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Supervisor: Mgr. Viliam Lisý, M.Sc., Ph.D.
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Abstract
In the security domain there has recently been a big demand in developing effective approaches
using game-theory tools. New algorithms are modeled in the framework known as Stackelberg
security game. In this thesis, we study a two-player non-cooperative Stackelberg security
game model inspired by application to border patrol. There are several known approaches to
handle this game scenario. We firstly focus on online learning algorithms used in the well-
known multi-armed bandit (MAB) problem. We investigate use of several online learning
algorithms and their applications to security games. Then we focus on a game-theoretic
approach by studying equilibria concepts. Both approaches, online learning algorithm and
game-theoretic solution, have some limitations in real-world applications. The online learning
algorithm has a very poor performance at the beginning of the game due to having no prior
information about the opponent’s strategy, while the game-theoretic strategy is not able to
adapt to varying opponents. Therefore we present new combined algorithms, based on those
two approaches, which address these limitations. We empirically test the proposed combined
algorithms and show their advantages such as stability or adaptability under various game
settings. The main contribution of the combined algorithms strategy is that it improves
defender performance and thus is more effective in resource allocation in the proposed game
model than previous approaches.

Keywords:
game theory, security games, online learning, Stackelberg game, Stackelberg equilibrium,

Nash equilibrium, border patrol, multi-armed bandit problem.

Abstrakt
V současné době je v mnoha bezpečnostńıch odvětv́ıch velká poptávka po vyv́ıjeńı efektivńıch
př́ıstup̊u, které použ́ıvaj́ı teorii her. Nové algoritmy jsou modelovány v konceptu zvaném
Stackelbergova bezpečnostńı hra. V této práci se zabýváme Stackelbergovou bezpečnostńı
hrou se dvěma nespolupracuj́ıćımi hráči inspirovanou problémem střežeńı hranic. Je známo
několik př́ıstup̊u, jak řešit takovýto herńı model. Napřed se zaměřujeme na online uč́ıćı
algoritmy, které jsou použ́ıvané v dobře známém problému mnohorukého bandity (multi-
armed bandit problem - MAB). Prozkoumáme použit́ı několika online uč́ıćıch algoritmů a
jejich aplikaci do bezpečnostńıch her. Poté se zaměřujeme na herně teoretický př́ıstup formou
výpočtu herńı rovnováhy. Oba př́ıstupy online uč́ıćıch algoritmů a herně teoretického řešeńı
maj́ı v realných aplikaćıch svá omezeńı. Online uč́ıćı algoritmus má velmi špatný výsledek na
začátku hry kv̊uli tomu, že nemá žádnou informaci o oponentově strategii. Herně-teoretické
řešeńı se neumı́ přizp̊usobit měńıćımu se oponentovi. Tud́ıž navrhneme kombinované algo-
ritmy založené na těchto dvou př́ıstupech, které řeš́ı zmı́něné omezeńı. Empiricky testujeme
navržené algoritmy v několika herńıch nastaveńıch a ukážeme jejich výhody jako stabilita či
schopnost přizp̊usobit se. Tento hlavńı př́ınos kombinovaných algoritmů vylepšuje výsledek
obránce, a tud́ıž mu umožňuje efektivněji rozdělit své zdroje v navrženém herńım modelu.

Kĺıčová slova
teorie her, bezpečnostńı hry, online učeńı, Stackelbergova hra, Stackelbergova rovnováha,

Nashova rovnováha, střežeńı hranic, multi-armed bandit problém.
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Chapter 1

Introduction

In the modern world we are more and more dependent on technology, which brings new
vulnerabilities and increases the chance to be attacked or compromised by hackers, terrorists
and other malicious groups. There is a huge demand to come up with efficient methods how to
prevent these attacks. Recently it has been shown that game theory might be a very powerful
tool to address such problems. Game theory is a well-known approach to solving various
problems by analyzing interactions among intelligent agents. It has become recently very
popular across many research fields such as economics, computer science, biology, electrical
engineering, law and some others. Some new challenges appeared with increasing number
of terrorist activities or drug trafficking. In all such problems there are limited resources,
which need to be used effectively [29]. Several algorithms were deployed in real systems
such as Assistant for Randomized Monitoring Over Routes (ARMOR), which was successfully
deployed at the Los Angeles International Airport (LAX) in 2007 or Intelligent Randomization
in Scheduling (IRIS) used to deploy air marshals on U.S. air carriers and others [29]. The
game theory is often used in domains where there are limited resources and they need to
be allocated efficiently. This is the case in many real world problems, where there are never
enough resources to cover all possible threats. Another interesting application is discussed
in [31], where the authors present new framework called Protection Assistant for Wildlife
Security (PAWS), which improves wildlife ranger patrols.

In this thesis we review the recent literature on security games, we discuss published
game models and algorithms and describe their limitations in real-world applications. We
focus on a game model known as Stackelberg Security Game (SSG), which is used in many
security domains. We study several approaches to solve SSG and analyze their limitations
and usability.

Firstly we investigate online learning algorithms used for handling multi-armed bandit
problem (MAB). MAB is a well-known concept in security games describing uncertainties
in opponents’ strategies. We focus on several known online learning algorithms such as
UCB (Upper Confidence Bound), EXP3 (Exponential-weight algorithm for Exploration and
Exploitation), non-stationary versions of UCB (Sliding-window UCB, Discounted UCB). We
also study a combinatorial online learning algorithm COMB-EXP-1, which is a combinatorial
version of EXP3 algorithm. Online learning algorithms have the ability to adapt to vary-
ing attackers or more precisely to varying attacker strategies. These algorithms learn the
opponent strategy and respond as good as possible. However their limitation is quite poor
performance at the beginning of the game, where they have no prior information about the at-
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2 CHAPTER 1. INTRODUCTION

tacker strategy. Therefore it makes sense to somehow initialize the online learning algorithms
and thus improve their performance.

Secondly we describe game-theoretic approach to solve SSG, where we focus on Nash
and Stackelberg equilibrium strategy. We study usability of such approach and point out its
limitations in the security games. We also investigate the possibilities of computing precise
equilibria strategies in real-world security games and the impact of possible errors in the equi-
libria computation on the overall performance. A limitation of the game-theoretic approach
is its inability to adapt to varying opponents. When using game-theoretic strategy we are
limited to fixed strategy vector and cannot react to any changes in the opponent strategy.

Based on these two approaches to handle SSG, we derive combined algorithms. We pro-
pose 4 combined algorithms, which use EXP3 online learning algorithm with game-theoretic
solution. The combined algorithms differ by a method of combining the game-theoretic so-
lution with online learning algorithm and by adaptability to varying opponent and level of
use of the game-theoretic solution. The combined algorithms address some of the previously
described limitations of basic approaches, therefore they are able to adapt to non-stationary
environments and have improved early performance. We also present combinatorial versions
of combined algorithms. We empirically test these statements on many experiments with
varying game settings.

We show these methods on a game model of Border Patrol, where we need to allocate the
resources as good as possible to apprehend illegal trespassers. This model is motivated by [1],
where the authors describe real-world security domain of border patrol.

1.1 Related Work

To the best of our knowledge, dealing with uncertainty in players’ perception in Stackelberg
security games (Section 2.3) is a very new research area and there are quite few scientific
papers studying it. Some early papers study unrealistic or very simplistic assumptions e.g.
player’s perfect knowledge about opponent strategy. Nevertheless they are necessary first
steps to develop more realistic models of Stackelberg games. We mainly base this thesis
on [3], [2] and [7]. These papers differ by strength of simplifications of input assumptions.
One of the first profound work on imprecise information in Stackelberg security games (SSG)
is [3], where the authors state that most of the previous work on such topic assumed perfect
knowledge of the defender and rationality of the attacker, which is the assumption for perfect
knowledge SSG [17].

We firstly analyze a necessary background for this thesis and differences between ap-
proaches of mentioned papers. In [3] the imprecise information is modeled by limited number
of attacker’s observation of the defender distribution. The defender chooses his strategy first,
the attacker then imprecisely observes it and decides which pure strategy he will play. The
authors make a limiting assumption that the exact number of observations will be known to
both players, this is justified by expert advice or intelligence. The authors also propose a
heuristic approach to estimate the number of observations made by the attacker. Another
assumption is that the defender knows the prior belief of the attacker about the defender’s
strategy. The authors propose an exact non-convex algorithm, so no solver can guarantee
that the solution is optimal due to the non-convexity, therefore the authors also propose a
convex approximation algorithm. The proposed algorithms are compared to Strong Stackel-
berg Equilibrium (SSE) (Section 2.5.3) and is shown their convergence to SSE with increasing
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number of the observations; in our thesis we also compare all the algorithms to SSE. SSE is
an important concept to compare with new algorithms in SSG model.

Succeeding work [2] addresses these not so realistic assumptions and proposes a model
where the defender does not know the number of observations and the attacker does not
know the defender strategy. They propose a stopping model, which tells the attacker when
to stop observing the defender’s strategy and attack. The model uses Markov Decision Pro-
cess (MDP). It is quite problematic to find the observation cost for the attacker, which is a
critical parameter in the model. Based on this attacker’s strategy they propose an algorithm
to get defender’s optimal strategy. Furthermore Yin et al. [32] propose a model with obser-
vational uncertainty; they assume a bounded difference between the defender’s strategy and
the attacker’s estimate of it.

Another interesting approach from [7] directly reacts to (An et al. 2012, 2013) [3] and [2].
The authors state that the limited surveillance does not have to be an issue. Their model
considers a zero-sum game. They found lower and upper bound for the difference between
games, where the attacker has unlimited number of observations (knows exact defender’s
distribution) and the case where the attacker has only τ observations. These bounds are shown
to be quite tight. This does not hold for general-sum games. Mentioned paper [7] shows new
perspective to limitations of proposed models with uncertainties in real applications. That is
one of the reasons why we focus on slightly different approach to the studied problem in this
thesis and focus only on one type of uncertainty in general-sum game.

In [19] the authors propose an algorithm, which finds a Stackelberg equilibrium strategy
in a game with uncertain observability. They focus only on two cases, where first case is a full
observability of leader’s strategy by the follower with some probability pobs and the second
case is that the follower is not able to observe the leader’s strategy with a probability 1−pobs.
Disadvantage of this model is a difficult determination of the number pobs.

In [25] the authors focus on a model, which combines all possible uncertainties. They
present 3-dimensional space of uncertainty in adversary payoff, uncertainty in adversary ra-
tionality and uncertainty in defender’s strategy. In our model we focus on uncertainty of the
first type and we do not expect the defender to choose a different strategy than he is planning
to due to some circumstances. We focus on uncertainty in defender’s estimate of attacker’s
payoffs and we assume that the attacker is rational and chooses the action with the highest
payoff. Although the attacker is rational, he has only an estimate of the defender’s strategy
based on the observations. Proposed model by [25] can handle any type of uncertainty in
the uncertainty space, but has limitation in scaling up to larger problems; this is caused by
potentially large numbers of integer variables. Our model does not have this issue due to
focusing only on one type of uncertainty, which is still well justifiable in practice. They also
propose a scalable algorithm where they assume a rational attacker. The main difference
between this paper and our thesis is in the ability of the proposed algorithms to be optimal.
Their strategy is robust against various types of uncertainties but is limited to remain sub-
optimal. However our proposed algorithms learn the opponent strategy and are able to reach
the optimal strategy at the expenses of restricted robustness.

In [22] they analyze learning optimal Stackelberg strategies in Stackelberg games. The
authors consider two game settings. Firstly the follower’s payoffs are not known and secondly
the follower’s payoffs are known but the distribution over types is not. In our model we
consider the first case. The latter case does not fit our model because we assume an adversary
attacker who is very likely to choose his best response. They also mention its drawbacks that
this framework might not be suitable for practical real-world applications due to the high cost
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of learning phase.
Most of these models proposed by the mentioned literature focus on game-theoretic strate-

gies and are not able to adapt to intelligent attacker, who can learn the defender strategy from
the observations. In our previously published paper [18] we used online learning in security
game model; we used several learning algorithms such as EXP3 [6], UCB [4], Sliding-window
UCB [16]. In this thesis we want to address new approach to SSG where we make use of game-
theoretic solution and online learning solution so we propose a set of combined algorithms.
This approach enables the defender to learn the attacker’s strategy and thus to adapt against
intelligent attackers. We use several attacker types to test our proposed algorithm. Our
model is designed as a fictitious play where each player observes the actions of the opponent
and computes an estimate of the mixed strategy of the opponent. However the defender can
observe only those actions of the attacker where the defender chooses the same action as the
attacker, this feature comes from large domain of security games, where the defender can only
observe unsuccessful attacks (successful apprehensions) e.g. border patrol problem [1]. This
assumption is made without loss of generality because it is the worst-case for the defender.
The attacker can make surveillance and observe all the actions of the defender. At each stage
(round) a player updates his estimate of the opponents’ strategy. In [24] they propose a se-
curity game model with incomplete information using standard fictitious play and stochastic
fictitious play. They present a strategy for the players to reach Nash equilibria, if the error
rates are known or a distance from Nash equilibria, if the error rates are unknown. Error rate
means a level of the error in perception of other player strategy. We assume a general-sum
game, where the attacker payoffs are based on the attacker action preferences.

The papers mentioned above mostly assume restricted conditions of the game, which is
caused by a high complexity of the studied domain. In real-world applications there is a vast
number of possible features, which can make the model too complex to deal with. Therefore
the proposed models have some limitations, which we need to be aware of and deal with
them appropriately. Generally, our goal is to propose a model as accurate as possible with
feasible analysis. Our model represents another interesting approach, which is inspired by
a real security domain of border patrol. Its advantage is that it requires minimum input
information compared to mentioned papers. The proposed defender strategies by this thesis
are able to reach the optimal strategy even though they start with arbitrarily imprecise
information. Some of the papers mentioned above are necessary for formal analysis and for
description of security domain pitfalls. In this thesis we propose quite a realistic model, which
is easily described and makes some simplifications, which do not harm much the generality of
the model. The main novelty of this thesis is the ability of the proposed methods to adapt to
the attacker and learn from the observations while using game-theoretic solution. Some of the
papers mentioned above show a theoretical model, how to learn enough from the distribution
to commit to the optimal strategy. Closely related paper to our work is [31] where the authors
propose a model, which can adapt to adversarial attacker and learn based on his previous
behavior. However their model assumes a perfect knowledge about the defender strategy,
which is not the case in this thesis. In our model the attacker has only an estimate of the
defender strategy based on his surveillance of patrols.
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1.2 Thesis Outline

Chapter 1 introduced the security domain and reviewed the current work on the topic. In
Chapter 2 we introduce game theory concepts and we explain basic terms. We describe the
Stackelberg Security Games and propose a game model, which we focus on in this thesis.
We also mention game-theoretic approaches to solve a game. Chapter 3 describes learning in
games and focus on the learning algorithms and multi-armed bandit problem. From Chapter
4 follows our own work and contribution where there is a description of our game model and
used algorithms. Then we introduce the new combined algorithms. Chapter 5 focuses on
various experiments to empirically show our results. Chapter 6 contains a conclusion of the
thesis and possible future work.
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Chapter 2

Game Theory Introduction

Game theory is a mathematical model of independent, self-interested agents who interact
with each other. The original application was in economics but later on it has been used in
several other domains like biology, psychology, political science or computer science. Game
theory subdomain focuses on non-cooperative agents. In our work we study subdomain of
non-cooperative game theory where the agents’ interests conflict. The case where the agents’
interests are same or similar is called coalitional or cooperative game theory.

2.1 Game Model

We describe mathematically the game model and related concepts.

2.1.1 Normal-form game

Normal-form game is the basic game representation also called the strategic form. Most of
the other game representation can be transformed to the normal-form game. Normal-form
game definition is taken from Shoham (2009) [28] page 56.

Definition 1. (Normal-form game) A (finite, n-person) normal-form game is a tuple
(N,A, x), where:

• N is a finite set of n players, indexed by i:

• A = A1 × ...×An, where Ai is a finite set of actions available to player i. Each vector
a = (a1, ..., an) ∈ A is called an action profile;

• x = (x1, ..., xn) where xi : A 7→ R is a real-valued utility (also payoff or reward) function
for player i.

In the definition above the authors use originally1 u as utility but we replace it with x
because in the security games the utilities are often represented by letter x instead of u, which
is the case in this thesis since we deal with the security games. Instances of the games are
represented by matrices; in case of two players we have two-dimensional matrix. This matrix
is called the payoff matrix where each row represents a possible action for player A and each
column represents a possible action for player B. Example of a payoff matrix is the Table 2.1.

1Taken definitions are in italic even in the cases where we slightly change the notation.

7
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2.2 Game Concepts

We now describe the relation of payoffs between the players. There are two basic payoff
structures, first one is called constant-sum game and the second is called general-sum game.
We take the definition of the constant-sum game from [28] page 58.

Definition 2. (Constant-sum game) A two-player normal-form game is constant-sum if
there exist a constant c such that for each strategy profile a ∈ Ai × A2 it is the case that
x1(a) + x2(a) = c.

A special case of the constant-sum game is a zero-sum game where c = 0. Zero-sum games
are very widely used concepts in game theory, we can understand it as a situation where gain
of the first player is equal to loss of the second player and vice versa.

We defined possible actions of the players and now we define how the players choose from
them. There are two basic types of strategies, firstly pure strategy and secondly mixed strategy.
Pure strategy is defined as a single action, which a player decides to play. Pure strategy profile
is a choice of pure strategy for each agent in the game. More sophisticated strategy is that the
player chooses to play randomly from the set of possible actions according to some probability
distribution vector. We call this strategy the mixed strategy. Mixed strategy is often used
strategy for the players in real-world games. The definition of the mixed strategy is taken
from [28] page 59-60.

Definition 3. (Mixed strategy) Let (N,A, x) be a normal-form game, and for any set X
let Π(X) be the set of all probability distributions over X. Then the set of mixed strategies
for player i is Si = Π(Ai).

And also the mixed-strategy profile

Definition 4. (Mixed-strategy profile) The set of mixed-strategy profiles is the Cartesian
product of the individual mixed-strategy sets, S1 × . . .× Sn.

A useful concept is the support, which is a subset of actions with non-zero probabilities.
We denote si(a) the probability that an action ai is played in the mixed strategy si. Support
definition is taken from [28] page 60.

Definition 5. (Support) The support of a mixed strategy si for a player i is the set of pure
strategies {ai | si(ai) > 0}.

Since we defined the mixed strategy we can define the expected payoff. If we have a
probability of playing each action in the action space for each player and we have the payoff
matrix, which specify the payoff for each action and for each player we can compute the
expected payoff. The definition is taken from [28] page 60.

Definition 6. (Expected payoff of a mixed strategy) Given a normal-form game
(N,A, x) the expected payoff x̄i for player i of the mixed-strategy profile s = (s1, . . . , sn)
is defined as

x̄i(s) =
∑
a∈A

xi(a)
n∏
j=1

sj(aj).
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2.3 Stackelberg Security Games

We define Stackelberg security game according to [17]. The game has two players, the defender
Θ and the attacker Ψ. In security games we usually do not have individuals playing against
each other but rather groups of people who have similar or same goal. These groups can
represent terrorists, hackers, etc. on the attacker side and officers, authorities, security units
etc. on the defender side. These groups use a joint strategy so we can think of the group as an
individual player with several resources. The defender has a set of pure strategies, denoted
σΘ ∈ ΣΘ and the attacker has a set of pure strategies, denoted σΨ ∈ ΣΨ. We consider
a mixed strategy, which allows to play a probability distribution over all pure strategies,
denoted δΘ ∈ ∆Θ for the defender and δΨ ∈ ∆Ψ for the attacker. We define payoffs for the
players over all possible joint pure strategy outcomes by ΩΘ : ΣΨ ×ΣΘ → R for the defender
and ΩΨ : ΣΘ × ΣΨ → R for the attacker. The payoffs for the mixed strategies are computed
based on the expectations over pure strategy outcomes.

Important concept in Stackelberg security games is the idea of a leader and a follower.
This concept is the main difference from the normal-form game. The defender is considered
as the leader and the attacker as the follower. The leader plays first then plays the attacker
who can fully observe the defender strategy before acting. This is quite a strong assumption,
as we will see in our further analysis. This represents very adversarial and intelligent attacker
who can fully observe the defender’s strategy before deciding how to act. In case of naive
defender or not sophisticated enough, the attacker can exploit the defender’s strategy. This
is a vulnerability, which is modeled by Stackelberg security game model. Formally we can
describe the attacker’s strategy as a function which chooses a mixed distribution over pure
strategies for any defender’s strategy: FΨ : ∆Θ → ∆Ψ.

2.4 Analyzed Game Model

In this thesis we propose a security game model for border patrol resource allocation. The
model is inspired by real application [1]. This model comes from the concept of Stackelberg
security games [17]. We assume the leader to be the defender whose goal is to apprehend any
illegal immigrant crossing the border. In the real application the defender can be Office of
Border Patrol (OBP). The follower is an attacker who is trying to cross the border without
being apprehended. We assume a repeated game with imperfect information. The defender
is playing a version of multi-armed bandit problem (Section 3.1) and the attacker is playing a
version of a fictitious play (Section 3.5). The defender does not know the attacker strategy, he
can only observe received payoffs. So he receives only payoffs from the zones he visited. The
attacker can observe the whole patrol history, so he knows how many times the defender visited
particular zone. In our model the attacker has a zone preference vector, which describes how
easy or how hard is to cross a particular zone. This can be caused by a difficult access to the
zone. The defender has no preferences for the zones. We analyze this game model and propose
suitable algorithms to approach it. In our basic model we divide the whole border into 8 zones.
These zones can be seen as arms of multi-armed bandit problem (described in Section 3.1)
or as actions in standard game model definition. In the model we do experiments with
random attacker zone preference vectors, thus each experiment use different payoff matrix.
We provide here an example of such game to better understand the model. The defender
payoffs are constant across all the experiments and all the zones. However we now present an
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example of payoff matrix to better understand our general model.
Let’s assume a zone preference vector for the attacker

vΨ = {0.1, 0.2, 0.05, 0.3, 0.1, 0.05, 0.05, 0.15}

We define rewards for the players. We distinguish if the player is covered by another player
or not (covered means they choose the same zone in one round). If the defender is covered
it means he apprehends the attacker, so he gets reward 1. If the defender is in different zone
than the attacker then the defender does not apprehend the attacker and gets reward 0. The
attacker uses a penalty of being caught PΨ which is 0.5 and computes his reward for a zone
i according to

xΨ
i = (vΨ

i − PΨ ∗ cΨ
i ) (2.1)

where cΨ
i is probability of being caught for the attacker which is 1 in case of being covered

and 0 in case of being not covered. In the experiments the probability of being caught is
computed from patrol history and assigns a value to each zone, how probable is that the
defender visits this particular zone. So for this example game we can write the rewards
covered defender payoff:
xΘ
c = {1, 1, 1, 1, 1, 1, 1, 1}

uncovered defender payoff:
xΘ
u = {0, 0, 0, 0, 0, 0, 0, 0}

covered attacker payoff:
xΨ
c = {−0.4,−0.3,−0.45,−0.2,−0.4,−0.45,−0.45,−0.35}

uncovered attacker payoff:
xΨ
u = {0.1, 0.2, 0.05, 0.3, 0.1, 0.05, 0.05, 0.15}

and payoff matrix in normal-form notation

zone 1 2 3 4 5 6 7 8

1 1, -0.4 0, 0.2 0, 0.05 0, 0.3 0, 0.1 0, 0.05 0, 0.05 0, 0.15

2 0, 0.1 1, -0.3 0, 0.05 0, 0.3 0, 0.1 0, 0.05 0, 0.05 0, 0.15

3 0, 0.1 0, 0.2 1, -0.45 0, 0.3 0, 0.1 0, 0.05 0, 0.05 0, 0.15

4 0, 0.1 0, 0.2 0, 0.05 1, -0.2 0, 0.1 0, 0.05 0, 0.05 0, 0.15

5 0, 0.1 0, 0.2 0, 0.05 0, 0.3 1, -0.4 0, 0.05 0, 0.05 0, 0.15

6 0, 0.1 0, 0.2 0, 0.05 0, 0.3 0, 0.1 1, -0.45 0, 0.05 0, 0.15

7 0, 0.1 0, 0.2 0, 0.05 0, 0.3 0, 0.1 0, 0.05 1, -0.45 0, 0.15

8 0, 0.1 0, 0.2 0, 0.05 0, 0.3 0, 0.1 0, 0.05 0, 0.05 1, -0.35

Table 2.1: Payoff matrix of our analyzed game model

In the payoff matrix in Table 2.1 the defender is the row player and the attacker is the
column player.
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2.5 Equilibrium in Game

2.5.1 Dominant strategy

Intuitively if one strategy dominates another it means that a player gets a higher payoff if
he plays the first strategy instead of the another. There are several types of dominance. We
take a dominant strategy definition from [28] page 78.

Definition 7. (Domination) Let si and s′i be two strategies of player i, and S−i the set of
all strategy profiles of the remaining players. Then

1. si strictly dominates s′i if for all s−i ∈ S−i, it is the case that xi(si, s−i) > xi(s
′
i, s−i).

2. si weakly dominates s′i if for all s−i ∈ S−i, it is the case that xi(si, s−i) ≥ xi(s
′
i, s−i),

and for at least one s−i ∈ S−i, it is the case that xi(si, s−i) > xi(s
′
i, s−i).

3. si very weakly dominates s′i if for all s−i ∈ S−i, it is the case that xi(si, s−i) ≥ xi(s′i, s−i).

Definition 8. (Dominant strategy) A strategy is strictly (resp. weakly, very weakly)
dominant for an agent if it strictly (weakly, very weakly) dominates any other strategy for the
agent.

2.5.2 Nash equilibrium

We define Nash equilibrium, which is a necessary basic concept in game theory. This concept
was introduced by John Nash in 1951 [23]. We first need to introduce player’s best response
and then we can introduce the Nash equilibrium, the definitions are taken from Shoham [28]
page 62.

Definition 9. (Best response) Player i’s best response to the strategy profile s−i is a mixed
strategy s∗i ∈ Si such that xi(s

∗
i , s−i) ≥ xi(si, s−i) for all strategies si ∈ Si.

Best response is player’s strategy concept, which does not have to be unique. There is
usually more than one best response in a game, otherwise the best response is also pure
strategy. The player must be indifferent among best responses if there are more than one.

Definition 10. (Nash equilibrium) Nash equilibrium is a strategy profile s = (s1, ..., sn if
for all agents i, si is a best response to s−i.

John Nash introduced the Nash equilibrium in 1951 and also proposed this theorem taken
from [23].

Theorem 1. Every game with a finite number of players and action profiles has at least one
Nash equilibrium.

This is a very important conclusion for game theory. In the security games there arose
a desire to find such an equilibrium for which the players act optimally. We stated that the
best response does not have to be unique which means that there are possibly multiple Nash
equilibria in a game. This introduces a problem how to choose among multiple Nash equilib-
ria. However there is no such problem in Stackelberg equilibria described in the next section.
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Example of NE in our game

We compute the Nash equilibrium from the payoff matrix in Table 2.1. For the defender
we get vector

sΘ = {0.06, 0.26, 0, 0.46, 0.06, 0, 0, 0.16}

and Nash equilibrium mixed strategy for the attacker is

sΨ = {0.2, 0.2, 0, 0.2, 0.2, 0, 0, 0.2}

We call those zones, which are played with non-zero probability by the defender active.
We can clearly see that if the defender and the attacker play according to these strategies in
our game model described in 2.4, the expected defender payoff for such game is 0.2 ∗T where
T is the number of rounds played. On this example we can also demonstrate that it is not
favorable for any player to change his strategy.

2.5.3 Stackelberg equilibrium

Stackelberg equilibrium is a refinement of Nash equilibrium, which is a strategy profile where
no player can gain by unilaterally deviating to another strategy. We define concept of Stack-
elberg equilibrium (SE) according to [17] and we use the terminology described in section 2.3.
This idea was firstly introduced in economy field where it described the reaction between
agents. SE is a version of subgame perfect equilibrium where each player chooses a best re-
sponse in any subgame of the original game. SE eliminates some Nash equilibrium strategies,
which are not optimal in Stackelberg game. Subgame perfection is not a guarantee that there
exists a unique SE. This is caused by possible indifference of the follower among a set of tar-
gets. To address this issue there are two concepts of SE called strong Stackelberg equilibrium
and weak Stackelberg equilibrium. The strong SE assumes that in case of indifference between
targets the follower chooses the optimal strategy for the leader and the weak SE assumes
that the follower choose the worst strategy for the leader. Concept of strong SE avoids the
problem of equilibrium selection, which is a very discussed problem for Nash equilibrium.
A strong SE exists in every Stackelberg game but a weak SE might not. The leader can
motivate the desired strong equilibrium by choosing a strategy, which is arbitrary close to the
equilibrium. This makes the follower strictly choosing the preferred strategy. We take the
definition from [17] where the authors define strong SE

Definition 11. (Strong Stackelberg equilibrium) A pair of strategies (δΘ, FΨ) form a
Strong Stackelberg Equilibrium (SSE) if they satisfy the following:

1. The leader plays a best response:
ΩΘ(δΘ, FΨ(δΘ)) ≤ ΩΘ(δ′Θ, FΨ(δ′Θ))∀δ′Θ ∈ ∆Ψ

2. The follower plays a best response:
ΩΨ(δΘ, FΨ(δΘ)) ≤ ΩΨ(δΘ, δΨ)∀δΘ ∈ ∆Θ, δΨ ∈ ∆Ψ

3. The follower breaks ties optimally for the leader:
ΩΘ(δΘ, FΨ(δΘ)) ≤ ΩΘ(δΘ, δΨ)∀δΘ ∈ ∆Θ, δΨ ∈ ∆∗Ψ(δΘ), where ∆∗Ψ(δΘ) is the set of
follower best responses as defined above.
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Example of SSE in our game

The SSE of our game model described in 2.4 is the same as the NE. So for the defender
the mixed strategy is

sΘ = {0.06, 0.26, 0, 0.46, 0.06, 0, 0, 0.16}

and SSE mixed strategy for the attacker is

sΨ = {0.2, 0.2, 0, 0.2, 0.2, 0, 0, 0.2}

In the attacker strategy we can see that there are ties in the probability distribution. Ac-
cording to the definition of Stackelberg security game and SSE the attacker breaks ties in favor
to the defender so he always plays zone number 4. From this deduction it is straightforward
that the expected defender payoff is 0.46 ∗ T , where T is the number of rounds played.
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Chapter 3

Learning in Games

In this chapter we focus on learning in games. In [33] they describe properties of online
learning in games. Learning in two-player games is quite a complex problem because the
learning itself changes the thing to be learned. Let’s consider player 1 and player 2; player 1
wants to learn player’s 2 strategy and he is learning by what he learned so far and what he
is going to learn next. Also the player 2 can observe what player 1 learned so far. Thus, the
strategy of player 2 can change as a result of player’s 1 attempt to learn it. Of course the
same fact holds for the player 2. This loop property is inevitable and makes the model quite
complex to analyze and its behavior rather unintuitive. In general this property can cause
that one of the players or both players cannot learn the optimal strategy at all. There is an
example of such case in Section 4.2.1, where we describe learning algorithm synchronization,
which disable the opponent to learn the optimal strategy. This analysis shows that online
learning has its restrictions we should be aware of.

Nevertheless many game models rely on equilibrium analysis and use Nash equilibrium or
a refinement of it. In many real world applications there is not possible to obtain equilibrium
strategy at the beginning due to uncertainties of payoff matrices or opponent’s strategies.
However equilibrium can be obtained by learning and adaptation. In some games players
choose a strategy, which maximize their payoff given beliefs that they obtained from past
rounds of the game. We describe a fictitious play for example, which is discussed in Section 3.5.
In [15] they discuss a fictitious play and other types of learning in games. Another type of
learning system deals with multi-armed bandit problem.

3.1 Multi-armed Bandit Problem

Multi-armed bandit problem (MAB) is one of the most basic concepts in online learning. This
problem was extensively studied in statistics and appears constantly across various fields such
as artificial intelligence and others. We describe multi-armed bandit problem according to [8]
but it was originally proposed by Robbins [26].

MAB generally deals with a tradeoff between exploration and exploitation, which is a well-
known decision problem where we choose either the best explored option so far (exploitation)
or try a new unexplored option (exploration), which might or might not give us better result.
One can show this problem on everyday life’s choices; should one go to a restaurant he well
knows and is sure he will get a good service and a decent meal or should he try some new
restaurant with uncertain outcome, therefore he can be lucky and get even better service and

15
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meal than in his favorite restaurant or he can have a bad luck and get a really bad meal
and service. If he would only stick to restaurants he knows, he is not ever able to discover
any new great restaurant. Thus, he needs to come up with a good strategy - exploration
versus exploitation tradeoff to get an optimal outcome - a great service and a decent meal.
MAB problem appears in various domains like ad placement, website optimization, security
games, etc. The name bandit refers to a slang term in American English for a slot machine
- a one-armed bandit. The analogy to the problem is a player in a casino playing multiple
slot machines with different payoff distribution. He must repeatedly decide where he puts his
next coin. MAB is a sequential allocation problem with a set of actions (bandits). We can
see it as a sequential decision making with limited information. Even though it is quite weak
setting for learning, it is very realistic and used in many real world applications [13].

Based on the nature of reward process there are three basic MAB formalizations: stochas-
tic, adversarial and Markovian. For these three models there were presented effective algo-
rithms: UCB algorithm for the stochastic case, EXP3 algorithm for the adversarial case and
an algorithm using Gittins indices for the Markovian case. We focus on the first two cases.
We take the following definitions and equations from [8].

3.1.1 Regret

We want to analyze a performance of strategies for MAB. To do that we compare a chosen
strategy with the optimal strategy. We need to quantify a difference between playing an arm
chosen by the strategy and playing the optimal arm, therefore we define a regret.

Rn = max
i=1,..,K

n∑
t=1

Xi,t −
n∑
t=1

XIt,t (3.1)

where Rn is the regret after n plays, K ≥ 2 is a number of arms, sequence Xi,1, Xi,2 are
the unknown rewards of each arm i = 1, ...,K. At each time step t = 1, 2, ... we chose an arm
It and obtain the associated reward XIt,t.

We also assume a stochastic strategy so we define the expected regret

E[Rn] = E

[
max
i=1,..,K

n∑
t=1

Xi,t −
n∑
t=1

XIt,t

]
(3.2)

and the pseudo-regret

R̄n = max
i=1,..,K

E

[
n∑
t=1

Xi,t −
n∑
t=1

XIt,t

]
(3.3)

In both equations the expected value is taken from a random draw from the strategy
distribution. The pseudo-regret is a weaker notion of regret than the expected regret so we
can write R̄n ≤ E[Rn].

3.1.2 Stochastic bandit problem model

Each arm in the MAB model i = 1, ...,K corresponds to an unknown probability distribution
pi from [0, 1]. The stochastic bandit problem is defined



3.1. MULTI-ARMED BANDIT PROBLEM 17

Known parameters: number of arms K and number of rounds n
Unknown parameters: arms prob. distributions p1, ..., pK in [0, 1]
for t = 1, ..., n do

(1) the player chooses arm It ∈ 1, ...,K
(2) having It the system draws the reward XIt , t ∼ pIt independently from the
distribution and reveals it to the player.

end
Algorithm 1: The stochastic bandit problem model

We also define the mean reward µi for each arm distribution. So we define optimal mean
reward

µ∗ = max
i=1,...,K

µi

and
i∗ ∈ arg max

i=1,...,K
µi

No we can write the pseudo-regret as

R̄n = nµ∗ −
n∑
t=1

E[µIt ] (3.4)

3.1.3 Adversarial bandit problem model

Now we assume the adversary scenario where the multi-armed bandit acts maliciously and
wants the player to maximize his regret (minimize his reward), however the bandit cannot set
the rewards to zero because he wouldn’t attract any players to play it (here is the analogy to
a casino). We call such bandit adversary or opponent. We differ two variants of adversaries,
firstly an oblivious adversary whose distributions are independent to the player’s actions,
secondly and more commonly we have a non-oblivious adversary who can adapt to the player’s
past behavior. We focus on the latter variant of the adversary. The regret analysis for this
model setting is based on the connection between regret minimization and game-theoretic
equilibria in a game. In game-theoretic equilibrium the player has no need to change his
strategy if the opponent observes it and reacts to it, which is the same property as in the
regret minimization definition. So we define the adversarial bandit model as

Known parameters: number of arms K and number of rounds n
for t=1,2,... do

(1) the player chooses an arm It ∈ 1, ...,K, he can use some extra random
exploration;
(2) at the same instance the adversary (opponent) sets the distribution reward
vector dt = (d1,t, ..., dK,t) ∈ [0, 1]K , he can also use some extra randomization;
(3) the player obtains the reward dIt,t, but he does not observe the other arms’
rewards.

end
Algorithm 2: Adversarial bandit problem model

The model of adversarial multi-armed bandit developed in time. Firstly the model sup-
posed a payoff matrix to be known to the player and also the player knew the opponent’s
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moves. Later versions of the model considered a repeated unknown game, where the player
only observes his own payoffs. This is exactly the problem of non-oblivious adversarial ban-
dit. In [4] they showed the connection to stochastic bandits by introducing new term of
non-stochastic multi-armed bandit problem.

3.2 Combinatorial Bandits

In our experiments we scale up our model and analyze the case where there are more de-
fender resources in each round than just one. This setting is called the combinatorial bandit
case and we present a combinatorial learning algorithm. This is a special concept used in
Stackelberg Security Games where we have a strategy vector from which we choose k ac-
tions to be played where k is the number of resources. There is a subset of single arms
with unknown distributions which form a super arm. In each round a super arm is played,
therefore each single arm in the super arm is played and the player receives a sum of re-
wards from all the single arms contained in the super arm. Combinatorial bandit case uses
similar concepts as multi-armed bandit case as regret and others. The problem is well de-
scribed in [9] where the authors propose a combinatorial learning algorithm based on EXP3
algorithm called ComBand. This algorithm is rather complex, therefore we use for our model
algorithm COMB-EXP-1 presented in [11] which is strongly inspired by ComBand algorithm.
They also present a combinatorial version of UCB CombUCB algorithm suitable for stochas-
tic combinatorial bandits. However we focus on adversarial combinatorial bandits for which
COMB-EXP-1 is designed.

3.3 Convergence of Learning Algorithms

Generally we differ properties of learning algorithms between zero-sum games and general-sum
games. Learning algorithms are shown to converge to Nash equilibrium in zero-sum games as
shown in [13]. In this settings the learning algorithms are known to have a decreasing regret.
For the general-sum games the learning algorithms converge to a more general equilibrium
than the Nash equilibrium if the regret is minimized explicitly. In the paper they describe
several learning algorithm types with respect to the game setting. They vary by the level of
information each player gets about the opponent strategy. In our work we focus on a variant
of multi-armed bandit problem for the defender where a player sample the distribution of
opponent’s strategy and update his belief according to the received payoffs. For the attacker
we assume a variant of a fictitious play. Learning in multi-armed bandit setting or in a
fictitious play setting does not necessarily converge to the Nash equilibrium in a general-sum
game.

3.4 Learning Algorithms

We present two main learning algorithms for multi-armed bandit problem UCB and EXP3
algorithm. UCB plays a pure strategy because of its deterministic nature, however EXP3 has
a stochastic strategy and is more suitable for mixed strategy equilibria.
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3.4.1 Upper Confidence Bound (UCB) algorithm

This algorithm was presented in [4]. As we described in section about multi-armed bandit
problem we face the exploration versus exploitation dilemma. Concept of a regret is highly
used measure for analyzing learning algorithms. Lai and Robins [20] showed that a regret for
multi-armed bandit problem has to grow at least logarithmically in the number of plays. Since
they presented this proof many learning algorithms with logarithmic regret were derived. The
Upper Confidence Bound (UCB) achieves logarithmic regret uniformly over number of rounds
and without any preliminary knowledge about the reward distributions. They just assume
that the support is in range [0, 1].

Deterministic policy: UCB
Initialization: Play each action once.
for t = 1,...,n do

at = arg maxj x̄j +
√

2 lnn
nj

end
Algorithm 3: Pseudo-code of algorithm UCB

where t is the number of round, at is the action we play in the round t, x̄j is the mean
reward obtained from action j, nj is the number of times action j has been played so far and
n is the overall number of rounds played so far.

In the model the parameter K is the number of machines or actions depending on domain.

Theorem 1. (Expected regret of UCB) For all K > 1, if policy UCB is run on K ma-
chines having arbitrary reward distributions P1, ..., PK with support in [0, 1], then its expected
regret after any number n of plays is at most

E[R] ≤
[
8
∑

i:µi<µ∗

( lnn

∆i

)]
+
(
1 +

π2

3

)( K∑
j=1

∆j

)
where µ1, ..., µK are the expected values (rewards) of P1, ..., PK . And

∆i = µ∗ − µi

where µ∗ is the maximal element (reward) in the model.

3.4.2 EXP3 algorithm

One of the widely used learning algorithms is Exponential-weight algorithm for Exploration
and Exploitation called EXP3. This algorithm is derived from algorithm Hedge introduced
in [14]. The EXP3 algorithm was described and analyzed in [6] or before in [5].

The parameter γ is called the exploration rate and sets how much the algorithm will
explore the action space. The standard setting is γ = 0.1 which means 10% of exploration.
Vector w represents the estimated payoff of each action. The player uses the probability
distribution vector p as his strategy. This algorithm tends to be numerically unstable which
is caused by computing the weights in step 4 in Algorithm 4. So under some circumstances
there can be a problem with overflowing the number format. Due to this reason we use in
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Parameters: Real γ ∈ (0, 1]
Initialization: wi(1) = 1 for i = 1, ...,K.
for each t = 1, 2, ... do

1. Set

pi(t) = (1− γ)
wi(t)∑K
j=1wj(t)

+
γ

K
i = 1, ...,K

2. Draw it randomly accordingly to the probabilities p1(t), ..., pK(t)
3. Receive reward xit(t) ∈ [0, 1].
4. for j = 1, ...,K do

x̂j(t) =

{
xj(t)/pj(t) if j = it;
0 if otherwise,.

wj(t+ 1) = wj(t) exp(γx̂j(t)/K)

end

end
Algorithm 4: Pseudo-code of algorithm EXP3

our implementation of the model a slightly modified algorithm of EXP3 which is numerically
stable, presented in [12]. The probability distribution is defined

pi =
γ

K
+

1− γ∑
j∈K

e(s(j)−s(i))η (3.5)

where s(i) is the sum of rewards from previously selecting arm i, each divided by the
probability of selecting i on that trial. η and γ are constant parameters.

They analyze the algorithm EXP3 in [8]. The authors use a pseudo-regret to define the
upper bound, we defined the pseudo-regret concept in section on multi-armed bandit problem.
They present a pseudo-regret of EXP3 algorithm

Theorem 2. (Pseudo-regret of EXP3) If EXP3 exploration rate

γ =
√

2 lnK
nK , then

R̄n ≤
√

2nK lnK (3.6)

This theorem holds for the situation where the player knows the number of rounds n. If
he does not know the number of rounds, we get the anytime version of the algorithm

Theorem 3. (Pseudo-regret of EXP3 - anytime version) If EXP3 exploration rate

γt =
√

lnK
tK , then

R̄n ≤ 2
√
nK lnK (3.7)

Proof of these two theorems can be found in [8]. Relation between the expected regret
and the pseudo-regret is R̄n ≤ E[R], so the upper bound on the pseudo-regret does not imply
a bound on the expected regret. In [5] they prove an upper bound for the expected regret for
EXP3 with suitably chosen parameters of the used algorithm.



3.4. LEARNING ALGORITHMS 21

Theorem 4. (Expected regret of EXP3) If the exploration rate is ([5], Corollary 4.2)

γ = min

{
1,

√
K lnK

(e− 1)n

}
(3.8)

and η = γ
K . Then for such setting the upper bound on the expected regret is

E[R] ≤ 2
√
e− 1

√
nK lnK ≤ 2.63

√
nK lnK (3.9)

In [5] they prove this theorem. In our implementation of the model we use parameter
η = γ

K .

3.4.3 Non-stationary UCB versions

We present a version of standard UCB algorithm called Discounted UCB (D-UCB) and
Sliding-window UCB (SW-UCB). UCB algorithm is designed to work well in stationary en-
vironment which assume that the distribution of the rewards do not change over time. It is
suitable for our model to have some tool for non-stationary environment where the distribu-
tions of the rewards can change during the game. D-UCB and SW-UCB have a better ability
to adapt to such a changing environment. We describe the algorithms according to [16].

The non-stationary environment is defined by the rewards {Xt(i)}t≤0 for arm i at time step
t, these rewards are sequences of independent random variables from different distributions
which may vary during the time. These distributions are unknown to the player. We denote
µt(i) the expectation of the reward Xt(i) for arm i. In [16] they assume abruptly changing
environment which means that the distributions remain constant and at unknown time instant
the distributions change abruptly. We call these time instants breakpoints. We define a number
of these breakpoints by ΥT before time step T .

3.4.3.1 Discounted UCB algorithm

The main difference between the standard UCB and the discounted UCB (D-UCB) is that the
algorithm uses a discounted value of data from the previous rounds to calculate the estimated
average rewards. The discounted UCB relies on a discount factor γ ∈ (0, 1). At time step
t we get discounted value of rewards from the previous rounds with giving more weight to
more recent observations. D-UCB chooses a zone, which maximize the sum of exploitation
and exploration part. The exploitation part of the D-UCB formula is a discounted empirical
average

X̄t(γ, i) =
1

Nt(γ, i)

t∑
s=1

γt−sXs(i)1{Is=1} (3.10)

where

Nt(γ, i) =
t∑

s=1

γt−s1{Is=1} (3.11)

where Xs(i) is a reward in time step s of ith zone and the indicator function returns a
value of one if the chosen zone in the time step s is equal to ith zone, and zero otherwise.
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The exploration part of the formula which is called the discounted padding function is defined

ct(γ, i) = B

√
log nt(γ)

Nt(γ, i)
(3.12)

where

nt(γ) =

K∑
i=1

Nt(γ, i) (3.13)

B is a suitably chosen parameter according to the environment properties. Algorithm
chooses an action i which maximize the argument

a(t) = arg max
1≤i≤K

X̄t(γ, i) + ct(γ, i) (3.14)

3.4.3.2 Sliding-window UCB algorithm

The main difference from the standard UCB is that the sliding-window UCB (SW-UCB)
algorithm uses a fixed window of data from the previous rounds to calculate the estimated
average rewards. At time step t we get average of rewards not from the whole history but
only the τ previous rounds. SW-UCB chooses a zone, which maximize the sum of exploitation
and exploration part. The exploitation part of the UCB formula is a local average reward

X̄t(τ, i) =
1

Nt(τ, i)

t∑
s=t−τ+1

Xs(i)1{Is = i} (3.15)

where

Nt(γ, i) =
t∑

s=t−τ+1

1{Is=1} (3.16)

is the number of times playing arm i in τ previous rounds.
The exploration part (padding function) is defined as

ct(τ, i) = B

√
log (t ∧ τ)

Nt(τ, i)
(3.17)

where (t∧ τ) denotes the minimum of two arguments and τ is a constant. B is a constant,
which should be tuned appropriately to the environment. Algorithm chooses an action i which
maximize the argument

a(t) = arg max
1≤i≤K

X̄t(τ, i) + ct(τ, i) (3.18)

In [16] the authors show a proof for upper bounds on regrets for these two algorithms and
state that the algorithms’ upper bounds on regret are O(

√
T log (T )).
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3.4.4 Combinatorial EXP3 algorithm

We use algorithm COMB-EXP-1 presented in [11]. This algorithm is a combinatorial version
of EXP3 algorithm and is suitable for adversarial combinatorial bandit problem described in
Section 3.2.

COMB-EXP-1 algorithm

Initialization: Start with the distribution q0 = µ0 and set η =
√

2k log z
zT

for all n ≥ 1 do
1. Sample k actions from vector pn−1 = kqn−1.
2. Obtain the reward vector Xi(n) for all chosen actions i.

3. Compute the vector X̄i(n) = 1−Xi(n)
kqn−1(i) for all chosen actions i and assign 0 to all

other not chosen actions.
4. Update q̄n(i) = qn−1(i) exp (−ηX̄i(n)).
5. Compute qn to be a projection of q̄n onto the set P using KL divergence.

end
Algorithm 5: Combinatorial EXP3 learning algorithm

where µ0 is an uniform distribution vector over all actions (zones), k is the number of resources
the defender has, z is the number of actions (zones) and T is the total number of rounds of
the game. We describe a sampling method for step 1 in the next section. In Section 4.2.2
we propose a method for finding the projection for step 5 in Algorithm 5. Similarly to non-
combinatorial EXP3 algorithm described in Section 3.4.2, the COMB-EXP-1 algorithm tends
to be numerically unstable, which is caused by step 3, respectively step 4 in Algorithm 5. We
prevent this instability in our implementation by adding an uniform vector with very small
values (10−7) to the strategy vector q, which bounds the possible expected reward X̄.

The regret for COMB-EXP-1 is O(m
√
zT log (z/k)) proven in [11].

3.4.4.1 Combinatorial sampling

We have a vector p from which we want to sample k actions. The vector p sums up to k
and no its value is greater than 1. We use combinatorial sampling, which is described in [30]
which the authors call Comb Sampling. From vector p we create a new cumulative sum vector.
For each integer j ∈ (1, J), let Xj =

∑
i<j xi. Based on that we also define interval vector

Ij = [Xj , Xj +xj ], which form a disjoint cover of interval [0, k], because
∑

i xi = k. To sample
from vector p we pick a number y from interval [0, 1) uniformly at random. Now we select
indices of intervals which contain points y, y+ 1, ..., y+k−1. This procedure samples exactly
k actions.

3.5 Fictitious Play

Fictitious play is a well-known type of learning concept. It is based on beliefs about opponent’s
strategy. Having these beliefs the player makes rational decisions. The original model of
fictitious play assumes opponent with stationary mixed strategy so that the player can have
reliable beliefs about opponent’s strategy based on the empirical frequencies of the opponent’s
play. Fictitious play (game) was proven to converge to Nash equilibrium in zero-sum game
by Robinson (1951) [26]. For general-sum games Shapley showed [27] that fictitious play does
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not generally converge. We describe the concept according to Levin [15]. We show a simple
example of fictitious play.

We have two players i = 1, 2 who play the game G at times t = 0, 1, 2, .... We define ηti(a)
to be a number of times player i has observed action a in the past up to time t. We can
also assume η0

i (a) to be a fictitious past, which we obtain at the beginning of the game. We
consider an example of payoff matrix

L R
U 3,3 0,0
D 4,0 1,1

For the fictitious past we can have η0
1(U) = 3 and η0

1(D) = 5. So if the player 1 plays
U,U,D in the first three rounds, then we get η3

1(U) = 5 and η3
1(D) = 6. We define the

expected play by Bayesian updating so

µti(a) =
ηti(a)∑

a∈A
ηti(a)

(3.19)

This equation represents the i player’s estimate of opponent’s strategy at time t as the
empirical frequency distribution of past plays of each action a. Player i chooses an action to
maximize his payoff according to

ati = arg max
a∈Ai

gi(a, µ
t
i) (3.20)

where gi is the payoff matrix for the player i. So the player maximizes his payoff in each
round based on the beliefs about opponent’s strategy. In our example we get for player 1 and
action U

µ3
1(U) =

5

11
= 0.455

and for action D

µ3
1(D) =

6

11
= 0.545

so the attacker choses

a3
1 = arg max

a∈A1

{(3 ∗ 0.455), (4 ∗ 0.545 + 1 ∗ 0.545)} = arg max
a∈A1

{(1.365), (2.725)} = D (3.21)

So the player 1 plays action D based on the opponent previous plays. An interesting
feature of fictitious play is that the players do not have to know the opponent’s payoff matrix.
All the player’s beliefs come from what the opponent played so far.



Chapter 4

Game Strategies

In this section we describe the properties of our game model for further experiments. In
Section 2.4 there is a basic description of analyzed security game.

4.1 Player types

Our game model is a version of multi-armed bandit problem on the defender side and a version
of a fictitious play on side of the attacker. We assume several types of defender strategies,
which consist of online learning algorithms, game-theoretic strategies and combinations of
them. The goal of the proposed model is to reflect real-world applications to border patrol
and to show features of several different approaches with its drawbacks. We also point out
the limitations of our model and propose possible extensions of the model. We focus on a
repeated game model so we assume 1000 rounds, which can be imagined as 3 years of using
this game model in border patrolling where each round represents 1 day. We also investigate
some longer time periods to analyze the convergence behavior. We assume that all zones are
identical for the defender and he gets payoff 1 if we apprehend the attacker and 0 otherwise.

4.1.1 Defender types

In our model we use these types of defenders:

• UCB algorithm

The defender uses UCB algorithm strategy to decide which zone to observe. This is a
deterministic algorithm and is more described in Section 3.4.

• EXP3 algorithm

The defender uses EXP3 algorithm, which is suitable against adversarial opponents.
This algorithm is stochastic using mixed probability strategy vector. This algorithm is
described in 3.4.

• D-UCB algorithm

D-UCB algorithm is a version of UCB algorithm more suitable for non-stationary envi-
ronments. It discounts the history of past rewards for computing the expected reward
for each zone.

25
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• SW-UCB algorithm

The defender uses for his strategy SW-UCB algorithm, which uses a sliding window of
history of past rewards. This strategy is suitable for non-stationary environments.

• Stackelberg equilibrium strategy

This strategy comes from Stackelberg Security Game model. It assumes that the de-
fender knows the exact attacker payoff matrix and therefore can compute the SSE. This
strategy is the optimal stable strategy.

• Stackelberg equilibrium with an error strategy

This strategy assumes more realistic case where the defender does not know the exact
attacker payoff matrix but at least knows an estimate of it. We assume that the defender
estimate of the attacker strategy has an error. Based on this imprecise information the
defender computes the SSE strategy. This strategy approach is further described in
Section 4.3.2.

• Combined algorithms

We propose 4 combined algorithms of learning algorithm EXP3 and game-theoretic
solution SSE. We describe COMB1, COMB2, COMB3 and COMB4 further in the text
in Section 4.4.

• Combinatorial EXP3

We use combinatorial version of EXP3 described in Section 3.4.4. For COMB algorithms
we use this combinatorial EXP3 and SSE strategy vector.

4.1.2 Attacker types

In our model we have several attacker types which differ in how adversary, realistic, adapting
they are.

• Random fixed attacker

Random attacker’s mixed strategy is a fixed probability distribution over all pure strate-
gies and over all the rounds of the game. This attacker is very simplistic and easily
exploitable. In reality this attacker corresponds to an attacker who does not remember
any past history and thus is oblivious. It can also represent a group of attackers who do
not cooperate. The probability distribution represents some explicit conditions of the
actions. That is why some actions are more favorable than the others.

• Random fixed with changes attacker

This attacker strategy is similar as the previous one but the strategy vector randomly
changes every given period. If we assume 1000 rounds per game we set changes every
200 rounds. So after 200 rounds the probability distribution vector changes randomly
and stays fixed.

• Adversarial attacker

Adversarial attacker is based on a version of a fictitious play described in Section 3.5.
Fictitious play is one of the basic learning rules and is very realistic in security domain.
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It is a belief-based system, which means that the player forms beliefs about opponent
strategy and behave rationally with respect to these beliefs. The adversarial attacker
converges to Nash equilibrium under specific circumstances as described in Section 3.5.
We describe our model as a Stackelberg game model so we break ties in favor to the
defender as described in Section 2.3. The ties are quite rare since the attacker only
observes the patrol history and the estimates are not exact. The attacker has a zone
preference vector vΨ

i , which describes how likely it is for the attacker to cross the
particular zone i. This vector can represent some explicit conditions in terrain how
easy/difficult is to cross a zone. The attacker uses a fixed penalty of being caught PΨ

which is 0.5 and computes his reward for a zone i according to

xΨ
i = (vΨ

i − PΨ ∗ cΨ
i ) (4.1)

where cΨ
i is the probability of being caught for the attacker computed from patrol his-

tory, which is the estimation of defender strategy. So the attacker chooses action (zone)
i such that

arg max
i

xΨ
i (4.2)

The attacker strategy is well showed on example in Section 2.4. This strategy is deter-
ministic because the attacker always chooses the best response from his strategy vector
xΨ
i .

• Adversarial with changes attacker

This strategy is very similar to the one before but the attacker zone preference vector
vΨ
i changes every given period. For a game with 1000 rounds we change the vector

every 200 rounds. This attacker strategy is not much realistic, because the attacker
zone preferences do not change abruptly in real world, but it is a good tool for testing
the defender algorithms stability against varying opponents.

• Nash equilibrium attacker

Nash attacker plays the Nash equilibrium. He has an exact knowledge about the de-
fender’s payoff. The attacker uses a mixed strategy Nash equilibrium vector.

4.2 Learning Algorithms Properties

4.2.1 UCB synchronization

We observe a strange behavior of UCB algorithm against the adversarial attacker. The total
apprehension rate is higher than by playing Strong Stackelberg Equilibrium (SSE) strategy
as shown in Figure 5.2a. This is caused by a deterministic nature of both strategies. The
UCB algorithm is able to exploit the attacker and play very efficiently.

In the Table 4.2 there is an example of 10 rounds of a simple two-player game. This simple
game differs to our game model used in this thesis only by number of zones. We can see how
the defender and the attacker strategy develop. The players always choose a maximum of the
expected reward out of those two zones. The maximum is written in bold, which represents
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the chosen zone. Both players use vectors of mean reward and patrol history. In the first
column there is a number of the round; if written in bold there was an apprehension of the
attacker (the defender chose the same zone as the attacker).

Game model:
number of zones n = 2
number of rounds T = 100
zone preference for the attacker vΨ = [0.51, 0.49]
penalty for the attacker when being caught PΨ = 0.5
SSE strategy for the defender δΘ = [0.52, 0.48]
expected payoff playing SSE strategy is 52
payoff playing UCB strategy is 74

1 2
1 1,0.01 0,0.49
2 0,0.51 1,-0.01

Table 4.1: Payoff matrix of UCB synchronization game model

aΘ
t = arg max

i
x̄i +

√
2 lnn

ni
(4.3)

The defender plays UCB strategy (Equation 4.3), where xi is the mean reward for zone
i, n is the total number of rounds and ni is the number of rounds when the defender played
zone i. UCB algorithm is described in Section 3.4.

For the attacker we use the adversarial attacker strategy described in Section 4.1.2. Patrol
history is a number of observations of a zone by the defender until the current round.

patrol hi mean reward xi defender strat aΘ
t attacker strat aΨ

t

t 1 2 1 2 1 2 1 2

30 16 14 0.875 0.857 1.6582 1.6944 0.243 0.257
31 16 15 0.875 0.867 1.6619 1.6794 0.252 0.248
32 16 16 0.875 0.813 1.6656 1.6031 0.260 0.240
33 17 16 0.882 0.813 1.6527 1.6066 0.252 0.248
34 18 16 0.889 0.813 1.6407 1.6100 0.245 0.255
35 19 16 0.842 0.813 1.5769 1.6132 0.239 0.261
36 19 17 0.842 0.824 1.5798 1.6034 0.246 0.254
37 19 18 0.842 0.833 1.5826 1.5941 0.253 0.247
38 19 19 0.842 0.789 1.5854 1.5327 0.260 0.240
39 20 19 0.850 0.789 1.5770 1.5354 0.254 0.246
40 21 19 0.857 0.789 1.5691 1.5379 0.248 0.253

Table 4.2: Game example of UCB synchronization

In Table 4.2 we can see a part of the game, which helps to understand the UCB syn-
chronization with the adversarial attacker. We can observe 10 rounds of the game; rounds
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30−40. In the table there is the patrol history, mean rewards for both zones and the strategy
vectors of both players from which the players choose the zone which gives the maximum
of argument. Values of these vectors in bold are the chosen zones by the players. Numbers
of rounds in bold are those rounds where the defender chose the same zone as the attacker,
therefore the defender apprehended the attacker.

round
20 25 30 35 40 45 50 55 60 65 70

z
o

n
e

0

0.5

1

1.5

2

2.5

3
Choice of zone for each player

defender choice
attacker choice

Figure 4.1: Chosen zones for the players in UCB synchronization

In Figure 4.1 we can see small example of such synchronization, there are zones chosen by
each of the players. If both symbols are at the same zone then the attacker was apprehended
by the defender.

We stated that expected payoff for playing Stackelberg equilibrium is 52 for the described
game and playing the UCB learning algorithm we get payoff equals to 74. By comparing
these two strategies we can conclude that the attacker is exploited by the defender. This is
caused by the deterministic nature of both algorithms and their ability to learn the opponent
strategy. The exploitation is not a desirable property in the security model, because such
behavior would probably lead to one player changing the strategy. In this case the attacker
would most probably change his strategy, because he would get caught in 74 cases out of 100
tries of crossing the border. Therefore in our model we will focus on algorithms with some
randomness (stochastic algorithms).

4.2.2 Combinatorial EXP3 implementation

4.2.2.1 Projection heuristic

The implementation of the COMB-EXP-1 algorithm is straightforward apart from the I-
projection using KL-divergence. As stated in paper [11] the I-projection is defined as such
a distribution p∗ onto a closed convex set Ξ of distributions, which has the minimal KL-
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divergence from vector q.

KL(p∗, q) = min
p∈Ξ

KL(p, q) (4.4)

where KL-divergence is defined

KL(q, p) =
∑
i∈[d]

q(i) log
q(i)

p(i)
(4.5)

So the sought distribution p∗ must be a probability distribution vector, thus it sums up
to 1. Furthermore to guarantee that the step 1 in Algorithm 5 in Section 3.4.4 for computing
the distribution p has always a solution the sought projection distribution p∗ must hold the
property that no value in the vector is greater than 1/k where k is the number of resources
we have. There is no known general algorithm to us for computing such projection and it is
believed to be a hard open problem [10]. Thus, we propose a heuristic algorithm and show
that it is good enough by comparing it to other methods.

In our heuristic we decrease all values greater than 1/k to 1/k and normalize all other
values in the vector to (1−a/k), where a is the number of values in the original vector greater
than 1/k. We show an example of performed experiments of testing our heuristic H1 where
there is a vector with one value greater than maximal possible value:

• q = [0.6, 0.3, 0.05], k = 2

• we firstly normalize the vector so q
′

= [0.6316, 0.3158, 0.0526]

• we decrease the values which are greater than k/2 = 0.5

• q̄ = [0.5, 0.3158, 0.0526]

• and normalize other values to 1 − a/k = 0.5 because we have only one value greater
than 1/k, thus a = 1.

• we get the projection p = [0.5,0.4286, 0.0714]

• KL-divergence for p and q is KL(p, q) = 0.0359

we can compare this heuristic to another heuristic H2 where we redistribute the difference
value from value in a vector greater than 1/k among other values, such as

• q = [0.6, 0.3, 0.05], k = 2

• we firstly normalize the vector so q
′

= [0.6316, 0.3158, 0.0526]

• we decrease the values which are greater than k/2 = 0.5

• q̄ = [0.5, 0.3158, 0.0526] and we get the difference value x = q
′
(1)− q̄(1) = 0.1316

• now we add the difference value equally to all other values in the vector

• we add x/2 = 0.0658 to the second and the third value so we get the projection vector
p̄ = [0.5,0.3816, 0.1184]

• KL-divergence for p and q is KL(p, q) = 0.0514
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We can see that the proposed heuristic algorithm H1 gives us lower KL-divergence, thus
is better. We also show KL-divergence values for modified projection vector:

• initial vector q = [0.6, 0.3, 0.05] and k = 2

• H1 heuristic give projection p = [0.5, 0.4286, 0.0714] with KL(p, q) = 0.0359

• we shift the values in the vector to multiple directions by some constant ξ = 0.01 to see
how the KL-divergence changes

• 1. p2 = [0.5, 0.4186, 0.0814] we get KL(p2, q) = 0.0367

• 2. p3 = [0.5, 0.4386, 0.0614] we get KL(p3, q) = 0.0367

• 3. p4 = [0.49, 0.4336, 0.0764] we get KL(p4, q) = 0.0416

We showed an example of our heuristic and the comparison to other methods. We test the
heuristic in such manner on large number of experiments. We generate a random vector of size
8, which is the basic number of zones used in our game model and compare the heuristic H1

and H2. In 10000 experiments with randomly generated vectors and with different number of
resources k there is H1 heuristic always better than H2. Then we run experiments with shifted
values to different directions. In 10000 experiments for randomly generated vectors of size
8 and different numbers of resources and different values of decrease/increase constant ξ in
range [0.01, 0.00001] we get in less than 1% of the cases better result for this shifting method
than for using H1 heuristic. Comparing different approaches to compute the projection using
KL-divergence we can see that our heuristic H1 gives us mostly the lowest value of KL-
divergence and therefore we can state that the proposed heuristic is reasonably good and we
can use it for our experiments.

4.3 Game-theoretic Strategies

In our game model we analyze game-theoretic solution. Since our game is a version of Stack-
elberg security game we focus on Stackelberg equilibrium (SE) mixed strategy. To be able to
find the exact game equilibrium for the defender, he needs to know the exact attacker payoff.
This is very problematic in real applications because the defender might know an estimate of
attacker payoffs but usually not the exact values.

4.3.1 Stackelberg equilibrium strategy

We assume that the defender knows the exact attacker payoff matrix and therefore the de-
fender is able to compute precise Stackelberg equilibrium. We compare our proposed algo-
rithms to SE strategy, because it is the optimal strategy.

4.3.2 Estimated Stackelberg equilibrium strategy

In real applications we can assume that the defender does not have the exact attacker payoff,
thus the defender is not able to compute the exact Stackelberg equilibrium strategy. We
analyze the impact of error in attacker payoff estimate on the performance of defender playing
the estimated SSE in Section 5.2.1. We assume a random error ε in each value of attacker zone
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preference vector (described in Section 2.4). The added error to each value can be positive
or negative, so we add a random number from range of size ε with mean value 0. We use this
estimated vector to compute the Stackelberg equilibrium.

4.3.3 Motivating Stackelberg equilibrium strategy

Our model is a version of Stackelberg security game as described in Section 2.3. However
in our model the follower(attacker) does not know the exact leader(defender) strategy, the
attacker has only an estimate of this strategy which is by its nature imprecise. The attacker
computes this estimate from patrol history, which is the number of defender patrols in each
zone. So when the attacker chooses a zone to attack (best-response action), which has the
highest expected payoff, he does the decision based on this imprecise estimate of the defender
strategy. Due to this fact the attacker does not always play the optimal strategy for him,
therefore the defender does not get the expected payoff for Stackelberg game in case of playing
the Stackelberg equilibrium. We introduce a simple modification to the defender Stackelberg
equilibrium strategy, which motivates the attacker to play the desired action in spite of having
imprecise defender strategy. To increase the total payoff and get closer value to the expected
SE payoff we present a method to motivate the attacker to choose the zone we want him
to choose. We decrease the highest value in SSE strategy vector by a constant value and
normalize the probability vector. This change in the strategy vector motivates the attacker
to choose more likely the particular zone, which he would normally choose in Stackelberg
game playing strong Stackelberg equilibrium where the attacker breaks ties in favor to the
defender. We perform several experiments to test this concept in Section 5.2.2.

4.4 Combined Algorithms

In this section we propose 4 combined algorithms, which use EXP3 online learning algorithm
and game-theoretic solution. We present COMB1, COMB2, COMB3 and COMB4 algorithm.

4.4.1 Combination algorithm 1

In Section 3.4.2 we described the EXP3 algorithm. It computes the expected reward for each
zone. In that section in Equation 3.5 we can see that EXP3 computes the expected payoff
for each action (zone) by difference of sums of past payoffs divided by probability of playing
this action in that past round. We can initialize EXP3 algorithm by adding values to this
expected payoff vector. If we assume that optimally the attacker strategy converges to Nash
equilibrium, we can initialize defender EXP3 algorithm by the attacker Nash equilibrium. We
compute the Nash equilibrium for both players using the payoff matrix. We assume that the
equilibrium is not precise since the attacker payoff is estimated with an error. Then we use
the attacker Nash equilibrium for the EXP3 learning algorithm initialization. This vector
estimates the expected payoff for each zone. We use a parameter τ which represents how
certain we are of the estimated zone preference vector, thus it means how precise is the Nash
equilibrium; the more certain we are the higher τ parameter will be. One can think of τ as a
number of virtual rounds we played before start of the game. So we compute the initialization
vector

ri = Ni ∗ τ (4.6)



4.4. COMBINED ALGORITHMS 33

where Ni is the Nash equilibrium for zone i. Then we run the standard EXP3 learning
algorithm with this r initialization vector.

4.4.2 Combination algorithm 2

We compute the Nash equilibrium based on estimated attacker’s zone preference. The idea
for the defender is to play its Nash equilibrium strategy with an extra exploration 10% first T
rounds and then to play EXP3 learning algorithm, which uses the information about expected
payoffs for each zone gathered from the previous rounds. For finding the point where to switch
from first stage to the second we compute EXP3 payoff virtually during the play of estimated
Nash equilibria. Virtual EXP3 payoff is computed so that it gives higher payoff for a strategy
with higher probability of visiting a particular zone. So if the probability of EXP3 of visiting
a particular zone with positive payoff is higher than probability in Nash equilibrium vector,
we get relatively higher payoff for EXP3 than for NE strategy. In this manner we prioritize
a strategy, which gives us higher payoff. If the defender is in the same zone as the attacker,
the defender gets payoff 1 and virtual EXP3 payoff is

pdEXP3(t) =
eti
nti
∗ 1 (4.7)

or if the defender is not in the same zone as the attacker; the defender gets payoff 0 and
virtual EXP3 payoff is

pdEXP3(t) =
eti
nti
∗ 0 (4.8)

where eti is the probability of playing zone i in round t playing EXP3 and nti is the
probability of playing zone i in round t by the estimated Nash equilibrium strategy.

We compute the total payoff for both strategies concepts as the sum over all the rounds
played so far. The algorithm switches to EXP3 learning algorithm if

PEXP3 > PNE (4.9)

where PEXP3 is the total payoff of virtually playing EXP3 learning algorithm. And PNE
is the total payoff (number of apprehensions) of playing estimated Nash equilibrium with an
exploration rate 10%.

Once we switch to EXP3 algorithm, it uses the information about rewards from previous
rounds. We focus on this basic setting but there can be used a stabilization parameter ζ
which filter some early behavior and thus we can assume the strategy switching when

PEXP3 − ζ > PNE (4.10)

4.4.3 Combination algorithm 3

We propose a similar concept as in the previous combined algorithm but now we switch
between two strategies according to the highest total payoff. For the strategy we are playing
we store the total actual payoff and for the other strategy we compute the payoff as we
virtually play it. So analogically for virtually playing NE strategy we get payoff

pdNE(t) =
nti
eti
∗ 1 (4.11)
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or if there is no apprehension

pdNE(t) =
nti
eti
∗ 0 (4.12)

So we play the estimated Nash equilibria with exploration if

PEXP3 < PNE (4.13)

or we play the EXP3 if
PEXP3 > PNE (4.14)

The EXP3 algorithm uses the expected payoff vector from all previously played rounds
including those rounds when the defender played the NE strategy with exploration.

4.4.4 Combination algorithm 4

The defender has several estimated Nash equilibria strategy vectors computed from the at-
tacker zone preference vector with a random error of constant size ε as described in Sec-
tion 4.3.2. We start playing with one of the strategy and parallelly compute the expected
payoffs for other estimated Nash strategies and for EXP3 learning algorithm. We switch
between these strategies according to the highest payoff. In our model we did experiments
with 3 estimated Nash equilibria (NE). These NE strategies are called experts. So we use an
expert strategy model.

4.5 Combinatorial Combined Algorithms

We use Stackelberg equilibrium for multiple resources and combinatorial EXP3 learning al-
gorithm. The combinatorial COMB algorithms are analogical to COMB algorithms for the
standard non-combinatorial case, however there are some modifications needed as described
in the following sections.

4.5.1 Combinatorial COMB1

In combinatorial COMB1 algorithm we use the estimated Stackelberg equilibrium (SE) strat-
egy to initialize EXP3 algorithm. At the beginning of the game we set the defender strategy
as stated in the following equation and normalize the vector.

aΘ
1 = τ ∗ SE + (1− τ) ∗ U (4.15)

where τ is the parameter which sets how confident we are about the Stackelberg equilib-
rium strategy. The basic setting is τ = 0.9. SE is the Stackelberg equilibrium strategy vector
and U is the uniform probability vector. From the Section 3.4.4, where there is combina-
torial EXP3 description, we can see that mean reward vector X is computed only from the
previous-round strategy vector. Therefore we can initialize EXP3 algorithm at the beginning
by SE strategy and the uniform probability vector. As we can see in the combinatorial EXP3
algorithm description, the initial state of the algorithm is the uniform vector. So by setting
τ = 0 we do not initialize EXP3 algorithm at all and play the standard combinatorial on-
line learning algorithm. After initializing the online learning algorithm we continue playing
standard combinatorial EXP3.
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4.5.2 Combinatorial COMB2

Combinatorial COMB2 algorithm is analogical to standard COMB2 algorithm. We use the
estimated Stackelberg equilibrium strategy for multiple resources with 10% extra exploration
and combinatorial EXP3 algorithm. We start with SE strategy and compute virtually ex-
pected payoff for playing EXP3. Once the virtual EXP3 payoff becomes greater than actual
payoff by playing SE with extra exploration we switch to EXP3 algorithm using SE strategy
vector as the initialization for the combinatorial EXP3.

4.5.3 Combinatorial COMB3

Analogically to non-combinatorial COMB algorithms, combinatorial COMB3 algorithm is a
generalization of previous combinatorial COMB2 algorithm. In this COMB3 algorithm we
enable the switching between the two strategies arbitrary according to the highest payoff. We
compute the virtual SE strategy payoff while playing EXP3 algorithm and vice versa.

4.5.4 Combinatorial COMB4

For this combined algorithm we have several estimated Stackelberg equilibria strategy com-
puted from the zone preference vector with different random errors of constant size ε. In our
experiments we work with 3 SE strategies or in other words with 3 experts. Combinatorial
COMB4 is analogical to standard COMB4.
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Chapter 5

Experiments

In this section we do several experiments to show behavior and performance of the learning
algorithms. We also focus on game-theoretic strategies and analyze their usability in our
model. We test the proposed combined algorithms of the two approaches. At the end we
investigate the combinatorial case and do several experiments to describe the behavior of
the model. Each experiment with particular setting is run multiple times to get statistically
stable result, each time with newly randomly generated vectors for the selected attacker
type. So against the random fixed attacker in each experiment there is a new random vector
and against the adversarial attacker there is a new random zone preference vector for each
experiment. Each game in our game model has 1000 rounds. We compare the algorithms by
apprehension rates, which is a percentage of apprehended attackers out of all attackers who
tried to cross the border. The figures visualize the apprehension rate by cumulative averages
from the beginning. So the actual cumulative performance in every round is its derivation.
In Figures 5.6 there are examples of moving-averages visualization, where one can get better
understanding of the graph representation. For each experiment we provide width of a 95%
confidence interval, one can see such interval visualized in Figure 5.5b.

5.1 Experiments with Learning Algorithms

We analyze performance of the learning algorithms proposed in Section 3.4. We begin with
parameter tuning. We show several experiments to find the optimal values of the parame-
ters for our game model. We also observe convergence behavior and comparison among the
proposed learning algorithms. We run every experiment 1000 times to get statistically rele-
vant results and we provide 95% confidence intervals. For the parameter tuning we assume 1
attacker tries to cross the border in each round. Our game model is described in Section 2.4.

5.1.1 Parameter tuning

Learning algorithms have parameters, which determine the algorithm performance. These
parameters are either dependent on other features of the game model setting or they can
be constants. As we described in Section 3.4 on learning algorithms, there are usually some
parameters, which can be tuned to adapt the learning algorithm to the game model. In this
section we do several experiments to tune the algorithms to perform as good as possible in
our proposed game model. By tuning the parameters we also show the features and behavior

37
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of the proposed algorithms so that one can better understand them.

5.1.1.1 EXP3 exploration versus exploitation trade-off

In Section 3.4.2 we can see that algorithm EXP3 has the exploration parameter γ. Widely
used general setting for this parameter γ is 0.1, which means 10% of exploration. We make
several experiments to find the best γ ∈ (0, 1) setting for our model.

EXP3 random random with changes

γ value mean confidence mean confidence

0 12.52% ± 0.06% 12.50% ± 0.06%
0.1 15.29% ± 0.14% 13.00% ± 0.07%
0.2 16.43% ± 0.17% 13.48% ± 0.09%
0.3 16.78% ± 0.18% 13.70% ± 0.09%
0.4 16.73% ± 0.17% 13.73% ± 0.09%
0.5 16.06% ± 0.15% 13.68% ± 0.08%
0.6 15.54% ± 0.12% 13.49% ± 0.08%
0.7 14.78% ± 0.10% 13.30% ± 0.08%
0.8 14.07% ± 0.09% 13.06% ± 0.07%
0.9 13.30% ± 0.07% 12.74% ± 0.07%
1 12.52% ± 0.07% 12.51% ± 0.06%

Table 5.1: Tuning parameter γ of EXP3 algorithm against random attacker

EXP3 adversarial adversarial with changes

γ value mean confidence mean confidence

0 12.51% ± 0.06% 12.43% ± 0.07%
0.1 19.92% ± 0.28% 16.97% ± 0.17%
0.2 19.81% ± 0.28% 18.56% ± 0.22%
0.3 19.75% ± 0.28% 19.08% ± 0.23%
0.4 19.97% ± 0.28% 18.74% ± 0.21%
0.5 19.85% ± 0.28% 18.12% ± 0.19%
0.6 19.63% ± 0.27% 17.57% ± 0.17%
0.7 19.42% ± 0.24% 16.42% ± 0.14%
0.8 18.60% ± 0.21% 15.47% ± 0.11%
0.9 17.18% ± 0.14% 14.29% ± 0.09%
1 12.47% ± 0.06% 12.47% ± 0.06%

Table 5.2: Tuning parameter γ of EXP3 algorithm against adversarial attacker

In Table 5.1 we can see apprehension rates for different values of parameter γ. In the
columns we have random fixed attacker types as described in Section 4.1.2. Random fixed
attacker with changes modifies randomly his mixed strategy every 200 rounds. In bold there
are the highest apprehension rates for each attacker. There is also the 95% confidence interval
provided. We can see that for γ ∈ (0.3, 0.4) we get the highest apprehension rate against the
random fixed attacker with respect to the confidence interval. Against the random fixed
attacker with changes we get the best performance for γ ∈ (0.3, 0.5). The uniform defender
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strategy gives apprehension rate 12.5% because we choose 1 zone out of 8 zones so 1/8 = 0.125.
One can observe that for γ = 0 or γ = 1 the performance is the same as playing the uniform
strategy. For γ = 1 we only explore the zone space so in every round we play uniform strategy.
As stated and described in Section 3.4.2 we use in algorithm EXP3 parameter η = γ

K , where
K is the number of zones. For γ = 0 we get η = 0 and therefore we also play only uniform
strategy in every round. This comes from the nature of the algorithm and it holds against
multiple attacker types.

In Table 5.2 we tuned the parameter γ against the adversarial attacker types described in
Section 4.1.2. We can state that for γ ∈ (0.1, 0.6) we get the highest apprehension rate in 95%
confidence interval. Against the adversarial attacker with changes the highest apprehension
rates are for γ ∈ (0.3, 0.4). We can also see that for γ = 0 or γ = 1 we get the results as
playing uniform strategy over all the zones.

In our model we mainly focus on the case against the adversarial attacker so we use γ = 0.2
for further experiments, which gives one of the highest apprehension rates with respect to the
confidence bound against adversarial attacker.

5.1.1.2 Discounted UCB parameters

For discounted UCB (D-UCB) we tune two parameters. Firstly the parameter B, which
controls the exploration part of the algorithm and secondly the discount factor γ as described
in Section 3.4. For parameter B tuning we set the discount factor γ = 0.8.

D-UCB, γ = 0.8 random random with changes

B value mean confidence mean confidence

0 13.48% ± 0.45% 12.66% ±0.21%
0.01 15.82% ±0.15% 15.61% ±0.10%
0.03 14.77% ±0.12% 14.78% ±0.09%
0.05 14.40% ±0.11% 14.35% ±0.08%
0.07 14.04% ±0.10% 14.10% ±0.08%
0.1 13.85% ±0.09% 13.80% ±0.07%
0.2 13.41% ±0.08% 13.36% ±0.07%
0.3 13.10% ±0.07% 13.07% ±0.07%
0.5 12.89% ±0.07% 12.90% ±0.07%

Table 5.3: Tuning parameter B of D-UCB algorithm against random attacker

In Table 5.3 we tune the parameter B against the random fixed attacker types. The best
performance is for B = 0.01 with respect to the confidence intervals. We are better off with
lower levels of exploration because the defender plays against attacker who plays a static
mixed strategy without any learning, so the defender does not need to explore much.
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D-UCB, γ = 0.8 adversarial adversarial with changes

B value mean confidence mean confidence

0 0.21% ±0.01% 0.33% ±0.06%
0.01 26.57% ±0.28% 42.96% ±0.32%
0.03 27.97% ±0.26% 42.51% ±0.29%
0.05 28.90% ±0.23% 42.33% ±0.28%
0.07 29.69% ±0.23% 41.83% ±0.26%
0.1 30.50% ±0.20% 40.74% ±0.22%
0.2 32.42% ±0.17% 38.77% ±0.14%
0.3 31.28% ±0.17% 34.54% ±0.08%
0.5 31.83% ±0.27% 27.81% ±0.09%

Table 5.4: Tuning parameter B of D-UCB algorithm against adversarial attacker

In Table 5.4 there is the parameter tuning against adversarial attacker types. We can
observe that for B = 0 the attacker exploits the defender and almost avoid being caught. This
is caused by zero exploration, thus the defender has no way how to learn about the busier
zones. Against the attacker with fixed zone preference vector we get the best performance
for B = 0.2 and against the attacker with changes in his zone preference vector the highest
apprehension rate is for B ∈ (0.01, 0.03). One can see that against adversarial attacker one
is better off with more exploration, which is caused by the attacker learning process. The
defender with more exploration confuses the attacker more and thus it is harder for the
attacker to learn the defender strategy, therefore the defender gets high apprehension rate.
However against the adversarial attacker with changes we are better off with less exploration.
The defender adapts his strategy to these changes in attacker strategy and makes the attacker
difficult to learn the defender strategy even with low exploration. Higher exploration makes
the defender to learn poorly the attacker strategy and therefore the defender gets lower
apprehension rate.

D-UCB, B = 0.3 random random with changes

γ value mean confidence mean confidence

0 12.83% ±0.44% 12.74% ±0.21%
0.1 12.53% ±0.06% 12.49% ±0.06%
0.2 12.52% ±0.06% 12.54% ±0.06%
0.3 12.53% ±0.06% 12.49% ±0.06%
0.4 12.47% ±0.07% 12.52% ±0.06%
0.5 12.57% ±0.06% 12.56% ±0.06%
0.6 12.59% ±0.07% 12.62% ±0.06%
0.7 12.80% ±0.07% 12.84% ±0.07%
0.8 13.04% ±0.08% 13.14% ±0.07%
0.9 13.73% ±0.27% 13.66% ±0.13%
1 19.70% ±0.07% 17.46% ±0.06%

Table 5.5: Tuning parameter γ of D-UCB algorithm against random attacker

We tune the parameter γ in Table 5.5 for B = 0.3. We can see that for discount factor
γ = 1 there are the highest apprehension rates against random attackers. This means the
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D-UCB algorithm is not suitable against random attackers, which support the fact that D-
UCB is recommended for non-stationary environments. For γ = 1 there is no discount of the
past rewards for computing the expected reward for each action (zone) so it boils down to
the standard UCB with some multiplication constant B.

D-UCB, B = 0.3 adversarial adversarial with changes

γ value mean confidence mean confidence

0 0.21% ±0.01% 0.21% ±0.01%
0.1 13.08% ±0.09% 13.05% ±0.06%
0.2 13.06% ±0.09% 13.05% ±0.05%
0.3 13.05% ±0.09% 13.07% ±0.06%
0.4 13.08% ±0.09% 13.03% ±0.05%
0.5 16.93% ±0.28% 15.36% ±0.08%
0.6 22.26% ±0.39% 18.73% ±0.11%
0.7 30.71% ±0.35% 25.71% ±0.12%
0.8 31.31% ±0.17% 34.50% ±0.09%
0.9 32.08% ±0.22% 41.90% ±0.22%
1 23.85% ±0.25% 30.15% ±0.25%

Table 5.6: Tuning parameter γ of D-UCB algorithm against adversarial attacker

Against the adversarial attacker types we are better off with the discount factor γ = 0.9
against both adversarial attacker types. We can also notice that for γ = 0 the defender
does not apprehend almost any attacker; this is caused by the nature of the algorithm where
we compute neither the mean reward nor the exploration. For γ = 1 there is a drop in
performance so the discounting of past rewards helps the performance. We can also observe
that the defender gets higher apprehension rate against the attacker with changes, which is not
intuitive. This is caused by the fact that the attacker does not have time to learn effectively
the defender strategy because the defender strategy adapts to the changes in attacker strategy
faster.

The advantage of D-UCB appears against more intelligent attackers who can adapt their
strategies as we can see from the experiments above. For γ = 1 D-UCB boils down to standard
UCB multiplied by parameter B. For standard UCB holds B =

√
2.

5.1.1.3 Sliding-window UCB parameters

We tune two parameters for the Sliding-window UCB (SW-UCB). Firstly the parameter B
which controls the exploration part of the algorithm and secondly the size of the sliding
window τ as described in Section 3.4. For parameter B tuning we set τ = 300.
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SW-UCB, τ = 300 random random with changes

B value mean confidence mean confidence

0 13.69% ±0.45% 12.72% ±0.21%
0.1 20.30% ±0.28% 16.63% ±0.13%
0.3 18.04% ±0.23% 17.22% ±0.13%
0.5 16.42% ±0.20% 16.21% ±0.11%
0.7 15.58% ±0.16% 15.38% ±0.10%
1 14.63% ±0.12% 14.61% ±0.09%
2 13.58% ±0.08% 13.54% ±0.07%
5 12.87% ±0.07% 12.98% ±0.07%
10 12.65% ±0.06% 12.71% ±0.07%

Table 5.7: Tuning parameter B of SW-UCB algorithm against random attacker

In Table 5.7 we tune the parameter against the random fixed attacker types. Against
the random fixed attacker we get the best result for B = 0.1 and against the attacker with
changes for B = 0.3. We can see that the defender is better off for lower exploration levels
due to the fact that the attacker plays a static mixed strategy and does not learn and thus
the defender does not need to explore that much and rather exploit the best zones.

SW-UCB, τ = 300 adversarial adversarial with changes

B value mean confidence mean confidence

0 0.21% ±0.01% 0.22% ±0.02%
0.1 14.21% ±0.28% 16.70% ±0.32%
0.3 21.94% ±0.25% 33.15% ±0.38%
0.5 25.33% ±0.26% 39.90% ±0.40%
0.7 27.13% ±0.27% 42.33% ±0.38%
1 28.77% ±0.26% 43.60% ±0.36%
2 31.02% ±0.22% 41.77% ±0.27%
5 28.01% ±0.13% 28.29% ±0.09%
10 21.89% ±0.23% 20.09% ±0.10%

Table 5.8: Tuning parameter B of SW-UCB algorithm against adversarial attacker

Experiments with the parameter tuning against the adversarial attacker types are in Ta-
ble 5.8. Against the adversarial attacker we get the highest apprehension rate for B = 2
and against the attacker with changes for B = 1. So one can conclude that one needs to
explore more against more intelligent adversarial attackers who can learn the defender strat-
egy. We can also observe that the defender gets higher apprehension rate against the attacker
with changes than against the attacker without changes, this behavior is explained above for
Table 5.6.



5.1. EXPERIMENTS WITH LEARNING ALGORITHMS 43

SW-UCB, B = 1 random random with changes

τ value mean confidence mean confidence

50 13.47% ±0.08% 13.41% ±0.07%
70 13.61% ±0.08% 13.57% ±0.07%
100 13.80% ±0.08% 13.73% ±0.07%
200 14.34% ±0.10% 14.30% ±0.08%
300 14.64% ±0.12% 14.59% ±0.09%
400 14.90% ±0.13% 14.88% ±0.09%
500 15.17% ±0.13% 15.06% ±0.10%
600 15.17% ±0.13% 15.08% ±0.10%
700 15.37% ±0.15% 15.14% ±0.11%
1000 16.15% ±0.18% 15.33% ±0.11%

Table 5.9: Tuning parameter τ of SW-UCB algorithm against random attacker

We observe the algorithm behavior for different values of the sliding window τ in Table 5.9.
Against the random attacker types the best performance is for τ equals to the number of
rounds played, which is basically the standard UCB multiplied by a constant B. For the case
with changes τ ∈ (700, 1000) gives the highest apprehension rates. This supports the idea
beyond SW-UCB algorithm that it is designed for non-stationary environments and thus does
not perform that well against stationary attackers who cannot learn the defender strategy.

SW-UCB, B = 1 adversarial adversarial with changes

τ value mean confidence mean confidence

50 25.06% ±0.23% 35.69% ±0.26%
70 25.35% ±0.25% 37.35% ±0.27%
100 25.82% ±0.26% 39.75% ±0.31%
200 27.95% ±0.26% 42.97% ±0.34%
300 28.72% ±0.26% 43.89% ±0.37%
400 29.43% ±0.27% 43.51% ±0.35%
500 30.00% ±0.27% 43.74% ±0.36%
600 30.12% ±0.28% 43.74% ±0.35%
700 30.25% ±0.27% 43.31% ±0.35%
1000 31.07% ±0.27% 43.57% ±0.32%

Table 5.10: Tuning parameter τ of SW-UCB algorithm against adversarial attacker

Against adversarial attacker types in Table 5.10 we get the best performance for τ = 1000
in case of the adversarial attacker, which means we get better results with the whole reward
history. The highest apprehension rate against the attacker with changes is for τ ∈ (300, 1000).
So we can observe that for varying environments we might be better off with shorter time
windows, because after the attacker changes his strategy the defender does not need the whole
reward history but only rewards after the change.

We showed properties of the proposed learning algorithms and their sensitivity to param-
eter setting. This can help to better understand the nature of studied learning algorithms.
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5.1.2 Algorithm performance comparison

In this work we mainly focus on horizon of 1000 rounds per game and we do most of the
analysis on this time window but it is interesting to look further because we can observe
convergence behavior of proposed algorithms and compare them with each other. Further-
more we make sure the performance is stable and the attacker cannot exploit the defender
in longer run. We study experiments with 10000 rounds run 100 times to get stable results.
There are experiments with 4 learning algorithms against the random fixed attacker types.
We also analyze a model with 10 attackers per round. If we have 10 attackers per round there
is stronger information for the defender obtained in every round and the learning should be
faster. These attackers are assigned to the zones by sampling from the strategy distribution
vector multiple times. Against the adversarial attacker there are experiments with 4 learning
algorithms and Strong Stackelberg Equilibrium (SSE) strategy for comparison. SSE is added
to the experiments for the reference to further experiments with combined algorithms. The
adversarial attacker is deterministic so the attacker does not have a probability strategy vec-
tor therefore we investigate only the case with one attacker per round since more attackers
assigned to one zone have the same effect as multiplying the algorithm by some constant. On
the x-axis there is a number of round and on y-axis there is the apprehension rate in %, which
represents how many attackers were apprehended out of all attackers who tried to cross the
border. We also provide 95% confidence interval, for each figure we state the maximal mean
confidence interval. We do experiments with these parameters of learning algorithms:
EXP3 - γ = 0.2
SW-UCB - τ = 3000, B = 1
D-UCB - γ = 0.9, B = 0.2

This parameter setting is strongly inspired from the previous chapter, where we tuned
these parameters. We focus on performance against adversarial attacker types. For SW-UCB
we set τ = 3000 because we extended the number of rounds 10 times and we investigate if
this analogy holds with increasing number of rounds. The rest of the parameters are set to
perform well against both adversarial attacker types.
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(a) Random fixed attacker, 1 attacker per round
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(b) Random fixed attacker, 10 attackers per round
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(c) Random fixed attacker with changes, 1 at-
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(d) Random fixed attacker with changes, 10 at-
tackers per round

Figure 5.1: Defender online learning strategies against random fixed attacker types

In Figures 5.1 there are 4 learning algorithms used for the defender strategy against the
random fixed attacker. The widest confidence interval is ±0.72% for Figure 5.1a, ±0.92% for
Figure 5.1b, ±0.42% for Figure 5.1c and ±0.56% for Figure 5.1d. We can see that algorithm
EXP3 learns faster for the case of 1 attacker per round but in case of 10 attackers per
round we see that UCB and SW-UCB learn faster than EXP3. Even though the UCB
algorithm is supposed to perform better in stationary environment than EXP3, we can see
that it is not always the case and it depends on the level of information the defender can
get in every round as seen in Figures 5.1a and 5.1b. For SW-UCB we can clearly see slight
decrease of performance every 3000th round, which is the size of the sliding window. In all
the Figures 5.1 the D-UCB does not perform very well which is caused by the parameters
tuned for the adversarial case. In Figures 5.1c and 5.1d there are the attackers with changes
in its strategy probability vectors every 2000 rounds, which is shown by black vertical lines.
We can clearly see how the algorithms adapt to the changes. For the case with changes
in the attacker strategy the UCB and the SW-UCB algorithms better react to the changes
compared to EXP3 algorithm, which is caused by higher exploration of EXP3 algorithm.
EXP3 algorithm is designed against adversarial attacker types, however UCB algorithm is
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more suitable against stationary attacker types. One can confirm such behavior from the
Figures in 5.1.
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(b) Adversarial attacker with changes, 1 attacker

Figure 5.2: Defender online learning strategies against adversarial attacker

We test our learning algorithms against the adversarial attacker who estimates the de-
fender strategy as described in Section 4.1.2. In Figures 5.2 there is performance of learning
algorithms against adversarial attacker and adversarial attacker who changes his zone prefer-
ence vector every 2000 rounds. The widest mean confidence interval is ±0.77% for Figure 5.2a
and ±0.98% for Figure 5.2b. In Figure 5.2a we show the efficiency of UCB family of learning
algorithms, which outperform the EXP3 learning algorithm. This is partly caused by the UCB
synchronization described in Section 4.2.1 caused by the deterministic nature of both play-
ers’ strategies. This behavior is not realistic and would be broken by one of the player sides
(probably by the attacker because the defender does not mind extremely high apprehensions).
In Figure 5.2b we can observe the changes in the attacker strategy by the black horizontal
lines every 2000 rounds and its impact on the performance of the learning algorithms. In
figure 5.2b the UCB algorithms clearly outperforms EXP3 and we can state that they better
adapt to the changes. Furthermore one can observe that the changes in attacker strategy even
improve the defender payoff when playing UCB type algorithm. This behavior is caused by
the learning process of the attacker, if the attacker changes his strategy, the defender adapts
his strategy faster than the attacker can learn defender new adapted strategy. Interaction
between two players who learn opposite player strategy can be unintuitive, because learning
changes the learned subject and vice versa. This is the case when the attacker changes his
strategy and unintuitively the defender strategy performance improves. SSE is better than
EXP3 but worse than UCB family algorithms, which is caused by the UCB synchronization.
In the figure with changes one can see that SSE strategy worsens a lot after the change occurs.
This SSE strategy is computed for the initial attacker zone preference vector that is why its
performance decreases a lot after changing the attacker zone preference vector. EXP3 has a
good ability to adapt to the changes and remain quite stable.
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Figure 5.3: Defender online learning strategies against Nash attacker

In Figures 5.3 there are the learning algorithms against attacker who plays Nash equi-
librium mixed strategy. The widest mean confidence interval is ±0.58% for Figure 5.3a and
±0.74% for Figure 5.3b. The best performance has intuitively the defender who plays Nash
equilibrium as well, which is straightforward. The attacker strategy is not deterministic
therefore there is no UCB synchronization. We can also observe that EXP3 has similar per-
formance like UCB family of algorithms. However the algorithm D-UCB algorithm has worse
performance, which is caused by discounted observation data and thus the algorithm learns
very poorly. In Figure 5.3b we can see that the algorithms learns faster and UCB and SW-
UCB gives almost same results as playing the Nash equilibrium in case of 10 attackers per
round. Thus we can say that these algorithms converge to the Nash equilibrium in this case.
The EXP3 has slightly worse performance due to the 20% exploration (γ = 0.2). D-UCB
algorithm gives similar result to EXP3 algorithm because the parameters are tuned against
adversarial attacker and the discount of the past rewards disables the algorithm to learn
effectively.

In this section we showed behavior of the proposed learning algorithms and we compared
them to each other. We can clearly see the convergence behavior of the learning algorithms.
For further experiments we use EXP3 algorithm since it seems more stable than other algo-
rithms and is a good representative algorithm against adversarial strategies. Its stochastic
nature is a desirable feature for our model because it makes it more difficult to be exploited
or synchronized.

5.2 Experiments with Game-theoretic Strategies

5.2.1 Game-theoretic strategy with error

We do experiments to test an influence of different levels of error ε in zone preference vector
to compute SSE as described in Section 4.3.2. In Figure 5.4 there are apprehension rates for
different levels of error. We observe the performance of SSE strategy for ε ∈ [0, 0.2]. We can
see that the adversarial attacker can learn the strategy and through the time the apprehension
rate decreases. Especially for higher values of ε there is a big decrease in performance. For
approximately ε ≥ 0.15 we get even worse performance than for playing a random defender
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strategy, which has the expected payoff 12.5%. In our further experiments we focus on error
0.1. We can see that for SSE without error the performance is still very good even after the
attacker learns the strategy. The widest mean confidence interval is ±0.56% for error 0.1.
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Figure 5.4: SSE strategies with different levels of error against adversarial attacker

5.2.2 Motivating game-theoretic strategy

We perform experiments to test motivating SSE strategy as described in Section 4.3.3. We
do experiments for two cases, in the first case we assume that we know the exact Stackelberg
equilibrium strategy for the defender and in the second case we do experiments with motivat-
ing imprecise Stackelberg equilibrium strategy. We run the experiments 1000 times for each
setting. Each game has 1000 rounds.

Precise Stackelberg equilibrium strategy
In this case we assume that the defender knows the exact attacker zone preference vector and
thus the defender can compute the exact SSE.

decrease 0 0.005 0.01 0.05 0.075 0.1 0.15 0.2

apprehen. 22.42% 22.91% 23.60% 26.01% 25.06% 23.34% 19.10% 14.15%

confidence ±0.45% ±0.45% ±0.47% ±0.44% ±0.48% ±0.49% ±0.54% ±0.58%

Table 5.11: Motivating SSE with decreased highest value

In Table 5.11 there are apprehension rates for different decrease constants with its confi-
dence intervals. For the decrease constant equals to 0.05 we get the best performance. We
can see that it makes sense to do such a modification in SSE strategy because we increase
significantly the apprehension rate. In the first column there is unmodified SSE strategy for
comparison. On the other hand if we decrease the SSE strategy vector too much we get a
poor performance as you can see at the right side of the table.

Imprecise Stackelberg equilibrium strategy
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We use the same method of decreasing the highest value in imprecise SSE strategy. We now
assume 0.1 error in estimate of the attacker zone preference vector from which the defender
computes the SSE strategy.

decrease 0 0.005 0.01 0.05 0.075 0.1 0.15 0.2

apprehen. 14.28% 14.22% 14.51% 15.09% 16.03% 16.40% 16.94% 15.21%

confidence ±0.57% ±0.59% ±0.58% ±0.60% ±0.61% ±0.61% ±0.57% ±0.54%

Table 5.12: Motivating SSE with error with decreased highest value

In Table 5.12 we can see apprehension rates for different levels of decrease constant. If we
compare this table with Table 5.11 we can see that we need to motivate the attacker more in
case of imprecise equilibrium strategy. The best results are for decrease constant from range
(0.075, 0.15). In the first column there is unmodified SSE strategy with error. We can see
that the motivating SSE has much higher apprehension rate than unmodified strategy. It is
intuitive that we need to motivate the attacker more if we have imprecise SSE strategy.

We use this method in our further experiments with combined algorithms in Section 5.4.

5.3 Performance of Combined Algorithms

We described the combined algorithms in Section 4.4. They are based on EXP3 learning
algorithm with use of game-theoretic solution. We investigate both cases, a precise game-
theoretic solution and an imprecise one. It is known as EXP3 with warm start, which describes
the idea that we start the learning algorithm with some prior information, for example the
game-theoretic solution. At first we tune the parameter τ of algorithm COMB1, which sets a
weight of EXP3 initialization by game-theoretic solution. We present experiments to compare
the proposed COMB algorithms with Stackelberg equilibrium strategy and standard EXP3
algorithm against the adversarial attacker. We provide 95% confidence interval.

5.3.1 Parameter tuning

The tuning experiments are done with Stackelberg equilibrium strategy computed from at-
tacker payoff with level of error 0.1 in the zone preference vector. We tune parameter τ
of COMB1 algorithm described in Section 4.4, which represents a number of rounds played
virtually before the actual start of the game using SSE. We run every experiment 1000 times
with 1000 rounds per game. This section also helps to explain the idea of COMB1 algorithm.



50 CHAPTER 5. EXPERIMENTS

Round/10
0 10 20 30 40 50 60 70 80 90 100

A
p

p
re

h
e

n
s

io
n

 r
a

te
 i

n
 %

10

12

14

16

18

20

22

24

Apprehension rate against adversarial attacker

Tau = 0

Tau = 50

Tau = 100

Tau = 500

Tau = 1000

(a) COMB1 parameter τ

Round/10
0 10 20 30 40 50 60 70 80 90 100

A
p

p
re

h
e

n
s

io
n

 r
a

te
 i

n
 %

8

10

12

14

16

18

20

22

24

Confidence intervals with alpha = 0.05

Tau = 0

Tau = 100

Tau = 1000

(b) COMB1 parameter τ - confidence intervals

Figure 5.5: COMB1 algorithm against adversarial attacker - τ tuning

In Figure 5.5a there are apprehension rate curves for different levels of EXP3 initialization
by game-theoretic solution. We can see that for higher values of τ we get higher apprehension
rates. In Figure 5.5b there are 95% confidence intervals for three selected values of τ . We
can see that stronger initialization improves the defender payoff.

τ 0 50 100 300 500 1000 2000

apprehen. 19.83% 20.02% 20.14% 20.37% 20.42% 20.35% 20.09%

confidence ±0.28% ±0.28% ±0.28% ±0.29% ±0.29% ±0.30% ±0.31%

Table 5.13: Algorithm COMB1 τ parameter tuning against adversarial attacker

τ 0 50 100 300 500 1000 2000

apprehen. 18.23% 18.28% 18.48% 18.16% 17.51% 15.97% 14.35%

confidence ±0.21% ±0.21% ±0.22% ±0.23% ±0.23% ±0.26% ±0.28%

Table 5.14: Algorithm COMB1 τ parameter tuning against adversarial attacker with changes

In Tables 5.13 and 5.14 there is the parameter tuning against adversarial attacker and
adversarial attacker with changes. One can observe that for higher τ values we are better off
against the adversarial attacker. The error in the estimated Nash equilibrium is quite low so
we can expect that stronger initialization brings better performance, but we can also expect
that for too high values of τ we restrict EXP3 algorithm and all its properties, which can be
a problem against varying opponents. As we can see in Table 5.14 against the adversarial
attacker with changes, where we are better off with lower value of parameter τ , because we
need the ability of EXP3 algorithm to adapt to abrupt changes in the opponent strategy.
For further experiments we use COMB1 algorithm with τ = 100 because we want COMB1
to be robust algorithm against non-stationary attackers. The disadvantage of strong EXP3
initialization (high τ values) is in disabling the desired properties of learning algorithm such
as ability to adjust to (learn) new opponent strategies. This experiment supports the idea
behind COMB1 algorithm development. We want EXP3 algorithm to converge to optimal
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strategy so it makes sense to initialize EXP3 algorithm with Nash equilibrium strategy or with
an estimate of it. In the Figures 5.5 one can also see the dynamics of learning. The defender
learns the attacker strategy at first so the performance increases and then the attacker also
learns the defender strategy so the performance gets more stable. We need to keep in mind
the visualization technique of cumulative means. The actual cumulative performance in each
round is the derivative in the particular time step of the presented figure.

5.3.2 COMB algorithms performance

In this section we focus on experiments with the proposed COMB algorithms. We show its
effectiveness compared to other approaches. We run each of the experiments 1000 times and
each game has 1000 rounds if not stated differently. We provide experiments with game-
theoretic solution with error and without error against the adversarial attacker types. As
stated before there is a different zone preference vector for the attacker in each experiment
of each setting, thus the attacker has different payoff matrix in each experiment. However
the defender has always payoff 0 or 1. For comparison we show in the figures EXP3 learning
algorithm, Stackelberg equilibrium strategy (SSE) and Stackelberg equilibrium strategy with
an error, which is used in COMB algorithms. For each graph we compute a 95% confidence
interval and provide a mean interval width across all rounds.
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(a) moving averages visualization
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(b) moving averages visualization
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Figure 5.6: COMB algorithms with 0.1 error against adversarial attacker

In Figures 5.6 we used another style of result visualization to better understand the
behavior of the algorithms. In this thesis we mainly use cumulative averages as described
before but it is also interesting to observe visualization by moving averages as shown in
Figures 5.6a and 5.6b. We use moving-averages of length 20 rounds. Figure 5.6a shows the
same experiment as Figure 5.6c and Figure 5.6b shows the same experiment as Figure 5.6d.
From these graphs of same experiments we can observe corresponding behavior. In Figure 5.6b
one can observe that SSE with error strategy and SSE strategy have almost same performance
after the first change in the attacker zone preference vector, which is obvious because the
equilibria are computed for the initial zone preference vector and after the change they perform
very poorly. In Figure 5.6c there is a performance of the proposed algorithms against the
adversarial attacker. COMB algorithms use game-theoretic solution with an error 0.1. For
COMB algorithms the widest confidence interval is ±0.39% and for EXP3 algorithm the
width of interval is ±0.30%. SSE with error decreases with the attacker learning the strategy.
SSE without error obviously gives a very good performance. One can observe that COMB1
has better but very similar performance to EXP3, this comes from the nature of COMB1
algorithm, which is basically the initialized EXP3. Thus we can see that the initialization
improves the EXP3. COMB2 algorithm starts with playing SSE with error plus some extra
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exploration and then switches permanently to EXP3, we can see that this switch occurs close
to the intersection of SSE with error and EXP3 algorithm which is a desired feature of COMB2
algorithm. COMB3 algorithm can arbitrary switch between SSE with error (plus some extra
exploration) and EXP3, so we can see that it outperforms the COMB2 algorithm. This is
caused by better adaptability to the intelligent attacker. COMB4 has the best performance
out of all COMB algorithms and also outperforms EXP3 algorithm. COMB4 similarly to
COMB3 can switch between EXP3 algorithm and SSE with error arbitrary but it can choose
from 3 SSE with error strategies and thus has better performance. COMB2, COMB3 and
especially COMB4 algorithms have very good performance at the first half of the game (up
to round 500) and outperform EXP3 and SSE with error. At the end of our game COMB
algorithms and EXP3 algorithm have similar performance, which is caused by the attacker
learning the defender strategy, also the COMB algorithms tend to play EXP3 later in the
game.

We test the COMB algorithms against the adversarial attacker with changes in Fig-
ure 5.6d. For COMB algorithms the maximal width of confidence interval is ±0.32% and
for EXP3 algorithm the width of interval is ±0.26%. This figure shows clearly the advantage
of learning algorithm. If we assume that we are not able to detect a change in the attacker
payoff and therefore to compute the appropriate game-theoretic solution, we can intuitively
expect a poor performance by playing this game-theoretic strategy. Even though these abrupt
changes in the attacker payoff matrix are not realistic, we can test algorithms’ sensitivity to
any changes in the attacker behavior. In this figure there are highlighted the changes in the
attacker strategy every 200 rounds by black horizontal lines. We can see that COMB algo-
rithms can successfully adapt to these changes and have very similar total performance as
EXP3 algorithm. At the beginning of our game all COMB algorithms are better than EXP3
algorithm. Up to round 200 it is the same figure as Figure 5.6c and then the changes occur.
COMB algorithms can adapt to these changes because they make use of EXP3 algorithm and
can switch to it in case they need to. So the COMB algorithms remain the desired property
of learning algorithms.
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Figure 5.7: COMB algorithms with no error against adversarial attacker

In Figure 5.7a there are experiments with COMB algorithms using precise game-theoretic
solution against the adversarial attacker. The widest confidence interval for COMB algorithm



54 CHAPTER 5. EXPERIMENTS

is ±0.39% and for EXP3 the width is ±0.29%. In this figure we do not visualize COMB4 since
it boils down to COMB3 in case of precise game-theoretic solution. COMB2 and COMB3
algorithms get even better than SSE strategy, because for the attacker it is more difficult to
learn the defender strategy if it is not static. This is partly caused by the extra exploration
in COMB algorithm playing SSE, which can confuse the attacker. The attacker learns quite
fast a static defender strategy vector SSE. One can observe that even though the COMB2
and COMB3 outperforms the SSE strategy for a short period of time, it then drops in its per-
formance a lot by the attacker eventually learning the strategy. COMBs algorithms decrease
under SSE strategy even though they use this SSE strategy, because there is extra explo-
ration 10% added to SSE strategy. This extra exploration causes worse performance than
SSE strategy when the attacker learns the defender strategy sufficiently enough. Nevertheless
we can see that COMB algorithms outperform EXP3 algorithm at the first half of the game
and then they all converge to a similar performance.

In Figure 5.7b we test COMB algorithms using precise game-theoretic solution against
the adversarial attacker with changes. For COMB algorithms the widest interval is ±0.32%
and for EXP3 algorithm the width of interval is ±0.26%. We can see similar behavior as in
previous figures. The COMB algorithms can react well to changes in the attacker strategy
because of its learning algorithm part. SSE strategy decreases a lot after a change in the
attacker zone preference vector as described before. If the defender has a precise SSE strategy
he might prefer playing it instead of any other strategy in case of the adversarial attacker
however if there are some changes in the attacker payoff matrix the defender would be better
off by playing some more sophisticated algorithm like EXP3 or preferably one of the proposed
COMB algorithms, because they can adapt to these changes.
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Figure 5.8: Convergence of COMB algorithms with 0.1 error against adversarial attacker

We observe convergence of the proposed algorithm in a longer time window, in Figure 5.8
there are COMB algorithms using game-theoretic solution with error against adversarial at-
tacker for 10000 rounds. This experiment is done 100 times for each setting. The maximal
mean width of confidence intervals for COMB algorithms is 0.99% and the width of confidence
interval for EXP3 is 0.92%. We can see that COMB algorithms and EXP3 algorithm converge
to the same performance quite quickly. Playing precise Stackelberg equilibrium strategy has
the best performance however the SSE strategy with 0.1 error gives quite poor result. One
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can observe that the precise SSE strategy performance increases during the time, which is
caused by the attacker learning more precisely the defender strategy and thus there are more
ties in the attacker strategy which the attacker breaks in favor to the defender.

5.4 Performance of Combined Algorithms with Motivating
SSE

We analyze combined algorithms, which use motivating SSE strategy. We described the mo-
tivating SSE strategy in Section 4.3.3. We do experiments firstly with error 0.1 and secondly
without error in defender estimation of the attacker zone preference vector. SSE strategies in
the figures do not use the motivating concept and are in the graphs for comparison.
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Figure 5.9: COMB algorithms against adversarial attacker using motivating SSE

In Figures 5.9 there are experiments with COMB algorithms against the adversarial at-
tacker. There are SSE strategy without error and SSE strategy with error 0.1. The widest
mean confidence interval is ±0.37% for COMB algorithms and ±0.3% for EXP3 algorithm
in Figure 5.9a. And in the Figure 5.9b the confidence interval is ±0.38% for COMB algo-
rithms and ±0.29% for EXP3 algorithm. In Figure 5.9a there are COMB algorithms using
SSE with error 0.1. We can compare this figure with Figure 5.6c where the defender uses
COMB algorithms with normal SSE (not motivating). We can see that COMB algorithms
with motivating SSE have better performance. At the first half of the game all COMB al-
gorithms outperform EXP3 algorithm and SSE with error strategy. COMB4 approaches to
SSE strategy around the round 200. The performance of COMB4 grows up to round 200
because for the attacker it is more difficult to learn changing strategy than in the case of
the defender playing fixed strategy vector of SSE. All the algorithms converge to similar per-
formance because the attacker learns the defender strategy and COMB algorithms switch to
EXP3 algorithm. SSE strategy is the optimal one and thus it has the best performance. In
Figure 5.9b we have COMB algorithms with motivating SSE without any error. If we com-
pare it with the previous figure we can clearly see the improvement in performance due to
absence of an error. COMB2 and COMB3 outperforms the SSE strategy for a short period
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around round 200. This is caused by higher difficulty for the attacker to learn the defender
varying strategy of COMB2 and COMB3 algorithms. COMB1 algorithm is better than EXP3
algorithm due to the initialization by Nash equilibrium. The attacker learns quite fast the
defender SSE strategy, which is a fixed mixed strategy vector. From these two graphs we can
see that COMB algorithms outperforms the EXP3 algorithm. We can also state that using
motivating SSE in COMB algorithms makes sense and gives us better performance.

5.5 Combinatorial Combined Algorithms

In this section we focus on the combinatorial case where the defender assigns multiple re-
sources to the zones in each round. We test combinatorial variants of COMB algorithms
which use combinatorial EXP3 as described in Section 3.4.4. We test the algorithms with
different number of resources (defenders). We also scale up our model to investigate its be-
havior for different number of zones. Combinatorial COMB algorithms are very similar to
the standard COMB algorithms as described in Section 4.5.

5.5.1 Varying number of defenders

The experiments are done for a game model with 20 zones. We compare the strategies in
models with 2, 4, 6 and 8 defenders. These experiments are run 1000 times for each setting
and each game has 1000 rounds.
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(b) 4 defenders, 20 zones
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(c) 6 defenders, 20 zones
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(d) 8 defenders, 20 zones

Figure 5.10: COMB algorithms against adversarial attacker, 0.1 error in SSE, varying number
of defenders

In Figures 5.10 there are 4 COMB algorithms, SSE with error and SSE without error
strategies. In these experiments EXP3 is always the combinatorial version of EXP3. We
focus only on the adversarial attacker. The widest mean confidence interval in all the fig-
ures is ±0.36% for COMB algorithms, ±0.35% for EXP3 algorithm, ±0.34% for SSE with
error strategy and ±0.27% for SSE strategy. One can observe in Figure 5.10a that EXP3
outperforms the COMB algorithms, which is caused by poor performance of SSE with error
strategy. EXP3 algorithm gives almost 2 times better performance than SSE with error strat-
egy, because there are too few defenders for too many zones and even a small error in SSE
strategy causes low apprehension rate. Due to this fact, the COMB algorithms have worse
performance than EXP3. When we increase the number of defenders to 4 in Figure 5.10b, SSE
with error does better and so do COMB algorithms. COMB3 outperforms EXP3 algorithm
after the half of the game and COMB4 does even better than COMB3, which comes from the
nature of the algorithms. COMB4 algorithm chooses from 3 SSE with error strategies and
EXP3 while COMB3 algorithm chooses only from 1 SSE with error and EXP3 algorithm. One
can observe interesting peaks of the algorithms curves at the beginning of the game, which
are caused by increasing number of defenders. The attacker needs time to learn effectively
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against multiple defenders and at the beginning he plays poorly. However by the steepness
of the algorithms curves we can state that the attacker learns very quickly after playing very
badly at the beginning. These described features are even stronger with increasing number
of defenders in Figure 5.10c and in Figure 5.10d. SSE strategy with error approaches even
more to the performance of EXP3 algorithm, because the more defenders there are, the less
the error in the SSE strategy vector matters. The defender still chooses the zones with high
probabilities even though there are some errors, because these 0.1 errors cannot decrease
the real values too much to not be chosen. For the last figure with 8 defenders the SSE
with error strategy even outperforms EXP3 algorithm. Nevertheless COMB3 and especially
COMB4 algorithms have very strong performance and approach to SSE strategy performance.
COMB1 and COMB2 have obvious drawbacks in the limited use of SSE with error strategy.
COMB1 use the game-theoretic strategy only to initialize EXP3 and then cannot make use
of it anymore and similarly for COMB2 algorithm, which use the game-theoretic strategy at
the beginning first couple rounds and then permanently switches to EXP3 algorithm.

5.5.2 Scaling-up experiments

We analyze our model for larger environments. We scale up our model to investigate its
behavior for varying number of zones and defenders.
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(a) 2 defenders, 20 zones
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(b) 3 defenders, 30 zones
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(c) 4 defenders, 40 zones
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(d) 5 defenders, 50 zones
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(e) 10 defenders, 100 zones
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Figure 5.11: COMB algorithms against adversarial attacker, 0.1 error in SSE, scaling up

In Figures 5.11 there are experiments for 2 defenders and 20 zones, 3 defenders and 30
zones, 4 defenders and 40 zones, 5 defenders and 50 zones, 10 defenders and 100 zones and
50 defenders and 500 zones. The widest mean confidence interval in all the figures is ±0.21%
for COMB algorithms, ±0.18% for EXP3 algorithm, ±0.22% for SSE with error strategy
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and ±0.19% for SSE strategy. One can observe very similar behavior of each strategy in all
the figures. However there are differences worth mentioning. We can see that for increasing
number of zones the performance of all algorithms decrease and even the performance of
SSE strategy worsens, which is caused by higher absolute number of zones even though we
cover them with relatively same number of defenders. If there are more zones to choose from,
it is more difficult to apprehend the attacker, because the attacker can choose from more
zones which can be same favorable to him. There is always an error in the attacker estimate
of defender strategy that is why the attacker is more sensitive to choose a zone which he
would not choose in precise (full knowledge) Stackelberg game and which gives him lower
payoff. Therefore the attacker visits zones, which the defender does not surveil because he
assumes they are not likely to be chosen by the attacker. Interesting fact to mention is that
the differences between SSE strategy and SSE with error strategy remains almost the same
and also the differences between SSE strategy and EXP3 algorithm are almost the same in
all these experiments so we can state that the model behaves very similarly even for larger
systems. Therefore we can expect that our conclusions about COMB algorithms derived
for small models hold for larger games in similar way. We can see that EXP3 algorithm
performance increases a lot at the beginning of the game for the increasing number of zones.
This is caused by the increasing difficulty for the attacker to learn the defender strategy.
For more zones and more defenders the attacker needs to explore more possibilities and thus
the learning takes longer time that is why the defender is very successful at the beginning.
However as mentioned before once the attacker learns the defender strategy, it is more difficult
for the defender to apprehend the attacker for increasing number of zones and that is why
the performance of defender strategies decreases with more zones as we can see in the figures.



Chapter 6

Conclusion

In this thesis we reviewed the recent literature on security games and online learning. We dis-
cussed scientific papers in the area and described the connections to this thesis. We mentioned
and described several online learning algorithms. Then we focused on the game-theoretic ap-
proach to the security games. We proposed a sample security game model for border patrol,
which we use to analyze various game strategies. There is an empirical performance evalu-
ation of the game-theoretic and online learning algorithms against multiple attacker types.
We study usability of these approaches under various conditions.

We presented a modification to the game-theoretic solution where we motivate the attacker
to choose a zone, which the defender wants him to choose. This modification called motivating
SSE improved the performance of the game-theoretic solution against adversarial attacker.
We showed that if the attacker does not know precisely the defender strategy, he might not
play optimally. Therefore one should keep in mind such probable behavior of Stackelberg
security game model in real-world applications, where there is an uncertainty in the attacker
estimate of the defender strategy. Motivating SSE strategy is a straightforward approach to
partly handle such uncertainty. Another pitfall one can derive from the proposed game model
is the use of two deterministic strategies against each other. We showed a synchronization
(exploitation) of two deterministic learning algorithms, UCB algorithm on the defender side
and a type of fictitious play on the attacker side. During designing a game model one should
be aware of this possible vulnerability using a deterministic strategy. This observation holds
for vast majority of security games, where it is not desirable to use deterministic strategies,
because they can be exploited by the opponent.

The main novelty of this thesis are the combined algorithms, which connect online learning
algorithm EXP3 with game-theoretic solution. We proposed 4 combined algorithms, which
differ by the combining method, adaptability to the attacker strategy and level of use of game-
theoretic solution. They are called COMB1, COMB2, COMB3 and COMB4. We also use
motivating game-theoretic solution in COMB algorithms. We differ our experiments to two
main branches; firstly we investigated the standard case, where there is 1 defender resource per
round and secondly we focused on the combinatorial case, where we assume that the defender
has more resources. These two concepts differ by used online learning algorithm. Based on the
type of the learning algorithm we derived COMB algorithms for both concepts. We tested
these combined algorithms against various types of game setting. There are experiments
with various numbers of defenders and zones. We also showed scalability of our proposed
algorithms, where we demonstrated usability of the combination algorithms for larger games.
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Combined algorithms present an effective approach to security games and make use of ad-
vantages of online learning algorithm and game-theoretic solution. The advantage of learning
algorithm is its adaptability to various attacker types and its robustness in varying envi-
ronments. On the other hand, the game-theoretic solution provides mathematical approach
to security games, where it makes use of estimated game properties such as attacker payoff
matrix using game theory. We showed that COMB algorithms have a very good performance
in the non-combinatorial case and are better than EXP3 online learning algorithm or an im-
precise game-theoretic solution. For the combinatorial case, we are better off using EXP3
algorithm if we have lower number of resources (defenders), but with increasing number of
resources we are better off using COMB3 or COMB4 algorithm. However even in the cases
where EXP3 outperforms COMB algorithms, the COMB algorithms still have a very good
performance due to using EXP3 as a part of them. Therefore we can use them without
worries of getting much worse performance than online learning algorithm. We also showed
that in a long-term game all the COMB algorithms converge to EXP3 algorithm. One can
derive it makes sense to use a learning algorithm with some extra information in a form of
the game-theoretic strategy. It is called a warm start, when the learning algorithm starts
with some prior information about the opponent’s strategy. However one need to be careful
with the use of the imprecise game-theoretic solution, because obviously if the error in the
game-theoretic solution is too high it can harm the performance. Our proposed combined al-
gorithms can prevent the use of very imprecise game-theoretic solution by switching to online
learning algorithm.

In this thesis we studied and analyzed a restricted model of border patrol problem. How-
ever the model uses some general concepts and ideas, which make the conclusions applicable
to many other domains. The model can be deployed in areas where there is a need to use re-
sources effectively with frequent interaction between the players and with uncertainties about
opponent strategy. Technically speaking, models where there is a version of multi-armed
bandit problem.

There are several restrictions of the model. We assume a fixed defender payoff structure;
the defender is indifferent among the zones (actions). In many real-world applications there
are preferences for actions, which represent how difficult is to secure a particular zone. In
the security domain, there are sometimes targets, which are easily kept under surveillance
and some which are not. We also limit COMB algorithms to use only EXP3 online learning
algorithm.

6.1 Future Work

There are several possible future directions. First direction could focus on a formal analysis of
the proposed combined algorithms, one could derive and prove the regret bounds, which would
guarantee the algorithm performance and would make the algorithms formally comparable
to the other learning algorithms. One could also investigate convergence of the proposed
algorithms to known equilibrium concepts. Another direction could aim for different use of a
game-theoretic solution. In [25] the authors propose a robust game-theoretic algorithm, which
can handle multiple types of uncertainties. If there would be a model considering different
types of uncertainties, this robust algorithm could be used in our combined algorithms as
the game-theoretic part, which would better reflect these uncertainties. However one should
be aware that this robust algorithm can be only suboptimal. Another direction of possible
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future work is bringing defender action preferences into the game model, which would better
reflect real-world applications. There might be more attacker types analyzed, for example
the attacker could also use another online learning algorithms to investigate performance of
the game model against different possible attacker types, which would make the model better
applicable to various domains.
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Appendix A

Content of DVD

Attached DVD contains source files in Matlab of the proposed game model. All the experi-
ments done in this thesis come from this game model. The basic model on the DVD can be
easily set to any setting described in this thesis. We also attach algorithm LTRA written in
Java for solving Stackelberg games introduced in [21], which we used for our experiments.

DVD contains this directory tree:

master thesis Klima

thesis

thesis LaTeX source code

thesis PDF

model

game model

solving Stackelberg

A.1 Game Model

Game model is implemented in Matlab. Early framework of zero-sum game, which modeled
the basic interaction between the defender and the attacker came from other students at the
University of Texas at El Paso, however all the defender and the attacker strategies (online
learning algorithms, game-theoretic strategies, combined algorithms, fictitious play), system
of multiple defenders, general-sum game model, etc. were implemented by the author of this
thesis and the rest of the code was modified to fit our game model. There are several classes
of the program. Basic model can be used only by setting variables in classes ModelMain.m
and BorderVars.m. All the other classes are the core classes of the model and does not have
to be modified.

• ModelMain.m
Main class of the program. The user operates this class, where he chooses defender
and attacker strategy. According to the type of the experiment he chooses generated
matrices of zone preference vectors for the attacker and Stackelberg equilibrium vectors
for the defender. These matrices are needed only if there is the adversarial attacker and
a defender who uses game-theoretic solution.
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• BorderVars.m
The user can set all the parameters of the model and of all the algorithms used. In
this class one can set number of attackers, defenders, zones or parameters of learning
algorithms, combined algorithms etc.

• DefStrat.m
This class contains all the defender strategies.

• AttStrat.m
This class contains all the attacker strategies.

• BorderModel.m
This class simulates the whole game.

• Simulation.m
This class simulates each round in the game.

• ZoneLoc.m
This class allocates a zone to the player randomly according to the player’s strategy
probability distribution vector. Allocated zone is the chosen zone by the player in every
round.

• ZoneLoc2.m
This class is a combinatorial version of ZoneLoc.m class, so it allocates multiple zones
to the player.

• MISC classes
This folder contains other classes which are used for visualization or computing confi-
dence intervals.

We add a folder with matrices of zone preference vectors for the attacker and Stackelberg
equilibria for the defender for the basic experiment of 8 zones and 1 defender and level of
error 0.1 in the zone preference vector. For other experiments it is needed to generate new
matrices with appropriate settings by running the program in Java for solving Stackelberg
game.

A.2 Algorithm for Solving Stackelberg Games

On the DVD there is algorithm LTRA (Linear-Time Resource Allocation) implemented in
Java for solving Stackelberg games. We use this program for computing Stackelberg equilibria,
which we use as input to our game model. In class LtarMain.java we set the game properties as
number of zones, number of targets (zones in our case) and number of resources (defenders).
In StructuredSecurityGame.java we can set the error in zone preference estimate. After
running the LtarMain.java class there are two matrices generated. First matrix contains the
Stackelberg equilibria for the defender and the second matrix contains the zone preference
vectors for the attacker. We use these matrices as input to our game model.
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