
Czech Technical University in Prague  
Faculty of Electrical Engineering 

Department of Cybernetics 
 

DIPLOMA THESIS ASSIGNMENT 

Student:              Bc. Hana   Š a r b o r t o v á 

Study programme:          Open Informatics 

Specialisation:          Computer Vision and Image Processing 

Title of Diploma Thesis:    Individual Person Counting in Semi-Crowded Environment 

Guidelines: 
State of the art video surveillance trackers fail to correctly operate when presented with 
crowded or semi-crowded scene at the input. The main problem is inability to determine 
whether the tracked object consists of a single or multiple individuals. The number of persons  
in each tracked object of a single camera video sequence is needed in order to solve multi-
camera correspondence problem. 
 
1. Review methods suitable for estimating the number of persons in images/video sequences  
    of a semi-crowded scene with frequently occurring occlusions. 
2. Select a method suitable for efficient person counting in parts of images/video sequences  
    delimited by the output of a legacy video surveillance tracker. 
3. Implement the selected method in Matlab or C/C++. 
4. Evaluate the performance of the implemented method using available data (CAVIAR [1],  
    PETS 2009 [2]). 
 
 
Bibliography/Sources:   
[1] CAVIAR: Context Aware Vision using Image-based Active Recognition   
     URL: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ 
[2] PETS 2009 Benchmark Data, URL: http://cs.binghamton.edu/~mrldata/pets2009.html 
[3] Corvee, E., Bremond, F.: Body Parts Detection for People Tracking Using Trees of  
     Histogram of Oriented Gradient Descriptors. Proceedings of the 2010 7th IEEE International  
     Conference on Advanced Video and Signal Based Surveillance (2010) 
[4] Jia, HX., Zhang, YJ.: Fast Human Detection by Boosting Histograms of Oriented Gradients.  
     Proceedings of the Fourth International Conference on Image and Graphics (2007)  

Diploma Thesis Supervisor:  Ing. Vít Líbal, Ph.D.  

Valid until:   the end of the winter semester of academic year 2015/2016 

 
       L.S. 

doc. Dr. Ing. Jan Kybic 
Head of Department 

 prof. Ing. Pavel Ripka, CSc. 
Dean 

Prague, January 27, 2015 

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/


České vysoké učení technické v Praze 
Fakulta elektrotechnická 

Katedra kybernetiky 
 

ZADÁNÍ DIPLOMOVÉ PRÁCE 

Student:     Bc. Hana   Š a r b o r t o v á  

Studijní program:    Otevřená informatika (magisterský) 

Obor:     Počítačové vidění a digitální obraz 

Název tématu:           Počítání individuálních osob v částečně zaplněné scéně 

Pokyny pro vypracování: 
Algoritmy sledování pohybujících se objektů v současných kamerových systémech selhávají 
pokud ve sledovaném prostoru dochází k častým zákrytům sledovaných objektů, jako například 
při sledování osob v davu, nebo v hustěji obsazené scéně. Jednou z hlavních příčin je problém 
rozlišit jednotlivý objekt od skupiny pohybujících se objektů a odhadnout počet objektů v rámci 
jedné detekce. Spolehlivý odhad počtu objektů v pohledu z jedné kamery je nezbytný k určení 
správných korespondencí mezi objekty různých kamer.  
 
1. Proveďte rešerši metod vhodných pro odhad počtu osob v obrazech/video sekvencích hustě  
    a středně hustě zaplněných prostor s častými překryvy. 
2. Zvolte vhodnou metodu pro efektivní počítání osob v částech obrazu vymezených  
    sledovacím algoritmem existujícího kamerového systému. 
3. Implementujte tuto zvolenou metodu v Matlabu nebo C/C++. 
4. Vyhodnoťte chování implementované metody na vhodných datech (CAVIAR [1], PETS 2009  
    [2]). 
 
Seznam odborné literatury:   
[1] CAVIAR: Context Aware Vision using Image-based Active Recognition   
     URL: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ 
[2] PETS 2009 Benchmark Data, URL: http://cs.binghamton.edu/~mrldata/pets2009.html 
[3] Corvee, E., Bremond, F.: Body Parts Detection for People Tracking Using Trees of  
     Histogram of Oriented Gradient Descriptors. Proceedings of the 2010 7th IEEE International  
     Conference on Advanced Video and Signal Based Surveillance (2010) 
[4] Jia, HX., Zhang, YJ.: Fast Human Detection by Boosting Histograms of Oriented Gradients.  
     Proceedings of the Fourth International Conference on Image and Graphics (2007) 

Vedoucí diplomové práce:   Ing. Vít Líbal, Ph.D. 

Platnost zadání:   do konce zimního semestru 2015/2016 

       L.S. 

doc. Dr. Ing. Jan Kybic 
vedoucí katedry 

 prof. Ing. Pavel Ripka, CSc. 
děkan 

V Praze dne 27. 1. 2015 

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/


master’s thesis

Individual Person Counting in Semi-Crowded
Environment

Hana Šarbortová

July 2015

Ing. Vít Líbal PhD.

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics





Acknowledgement
I would like to express the greatest appreciation to my supervisor Vít Líbal for his
patience, a magnificent guidance throughout this thesis and the amount of time he
spent on consultations.

Declaration
Prohlašuji, že jsem předloženou práci vypracovala samostatně, a že jsem uvedla vešk-
eré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických
principů při přípravě vysokoškolských závěrečných prací.

........................................ ........................................
Date Signature

iii



Abstract
Algoritmy sledování pohybujících se objektů v současných kamerových systémech se-
lhávají, pokud ve sledovaném prostoru dochází k častým zákrytům sledovaných objektů,
jako například při sledování osob v davu nebo v hustěji obsazené scéně. Hlavním pro-
blémem je neschopnost určit, zdali je ve sledovaném objektu jeden nebo několik jedinců.
Cílem této práce je odhadnout počet lidí v každém z těchto sledovaných objektů. Takto
odhadnutý počet lidí je nutný k řešení problému korespondence více kamer. Navržená
metoda odhaduje počet lidí počítáním detekcí ve sledovaných objektech. Byly testovány
dva typy detektorů, detektor celého těla a detektor hlavy a ramen. Všechny zkoumané
detektory jsou složené kombinováním HOG nebo "channel features"s SVM nebo DF
klasifikátory. Bylo natrénováno několik detektorů pro různé velikosti osob a pro každou
část obrazu se odhadla očekávaná velikost jedince. Takto mohou být klasifikační znaky
spočítány pouze jednou na celém obraze a na každou část obrazu se použije detektor,
který velikostí nejvíce odpovídá očekávané velikosti detekce. Nejslibnější výsledky dává
detektor kombinující "channel features"a DF klasifikátor.

Klíčová slova
Detekce osob, počítání osob, HOG, DPM, ICF, ACF, SVM, DF
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Abstract
State of the art video surveillance trackers fail to correctly operate when presented
with crowded or semi-crowded scene at the input. The main problem is inability to
determine whether the tracked object consists of a single or multiple individuals. The
objective of this thesis is to provide an estimation of people count for each of the
tracked objects. The number of persons in each tracked object of a single camera
video sequence is needed in order to solve multi-camera correspondence problem. The
proposed method estimates the number of people by counting detections inside of the
tracked objects. Two types of detectors, full body and head-and-shoulders, were tested.
All investigated detectors are based on combining HOG or channel features with SVM
or decision forest (DF) classifiers. Multiple detectors for different scales are trained
and an expected person size is estimated for all image parts. Therefore, the features
are computed only once at one scale and the detection is done by different detectors
based on the estimated size. The most promising results are given by the head detector
combining channel features with decision forest.

Keywords
Person detection, person counting, HOG, DPM, ICF, ACF, SVM, DF
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1 Introduction
Analysis of people behavior in video surveillance is a very important task and informa-
tion about the people count throughout the analyzed video streams makes the steps
easier. The processing of surveillance videos involves several problems including person
detection and tracking, crowd counting, behavioral analysis of individuals and groups,
detection of suspicions events est. The approaches to solve these tasks highly depends
on expected density of people in a scene. In general, the difficulty of any analysis in-
creases with people density and frequent partial and full occlusions.

State of the art video surveillance trackers fail to correctly operate when presented
with a crowded or semi-crowded scene at the input. Tracked objects often contain
multiple individuals when the people density is high. The main problem is inability to
determine whether they consist of multiple individuals or a single person even though
the number of persons in each tracked object of a single camera video sequence is needed
in order to solve multi-camera correspondence problem. The goal of this thesis is to
determine how many individuals are in each tracked object.

1.1 Motivation
Analysis of surveillance videos is a very important task that have impact on several
fields. One of the most important concern is security in public spaces such as airports,
bus and train stations, shopping centers or streets but also in private sector including
office houses or industrial areas. These places are often monitored by a huge number
of surveillance cameras and their efficient analysis would be a very hard task without
any help provided by computer vision algorithms. The analysis, as performed today,
is a labour intensive task that is infeasible or near infeasible for a larger amount of
cameras. The problem with such monitoring is that a camera system operator is very
likely to stop paying attention while nothing is happening on screens for a long time.
It is a known fact that a common attention span of a security operator is ten to twenty
minutes while a single operator is capable of monitoring only a several camera views at
a time depending on the scene and the scene traffic complexity. Therefore, a real-time
monitoring of a large number of camera views to prevent or react to a security/safety
incidents requires a rotating teams of trained security operators. Automated or semi-
automated analysis using computers is a way to cope with the large number if cameras
so that the security and safety demands are met. A computer aided analysis can have
several purposes depending on the analyzed scene and security concerns. The methods
differ depending on expected people density and the fact whether someone seen in the
scene is an alarm or just an input to another analysis.

There are scenes where people are not supposed to be and detection of anyone should
cause an alarm. This includes a theft detection or any protection of restricted areas. In
this case, the number of people is not very important as the fact that there is at least
one person should cause an alarm. The basic functionality of a system should be high-
lighting of unusual things in a scene so that the operator can react properly. In often
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1 Introduction

needed forensic analysis, a surveillance system operator needs to find a specific piece of
information in possibly huge amount of video data which consequently requires a long
search time or a large number of people involved. The computer aided automated or
semi-automated video data analysis holds a great potential for improvement.

The other type of scenes, were people are expected to be, require a different philosophy
when designing the analysis algorithms. The main concern is to provide a security mea-
sures and ensure public safety. However, properly functioning algorithms can provide
useful inputs to many other seemingly unrelated fields. These include data for eco-
nomic purposes, resource management, scheduling of public transportation, indexing
multimedia archives, or advertising. The analysis have to deal with individual persons
as well as crowds. The applications can vary from counting people at certain places
to tracking groups and individuals throughout the entire monitored space that can be
very complex. These data can be further used in more fine purposes such as behavioral
analysis and detection of uncommon events.

The baseline to any analysis is a properly functioning detecting and tracking algo-
rithm. Once the algorithms work for one camera, the analysis can expand to multi-
camera problem which can cover entire complex monitored spaces. The complexity of
such problems increases with the density of people. The increasing density introduces
problems such as frequent partial or full occlusion. The processing of a crowded scenes
becomes very difficult in surveillance applications as the data are often in low resolution
and it has to be processed in real time.

1.2 Problem statement

The goal of this thesis is to provide an estimation of people count in a scene captured by
a static overhead placed camera. The scene is being analyzed by a legacy tracker which
is supposed to track persons within the captured scene. However, it fails to correctly
operate when presented with a crowded or semi-crowded scene. In this work, the Active
Alert video analytics suite of the Honeywell’s Digital Video Manager is used in place
of the legacy tracker. The active Alert is a state of the art commercial video analytics
software providing a robust tracking of persons and objects in the camera views. While
the Active Alert tracker works reliably across all kinds of environments, similar to other
state of the art commercial solutions it does not combine the tracking information of
overlapping cameras and works only when occlusions among multiple tracked objects do
not occur very frequently. In practice, the detector considers any overlapping moving
objects as one tracked object. The tracking works correctly when the scene contains
only few unoccluded people. Nevertheless, if two tracked objects become even slightly
occluded, they are merged into one. The task is to provide a number of people for all
tracked objects.

The tracker objects were provided for a publicly available dataset, namely Pets2009
[1]. The given log files contain coordinates of a rectangular bounding box, ID, confi-
dence, validity and other information. During the tracking process, a tracked object
can be created and removed anytime and anywhere in the video. An ID is assigned to
a newly detected object; no number is repeated in the given logs of a particular video
sequence even if the detection with a particular ID does not exist any more. A new
object can be created by a new detection or by splitting an existing object. In such a
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1.3 Solution overview

case one newly created object keeps the previous ID and the other is assigned a new
one. If two objects are merged into one, the lower ID is kept.

The estimation of people count would significantly improve informativeness of the
tracker. It would provide more relevant information about what is happening in the
scene; and more importantly, the people count estimation would help to solve multiple-
camera correspondence problem. Such an information can allow more profound analysis
of public spaces. It can lead to behavioral analysis of groups and individuals and sig-
nificantly improve the efficiency of a surveillance operator. Also, searching in the past
data would be more straightforward if the data were previously well analyzed.

The constraints on the proposed solution are not only accuracy but also the compu-
tational speed. The method should provide reasonable results preferably in real time.
The problem is expected to be solvable by detecting individuals as the scene is not
supposed to be highly crowded.

1.3 Solution overview

Current approaches to people count estimation are generally classified into three cat-
egories: model-based methods, trajectory-clustering-based methods, and map-based
methods [2]. The model-based approaches attempt to segment and detect every single
person in the scene. The trajectory-clustering-based approaches try to detect every
independent motion by clustering interest-points on people tracked over time. In con-
trast, the map-based approaches count the number of people without having to segment
or detect each individual. These approaches generally map the number of people to
foreground pixels or some other features by training. The proposed method should work
for a semi-crowded scene, which is understood as a scene that contains several people
with frequent occlusions but where individual persons are still detectable. Therefore,
this work follows the concept of model-based approaches, i.e. the count is given by
counting detected individuals.

The objective is to keep the detector simple while obtaining sufficiently accurate re-
sults. Detection of persons in a scene with frequent occlusions is rather difficult as
detectors are very sensitive to particular features computed on the whole body. The
most important features seem to come from the parts like head and shoulders and
the transition between body and legs. It is almost impossible to find a person with
most of the parts hidden behind other person without any additional information. The
most basic simplification is to make a size prediction. As the camera is placed over-
head and is static, it is possible to make a rough estimation about expected body size
for each pixel. This information can be taken from camera calibration, homography or
by estimation from several body size examples coming from different parts of the image.

The detector can overcome the fact that most of the body parts are hidden by de-
tecting only some of them. As the camera is placed overhead, heads are almost always
visible. For this reason, the proposed approach focuses on head detection as it has
the potential to give more accurate estimation for a situation with most of the other
body parts hidden. However, a head-only detector would very likely give a lot of false
positives. This fact is eliminated by detecting the head-and-shoulders part, sometimes
referred as omega detector.
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1 Introduction

Several methods to detect head-and-shoulders are investigated. They are all imple-
mented as sliding window detectors. The ideas were adopted from some of the most
cited and efficient methods of people detection. Namely Histograms of Oriented Gra-
dients (HOG) [3] and channel features [4] which are combined with Support Vector
Machines (SVM) and decision forests trained by boosting classifiers.

In order to reduce the search space and the number of false positives, a strong as-
sumption about expected head size is done. The space of all possible head sizes is
quantized and several detectors for different sizes are trained. With this approach, all
features can be computed only once for the regions of interest (ROI) framed by the
tracker objects and no feature scaling is needed. Each window of a ROI is then classi-
fied by one detector from the detector pool with the most similar size.

An investigation over possible parameter settings is done for each of the used detectors.
The performance of head detectors is compared with some people detectors, namely
HOG [3], Deformable Part Models [5] and Aggregated Channel Features [6].

1.4 Thesis structure
The thesis is structured as follows: An overview of the related work is given in Chapter
2. As the problem of people detection is very popular and the number of publications
is enormous, only the relevant papers are included. The used methods are described
in Chapter 3. The chosen features and classifiers along with the size handling are
introduced. The testing methods and results are shown in Chapter 4. At the end, the
conclusion and proposals for future work are stated in Chapter 5.
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2 Related work

People detection, counting and tracking under various conditions have been heavily ex-
plored in the last years. Mainly due to its potential value foreseen in the security related
applications, the interest from both research community and commercial companies is
very high.

The solutions are usually tailored to a constrained problem so that the performance
and reliability can be guarantied. The specified constraints include expected people
density and camera position. Environment constraints include restrictions on where a
person can appear and what is the expected size as well as it gives a hint on what are
the possible occlusion patterns.

2.1 People detection

The question of how to detect people in images has been thoroughly investigated in the
last decades. However, the problems still remains challenging due to the high variabil-
ity of detected objects and of the scene itself. People can appear in various clothing,
hairstyles and body proportions which together with varying lighting and other scene
conditions makes the detection very difficult. Most of the people detectors are restricted
to upright standing persons, but the number of possible poses is still quite high.

People detection is well defined problem with well established benchmarks and eval-
uation metrics. The largely used datasets are Inria [3], Caltech [7] and Kitti [8]. All
of them include upright people in various poses (standing and walking), however Inria
dataset is more diverse and smaller. The Inria dataset includes people at various indoor
and outdoor places (including ski area for example) and the camera height is not fixed.
On the other hand, Caltech and Kitti datasets are taken by a camera placed on a mov-
ing car. All of these datasets are well annotated. Evaluation technique described in [9]
is widely accepted for evaluation of the performance of the people detection algorithms.

Accuracy of the proposed methods increased over time, however the pay off is usu-
ally the computational time. Many of the best methods do not perform in real time
and are therefore not suitable for many surveillance application. A variety of features
and classification methods have been used for people detection. According to [10],
there are three main solution families, namely DPM variants, Decision Forests and
Deep Networks.

Histograms of Oriented Gradients (HOG) proposed by Dalal & Triggs in [3] is one
of the most cited papers in the history of people detection. The method is based on
evaluating normalized local histograms of image gradient orientations in a dense grid.
The basic idea is that local object appearance and shape can often be characterized
rather well by the distribution of local intensity gradients or edge directions, even with-
out precise knowledge of the corresponding gradient or edge positions. In practice this
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is implemented by dividing the image window into small spatial regions (“cells”), for
each cell accumulating a local 1-D histogram of gradient directions. To achieve bet-
ter invariance to illumination, shadowing, etc., a measure of local histogram “energy”
is accumulated over larger spatial regions (“blocks”) and used to normalize all of the
cells in a particular block. All normalized histograms from an image window are then
concatenated and classified by SVM. This method was initially trained and tested on
Inria dataset that was established along with the method in [3].

A real-time human detection system based on Viola & Jones face detection frame-
work [11] and HOG features is presented in [12]. They treat each bin of the histogram
as an individual feature, i.e. each feature is defined by its owing block position, its
cell position and the orientation bin. A feature can be evaluated in 8 look-ups using
integral images. They use dimensionality reduction of the feature pool based on haar
like features. A cascade of weak classifiers is trained so that negative detections can be
discarded at early stages.

People detection algorithm based on a hierarchical tree of HOG was proposed in [13].
They seek to find the most dominant cells i.e. the areas best describing human fea-
tures. A dimension reduction of the HOG features is performed by extracting the most
dominant orientation from the histograms. Histograms over all dominant orientations
of the corresponding cells are computed on the training images. The trained most
dominant cell edge orientation is given by the histogram maximum probability of oc-
currence, which defines the top tree node. Sub-nodes are in turn initiated from each
node using the maximum cell’s dominant edge orientation unused in the parent nodes.
To limit a high memory requirement, the tree is divided into smaller successive trees.
The detection is coupled with independently trained body part detectors to enhance
the detection performance.

Deformable Part Models (DPM) [5] enriched the Dalal & Triggs model [3] using
a star-structured part-based model and become the state of the art in both person
and object detection. The idea was to naturally deal with different poses and partial
occlusion by allowing particular parts to move from its most probable position and then
calculating with their level of displacement. In terms of implementation, the image is
first searched by a root filter analogous to the HOG detector proposed in [3] but on a
lower resolution. The contribution of particular parts is calculated using HOG features
too, however on twice higher resolution. The score of a star model at a particular
position and scale within an image is the score of the root filter at the given location
plus the sum over parts of the maximum, over placements of that part, of the part filter
score at its location minus a deformation cost measuring the deviation of the part from
its ideal location relative to the root. Both root and part filter scores are defined by the
dot product between a filter (a set of weights) and a sub-window of a feature pyramid
computed from the input image. The discriminative training of classifiers makes use of
latent information, in particular by using latent SVM which is well defined in [5] too.
This is useful as only partially labeled data can be used for training (i.e. part positions
are estimated during training). The concept of DPM was further explored in [14, 15,
16].

Channel Features are a baseline for many of the fastest and most efficient algorithms
[6, 17, 18]. The idea of Integral Channel Features (ICF) was first formally described
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2.1 People detection

in [4]. The major idea is that the most expensive computation of a sliding window de-
tector should not be computed for each window separately but only once for the entire
image instead. One channel is an image obtained by transforming the original image
where each channel pixel is a feature describing the primary pixel while preserving the
spatial information. The feature vectors for each detector window then can be obtained
by simple look-ups to either original or integral channels. This can represent any color
space, histogram of gradient orientation (one channel for each histogram bin) and gra-
dient magnitude among others. They used Viola & Jones framework [11] to compute
integral images and Haar wavelets over the channels.

The ICF framework starts a new family of detectors that are an extension of the old
ideas from Viola & Jones [19]. Sums of rectangular regions are used as input to decision
trees trained via Adaboost. Both the regions to pool from and the thresholds in the
decision trees are selected during training. The crucial difference from the pioneer work
[19] is that the sums are done over feature channels other than simple image luminance.

The authors further improved the idea of channel features in [20, 21, 6, 22]. In [20],
features computed at one scale are used to approximate features at nearby scales, in-
creasing detector speed with little loss in accuracy. Work [21] coupled cascade eval-
uation at nearby positions and scales to exploit correlations in detector responses at
neighboring locations and further increased speed of the ICF detector. As single-scale
square Haar wavelets have shown to be sufficient in the ICF framework, they propose
Aggregate Channel Features (ACF) [6] where, instead of computing integral images and
Haar wavelets, the channels are simply smoothed and downsampled. The features are
single pixel lookups in the “aggregated” channels. Locally Decorralated Channel Fea-
tures [22] show that filtering the channel features with appropriate data-derived filters
can remove local correlations from the channels. Given decorrelated features, boosted
decision trees generalize much better giving a nice boost in accuracy.

Informed Haar-like Features [17] enhanced the idea of channel features by a basic idea
of incorporating common sense and everyday knowledge into the design of simple and
computationally efficient features. Basically they came with not so revolutionary yet
innovating idea of using the knowledge how an upright human body looks like. They
therefore employed a statistical model of the up-right human body where the head, the
upper body, and the lower body are treated as three distinct components. A pool of rect-
angular templates that are tailored to such a shape model was systematically designed.
By incorporating different kinds of low-level measurements, the resulting multi-modal
& multi-channel Haar-like features represent characteristic differences between parts of
the human body yet are robust against variations in clothing or environmental settings.
Their approach avoids exhaustive searches over all possible configurations of rectangle
features and neither relies on random sampling.

Filtered Channel Features proposed in [18] were inspired by the ideas from the above
described publications [17] and [6]. They observed that these top performing pedestrian
detectors can be modeled by using an intermediate layer filtering low-level features in
combination with a boosted decision forest. Based on this observation they proposed a
unifying framework and experimentally explored different filter families. Sum-pooling
can be re-written as convolution with a filter bank (one filter per rectangular shape)
followed by reading a single value of the convolution’s response map. This “filter +
pick” view generalizes the integral channel features [4] detectors by allowing to use any
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filter bank (instead of only rectangular shapes).

Most of the published methods are using features based on gradient orientation and
magnitude, as it gives useful information about the body shape. Although the appear-
ance of people is diverse, color has shown to be an effective feature and hence multiple
color spaces have been explored (both hand-crafted and learned) [4, 23, 24]. The LUV
color is also included as channels used in [6, 17, 18]. Other investigated features are
for example LBP [25, 26, 27], local structure [28, 29, 30, 31, 32] or covariance [33, 27].
Even methods using deep networks use some gradient and color features [34, 35, 36, 37,
38] with exception of [39] which shows promising results using RGB data only.

2.2 Occlusion handling

State-of-the-art people detectors perform well in scenes with relatively few people, how-
ever more crowded environments with frequent partial occlusions remain to be prob-
lematic. There are different types of occlusion we can observe in a scene. People can
occlude each other or can be partially hidden behind an object. Also, the occlusion
patterns differ with camera position. Data captured from a person or car view offer
much smaller variety of how two people can occlude each other as their heads will be
always in a similar height and persons far behind cannot be visible at all. On the other
hand, a typical surveillance camera view offers a much larger set of possible patterns
but the occluded person is usually more visible.

A traditional approach to this problem is to focus entirely on the occluded object and
treat the occluder as a noise. There have been attempts to tackle the occlusion prob-
lem by integrating detection with segmentation [40] and latent variables for predicting
truncation [41, 25] resulting in improved recognition performance, all these attempts
have been tailored to specific kinds of detection models, and not been widely adopted
by the community.

The fact that typical occlusions are due to overlaps between people is investigated
in [42], where authors proposed a people detector tailored to various occlusion lev-
els. Instead of treating partial occlusions as distractions, they leverage the fact that
person-person occlusions result in very characteristic appearance patterns that can help
to improve detection results. They proposed a new double-person detector that allows
to predict bounding boxes of two people even when they occlude each other by 50%
or more, and described a new training method for this detector. Also, they propose
a joint person detector, that is jointly trained to detect single- as well as two-people
in the presence of occlusions. The detector builds on the DPM approach; the detector
shares the deformable parts across two people which belong to the same (two-person)
root filter. For training, they synthetically generated two-people samples by cropping
unoccluded people and overlapping them in order to create new samples with different
levels of occlusion.

The approach in [42] directly inspired a work presented in [43]. However, they do
not use synthetic data, the well annotated data of Kitti dataset [8] are used instead.
They use annotations in the form of 3D object bounding boxes and readily available
projection matrices to define a joint feature space that represents both the relative
layout of two objects taking part in an occlusion and the viewpoint from which this
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arrangement is observed by the camera. Clustering on this joint feature space is then
performed, resulting in an assignment of object pairs to clusters that are used as train-
ing data for components of mixture models. The introduced method is also based on
DPM approach, although the training is done using the structured SVM formulation
as done for the DPM in [44]. They compare models with and without joint root. The
method is designed primary for detection of occluded car, however is tested as a people
detector as well to show that it adapts well to a nonrigid objects.

Another work [45] inspired by [42] proposed a method of a joint-people detector. It is
again based on DPM and uses the structured SVM formulation proposed in [44]. Syn-
thetic data obtained in same way as in [42] are used for training. In [42], they focused
on side-view occlusion patterns, but crowded street scenes exhibit a large variation
of possible person-person occlusions caused by body articulation or their position and
orientation relative to the camera. To address this, [45] explicitly integrate multi-view
person-person occlusion patterns into a joint DPM detector. They introduce an explicit
variable modeling the detection type, with the goal of enabling the joint detector to
distinguish between a single person and a highly occluded pair.

2.3 Detection in crowds

Classic (full body) people detectors are not sufficient for analysis of a highly crowded
scene as most of the body is not visible. For a person or car view, this problem can be
overcame by improving robustness against occlusion as described in 2.2, mainly because
people far behind the front line are not visible at all. However, these "hidden" people
can be seen by the top view cameras, although only a head or upper body is usually
visible if the density is high. Head detection does not seem to be very robust as the
head shapes, hairstyles and coverings can vary greatly. But addition of shoulders can
introduce a very typical "omega" shape. Head and shoulders detector overcome the
problem of the head appearance variability and can be even more reliable than a full
body detector as it does not suffer from large pose variations.

There are many research works studying detection of head and shoulders. Wu et al.
[46] applied the edgelet features. Li et al. [47] extended the approach of Dalal &
Triggs [3] to head-shoulder detection by boosting local HOG features and showed good
performance in crowded scenes. Zeng et al. [48] proposed a discriminative multilevel
HOG-LBP feature and proved its superiority over the HOG feature. However, these
methods are time-consuming when searching an entire image which limited their usage
in practical applications.

Li et al. [49] largely sped up the head and shoulders detector previously proposed
in [47]. A Viola & Jones type classifier and a local HOG feature based AdaBoost
classifier are combined to detect head and shoulders rapidly and effectively. In [50],
the speed has been improved by attention-based foreground segmentation method to
extract regions of interest. A robust real-time multi-view detection cascade is used on
the selected regions. In the first layer of the cascade, a linear classifier with very high
detection rate and relatively high rate of false positives is used to eliminate the obvious
non-head-shoulders windows rapidly while keeping true candidates as much as possible.
Very few windows are left to the more precise multi-view models that can run in parallel
in the second layer. Each view model is a classifier and a window is rejected only if all
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view models classify it as negative.

In contrast to most of the detectors presented in 2.2, all above head and shoulders
detectors are trained on real data only. Yu et al. [51] proposed a new type of synthetic
data for upper body detection. They created 3D human models, rendered them in var-
ious poses and then placed them over images with a real background. A combination of
Haar-like features and HOG features was used to train weak classifiers. The influence
of various choices of training data was tested. They show that the performance can be
improved by using synthetic data, however synthetic data alone are significantly worse
than real data only.

An approach combining head and shoulders detector with a full body detector was
presented by Wang et al. [52]. They reformulated the score computation of body
parts in the original DPM detector to enhance the head part of the deformable part-
based model to make it more suitable to the crowded sequences and used the “online”
learned dictionary to refine the detection responses. The experimental results on three
benchmark sequences demonstrated the superiority and effectiveness of this approach
in detecting pedestrians with occlusions handling in crowded scenes.
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The stated problem, people counting in bounding boxes given by a tracker, can be
solved in different ways. The baseline method is to do frame by frame people detection
and estimation of number by counting detections within each box of the tracker. Once
having good detections, the problem can be somewhat simplified by the fact that the
given input is a video from a static camera. Therefore, the position of a body/head in
the next frame can be predicted based on current position and its previous behavior.
Given the fact that a good detection algorithm is needed as a baseline, this work covers
a research over existing people and head detectors and discusses their suitability for
detection in semi and highly crowded scenes.

The described procedure of detection is based on the idea of sliding window, therefore
features have to be computed and extracted for each part of an image, then classi-
fied and finally thresholded do decide whether it is a person/head or not. To avoid
representation of the same object by multiple detections, a non-maximal suppression
is done in order to filter close similarly but less confident detections. The further ex-
plored methods are based on several published papers that have been highly influencing
and seem to give the most promising results. With regard to features, the Histogram
of Oriented Gradients (HOG) [3] and a related idea of Integral Channel features [4]
are described in 3.1. The mostly used methods of classification, such as Support Vec-
tor Machine (SVM) and Decision Forests (DF) trained by boosting, are discussed in 3.2.

The final detection can take an advantage of several possible simplifications. First,
there is no need to exhaustively search the entire image by a sliding window detector
as regions of interests (ROI) are already given. The ROI are stated by the tracker
bounding boxes. Regardless of how accurate they are, the information about people
outside of these boxes is irrelevant to this problem. Second, all data is coming from
a static camera that is at a particular height and observing the ground plane under a
particular angle, this means that the size of a person can be predicted based on the
position in the image plane. Therefore, not all scales of an input image have to be
searched for detection at all positions. A closer description of scaling options is in 3.3.

3.1 Features
The most popular approach for improving detection quality is to increase/diversify the
features computed over the input image. By having richer and higher dimensional repre-
sentations, the classification task becomes somewhat easier, enabling improved results
[10]. In the last decade improved features have been a constant driver for detection
quality improvement.

The choice of features can also significantly influence the classification speed. Con-
sidering a sliding window detector, the features can be divided into two families. The
first group would represent features that can be computed only once for the entire
image. Example representatives of this family are HOG [3] and channel [4] features.
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Figure 1 Average image of the gradient magnitude over all training samples of the INRIA
dataset, full body and a cropped part of the head area

The other type includes such features that have to be computed for each window sep-
arately. This includes any features that are not invariant to translation. As one of the
biggest concerns of the solution is speed, and the idea is to follow the trend of the most
promising methods, the choice of features in this work is from the first family.

3.1.1 Histograms of Oriented Gradients (HOG)

One of the most influencing features are Histograms of Oriented Gradients (HOG) [3].
The proposed method become somewhat standard and implementations can be found in
various computer vision libraries. For example OpenCV and Matlab Computer Vision
Toolbox include pretrained HOG detectors and fast implementations of HOG features
can be bound in VLFeat [53] and Piotr’s Computer Vision Toolbox [54].

The method is based on the idea, that the most significant indicator is the human
shape, and the best way to extract the shape is image gradient. An example of a gradi-
ent image can be seen in Figure 2(b). The gradient expressiveness is outlined in Figure 1
where average gradient images over all training examples from the INRIA dataset [3]
are shown. It can be noted that one of the most stable body parts are shoulders.

Acquiring of HOG features involves several steps. The procedure details can vary from
implementation to implementation, however the further described settings are used for
testing in this work. First, a gradient magnitude and orientation images are obtained.
The gradient for each pixel is computed using central difference, separately for each
color channel and the one with maximum magnitude is used. HOG divides the input
image into square cells and for each cell a histogram of gradients is computed. Each
gradient is quantized by its angle and weighed by its magnitude and bilinear interpo-
lation is used to place each gradient in the appropriate orientation bin.

Gradient strengths vary over a wide range owing to local variations in illumination
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(a) (b)

(c) (d)

Figure 2 An example image from the INRIA dataset (a) and corresponding gradient magnitude
(b) and HOG features with cell size 8 and 4 in (c) and (d) respectively
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(a) (b) (c) (d)

Figure 3 An example crop of the head-and-shoulders body from an example image of the
INRIA dataset (a) and corresponding gradient magnitude (b) and HOG features with cell
size 8 and 4 in (c) and (d) respectively

and foreground-background contrast, so effective local contrast normalization is essen-
tial for good performance [3]. For each resulting histogram of a cell, four different
normalizations are computed using adjacent histograms. Cells are grouped into par-
tially overlapping spatial blocks of four cells and L2 norm is computed for each block.
Given a HOG cell, four normalization factors are obtained as the inverse of the norm
of the four blocks that contain the cell. The originally used cell size in [3] was 8 × 8
with corresponding 16 × 16 blocks, the histograms of oriented gradients had 9 bins.

The implementation used in this work is from VLFeat open source Computer Vision
library. There are two supported variants, the original from Dalal & Triggs [3] described
above and UoCTTI [5]. The main difference is that the UoCTTI variant computes both
directed and undirected gradients as well as a four dimensional texture-energy feature,
but projects the result down to 31 dimensions (considering 9 orientation bins). Dalal &
Triggs works instead with undirected gradients only and does not do any compression,
for a total of 36 dimension. The dimension of a feature vector of each cell is given
as four times the number of orientation bins, which is coming from the fact that each
cell histogram has 4 distinct normalizations. Given an image of size 𝑚 × 𝑛, number of
bins 𝑏 and cell size 𝑐, the transformation to a HOG space results in a matrix of size
⌊𝑚/𝑐⌋ × ⌊𝑛/𝑐⌋ × 𝑏 * 4. Examples of illustrative HOG feature visualizations can be seen
in Figure 2 and 3.

3.1.2 Channel Features

Channel features are very effective in sliding window object detection, both in terms
of accuracy and speed. Channels are rather concept than a specific feature definition.
Numerous feature types including histogram of oriented gradients (HOG) can be con-
verted into channel features.

Given an input image I, a corresponding channel is a registered map of the original
image, where the output pixels are computed from corresponding patches of input pix-
els (thus preserving overall image layout) [4]. A trivial channel is simply the input
gray-scale image, likewise for a color image each color channel can serve as a channel.
Other channels can be computed using linear or non-linear transformations of I, the
only constraint is that channels must be translationally invariant. This allows for fast
object detection, as the channels can be computed once on the entire image rather than
separately for each overlapping detection window.
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(a) (b)

Figure 4 Visualisation of the LUV color space on an example image from the INRIA dataset

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5 10 channel features computed on the image from Figure 3(a); 3 channels of LUV color
(a-c), gradient magnitude(d) and gradient orientation (e-j). It was computed using Piotr’s
toolbox [54] with shrink parameter 4.
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Usually, three channel types are used: color, gradient magnitude and gradient ori-
entations. As color channels, LUV color space (see Figure 4)is typically used. Gradient
orientations represent a histogram of oriented gradients where each histogram bin rep-
resents one channel 𝑄𝜃. In other words the channels are given by

𝑄𝜃(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) · 1[Θ(𝑥, 𝑦) = 𝜃], (1)

where 𝐺(𝑥, 𝑦) and Θ(𝑥, 𝑦) are the gradient magnitude and quantized gradient angle,
respectively, at 𝐼(𝑥, 𝑦).

The channels itself are usually not used directly as features, however exceptions ex-
ist [6]. First order features (sums over rectangular parts of channels) and second order
features (difference of first order features, such as Haar) are used instead. While vari-
ous decision forest methods use 10 feature channels [4, 6, 55, 17, 18], some papers have
considered up to an order of magnitude more channels [56, 57, 58, 59, 60]. Despite
the improvements by adding many channels, top performance is still reached with only
10 channels (6 gradient orientations, 1 gradient magnitude, and 3 LUV color channels)
[10]. An example of these 10 channels can be seen in Figure 5. The shown channels, as
well as any further used channels, were computed by using Piotr’s toolbox [54].

3.2 Classification
The choice of classification method, along with the choice of features, significantly in-
fluence detection performance in both accuracy and speed. For some applications, not
only the classification speed but also the training speed plays an important role when
an online learning is needed. Some algorithms tend to be more favorite than others,
Support Vector Machines (SVM) and decision forests are among the most used ones.
Also, the deep networks show interesting properties and fast progress.

Since the original proposal of HOG+SVM by Dalal & Triggs [3], linear and non-linear
kernels have been considered. There is no conclusive empirical evidence indicating that
whether non-linear kernels provide meaningful gains over linear kernels (for pedestrian
detection, when using non-trivial features) [10]. Boosted decision trees seem particu-
larly suited for pedestrian detection, reaching top performance [10]. In the work [56],
it was argued that, given enough features, Adaboost and linear SVM perform roughly
the same for pedestrian detection.

3.2.1 Support Vector Machines (SVM)
Support Vector Machines (SVM) are very important machine learning tool. The task is
to find the best hyperplane that separates positive and negative samples. It maximizes
the margin between the classes and finds a solution for data that are not entirely lin-
early separable. Also, by using various kernels, the separation does not have to be linear.

The classifier itself is a hyperplane defined by weight vector 𝑤 and bias 𝑏, so that
the classification is done by evaluating

𝑦𝑖 = 𝑤𝑥𝑖 + 𝑏 (2)

where 𝑠𝑖𝑔𝑛(𝑦𝑖) is the predicted label for the 𝑖𝑡ℎ sample represented by a feature vector
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𝑥. Estimation of 𝑤 and 𝑏 requires to solve a quadratic optimization problem

min
w∈R𝑑

[︃
𝜆

2 ‖w‖2 + 1
𝑛

𝑛∑︁
𝑖=1

ℒ(xᵀw𝑖)
]︃

(3)

where ℒ is a loss function for 𝑖𝑡ℎ datapoint. A hinge function is used as a loss function
in this work. For an intended output 𝑡 = ±1 and a classifier score 𝑦𝑖, the hinge loss of
the prediction 𝑦𝑖 is defined as

ℒ(𝑦𝑖) = max(0, 1 − 𝑡𝑖𝑦𝑖) (4)

Note that this does not include the bias term. The bias is incorporated by extending
each data point x with a feature of constant value 𝑏0, such that the objective becomes

min
w∈R𝑑

[︃
𝜆

2

(︃
‖w‖2 +

(︂
𝑏

𝑏0

)︂2)︃
+ 1

𝑛

𝑛∑︁
𝑖=1

ℒ(xᵀw𝑖)
]︃

(5)

The SVM solver used in this work is Stochastic Dual Coordinate Ascent proposed in
[61] implemented in VLFeat library [53].

An important property of support vector machines is that the determination of the
model parameters corresponds to a convex optimization problem, and so any local so-
lution is also a global optimum. A great advantage during the testing is that features
with preserved image coordinate system can be classified by simply convolving the
vector 𝑤 with the image/channel data.

3.2.2 Boosting

Boosting is one of the most popular learning techniques in use today. The idea is to
combine many weak learners to form a single strong one. Boosting can give good results
even if the weak classifiers have a performance that is only slightly better than random.
Shallow decision trees are commonly used as weak learners due to their simplicity and
robustness in practice. This powerful combination of Boosting and decision trees is the
learning backbone behind many state-of-the-art methods across a variety of domains.

A boosted classifier (or regressor) has the form

H(x) =
∑︁

𝑡

𝛼𝑡h𝑡(x). (6)

It can be trained by greedily minimizing a loss function ℒ; i.e. by optimizing scalar 𝛼𝑡

and weak learner h𝑡(x) at each iteration 𝑡. Before training begins, each data sample x𝑖 is
assigned a non-negative weight 𝑤𝑖 (which is derived from ℒ). After each iteration, mis-
classified samples are given greater weight when used to train the next classifier in the
sequence. Each iteration requires training a new weak learner given the sample weights.

A decision tree ℎ𝑇 𝑅𝐸𝐸(x) is composed of a stump ℎ𝑗(x) at every non-leaf node 𝑗.
Trees are commonly grown using a greedy procedure, recursively setting one stump
at a time, starting at the root and working through to the lower nodes. Each stump
produces a binary decision; it is given an input x ∈ 𝑅𝐾 , and is parametrized with a
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polarity 𝑝 ∈ {±1}, a threshold 𝜏 ∈ 𝑅 and a feature index 𝑘 ∈ {1, 2, ..., 𝐾}

ℎ𝑗(x) ≡ 𝑝𝑗𝑠𝑖𝑔𝑛(x[𝑘𝑗 ] − 𝜏𝑗), (7)

where x[𝑘] indicates the 𝑘𝑡ℎ feature/dimension of x.

At each stage of stump training, the goal is to find the optimal parameters that mini-
mize the weighted classification error 𝜀

𝜀 ≡ 1
𝑍

∑︁
𝑤𝑖1[ℎ(x𝑖) ̸= 𝑦𝑖], 𝑍 ≡

∑︁
𝑤𝑖 (8)

where 𝑦𝑖 is a sample label (𝑦𝑖 ∈ {1, −1}). For binary stump the error can be rewritten
as

𝜀 = 1
𝑍

⎡⎣ ∑︁
x𝑖[𝑘]≤𝜏

𝑤𝑖1[𝑦𝑖 = +𝑝] +
∑︁

x𝑖[𝑘]>𝜏

𝑤𝑖1[𝑦𝑖 = −𝑝]

⎤⎦ . (9)

This error is minimized by selecting the single best feature 𝑘* from all of the features.

{𝑝*, 𝑘*, 𝜏*} = arg min
𝑝,𝑘,𝜏

𝜀(𝑘), 𝜀* ≡ 𝜀(𝑘*) (10)

Theoretically, other split criteria such as information gain, Gini impurity or variance
can be used as well. However, the implementation described in [62] using classification
error is used in this work. Boosting is very fast in testing but suffers from long training
times. The method proposed in [62] focuses on speeding up the training time while the
boosted tree offers identical performance to one with classical training.

The advantage of Boosting decision forest is that the number of weak classifiers tree
depth can be set. Therefore, only the most reliable features from a potentially large
pool can be chosen. By nature of the problem, it is very robust to overfitting. Also,
the decrease of computational time during classification can be achieved by cascade
evaluation of weak classifiers which discard negative samples at early stages.

3.3 Scaling
Images of the real world taken by a camera obey the rules of perspective projection.
This means that people to be detected can appear in an image at various sizes depend-
ing on their position in the real world. Not only the size but also body proportions and
angle with the image axes change due to the perspective.

The approach to scaling highly depends on the information about scene that the de-
tector can rely on. The traditional approach is to scale an input image and to use
the same detector over each scale and then choose the most reliable detections over all
scales. Either the image itself can fe scaled and features are computed independently at
each scale or the feature representation can be scaled directly. Multi-resolution image
features can be approximated via extrapolation from nearby scales such as in [5]. This
significantly reduces processing time and allow efficiently use multi-scaling in real time.
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Figure 6 Illustration of the influence of the camera position on the predictability of position
and size in various parts of the image. Heads are on the horizon for a car/person view and
the size can vary (left). Size can be predicted for each part of the image when overhead
camera view is used (right).

The problem of scaling can be simplified for a static overhead camera. An approxi-
mate scale for each position can be predicted if some additional information about the
projection is known. The position and size of each individual strongly dependent on
the camera position. As can be seen in Figure 6, if a camera captures a scene from the
person/car view, the position of a head will be always very close to the horizon. On
the other hand, if the camera is placed overhead, the head can appear anywhere but
the size will differ.

There are several ways how to determine expected size for each position in an im-
age. First, the projection can be computed from parameters of a calibrated camera.
Another approach would be to estimate size from a known ground plane homography.
The size prediction from homography is not accurate as it is a mapping between two
planes, however it can provide a simple approximation. If neither camera calibration
nor homography is known, the size map can be estimated from a sufficient amount of
examples and constraints for perspective projection.

If a size map is available, the scaling approach can be reverted, i.e. the image does
not have to be resized but will be detected by different detectors depending on the
position in the image. This reduces the time needed for classification, although the pay
off is the training time. However, the training time is not a big concern in this case.

The way how HOG and channel features are implemented are highly suitable for this
method. As the idea is to compute features only once, the same cell size and number
of orientation have to be used for each of the detectors. Therefore, during the training
part, the detector size will start at the minimum expected person size and will increase
by one cell size step until it reaches the maximum size. In order to preserve the window
side length ratio, a head detector can be implemented as a square, i.e. the difference
between scales will be always one cell on each side. The full body detector can preserve
height twice longer than width. Therefore every other scale of a full body detector will
have height two cells and width one cell shorter.

The size is not the only concern when detecting people in videos from surveillance
cameras. The problem comes with a wide view camera. As can be seen on an illustra-
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Figure 7 An abstract illustration of the human body appearance changes due to perspective
projection in images captured by a camera with large field of view (a Google SketchUp
illustration rendered by a camera with field of view 60 degrees)

tion in the Figure 7, people remain upright only in the central part of the image. On
sides of a wide view, a common people detector usually fails due to the perspective.
As this is not the main issue in the publicly available datasets used in this work, there
is no proposed solution for this problem. However, it should be considered in a real
application.
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The overall evaluation is based on comparison of several methods, their combination
and parameter settings. The results are tested on two publicly available datasets which
are described in Section 4.1. Different evaluation techniques are used based on available
annotations, as either each individual was labeled or tracker bounding boxes were as-
signed a number of people visible inside of them. The evaluation metrics are described
in Section 4.3.

The tested methods are designed to show whether counting by detection is a suffi-
cient tool for a semi-crowded scene. To do so, two types of detectors are used, full-body
and head-and-shoulders, which are for simplicity further referred as person and head
detectors respectively. The detection methods are based on combinations of features
and classifiers described in Chapter 3. Particularly, these detectors are used:

∙ ACF (Aggregated Channel Features proposed from [6])
∙ DPM (Deformable Part Models from [5])
∙ HOG-SVM (Histograms of Oriented Gradients from [3])
∙ HOG-DF (HOG features and decision forest trained by boosting)
∙ Chns-SVM (Channel features and SVM)
∙ Chns-DF (Channel features and decision forest trained by boosting)

The detectors were assigned one particular color for better orientation that is used
for both graph comparisons and bounding boxes (the only exceptions are plots where
results of only one detector are shown or there is a comparison of the same feature-
classifier combination for head and person detector), the colors are for future reference
listed in Table 1.

Different combination of C/C++ and Matlab code is used for each of the detectors.
Implementation directly provided by authors is employed for ACF and DPM; HOG and
SVM are used from VLFeat Computer Vision toolbox [53]; and channel features and
boosting algorithm were from the Piotr’s toolbox [54]. These methods were then com-
bined in a Matlab code. Unfortunately, the combination of different implementations
makes it hard to reliably measure the computational time.

detector type color
ACF yellow
DPM cyan

HOG-SVM magenta
Chns-SVM red
Chns-DF green
HOG-DF blue

Table 1 Colors assigned to each detector type used in experiments. This color is consistent for
all graphs and detector’s bounding boxes in this Chapter.
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(a) (b)

(c) (d)

Figure 8 Example images of the views from the Pets2009 [1] dataset. Views 1-4 are shown in
(a-d) respectively.

(a) (b)

Figure 9 Example images of the views from the Caviar dataset [63]; corridor and front view in
(a) and (b) respectively.

4.1 Datasets

All methods are tested on two datasets, Pets2009 [1] and Caviar [63] which have several
views that capture the scene as shown in Figure 8 and 9. Both datasets contain data
with high number of occlusions, mainly people partially occluded by other people. The
Caviar dataset contain less crowded scenes focusing on occlusion of individual people.
The crowd density of Pets2009 depends on a particular view.

The people in each view appear in various sizes, see Table 2. Also, the size of a frame is
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Dataset and view minimum person size maximum person size
Pets2009 view 1 50 140
Pets2009 view 2 20 110
Pets2009 view 3 50 90
Pets2009 view 4 50 100
Caviar corridor 40 150

Caviar front 30 100

Table 2 The range of person sizes in which most of the detectable people from the particular
dataset views appear

different for each dataset. The frame size is 384×288 pixels for Caviar and 768×576 for
Pets2009. The Pets2009 includes several (9) videos that offer investigation of different
level of occlusion, the length of each video varies roughly between 200 and 600 frames.
Caviar dataset has 26 videos, mostly of 2 to 3 people passing each other. Only few (4)
videos are suitable for testing of a semi-crowded scene.

The used type of annotations differs for each dataset and view. Pets2009 view 1 offers
the most clearly visible individual persons within the whole frame and therefore each
person could have been annotated, the annotations were taken from [64]. The other
three views contain highly occluded persons in smaller sizes which would be difficult
to annotate. For these three views, only bounding boxes of the tracker were annotated
with number of people that are visible inside of them. The count is based on the number
of visible persons not the real number of individuals that is in the 3D space framed by
a particular bounding box in 2D. The Caviar dataset comes with its own annotations
that include individual person bounding boxes.

4.2 Overview of detectors

Two types of detectors are compared in this work, head-and-shoulders (head) and full
body (person). Both of them have some advantages and disadvantages over the other.
Generally the person detectors do not have the capability to detect people under high
occlusion and head detectors are sensitive to lack of contrast and produce more false
positives.

As a baseline, the HOG detector [3] was tried. It is combination of HOG and SVM
and implementations are available in OpenCV and Matlab. An example of HOG de-
tection on full image is shown in Figure 10. This detector is advertised as a detector
of unoccluded upright standing people and the fact that its performance significantly
decreases when presented with occluded people was confirmed. On the other hand,
alone standing individuals are detected reasonably well. A big concern of using the
HOG detector is quite high number of false positives. The problem with the available
implementations is that it has minimal person size either 128 × 64 or 96 × 48 pixels.
The detected image is only downscaled, so only persons larger than the default size can
be detected. This is a significant disadvantage for surveillance videos as the resolution
is low and persons are usually much smaller.

The original HOG detector was reimplemented in order to see whether it has a po-
tential to improve. The reimplementation was done by combining the HOG features
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and SVM implementations from the VLFeat library [53]. The model was trained on
INRIA dataset [3]. The new implementation deals with the person size variability as de-
scribed in Section 3.3, i.e. several detectors for various sizes were trained. An example
of the reimplemented HOG detector can be seen in Figure 11. There is no significant
improvement in the detection accuracy with the exception that bounding boxes appear
in appropriate sizes. A better comparison is shown in Figure 12, where all scales are
appropriately detected. It produces less false positives and the bounding boxes are more
accurate, however it does not provide much improvement in the detection performance.

Another more promising detectors were used to see whether full body detection is the
right path for a scene with visible but partially occluded individuals. Publicly available
implementations of DPM [5] and ACF [6] were used for this purpose. An example
results of DPM and ACF detectors can be seen in Figures 13 and 14 respectively. They
both produce more accurate results that HOG detector and seem to work reasonably
well. However, there are some common problems to these and perhaps most of the
other person detectors when detection occluded people. First common type of error is
shown in Figure 15. These situations occur when a person in the front occludes legs
of another person in the back. This leads to detection of one "double person" which is
a false detection in terms of detection-annotation matching and twice smaller count of
detected people. Another common error is that an occluded person is simply omitted.
Such examples can be seen in Figure 16. This case usually happen when legs of a per-
son are hidden, but even a small occlusion and distraction of the usual body shape can
cause that the person is "skipped". Even if legs and head of each individual are visible,
the detection may not work. As shown in Figure 17, low contrast between bodies in a
crowd is a difficult problem. Therefore even person in a front line of a bigger group are
not detected properly and heads of people in the back of a group cannot be detected
by a person detector in any case.

Most of the people have visible heads in the overhead camera views which means that
having a quality head detector would solve the problem. Also, a head cannot appear in
so many different poses such as limbs. However head itself is not a good object to be
detected as the edges can vary a lot depending on the head position. Similarly, head
only does not have enough strong features for a detector when the expected body size is
small. On the other hand, head together with shoulders create a very typical "omega"
shape that can be ideal for detection. For these reasons, several head-and-shoulders de-
tectors were implemented. The idea of features and classifiers followed the idea of HOG
and ACF detectors. Four combinations of features and classifiers were trained, namely
HOG+SVM, HOG+DF, Channels+SVM and Channels+DF. All these detectors were
trained on INRIA dataset and follows the scaling scheme from Section 3.3. The positive
training examples were taken from the head area of person positives images; negative
examples were randomly sampled from the provided negative images and other body
parts from the positive images.

Head detectors significantly outperform person detectors in problems shown in Fig-
ures 15 and 16. Examples of head detection can be seen in Figures 18 and 19. The
problem with head detectors is considerably high number of false positives. These are
especially represented by some leg formations, personal things such as bags or surround-
ing are (especially road signs in the case of Pets2009 dataset). Also, when heads are too
close to each other, they are hardly ever both detected. Although this might be just a
problem of non maxima suppression is some cases. In terms of counting, head detectors
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Figure 10 An example of the HOG detector result from Matlab Computer Vision toolbox.

tend to give correct or higher number of detections, in contrast to person detectors that
almost always under valuate.

4.3 Evaluation metrics

Evaluation metrics depend on the type of annotation and detection. There are two
types of annotations, bounding boxes around each individual and tracker bounding
boxes labeled by count. Also, two types of detections are to be compared with the
ground truth, head and person.

Person detection comparison with person annotation has well established evaluation
metrics thoroughly described in [9]. It is based on modified version of the scheme laid
out in the Pascal object detection challenges [65]. The expected output of a detector
is a list of bounding boxes along with confidence score for each of them. A detected
bounding box 𝐵𝐵𝑑𝑡 and a ground truth bounding box 𝐵𝐵𝑔𝑡 form a potential match
if they overlap sufficiently. According to the Pascal measure, the area of overlap must
exceed 50%, i.e.

𝑎0
.= 𝑎𝑟𝑒𝑎(𝐵𝐵𝑑𝑡 ∩ 𝐵𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝐵𝑑𝑡 ∪ 𝐵𝐵𝑔𝑡)
> 0.5 (11)

As the main purpose of this work is not to get the most accurate detections but a people
count, the used limits have been customized. The modification has two motivations.
First, some detectors produce much bigger bounding box than the actual ground truth
one. Second, overlapping persons are sometimes detected as one taller person (as shown
in Figure 15). This is not accurate in terms of precise detection and the Equation 11
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Figure 11 An example of the reimplemented HOG+SVM detector using size prediction.

Figure 12 Comparison of the Matlab HOG (left) and HOG+SVM with size prediction (right)
detection performance.

would reject it. However this detection is usually based on the real detected parts like
visible head and legs, even though they belong to a different person. Therefore this type
of detection is treated as one person detection. As a first step, the threshold from Equa-
tion 11 is lowered to 0.3. If the result is smaller than 0.4, another condition is evaluated,
in particular the distance between the compared bounding boxes’ centers divided by
the shorter side length of the two have to be higher than 0.4 in each direction. Also, the
aspect ratio is unified for all bounding boxes to 0.41 as proposed in [9]. The modifica-
tion is done so that the height and center remain unchanged, only the width is adjusted.

Each 𝐵𝐵𝑑𝑡 and 𝐵𝐵𝑔𝑡 may be matched at most once. Any assignment ambiguity is
resolved by performing the matching greedily. Detections with highest confidence are
matched first; if a detected bounding box matches multiple ground truth boxes, the
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Figure 13 An example of the DPM detection result

Figure 14 An example of the ACF detector result
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Figure 15 Examples of fault detections produced by person detectors when presented with
images containing frequent occlusion. Two people behind each other are detected as a "double
person".

match with the highest overlap is used. Unmatched 𝐵𝐵𝑑𝑡 count as false positives and
unmatched 𝐵𝐵𝑔𝑡 as false negatives.

The same scheme is used for comparison of head detections. With the difference that
head detections are first extracted from the person ground truth annotations. The top
quarter of such a annotation is taken in order to convert it to head annotation.

The same philosophy is also used for the non maximal suppression. If the expres-
sion in Equation 11 for two detections is greater than the overlap threshold, then the
bounding box with the lower score is suppressed.

The comparison of detector performance is done by evaluation of precision-recall (PR)
and miss rate against false positives per image (ROC) curves. Both curves are obtained
by varying the threshold on detection confidence. Precision and recall is obtained as

precision = # correct detections
# detections (12)
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Figure 16 Examples of fault detections produced by person detectors when presented with
images containing frequent occlusion. "Skipping" of occluded people.

recall = # correct detections
# ground truth annotations (13)

The number of correct detections is a number of detections that satisfied the condition
11 according to the procedure described above. However some videos have only ROI
annotated by a corresponding person count. I this case the number of correct detec-
tions is given by simple comparison of the ground truth count #𝑔𝑡 and the number of
detections in the ROI #𝑑𝑒𝑡

# correct detections =
{︃

#𝑔𝑡 if #𝑔𝑡 < #𝑑𝑒𝑡
#𝑑𝑒𝑡 if #𝑔𝑡 > #𝑑𝑒𝑡

(14)

The miss rate against false positives per image curve is a log-log plot. This type of curve
is in most of the pedestrian detection publications preferred to precision recall curves
as in certain tasks the acceptable false positives per image (FPPI) rate is independent
of pedestrian density. A detail description of computing this type of curve is in [9].

The methods are tested on both full images and ROI given by the tracker objects. To
minimize error caused by inaccurate detector and ROI size, the ROI bounding boxes
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Figure 17 An example of the person detectors’ performance on a crowd.

are always enlarged by 20 pixels so that the feature space is large enough to find a
person even if the tracker object edges are very tight around the tracked person.

4.4 Parameter settings

Different combinations of features and classifiers are evaluated for both head and per-
son detectors. Both types are trained on the INRIA dataset [3]. All tested types of
features and classifiers have various parameters that can be set. In this section, differ-
ent parameter settings are compared on ground truth annotation of view 1 from the
Pets2009 dataset. The detection has been done on full frames in order to evaluate the
overall tendency to produce false positives. The results for head detectors are shown
in Figures 20-23. Person detectors trained by these methods are not further used for
testing, however the results of parameter settings can be found in Appendix B.

HOG features have two parameters to be set, number of orientations 𝑁𝑂 and cell
size 𝑐𝑠. The channel features are used in the "classic" configuration 6 oriented gradients
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Figure 18 Examples of the head detectors’ performance
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Figure 19 Examples of the typical false positives of head detectors.

channels, 1 gradient magnitude and 3 channels for LUV color. One pixel of the channel
can represent an arbitrary large square region of the original image whose size is for
simplicity also referred as cell size 𝑐𝑠 (for example cell size 4 means that the chan-
nels are 4 times smaller than the original image). Decision forests trained by boosting
were tested with two adjustable parameters, the maximum numbers of weak classifiers 𝑤
(i.e. the number of trees) and tree depth 𝑑. The SVM classifier has no variable settings.

Smaller cell size 𝑐𝑠 is generally better for head detection as the detector’s window
is relatively small and the shape does not vary a lot. Also the number of orientations
𝑁𝑂 does not have to be high in order to produce more accurate results. This covers
the fact that higher 𝑁𝑂 leads to more sparse representation and is more sensitive to
lower contrast. Generally the accuracy increases with the number of weak classifiers 𝑤
and tree depth 𝑑. The difference is not that crucial for channel features as the number
of features is lower however is quite significant for HOG features.

Only one detector from each "group" is selected for further testing. Based on the
results in Figures 20-23, these detectors are selected: "HOG-SVM-head NO 6 cs 6 ",
"Chns-SVM-head cs 2 ", "Chns-Boost-head cs 4 w 256 d 3 " and "HOG-Boost-head NO
6 bs 4 w 1024 d 2 ".

4.5 Detection accuracy

The objective of this thesis is to count people in the tracker objects. In terms of detec-
tions, this means that only ROI framed by the detector objects’ bounding boxes have
to be searched for detections. This significantly reduces the number of false positives
especially for head detectors. The provided ROI usually include a significant parts of a
frame and any assumption about the bounding box cannot be made with a reasonable
reliability. In order to reduce false negatives, the ROI are enlarged by 20 pixels so that
larger detectors have enough data for detection.

Precision-recall and miss rate against false positives per image curves for all tested
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Figure 20 Precision-recall (top) and miss rate against false positives per image (bottom) curves
for HOG+SVM head detector with different parameter settings
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for Chns+SVM head detector with different parameter settings
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Figure 22 Precision-recall (top) and miss rate against false positives per image (bottom) curves
for HOG+DF head detector with different parameter settings

35



4 Experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

 

 

Chns−DF−head cs 4 w 1024 d 3

Chns−DF−head cs 4 w 512 d 3

Chns−DF−head cs 4 w 256 d 3

Chns−DF−head cs 4 w 128 d 3

Chns−DF−head cs 4 w 1024 d 2

Chns−DF−head cs 4 w 512 d 2

Chns−DF−head cs 4 w 256 d 2

Chns−DF−head cs 4 w 128 d 2

10
−2

10
−1

10
0

10
1

0.3

0.4

0.5

0.64

0.8

1

false positives per image

m
is

s
 r

a
te

 

 

Chns−DF−head cs 4 w 1024 d 3

Chns−DF−head cs 4 w 512 d 3

Chns−DF−head cs 4 w 256 d 3

Chns−DF−head cs 4 w 128 d 3

Chns−DF−head cs 4 w 1024 d 2

Chns−DF−head cs 4 w 512 d 2

Chns−DF−head cs 4 w 256 d 2

Chns−DF−head cs 4 w 128 d 2

Figure 23 Precision-recall (top) and miss rate against false positives per image (bottom) curves
for Chns+DF head detector with different parameter settings
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person and head detectors are shown in Figure 24. These curves were computed on
view 1 of the Pets2009 dataset. All considered detections and annotations have to be
inside the enlarged ROI. The person detectors have the lowest number of false positives,
especially the HOG detector. However, none of them is capable of detecting more that
60% of the annotated persons. Unfortunately, even head detectors are not exceeding
70%. Chns+DF detector is the most accurate out of all tested head detectors. The
worst performance give the detectors that classify by SVM.

Visual comparisons are available in Figures 25-27, only the ROI are selected from the
original frames for better visibility. The default threshold is 0 for all detectors, how-
ever the threshold has been increased for some of them, particularly Chns-SVM-head
to 1.5, Chns-DF-head and HOG-DF-head to 4 (the DF detectors produce detections
with higher confidence in general). As it is hard to sufficiently present video detections
on paper, example videos with ROI and detection bounding boxes are included in the
DVD that is a part of Appendix A.

Person detectors usually produce a lower number of detections but they are more
accurate. On the other hand head detectors often produce more false positives and
the optimal thresholding often depend on a particular scene (contrast, light conditions
est.). For this reason DF classifiers are significantly better as they are much more accu-
rate without finely tuned threshold. The least accurate is combination of Chns+SVM
that uses cell size only 2. Therefore there might be a high number of features that
are not stable and lead the detector to produce a vast number of false positives. The
combination of Chns+DF is the best based on observations and the curves in Figure 24.

4.6 Count estimation

The count for each tracker object is estimated by counting the number of detected per-
sons/heads inside of them. The count estimation is tested against ground truth count,
i.e. bounding boxes of the detections are not matched with ground truth person/head
bounding boxes. Two types of tests were done, plotting the number of detections over
time and precision and recall values.

The number of people in the videos change over time as well as the number of de-
tection. The evolution of number of poeple over time for some of the Pets2009 dataset
videos can be seen in Figures 28-29, one figure for one of the four views. There are
two graphs in each Figure, one for head detectors and the other for person detectors.
The graphs show frame by frame detection results for two concatenated videos, namely
S1-L1-Time13-57 and S1-L1-Time13-59. Each unit on y-axis represent one frame. The
y-axis shows sum of people count over all detector objects in a particular frame. The
threshold of each detector is set to 0 in order to see what is the largest number of de-
tections produced by each detector. It is apparent that the detection quality depends
on the view. The size of detected people as well as lighting conditions and contrast
are different for each view . Also, the density of people is different for each view. In
general, people detectors always under-valuate the result (the closes estimation is given
by ACF). On the other hand, Chns+SVM is almost always overestimating. Among the
head detectors, HOG+SVM seem to be the most stable detector as it never significantly
over- or under- estimates. Both head detectors with DF provide very similar results
and are the most accurate ones in most cases.
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Figure 24 Precision-recall (top) and miss rate against false positives per image (bottom) curves
for selected head and person detector
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Figure 25 An example visualization of the performance of the head and person detectors (colors
assigned as described in Table 1)
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Figure 26 An example visualization of the performance of the head and person detectors (colors
assigned as described in Table 1)
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Figure 27 An example visualization of the performance of the head and person detectors (colors
assigned as described in Table 1)
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Figure 28 Count estimation results of the head (top) and person (bottom) detectors on the
Pets2009 dataset VIEW 1
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Figure 29 Count estimation results of the head (top) and person (bottom) detectors on the
Pets2009 dataset VIEW 2
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Figure 30 Count estimation results of the head (top) and person (bottom) detectors on the
Pets2009 dataset VIEW 3

44



4.6 Count estimation

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

frame number

p
e

o
p

le
 c

o
u

n
t

 

 

GT

HOG−SVM−head NO 6 cs 6

Chns−SVM−head cs 2

Chns−DF−head cs 4 w 256 d 3

Hog−DF−head NO 6 cs 4 w 1024 d 2

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

frame number

p
e

o
p

le
 c

o
u

n
t

 

 

GT

ACF

HOG−SVM−person NO 6 cs 4

DPM

Figure 31 Count estimation results of the head (top) and person (bottom) detectors on the
Pets2009 dataset VIEW 4
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4 Experiments

Precision and recall statistics were generated for each view separately and the results are
shown in Tables 3-5. Thresholds were set to 0 for all detectors as in Figures 28-29. The
precision an recall were computed by Equations 12-14 for each tracker object separately.
The shown values are then averages of results given for each tracker object. This way,
incorrect estimations for bounding boxes with less people are penalized strongly (i.e.
difference of 1 detection contributes differently than the same difference for an object
with 30 people). HOG+SVM person detector gives the best precision with a compara-
ble recall as ACF detector. The recall of DPM is rather insufficient. Also for the head
detection, HOG+SVM detector has the best precision, however has significantly lower
recall than the other head detectors. Considering the fact that the threshold was set to
0 for all detectors and can be increased in a practical implementation, the Chns+DF
detector gives the most promising results.
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4.6 Count estimation

Precision
Detector view 1 view 2 view 3 view 4

ACF 0.9510 0.9843 0.9516 0.5344
HOG-SVM-person NO 6 cs 4 0.9856 0.9975 0.9939 0.9453

DPM 0.9004 0.8609 0.7387 0.8206
HOG-SVM-head NO 6 cs 6 0.9068 0.9559 0.9443 0.7866

Chns-SVM-head cs 2 0.4491 0.6507 0.3648 0.7985
Chns-Boost-head cs 4 w 256 d 3 0.7986 0.7944 0.7198 0.8271

HOG-Boost-head NO 6 bs 4 w 1024 d 2 0.7575 0.8260 0.6589 0.7790

Table 3 Average precision of the count estimation on tracker objects for each view of the
Pets2009 dataset separately

Recall
Detector view 1 view 2 view 3 view 4

ACF 0.7523 0.5983 0.8203 0.3784
HOG-SVM-person NO 6 cs 4 0.6242 0.5917 0.7127 0.6811

DPM 0.5122 0.2824 0.2825 0.4812
HOG-SVM-head NO 6 cs 6 0.8333 0.6994 0.8350 0.6582

Chns-SVM-head cs 2 0.9989 0.9998 1.0000 0.9609
Chns-Boost-head cs 4 w 256 d 3 0.9780 0.9840 0.9918 0.9130

HOG-Boost-head NO 6 bs 4 w 1024 d 2 0.9788 0.9638 0.9964 0.8392

Table 4 Average recall of the count estimation on tracker objects for each view of the Pets2009
dataset separately

Detector Precision Recall
ACF 0.8553 0.6373

HOG-SVM-person NO 6 cs 4 0.9806 0.6524
DPM 0.8301 0.3896

HOG-SVM-head NO 6 cs 6 0.8984 0.7565
Chns-SVM-head cs 2 0.5658 0.9899

Chns-Boost-head cs 4 w 256 d 3 0.7850 0.9667
HOG-Boost-head NO 6 bs 4 w 1024 d 2 0.7553 0.9446

Table 5 Combined average precision and recall of the count estimation on tracker objects for
all views of the Pets2009 dataset
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5 Conclusion and future work

Motivated by the need to improve tracking performance of legacy trackers, the main
focus of the presented work was estimation of the number of persons in images/video
sequences of a semi-crowded scene with frequently occurring occlusions. Model-based
methods, which give the estimated number of people by counting detections, were in-
vestigated.

Two types of detectors, full body (person) and head-and-shoulders (head) were inves-
tigated. The Aggregate Channel Features (ACF) [6], Deformable Part Models (DPM)
[5] and reimplemented HOG+SVM [3] were tested as person detectors. The head de-
tectors are also based on the ideas from these methods. Four combinations of HOG or
channel [4] features with SVM or decision forest classifiers, i.e. HOG+SVM, HOG+DF,
Chns+SVM and Chns+DF, were tested as head detectors. Pretrained models provided
by authors were used for ACF and DPM, other methods were implemeted in Matlab
with help of VLFeat [53] and Piotr’s [54] Computer Vision toolboxes.
The implemented methods use a custom approach to scaling, in contrast with ACF and
DPM . Instead of resizing the input frame or the features, several detectors were trained
for different sizes of expected detection. An approximate size for each position in the
frame is estimated and an appropriate detector is selected for detection. Therefore, the
features can be computed only once on the entire image or region of interest and then
reused by different detectors.

The most appropriate settings were estimated for all of the implemented detectors.
The experiments and evaluations showed that the person detectors are more accurate,
however they miss a lot of partially occluded persons. The HOG detector gives the
most precise results on the ROI given by the tracker, however both ACF and DPM
are capable of retrieving more people on certain types of scenes. On the other hand,
the head detectors tend to produce a lot of false positives and have to be properly
thresholded. The combination of Chns+DF seems to be the most accurate one.

Based on the experiments and observations, I have concluded that head detectors per-
form better for the given task and I suggest a solution using the Chns+DF combination.
It has been shown that a simple frame by frame detection can give a sufficiently accu-
rate estimation of people count, even if the density of people is high.

I suggest several topics with potential to further improve the results of presented work.
First step could be elimination of head false positives by checking the confidence of a
person detector behind the head detection. Another improvement could be to update
the number of people in each tracked object, which would significantly smooth the re-
sults. The solution could also take an advantage of the fact that the analyzed media is a
video. Therefore, information from previous frames could be used to improve detection
accuracy in a current frame.

Further, there are methods based on different paradigms that deserve to be investi-
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gated as potential solutions to people count estimation. The fact that all individuals
are being detected has a lot of disadvantages. The scene with frequent occlusions can be
very complex and detection becomes a very hard problem. For example the map-based
methods [2] may achieve comparable estimation accuracy while avoiding shortcomings
of methods investigated in presented work.
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Appendix A

Contents of the enclosed DVD

directory content
thesis This thesis in PDF
code Matlab code for the proposed detectors and testing
videos videos with detection results

Table 6 Content of the attached DVD
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Appendix B

Parameter settings of person detectors

Test results for parameter settings of person detectors.
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Figure 32 Precision-recall (top) and miss rate against false positives per image (bottom) curves
for HOG+SVM person detector with different parameter settings
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Figure 33 Precision-recall (top) and miss rate against false positives per image (bottom) curves
for Chns+SVM person detector with different parameter settings
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for HOG+DF person detector with different parameter settings
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for Chns+DF person detector with different parameter settings
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