.
CSP implementation by Dr. Stuholme seems to be a complete outliner, performing
much better then the other two algorithms and scaling incredibly well with increase of
variables from 9x9 to 16x16 field.
EQS by John D. Ramsdell is in its representation more of a CSP than the other two
implementations, because it really works exactly with the constraints. I see that as
a main reason for such a similar scaling. Once I generate the constraints using the
constraint fields, we are solving almost identical problem.

7 Generator implementation
Since everything is already prepared, not much needs to be done. I start placing the
mines at random, making sure I don’t place them on other mines or on a blacklisted
field. Whenever I place a new mine, I let my CSP algorithm check solvability. When
I pass the problem, I also pass information about previous runs. Until the new mine is
still among inactive variables, I only carry out the past steps. If I get the new mine into
node or constrain list (it is possible to just pass it), I start updating the list of previous
runs. When I get the new mine into resolved, I check whether my current constraints
and nodes match any of the past ones. If they do, I reconnect the list there and return
success, if not, I keep on resolving, updating and checking the list. If the resolution
succeeds, I discard rest of the old list and return success, else I return failure and the
new mine gets placed onto the blacklist. When I encounter situation, where I need the
total sum of mines to succeed, I use rand function with 0.08 success rate, if it passes,
all the remaining safe fields in those clusters get put on the black list, but the new mine
stays, else, the new mine gets removed and its field gets blacklisted.

8 Generator evaluation
The results of my algorithm on the most common parameters of the field were:

results of my minefield generator, 1000 tries
field parameters average runtime [milliseconds] maximal runtime
Beginner 9x9 10mines 32.5 614
Intermediate 16x16 40mines 662 1589
Advanced 30x16 99mnines 7723 12990

23

Results for intermediate and beginner fields are very good. Although, waiting almost 8
second for an advanced game is not usable in real time.
That might not really be a problem though. Today, even mobile processors have multi-
ple computing cores and my algorithm only utilizes one thread. But since every com-
bination is resolved separately, it is not a problem have multiple threads resolving a
different combination each, which would save a lot of time. Also, the first generated
solution could be a simpler one, for example with the maximal depth of 2 and the more
complex grid could be generated after the first one is available.

9 GUI demonstration
I have also developed a functioning GUI, it is not implemented in Java, but in Matlab.
It does not feature the grid generating algorithm introduced above, but much simpler
one. The whole application servers as a demonstration and a proof of concept.

Figure 16:Screen grab of game ready for initialization

In order to deal with the slight inconsistency in time needed to generate a new field,
separate solution is generated for every field, as they are tested and implemented, the
tile turns from gray to blue. Both tiles are clickable, but the blue tiles guarantee solv-
ability.
Thanks to this approach, it is acceptable for a grid to be generated, than if it had to react
on user selecting a tile and immediately preparing a field, since solvability depends on
a starting point.

24

10 Inputting text minefield examples into the
application

All the minefield representations in this text were in form of basic ASCII graphics,
and they can be imported directly into the application, either as they are, or with any
number of mines added. Before pasting, make sure that each line ends with a space,
not a |symbol and starts with a fields, not a space or index of the row.
The numbers on constraint fields will correct itself, when the mine setup changes, but
any difference in spacing will result in a skewed input. All that is needed is pass a string
with the minefield, and % symbol, instead of new line, to the stringToField(String s,
int x, int y) function, found in any instance of MineMap class and use the Field[][] it
returns in a constructor of a new MineMap instance. Any Strategy implementing the
Strategy.java provided with PGMS[7] will work with this map.

11 Conclusion
My first goal was to find an efficient solver, that would also be suited for use in a solv-
able minefield generator.
While the solver did very well in detecting a solvable field, its computation time was
underwhelming. Taking two times longer than Equation strategy is acceptable, con-
sidering my algorithm isn’t aimed mainly at speed, but compatibility and success rate.
The CSP by Dr. Studholme on the other hand is clearly superior and the slightly better
success rate does not justify my diametrically worse computation time.

The game generator doesn’t have a direct comparison. Christian Czepluch’s implementation[3]
does something closely related, but it a very different way. Instead of finding a solvable
minefield, the application only looks for situation, where player is forced to guess and
it changes the minefield so that the guess would be correct. Unfortunately, as the tests
of solvers revealed, proving that no safe step could be made, is much more tedious
than finding one, so the dynamic of the whole game is completely changed. Another
solution was provided by Simon Tatham in his portable puzzle collection[5]. While
he also uses a solver, it is a very low tier one, that doesn’t register a more complicated
solutions and discards them. My generator has a chance to be the closest representation
of standard random games, with just the unsolvable one discarded. There are certainly
differences, but they are well hidden a plus, there is the addition of the maximum depth
setting, which does really well to represent the actual complexity the player will have
to consider, if he or she wants to win the game.

25

References
[1] Richard Kaye, Infinite versions of minesweeper are Turing complete. School of

Mathematics, The University of Birmingham, Birmingham, 2007

[2] Richard Kaye, Minesweeper is NP-complete. Mathematical Intelligencer, Birm-
ingham, 2000

[3] Christian Czepluch, Mines-Perfect 1.4.0. URL http://www.czeppi.de/
english/index.html, 2001

[4] MineSweeper, Authoritative Minesweeper. URL http://www.
minesweeper.info/index.html, 2014

[5] Simon Tatham, Simon Tatham’s Portable Puzzle Collection. URL
http://www.chiark.greenend.org.uk/˜sgtatham/puzzles/
doc/mines.html#mines, 2014

[6] Chris Studholme, Minesweeper as a constraint satisfaction problem. 2000

[7] John D. Ramsdell. Programmers Minesweeper PGMS. URL http://www.
ccs.neu.edu/home/ramsdell/pgms/

[8] Ken Bayer, Josh Snyder and Berthe Y. Choueiry, An Interactive Constraint-Based
Approach to Minesweeper. Constraint Systems Laboratory, Department of Com-
puter Science and Engineering, University of Nebraska-Lincoln, 2006

[9] Dmitry Kamenetsky and Choon Hui Teo, Graphical Models for Minesweeper.
Project Report, 2007

[10] T Schiex, H Fargier, G Verfaillie, Valued constraint satisfaction problems: Hard
and easy problems. IJCAI, Toulouse Cedex France, 1995

[11] R Tarjan Depth-first search and linear graph algorithms SIAM journal on com-
puting, 1972

[12] D Frost, R Dechter In search of the best constraint satisfaction search. Dept. of
Information and Computer Science University of California, Irvine, AAAI, 1994

Appendices
Enclosed CD
There is an enclosed CD-ROM with every print of this thesis.
The contents of the CD-ROM are:
PDF version of this document
Netbeans project No.Guessing.Minesweeper, with the source files of the map generator
(MineMap.java) and solver (CSP FCH MRV.java), also all the support classes
and other code
Matlab files, mainWindow.m will start the GUI demo

26

http://www.czeppi.de/english/index.html
http://www.czeppi.de/english/index.html
http://www.minesweeper.info/index.html
http://www.minesweeper.info/index.html
http://www.chiark.greenend.org.uk/~sgtatham/puzzles/doc/mines.html#mines
http://www.chiark.greenend.org.uk/~sgtatham/puzzles/doc/mines.html#mines
http://www.ccs.neu.edu/home/ramsdell/pgms/
http://www.ccs.neu.edu/home/ramsdell/pgms/

	What is minesweeper?
	Formal definition
	Game parameters
	Initial state
	Goal test
	Successor function

	Generating solvable grid
	Minesweeper solver
	Single point solvers
	Depth-first search
	Constrain satisfaction problem
	Equation Strategy

	Technical background of my solution
	Single point strategy and its variations
	Depth-first algorithms
	Breadth-first algorithms
	Constraint satisfaction algorithms
	Multiple constraint satisfaction problems
	Gradual CSP with MRV and FVC heuristics

	Implementation of the solver
	Adapting the minefield
	Forming a cluster
	The main CSP
	Theoretical part
	Deciding if a move is the correct one
	Using number of mines when main algorithm fails
	Advancing by counting total mines, all mines on border
	Advancing by counting total mines, all inner variables are mines
	Advancing by counting total mines, examples

	Admissible heuristics
	Most constrained variable
	Least restrictive field
	Variables bound to other variables

	Inadmissible heuristics
	Time constraints
	Depth constraints

	Solver evaluation
	Example of problematic minefield for Equation strategy
	Example of problematic minefield for other CSP
	Computation time

	Generator implementation
	Generator evaluation
	GUI demonstration
	Inputting text minefield examples into the application
	Conclusion
	Appendices

