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uvedl veškeré použité informačńı zdroje v souladu s Metodickým pokynem
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Abstract

This thesis presents a method for visual localization of a mobile robot
equipped with an omnidirectional camera. The proposed algorithm uses
a pre-trained convolutional neural network to compute the descriptors of
panoramic images. The position of a query image is estimated using these
descriptors, following the assumption that images with similar descriptors
were taken at physically close positions. The basic nearest neighbor ap-
proach for finding images with the most similar descriptors was tested to-
gether with some improvements, such as the weighted k-nearest neighbors
algorithm and the k-means clustering. These extensions showed to improve
significantly the precision of the position estimation and decrease the time
necessary to process a query image. The algorithm was implemented in
Matlab and tested on data from a mobile robot in various experiments.
The results of the experiments indicate that the approach based on convo-
lutional neural networks is suitable for the visual localization task and that
the proposed algorithm can handle various changes of the environment and
capturing conditions, such as different lighting, images taken from slightly
different places and with an arbitrary orientation of the robot.

Abstrakt

Tato práce se zabývá metodou vizuálńı lokalizace mobilńıho robotu vy-
baveného všesměrovou kamerou. Navržený algoritmus použ́ıvá předučenou
konvolučńı neuronovou śı̌t pro výpočet deskriptor̊u panoramatických sńım-
k̊u. Pozice sńımku se odhaduje pomoćı těchto deskriptor̊u na základě
předpokladu, že sńımky s podobnými deskriptory byly poř́ızeny na bĺızkých
mı́stech. Základńı metoda nejbližš́ıho souseda pro vyhledáńı sńımk̊u s nej-
v́ıce podobným deskriptorem byla testována společně s vylepšeńımi jako
metoda vážených k nejbližš́ıch soused̊u a shlukováńı k-střed̊u. Tato rozš́ı̌re-
ńı významně zlepšuj́ı přesnost odhadu pozice a snižuj́ı čas potřebný pro
zpracováńı dotazovaného sńımku. Algoritmus byl implementován v jazyce
Matlab a testován na datech z mobilńıho robotu v r̊uzných experimentech.
Výsledky experiment̊u ukazuj́ı, že metoda založená na konvolučńıch neu-
ronových śıt́ıch je vhodná pro úlohu vizuálńı lokalizace a navržený algo-
ritmus se dokáže vypořádat s r̊uznými změnami prostřed́ı a podmı́nek pro
sńımáńı, jako např́ıklad r̊uzné osvětleńı, sńımky poř́ızené z mı́rně odlǐsných
mı́st a s libovolnou orientaćı robotu.
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1 INTRODUCTION

1 Introduction

Visual localization and place recognition are important tasks to be carried out by
mobile robots. It is advantageous in numerous scenarios that the robot knows its posi-
tion. In this work, we will present a localization approach for mobile robots equipped
with an omnidirectional camera, see Figure 1. The method is based on the increasingly
popular deep learning techinques using convolutional neural networks.

a b

Figure 1: A mobile robot equipped with an omnidirectional camera (a) and a panoramic
image of the scene around the robot from the view of its camera (b), captured at the
same moment.

1.1 Motivation

Localization of the robot might be performed using various sensors, such as a laser
rangefinder, stereo vision or by a GPS device. However, these methods have some
considerable drawbacks. GPS signal is not available everywhere – there is almost no
chance to use GPS indoors. Localization based on a laser rangefinder suffers from
difficulties with scenes containing transparent materials such as glass. Vision-based
approaches do not have any of these disadvantages, so it seems advantageous to use
images as a source of data for localization. Images using standard field of view might
not encode enough information about the environment around the robot though. We
will focus therefore on localization based on omnidirectional images in this work.

1.2 Task formulation

The main objective of the work is to develop a method for robot localization based on
visual recognition of previously seen places. The foreseen scenario is that a mobile robot
records omnidirectional images together with the position in order to build a database of
images with known positions. Using this database, the robot should be able to localize
itself given a query omnidirectional image. The motivation for this approach is that
similar images are likely to be captured at physically close places.
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1 INTRODUCTION

The proposed algorithm should take into account that the query images might not
be captured under the same conditions as the database images. The robustness of the
method should be sufficient to handle changes of the environment such as different
lighting conditions or occlusion.

1.3 Localization methods

Localization of mobile robots can be carried out in various ways. The suitable
methods vary depending on the indoor or outdoor usage.

A typical example of an indoor localization method is using a laser rangefinder.
The laser rangefinder determines the distance of objects in its field of view based on
the reflection of the emitted laser rays. The information about the distance of objects
in scans from different positions is used to build a map of the environment.

Another common method is stereo vision, which consists in localization based on
a 3D model of the world constructed using a calibrated pair of cameras. It can be used
both indoors and outdoors. One of the widely known methods for outdoor localization
is using global navigation systems such as GPS or Glonass, which calculate the position
based on the data broadcast by satellites in the Earth’s orbit.

We will further focus on vision-based approaches for localization. The aforemen-
tioned localization methods serve as a source of the position data when building the
database of images.

1.4 Related work

The problem of visual localization in variable environment is addressed in several
works. In the paper by Churchill and Newman on long-term navigation in changing
environments [1], the concept of experiences is used to capture variable appearance
of the same place and thereby make the localization robust. An experience captures
a visual mode, i.e., a particular appearance of the same scene. As the robot traverses
the workspace, it gathers distinct visual experiences. When the robot operates in
a previously visited area, it simultaneously attempts to localize itself in the previous
experiences and determine its position using a vision-based pose estimation system. If
the localization fails in large enough number of previous experiences, the current live
stream is added as a new experience. That way, the coverage of the possible distinct
appearances of the scene is maximized.

The paper by Milford and Wyeth [2] presents a similar approach using an experience
map. The term experience is however used in a different sense than in [1]. The expe-
rience map is a topological graph and its nodes contain an image, a position estimate
and a transition to other experiences. The distances between global node positions and
the relative transitions are continuously attempted to be minimized.

Krajńık et al. present in the paper [3] a novel method for localization of mobile
robots in dynamic environments. The algorithm builds a spatio-temporal world model
that is able to predict changes of the environment in time by exploiting the repetitiveness

2



1 INTRODUCTION

of daily activities in populated environments. Local states of the environment are
modeled as a probability function of time. It is shown that the model learned during
the period of one week is still applicable even after three months and the precision of
localization is significantly better than using static representations.

The paper on localization based on a global GIST descriptor by Murillo et al. [4]
also uses omnidirectional images for visual localization, as in this work. The paper
describes the way of representation of omnidirectional images using a GIST descriptor
and relating them by different GIST similarity measures. To briefly introduce the GIST
descriptor, it is a global descriptor combining responses of several filters applied to the
input image. In the default configuration, it is a 960-dimensional vector, with 320 values
per color channel. It encodes the distribution of orientations and scales in the image.
The advantages of the descriptor are speed (it is fast to compute) and compactness. An
omnidirectional image is transformed into 4 views with a step of 90◦ and the 4-tuple of
GIST descriptors of those views is used in the algorithm. It is therefore mainly suitable
for urban environments, which feature perpendicular and parallel streets. The results
of the method using the GIST descriptors are shown to be comparable with approaches
using local features.

Chen et al. present in the paper [5] for the first time a method for place recognition
based on pre-trained convolutional neural networks (CNNs), which are also used in this
work. Place recognition can be viewed as an image retrieval task, i.e., determining
a match between the current scene and a previously visited location. Responses of the
CNN layers are used as descriptors. The match for a test image is the training image
with the smallest Euclidean distance of its descriptor to the descriptor of the test image.
This match is then verified using spatio-temporal filtering. They show that the CNN
features significantly outperform SIFT (scale-invariant feature transform) descriptors.

In the project preceding this thesis [6], we compared the performance of an im-
plementation [7] of the approach using GIST descriptor [4] with a method using the
CNN descriptor that we proposed. The proposed method consists in simply minimiz-
ing the Euclidean distance of the CNN-based descriptor of the query image and the
database images using a linear search in the database to find the nearest neighbor.
Both algorithms were run on the same dataset and the CNN-based approach proved to
outperform the GIST-based algorithm. This thesis builds on the results of the project.

1.5 Proposed method

To conclude this chapter, we will present an overview of the approach used in this
work.

As the robot moves through the environment, it records omnidirectional images
together with their positions and stores them in a database. The position is determined
using a laser rangefinder.

An image with an unknown position will be denoted in this work as a query image.
For a given query image, the robot should be able to localize itself using the database
of previously seen images.

3
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Based on the promising results of our previous work using convolutional neural
networks [6], we decided to continue in that direction also in the thesis. A descriptor
calculated using a convolutional neural network is saved for each database image and
likewise it is calculated for each query image. The position of a query image is estimated
by making use of the nearest neighbor method, weighted k-nearest neighbors algorithm
and k-means clustering. In Chapter 2, it will be described, how the descriptor is
computed and used for the localization of the robot.

1.6 Thesis structure

The text of the thesis is structured as follows. Chapter 2 contains a brief introduction
to convolutional neural networks, description of the algorithm and its implementation.
Chapter 3 describes the robot used to test the algorithm and the process of recording
the images and building the datasets for experiments. Description of the performed
experiments can be found in Chapter 4. The overall review of the achieved results is
summarized in Chapter 5.

4



2 OUR APPROACH

2 Our approach

In this chapter, it will be explained, how the position of a query image is estimated
given a database of images with known positions. First of all, the convolutional neural
networks will be introduced and the used framework for deep learning will be described.
After that, the algorithm used in this work will be described, starting by introducing the
concept of observations and then explaining the computation of the descriptor. Finally,
the implementation of the algorithm will be shortly described.

2.1 Convolutional neural networks

In this work, convolutional neural networks are used to localize the robot and there-
fore they will be presented in this section. Let us begin with briefly introducing simple
artificial neural networks (ANNs). ANNs are statistical learning algorithms inspired
by biological neural networks. They are used to estimate or approximate functions
dependent on a generally large number of inputs. ANN can be viewed as a system of
interconnected neurons. Simply said, each neuron computes a value from its inputs and
sends it to its output. The adaptivity of the neural networks make them an useful tool
in machine learning.

Convolutional neural networks (CNNs) are variations of multi-layer perceptrons.
They are designed to use minimal amount of preprocessing. In the context of image
processing, it means that the images are sent to the network almost directly, with none
or minimal preprocessing such as histogram equalization or applying various filters [8].

CNNs consist of several layers. These layers can be of three types:

• Convolutional layer – consists of a rectangular grid of neurons. The previous
layer has to be also a rectangular grid of neurons, since the neurons in this layer
take weighted outputs of a rectangular area in the previous layer. Weights for the
neurons in a particular rectangular area are the same. This layer represents image
convolution of the previous layer, the weights for the rectangular areas specify the
convolution filter.

• Max-pooling layer – may be present after a convolutional layer. Neurons in this
layer take small rectangular blocks of the preceding convolutional layer and find
the maximum among the outputs of the neurons in the block. The maximum is
sent to the output of the neuron.

• Fully connected layer – presents a higher-level reasoning and is usually present
after several convolutional and max-pooling layers. It can follow after any kind
of a layer – convolutional, max-pooling or another fully connected. Its name is
derived from the fact that it connects all outputs of the previous layer to all
neurons present in the current layer. As the fully connected layers do not form
anymore a rectangular grid, only other full connected layers may follow them, but
not the other types of layers [8].

5



2 OUR APPROACH

A convolutional neural network consists of a combination of these layers connected
together. An example of a CNN can be seen in Figure 2.

The Caffe deep learning framework was used in this work. Caffe, which stands for
Convolutional Architecture for Fast Feature Embedding, is a C++/CUDA architecture
for deep learning with Matlab and Python interfaces. Although the toolbox is designed
to work on any domain, such as speech, haptics, neuroscience etc., the main focus of
the authors is on the field of visual recognition.

From the variety of software packages within this project that are freely available
under the BSD license, we use a framework containing a Matlab bridge that is designed
for retrieval of similar images from a large image database [9].

2.2 Observation

The concept of observations is central in this work. Let us start with a definition of
an observation. An observation is a container for the captured image and all important
parameters of it, in the first place its real-world position and descriptor. The position
is a pair (x, y) of values in meters, specifying the location of the observation relative
to a given origin of a common coordinate system. An observation can also hold some
additional parameters such as the rotation angle. All database images are handled in
the algorithm as observations.

Also the query images are handled as observations. However, the position naturally
does not need to be set in that case. If it is set, it serves as the ground truth for
evaluation of the precision of the position estimation algorithm in the experiments.

2.3 Descriptor

A trained CNN model ImageNet is used to calculate the descriptor in this work.
Let us start by a brief introduction of this model. ImageNet is a convolutional neural
network learned on 1.2 million images, assigned to 1000 classes. The network, featuring
60 million parameters and 650000 neurons, consists of 5 convolutional layers and 3 fully
connected layers with a final 1000-way softmax, which produces a distribution over the
1000 classes. Some of the convolutional layers are followed by max-pooling layers [10].
The architecture of the ImageNet CNN is depicted in Figure 2.

The response of the last hidden (fully connected) layer of the convolutional neural
network is used in this work as a descriptor of an image and it will be further referred to
shortly as the CNN descriptor. The descriptor is therefore a 4096-dimensional vector.

The image descriptor is calculated with the use of the Caffe toolbox [9]. The pre-
processing consists in resizing the image to 224 × 224 px and subtracting the mean
calculated over the whole training set for each pixel and color channel. It is worth
mentioning that this is the only preprocessing of the image, i.e., no filters are applied in
advance to passing the image to the CNN. The CNN itself takes care of the robustness
to changes of the scene captured in the image, such as variable lighting conditions and
occlusion.

6



2 OUR APPROACH

Figure 2: Illustration of the ImageNet convolutional neural network architecture. The
two ‘rows’ represent the division of work between two GPUs [10].

2.4 Relations between observations

In order to quantify, how much two observations are related to each other, we need
to specify the dissimilarity measure. We define the dissimilarity measure of two obser-
vations o1, o2 as the square of the Euclidean distance between their 4096-dimensional
descriptors:

d2d (o1, o2) =
4096∑
i=1

(o1.desci − o2.desci)
2 , (1)

where the lower index d in d2d stands for the distance of descriptors and oj.desc repre-
sents the descriptor of the observation oj. The measure is called dissimilarity, because
the larger is its value, the less similar are the observations.

On the contrary, the physical (real-world) distance between two observations o1, o2
is denoted dp and it is calculated as the Euclidean distance of their positions:

dp (o1, o2) =

√
(o1.position.x− o2.position.x)2 + (o1.position.y− o2.position.y)2 .

(2)

2.5 Position estimation

The position of a query image given a database of images can be estimated in
various ways. In all cases, the dissimilarity measure defined in the previous section is
utilized. In the following text, the position estimation methods used in this work will
be described.

7



2 OUR APPROACH

2.5.1 Nearest neighbor

The simplest approach of position estimation is the nearest neighbor method. The
database of N images is linearly searched and for each database observation odi, the
dissimilarity measure d2d between odi and the query observation oq is calculated. The
position of the database observation with the minimal value of the dissimilarity measure
odimin

is picked as the position estimate positionest of the query observation:

imin = arg min
i=1,...,N

d2d (oq, odi) , (3)

positionest (oq) = odimin
.position . (4)

2.5.2 Weighted k-NN

In order to improve the accuracy of the position estimation, it might be advanta-
geous to take into account more than only one nearest neighbor. It is necessary to first
define the term closest observation, which will be used in the following text. A closest
observation is such a database observation that has the lowest value of the dissimilar-
ity measure between the query observation and that database observation, among all
database observations.

The closest observations may be considered with equal weights, i.e., the estimated
position can be calculated simply as a centroid of the positions of the k closest observa-
tions. However, it proved to be beneficial to consider the observations with decreasing
weights, i.e., the first closest observation has the largest influence and the influence of
the following closest observations gradually declines.

At first, we sort the database observations by the dissimilarity measure between the
query observation and the database observation in ascending order, so that the set of
the first k closest observations will be denoted

Sk (oq) =
{
odimin1

, odimin2
, . . . , odimink

}
, (5)

where
d2d (oq, odimin1

) < d2d (oq, odimin2
) < · · · < d2d

(
oq, odimink

)
. (6)

The estimated position of the query observation oq is then calculated using this method
as follows:

positionest (oq) =
k∑

j=1

d2d

(
oq, odimin(k−j+1)

)
· odiminj

.position , (7)

where d2d(. . . ) plays the role of a weight. The weight of the position of the first closest
observation is the dissimilarity measure between the query observation and the k-th
closest observation, the weight of the position of the second closest observation is the
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dissimilarity measure between the query observation and the (k − 1)-th closest obser-
vation and so on, hence the weights are decreasing with increasing j.

The time complexity of the described algorithm is O (n log(n)). However, as we need
only first k closest observations, we can find the closest observation using Equation 3,
cross it out and search for the remaining (k − 1) closest observations in the same way.
Using that approach, the time complexity stays linear as in the simple nearest neighbor
method.

2.5.3 Clustering

The linear time complexity of the exhaustive search makes the position estimation
algorithm too slow, if the database of observations becomes large. Therefore, it is
desirable to use a more sophisticated search method to achieve a speed-up.

One of the methods that might come up for consideration is a k-d tree. This
space partitioning data structure used for organizing points in a k-dimensional space
is however not suitable for high-dimensional spaces. The general rule for effective
usage of k-d trees is N � 2k, where N is the number of data points and k is the
dimensionality [11]. In our case, where k = 4096 and N ≈ 106 for the largest foreseen
observation databases, the aforementioned rule does not hold substantially, by many
orders of magnitude, which makes the use of a k-d tree meaningless.

Data clustering seems as an approach suitable for our case. One of the options
is approximate nearest neighbor search, in particular, locality-sensitive hashing. This
method creates bins of similar data points, where the bin, into which a data point
belongs, is determined by calculating a hash function. This hash function has, unlike
conventional hash functions, a high probability of collision for similar items [12].

We will stick with data clustering, however using another method, k-means. In
this algorithm, the database of observations is partitioned into k clusters of similar
observations, each of the partitions being represented by its mean [13]. The algorithm
proceeds in our case in the following steps:

1. Initialize cluster means of all clusters ci by the descriptors of observations ran-
domly chosen among all database observations:

∀i = 1, . . . , k : ci.mean = orand(1,N).desc , (8)

where rand(1, N) returns a random number between 1 and N . The number N is
the database size, i.e., number of database observations.

2. Assign all observations to the closest clusters. The dissimilarity measure d2d is
suitable as a value to be minimized when searching for the closest cluster for each
observation od:

imin = arg min
i=1,...,k

d2d (od, ci.mean) , (9)

cluster (od) = cimin
. (10)

To be formally correct, please note that we are overloading the function d2d, as the
second argument is in this case not an observation, but directly the descriptor.
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3. Recalculate the cluster means for each cluster ci as a mean of descriptors of
observations currently assigned to the cluster. Formally, for each cluster:

ci.mean =
1

size (ci)

∑
oj∈Ci

oj.desc , (11)

where
Ci = {oj : cluster (oj) = ci} . (12)

If any of the cluster means has changed, go to step 2, otherwise go to step 4.

4. Done.

The query observations oq are processed within the frame of the partitioned database
of observations in the following way. At first, the closest mean is found among all cluster
means:

imin = arg min
i=1,...,k

d2d (oq, ci.mean) . (13)

After that, the position of the query observation is estimated by the means of Equation
3 and 4 in the case of the simple nearest neighbor, or using Equation 5, 6 and 7 for the
weighted k-NN algorithm. In both cases, the database of observations reduces to Cimin

,
as defined in Equation 12.

As an extension, it is possible to use not only the closest cluster, but a union of c
closest clusters as the database of observations to be considered when searching for the k
nearest neighbors. The database of observations to be considered is then

⋃
mCm, where

the first value of m = imin is found using Equation 13, then the found nearest cluster is
crossed out and the search for the nearest cluster mean using Equation 13 is repeated
until c nearest cluster means are found. The motivation for this extension is that the
k closest observations found by an exhaustive search might have been partitioned into
different clusters. The choice of the parameter c therefore represents a trade-off between
speed and accuracy.

2.6 Implementation

The described algorithm was implemented and tested in Matlab 7.13 (R2011b). We
will briefly introduce the main concepts and functions of the implementation of the
algorithm in this section. We will focus only on the codes relevant to the algorithm
described in this chapter, as more programs were created to capture the data and
prepare the datasets. These codes are described in Appendix A and B.

We will start by introducing the implementation of the concept of observations. It
is implemented as a custom Matlab class Observation with the following fields:

• im pathname – full path to the image,

• dataset – name of the dataset to which the image belongs,

• position – location where the image was captured; structure with fields x and
y; values are in meters,

10
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• desc – response of the last hidden CNN layer, used as an image descriptor,

• rotation – artificial rotation angle in degrees, relative to the original captured
image (see Section 3.3.3),

• timestamp – identifier of the moment when the image was captured.

The sets of database and query observations have a form of arrays of Observations.
The core function is best matches(), which sorts the database observations in

ascending order by the dissimilarity measure, calculated with respect to a given query
observation. There is also a variant of this function, best matches clustering(),
which is used for the same purpose when using clustering. These functions are used in
the function find most similar obs(), which runs the computation of the sorted list
of closest observations for all query observations present in the query set.

To use clustering, it is necessary to first partition the set of database observations
using the function partition observations().

The functions nearest neighbor() and weighted knn() compute the estimation
of the position of all query observations using the respective method.

Numerous helper functions are used for handling datasets, e.g. filter rotations()

and filter subset(). All functions are described in the comments in their source
codes.

There are also scripts starting with experiment*, which are used to perform various
experiments described in this work. These scripts are used to plot figures to evaluate
the performance of the algorithm. Moreover, they include an interactive tool for visu-
alization of the position estimation, see Figure 3. A live example can be run from the
enclosed DVD.
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Figure 3: Example of the visualization of an experiment in Matlab. The left side
represenets the query, the right side the database. The blue star is the position of the
query observation. The magenta star represents the position of the database observation
physically closest to the query observation, the green star shows the position estimated
by the algorithm.
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3 Data acquisition

This chapter describes, how the data are recorded on the robot and how they are
further processed to form datasets for experiments. At first, we will describe the robot,
its components and their parameters. In the second part, we will explain how the robot
collects data from its sensors when moving around the environment. The final part of
this chapter is focused on the process of building datasets for experiments.

3.1 Mobile robot

The mobile robot used for the experiments (see Figure 4) is built on the iRobot
ATRV mini base. The operation of the robot is handled on the low level by a microcon-
troller running rFLEX. The user interface of the microcontroller consists of a monochro-
matic display and a single rotary/push button. The microcontroller serves as a bridge
between the low level peripherals, such as actuators, and the higher level of operation,
which is controlled by a PC running Linux Ubuntu with ROS [14]. The parameters of
the PC are described in Table 1.

The original robot was adjsuted by custom modifications, which will be now shortly
described. First of all, there is a large metal construction on the robot base, which holds
various sensors. On the top of the construction, there is a camera pointing upwards to
a paraboloidal reflector, see Figure 5. The camera captures 360◦ circular images, which
can be easily transformed to standard wide panoramic images. The specifications of
the camera are summarized in Table 2.

Another sensor, which is used in this work, is a laser rangefinder, see Table 3 for
specifications. It is captured in Figure 6. It emits laser rays in a single plane and
measures the distance, from which they are reflected. The laser rangefinder is used to
build a map and localize the robot within it. That way, the position data are acquired
for database images and as a ground truth also for query images.

The movement of the robot is controlled manually by the Logitech Cordless Rum-
blepad 2. The control device allows to operate independently the left-side and right-side
wheels, which enables also movements such as on-spot turning.

3.2 Capturing the data

The PC in the robot runs Ubuntu 12.04 with ROS hydro [14]. Most of the data cap-
turing tasks are performed within the ROS framework. The step-by-step procedure of
capturing the data is described in detail in Appendix A.

To briefly summarize the capturing process, several commands have to be run within
the ROS system to start the Rumblepad controller, laser rangefinder and the process
of building the map. After that, the position can be saved to a file using another ROS
component. One more program, this time outside of the ROS framework, is responsible
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Figure 4: ATRV mini robot used for the experiments.

Figure 5: Camera installed on the ATRV mini robot, used for capturing omnidirectional
images.
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Figure 6: Laser scanner installed on the ATRV mini robot.

for saving the images from the camera. The frequency of saving both the images and the
position can be set individually. The images and the corresponding position data are
recorded independently and they are then matched together using timestamps.

3.3 Building datasets

The recordings of images and positions from a single continuous robot run form
a dataset. In the following text, it will be described, how the images and positions
are converted into observations, as defined in Section 2.2. A step-by-step procedure for
building datasets including all the commands can be found in Appendix B.

Motherboard ASRock Z77E-ITX
CPU Intel Core i7 3770T, quad-core,

2.5 GHz, 8 MB L3 cache
GPU GeForce GTX 650, 1 GB DDR5
RAM 8 GB DDR3

Disk drive Samsung 840 series 120 GB SSD
OS Linux Ubuntu 12.04

Table 1: Specifications of the PC in the robot [15].
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Manufacturer Point Grey Research, Inc.
Model Chameleon CMLN-13S2C-CS

Interface USB 2.0
Resolution 1296× 964 px
Chroma Color
Sensor Sony ICX445, CCD, 1/3”

Table 2: Specifications of the camera used for capturing omnidirectional images [16].

Manufacturer Hokuyo Automatic Co., Ltd.
Model URG-04LX

Measuring distance 60 to 4095 mm
Accuracy 60 to 1000 mm: ±10 mm,

1000 to 4095 mm: 1 %
Angular range 240◦

Angular resolution 0.36◦

Scanning time 100 ms

Table 3: Specifications of the laser rangefinder used for building a map [17].

3.3.1 Converting 360◦ images to wide panoramic images

As briefly described in Section 3.1, the camera takes 360◦ circular images, which
have to be converted to wide panoramic images. An example of a 360◦ image and its
dewarped version is shown in Figure 7. The advantage of wide panoramic images is that
the rotation of the robot can be simulated by simply shifting the pixels in the horizontal
direction. The process of dewarping the 360◦ images using bilinear interpolation consists
of several steps:

1. The following parameters serve as an input for the dewarping function:

• xc, yc – coordinates of the center,

• ri – radius of the inner circle, which is between the panoramic image area and
the reflection of the paraboloidal reflector in the camera lens,

• ro – radius of the outer circle, which is between the panoramic image area and
the black cover.

All values are in pixels, the origin of the coordinate system is in the top left corner
of the image, the x-axis points to the right and the y-axis points down. Figure 8
shows the visualization of the aforementioned parameters.

2. Define the difference of radii:
rd = ro − ri . (14)
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3. Calculate the dimensions of the resulting wide panoramic image (h is height, w is
width, both values are in pixels):

h = rd , w = round (πrd) . (15)

4. For each pixel (xo, yo) of the output wide panoramic image, calculate the color c
in the following way:

r =
(h− y + 1)2

h
+ ri , (16)

θ = 2π
x

w
, (17)

xp = xc + r sin(θ) , yp = yc + r cos(θ) , (18)

xl = bxpc , yl = bypc , xh = xl + 1 , yh = yl + 1 , (19)

c1 = (yh − yp) · color(xl, yl) + (yp − yl) · color(xl, yh) , (20)

c2 = (yh − yp) · color(xh, yl) + (yp − yl) · color(xh, yh) , (21)

c = (xh − xp)c1 + (xp − xl)c2 , (22)

The function color(x, y) returns the color of the pixel at the position (x, y) in the
original 360◦ image. Equations 16–18 perform the conversion between the polar
and Carthesian coordinates, with an adaptation for equalization of the parabolic
curvature of the reflector. Equations 19–22 represent the bilinear interpolation.

3.3.2 Computing descriptors

The CNN descriptor, as defined in Section 2.3, is calculated for all dewarped images
using the Caffe toolbox [9]. Moreover, each panoramic image is rotated in 36 steps,
i.e., with a step size 10◦, and for all of these artificial rotations, the descriptors are
calculated. No preprocessing of the images such as histogram equalization or applying
any filters is done.

3.3.3 Generating observations

At this point, all resources are prepared, so that it is possible to generate obser-
vations. For each image, the matching (time-nearest) position is found. As stated in
the previous section, each original image yields 36 observations, one for each of the
rotation steps (10◦). The artificial rotation angle is also stored in the observation, to-
gether with the image (link to the image), descriptor and position. The set of generated
observations is saved and represents the dataset.
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a

b

c

d

Figure 7: Demonstration of dewarping of 360◦ images. An example of a circular 360◦

image, as captured by the camera on the robot, is shown in (a). This image is dewarped
to a wide panoramic image in the default position with the arm holding the paraboloidal
reflector at the sides of the image (b). Using the panoramic images, rotation can be
easily simulated by shifting, as can be seen in (c) – rotation by 20◦ and (d) – rotation
by 180◦.
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ro

ri

(xc, yc)

Figure 8: Schematic visualization of parameters for dewarping of 360◦ images. The
outer circle is depicted in blue color, the inner circle is depicted in green color, the
center is shown in red color.
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4 Experiments

After the data were captured by means described in Chapter 3, the visual local-
ization algorithm explained in Chapter 2 was tested in various experiments. First of
all, the datasets used in the experiments will be described. Then, we will define the
error measuring the accuracy of the position estimation. The description of individual
experiments will follow.

4.1 Datasets

In order to test the performance of the algorithm under various conditions, 17 data-
sets were captured in 3 different areas at the Faculty of Computer and Information
Science, University of Ljubljana, Slovenia. The datasets were captured under different
lighting conditions, with and without the presence of people and with different paths of
movement of the robot around the area to test the robustness of the proposed algorithm.

The data acquisition process can be controlled by several parameters. All the
datasets were captured with the following setting of the parameters:

• the position of the robot is saved every 200 ms,

• an image is captured every 1000 ms.

The way how to set these parameters in the code is described in Appendix A.
In the experiments, some parts or combinations of the datasets are used as the

database observations, other are used as the query observations. Therefore, the position
data are available also for the query observations and they serve as the ground truth
to evaluate the accuracy of the estimated position, as calculated by the algorithm.

4.1.1 Overview of areas

In advance to performing experiments, positions of all observations in all datasets
were transformed to a common coordinate frame with the origin at the robot’s ‘depot’
in the ViCoS laboratory1. All datasets were captured on the same floor of the same
building and this transformation therefore allows to have an overall view of the locality
of the captured data. Figure 9 shows all positions of images captured in 3 different
areas: Corridor, ViCoS lab and Coffee place. The areas will be described in more detail
in the following text.

1Visual Cognitive Systems laboratory, Faculty of Computer and Information Science, University of
Ljubljana, Slovenia. URL: http://www.vicos.si
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Figure 9: Visualization of areas with the positions of all captured images from all
datasets.

Dataset Number of images Lighting
corridor1 683 artificial
corridor2 653 artificial
corridor3 749 daylight

Table 4: Overview of the datasets in the Corridor area.

4.1.2 Corridor area

All datasets in the Corridor area have almost the same trajectory, see Figure 10.
The trajectory starts at the ‘depot’, continues through the small lab and across the
bridge to the main corridor of the second floor and spans to the right towards the
next bridge, where the robot turns and returns back to the ‘depot’. The length of the
trajectory is approx. 65 m. Two of the three datasets were captured in artificial light,
one in daylight – see Table 4 for details. Figure 11 shows examples of images from the
Corridor area.
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Figure 10: Visualization of positions in the Corridor area. The positions around (7,7)
were generated as a result of measurement errors.
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Figure 11: Examples of images in the Corridor area. Images (a), (b) and (c) are from
datasets captured in artificial light, while images (d), (e) and (f) were taken at the same
positions during daylight.
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Figure 12: Visualization of positions in the ViCoS lab area.

4.1.3 ViCoS lab area

Seven datasets were captured in the main ViCoS laboratory, which is an area with
many repetitive visual patterns and therefore it is considered rather difficult for vision-
based algorithms. The datasets cover an area of approx. 5 × 7 meters. List of the
datasets in this area can be found in Table 6. As can be seen in Figure 12, datasets
lab5, lab6 and lab7 contain an on-spot rotation. These datasets are intended to be used
in an experiment testing invariance of the algorithm to rotations. Examples of images
from an on-spot rotation dataset are shown in Figure 13 (d), (e) and (f).

Dataset Number of images Lighting
lab1 195 daylight
lab2 174 artificial
lab3 170 artificial
lab4 238 artificial
lab5 86 artificial
lab6 88 artificial
lab7 83 artificial

Table 5: Overview of the datasets in the ViCoS lab area.
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Figure 13: Examples of images in the ViCoS lab area. Image (a) was taken during
daylight, images (b) and (c) are from datasets captured in artificial light. Images (d),
(e) and (f) are from the dataset lab6, which features on-spot rotation.
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Figure 14: Visualization of positions in the Coffee place area.

4.1.4 Coffee place area

The last area, Coffee place, is a common resting place and workplace with a coffee
machine, situated at the end of the corridor in the second floor of the faculty building,
next to a balcony. Seven datasets were captured in this area, see Table 6 for the list of
them. Figure 14 shows the visualization of positions in this area. The datasets cover
an area of approx. 7× 9 meters.

The area features large uniform surfaces and repetitive patterns. The balcony is
separated from the coffee place by a glass wall, which has a very different appearance
during the day and night, see Figure 15.

4.2 Measuring the error

Let us define at this point the error that will be used throughout the description of
the experiments. The error is defined as the physical (Euclidean) distance between the
ground truth position of a query observation and its estimated position, as calculated
by the algorithm. It corresponds to Equation 2. A sample visualization of the error
can be seen e.g. in Figure 17 as the black connectors of the green and blue points.

The collection of errors for all query observations in an experiment will be often
visualized in the form of a box plot. Let us briefly describe the box plot, see Figure 16
for an example. The red line shows the median of the errors, i.e., the value that is in
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Figure 15: Examples of images in the Coffee place area. Images (a), (b) and (c) are
from datasets captured in artificial light, while images (d), (e) and (f) were taken at
the same positions during daylight.

Dataset Number of images Lighting
coffee1 759 artificial
coffee2 245 artificial
coffee3 143 artificial
coffee4 191 daylight
coffee5 137 daylight
coffee6 185 daylight
coffee7 260 daylight

Table 6: Overview of the datasets in the Coffee place area.
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the middle of the sorted list of errors. The blue box extends from the 25th to the 75th
percentile. The whiskers show the range of the errors that are not considered outliers.
Finally, the red crosses represent outliers [18].

4.3 Overall performance

In the first experiment, the general performance of the visual localization algorithm
is tested on a large database of images. The set of database and query images was
created in the following way. All 7 datasets from the Coffee place area were joined
together. In each 10 positions, the positions indexed 1–9 form the database and the
10th position becomes a query. In other words, 90 % of the datasets serve as the
database observations and the remaining 10 % serve as the query observations.

Let us remind that each position in the recorded dataset expands to 36 observations,
as the artificial rotations of an image are generated by shifting it with a step of 10◦.
The step of 20◦ is used in this experiment, i.e., every second rotation is left out. This
reduces the number of observations per position to 18.

The database contains 1728 positions and 31104 observations, the query set consists
of 192 observations. As in all experiments, only the observations in the original position,
i.e., without any artificial rotation, are used as the query observations. The number of
query positions and query observations is therefore equal.

4.3.1 Efficiency of the weighted k-NN algorithm

This experiment was utilized to test various aspects of the algorithm. Figure 16
shows, how the performance of the algorithm is dependent on the choice of k in the
weighted k-NN algorithm. It can be seen that the weighted k-NN algorithm outperforms
the simple nearest neighbor algorithm (k = 1) in the vast majority of cases. The best
results are achieved in this experiment for k = 10. Figures 17 and 18 show the position
estimation accuracy when using the nearest neighbor algorithm and the weighted k-NN
algorithm.

The positions in the dataset span over an area of approximately 6 × 9 meters.
Provided that, the mean of the errors 0.10 m, standard deviation 0.10 m and median
0.07 m achieved with the weighted k-NN algorithm with k = 10 can be considered
a very good result. Histogram of errors is shown in Figure 20. When using the simple
nearest neighbor method, the error mean is 0.15 m, standard deviation 0.13 m and
median 0.14 m. The histogram of errors for the simple nearest neighbor method is
shown in Figure 19. It has to be taken into account that even though the database is
very dense, there are basically no database observations at the exactly same positions
as the query observations, so the localization is very precise even when using the simple
nearest neighbor method.
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4.3.2 Speed-up using clustering

Another purpose of the overall experiment is to test clustering, which is predicted
to achieve algorithm speed-up while preserving the position estimation accuracy. The
reasonable number of clusters for a dataset with approx. 30000 observations is 100,
with an anticipated average of approx. 300 images per cluster. The clustering took 3
hours and 12 minutes, but the duration of the clustering process is strongly dependent
on the random initialization of clusters. The observations, being partitioned based on
the CNN descriptors, tend to preserve spatial locality within the clusters, i.e., clusters
contain observations physically close to each other, see Figure 21. It is an evidence of
that the descriptors of images taken at similar positions are similar.

Although the clustering takes a long time, it has to be done only once for a given
database of observations and the achieved improvement in time for estimating the posi-
tion of query observations is significant. To briefly summarize the clustering algorithm,
the nearest neighbor (or k nearest neighbors) of the query observation is searched first
among the cluster means and then within the closest cluster. Therefore, in this ex-
periment, instead of searching linearly through 30000 observations, it is necessary to
search through only approximately 100 + 300 observations when using clustering – 100
observations to find the closest cluster mean and 300 observations within the cluster.

As mentioned in Section 2.5.3, the clustering may take into account not only the
subset of database observations belonging to the cluster with the closest cluster mean,
but also more closest clusters. Figure 22 shows the accuracy of the algorithm for several
values of closest clusters taken into account. Table 7 presents the time complexity of the
position estimation algorithm for different number of closest clusters. The stated times
are for the nearest neighbor method, but using the weighted k-NN algorithm instead
does not change the times significantly for reasonable values of k. Please note that we
use prepared datasets with dewarped images and precomputed descriptors, so that the
time needed for dewarping the image (approx. 3.5 s using bilinear interpolation and
full resolution) and computing the CNN descriptor (approx. 100 ms) is not included in
these times.

The results show that the achieved speed-up is remarkable, the time needed for
position estimation dropped by two orders of magnitude, from 1.455 s per image without
clustering to 0.025 s per image with clustering using one closest cluster.

It is interesting to mention that the clustering may even bring a slight improvement
in the position estimation accuracy. For example, when using the nearest neighbor
method and clustering with c = 1 or c = 2 in this experiment, the average error
decreases by several millimeters in comparison to position estimation without clustering.
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Figure 16: Box plot of errors in the overall experiment for selected values of k in the
weighted k-NN algorithm. Clustering was not applied in this case.
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Figure 17: Visualization of distances of the estimated positions from the ground truth
positions of the query observations in the overall experiment. The used algorithm is
nearest neighbor, clustering was not applied.
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Figure 18: Visualization of distances of the estimated positions from the ground truth
positions of the query observations in the overall experiment. The used algorithm is
weighted k-NN with k = 10, clustering was not applied.
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Figure 19: Histogram of position estimation errors in the overall experiment. The used
algorithm is nearest neighbor, clustering was not applied.
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Figure 20: Histogram of position estimation errors in the overall experiment. The used
algorithm is weighted k-NN with k = 10, clustering was not applied.

28 30 32 34 36 38 40

0

1

2

3

4

5

6

7

Visualization of clusters

x (m)

y
 (

m
)

Figure 21: Examples of clusters in the overall experiment. Different colors represent
6 different clusters (out of the total of 100 clusters).
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Figure 22: Comparison of mean absolute errors in the overall experiment for different
number of used closest clusters c for selected values of k in the weighted k-NN algorithm.

# clusters 1 2 3 5 10 20 Without clustering
Time (s) 0.025 0.040 0.055 0.082 0.156 0.302 1.455

Table 7: Average time of position estimation per query observation in the overall ex-
periment for different number of closest clusters c taken into account. Nearest neighbor
method was used. Measured on a machine with CPU Intel Core i5-3317U @ 1.7 GHz
and 4 GB RAM.
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4.4 Invariance to rotation

It is desirable that the algorithm is invariant to rotations, as the robot may access
previously visited places in a different orientation. As described earlier, the process of
building datasets generates for each panoramic image 36 rotated (shifted) variants with
a step of 10◦, which become observations. These observations may be used all, but in
large image databases, it might be favorable to reduce the number of rotations to save
memory. It will be shown in two experiments, how the algorithm performs for different
steps of rotation.

As can be seen in Figure 7, the arm holding the paraboloidal reflector interferes with
the scene when applying artificial rotation to the image. It is remarkable to mention
that the presence of the arm in the panoramic images does not represent a significant
drawback to the performance of the algorithm.

4.4.1 On-spot turning

The first experiment on rotation was performed with the ViCoS lab datasets. The
last three datasets from this area (see Table 6) contain on-spot turns at three different
locations in the laboratory, as can be seen in Figure 12. Examples of images from one of
the on-spot turning datasets are shown in Figure 13 (d), (e) and (f). Since the datasets
contain around 80–90 images each, the average rotation step between the query images
is approximately 4–5◦.

Observations from the datasets lab2, lab3 and lab4 were joined together to form
the set of database observations, while the datasets lab5, lab6 and lab7 form a set of
query observations. The query observations were filtered so that only observations in
the default position (0◦ artificial rotation) remained. Measuring the performance of
the algorithm for different levels of filtering of the database observations (by differently
large steps of rotation) is the aim of this experiment.

Figure 23 shows the box plot capturing how precisely does the algorithm estimate
the positions of the query observations for different levels of filtering of the database
observations. Figure 24 shows the visualization of errors of position estimation when
using all 36 rotation steps, whereas Figure 25 shows the errors of position estimation
after filtering out all rotations but the default 0◦. It is obvious that the artificial
rotations improve the precision of position estimation significantly. In addition to the
figures, it is worth mentioning that the mean absolute error is 0.17 m using artificial
rotations (step 10◦) and 0.57 m without artificial rotations, which means that using
artificial rotations can reduce the average error more than 3×. Even when using only
4 rotations per image (step 90◦), the performance is still better by a large margin than
without using artificial rotations. The mean absolute error is in that case 0.23 m. This
experiment shows therefore also that it is possible to remove some of the rotations from
the database, when it is necessary to reduce the amount of the used memory, without
a significant impact on the performance. The weighted k-NN algorithm with k = 5 was
used in this experiment. Clustering was not applied.
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Figure 23: Box plot of errors for different rotation steps in the on-spot turning rotation
experiment. The rotation step of 360◦ represents that the artificial rotations were not
used, only the default 0◦ rotation.

4.4.2 Way there and back

In addition to the on-spot turning experiment, which is rather an artificially pre-
pared experiment to test the robustness of the algorithm to rotation, a more real-world
experiment was performed. The dataset corridor2 serves as the source of both the
database and query observations. This dataset covers a common foreseen scenario,
when the robot passes through some path there and then back (see Figure 10). The ob-
servations recorded on the way there (1–290) form a database, the observations recorded
on the way back (355–653) build up a query set. The observations close to the turn-
ing point (291–354) were discarded. As always, only the query observations with the
default 0◦ rotation were used.

Box plot of the position estimation errors can be seen in Figure 26. It is notable
that a significantly worse performance among the artificial rotation steps occurs in the
case of the 120◦ step. The most likely explanation is that the images captured on the
way there and on the way back differ by a 180◦ rotation, which is skipped by a too
large margin when using the 120◦ step. Figures 27 and 28 show the errors of position
estimation when using all 36 rotation steps and with only the default 0◦ rotation,
respectively. The mean absolute error is 0.24 m with artificial rotations (step 10◦) and
1.03 m without artificial rotations. These results again confirm that using artificial
rotations improves the precision of the position estimation significantly.

Like in the on-spot turning experiment, the weighted k-NN algorithm with k = 5
was used, also without clustering.
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Figure 24: Visualization of errors in the on-spot turning rotation experiment using
the weighted k-NN algorithm with k = 5 and a 10◦ rotation step for the database
observations.
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Figure 25: Visualization of errors in the on-spot turning rotation experiment using the
weighted k-NN algorithm with k = 5 and only the default 0◦ rotation, i.e., without any
artificial rotations of the database observations.
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Figure 26: Box plot of the errors for different rotation steps in the way there and back
rotation experiment. The rotation step of 360◦ represents that the artificial rotations
were not used, only the default 0◦ rotation.
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Figure 27: Visualization of errors in the way there and back rotation experiment using
the weighted k-NN algorithm with k = 5 and a 10◦ rotation step for the database
observations. Only every 5th query observation is shown to maintain the readability of
the image.
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Figure 28: Visualization of errors in the way there and back rotation experiment using
the weighted k-NN algorithm with k = 5 and only the default 0◦ rotation, i.e., without
any artificial rotations of the database observations. Only every 5th query observation
is shown to maintain the readability of the image.

4.5 Variable lighting conditions

The robot might enter previously visited areas at different times of a day and there-
fore under various lighting conditions. Two experiments were performed to test the
robustness of the algorithm to lighting changes, one in the Corridor area, another one
in the Coffee place area.

4.5.1 Corridor area

The first experiment was performed in the Corridor area. The union of the obser-
vations in the datasets corridor1 and corridor2, which were captured under artificial
light, serves as the database. These observations were filtered to achieve a 20◦ rotation
step. There are in total 24048 database observations at 1336 positions. The query set
is formed by taking all 0◦ observations from the corridor3 dataset, which was captured
in daylight. The query set contains 749 observations.

This experiment tests also the robustness of the algorithm to variable environment
and occlusion, as there are people passing by through the corridor during capturing the
sequence.

The query path is approximately 65 m long (there + back). The used algorithm
was the weighted k-NN with k = 5, clustering was not applied. The experiment yielded

38



4 EXPERIMENTS

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700
Histogram of errors

error (m)

n
u
m

b
e
r 

o
f 
q
u
e
ry

 i
m

a
g
e
s

Figure 29: Histogram of errors in the lighting conditions experiment in the Corridor
area using the weighted k-NN algorithm with k = 5 and a 20◦ rotation step for the
database observations.

errors with the mean of 0.85 m, standard deviation 1.53 m and median 0.36 m. The
histogram of errors is in Figure 29, the visualization of errors can be seen in Figure 30.
The vast majority of the errors is rather low, considering that the same images taken in
different lighting conditions show non-negligible differences, as can be seen in Figure 11
– it is in particular significant for the pair (c) and (f).

4.5.2 Coffee place area

The second experiment was performed in the Coffee place area. The datasets
coffee1–3 taken in artificial light represent the database, the datasets coffee4–7 cap-
tured at daylight form the query set. The database observations were filtered to achieve
a 20◦ rotation step, the query observations are only these with the 0◦ artificial rota-
tion. There are in total 20646 database observations at 1147 positions. The query set
contains 773 observations.

The weighted k-NN algorithm with k = 5 and without clustering was used. The
resulting mean absolute error on the area of 7× 9 m is 1.64 m, with standard deviation
1.97 m and median 0.60 m. These errors are rather large, but the histogram in Figure
31 shows that the significant majority of the errors is below 1 m. If we have a look
at Figure 32, we can see that most of the incorrectly localized query observations are
from the right side of the area. This side separates the corridor from the balcony
by a glass wall and it can be seen in Figure 15 on the pair of images (a), (d) that
the difference in appearance is significant. At night, the scene is mirroring in the glass
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Figure 30: Visualization of errors in the lighting conditions experiment in the Corridor
area using the weighted k-NN algorithm with k = 5 and a 20◦ rotation step for the
database observations. Only every 10th query observation is shown to maintain the
readability of the image.

under artificial light, whereas during the day, the glass looks as a uniform white surface.
Such a significant difference in appearance is behind the capabilities of the algorithm.

4.6 Database density

The database of images may become very large and it might be desirable to reduce
its size. One of the options how to save memory is to reduce the number of artificial
rotations per position, which was discussed in Section 4.4. Another way, which will be
tested in this experiment, is to reduce the number of positions. This experiment shows,
how the reduction of the number of positions affects the position estimation accuracy.

The configuration of the database and query set was re-used from the way there
and back experiment on rotations, described in Section 4.4.2. The rotation step for the
database observations is fixed to 20◦.

In this experiment, various portions of the database are used. The positions are
filtered as a whole, with all observations belonging to them. In other words, if an
observation is removed from the database, then all the other observations with different
artificial rotations originating from the same position are removed too. The results of
the experiment when keeping only every s-th database position are summarized in the
box plot in Figure 33. The visualization of the errors is shown in Figure 34 for using all
database observations (s = 1) and in Figure 35 for using only observations belonging
to every 20th database position.
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Figure 31: Histogram of errors in the lighting conditions experiment in the Coffee place
area using the weighted k-NN algorithm with k = 5 and a 20◦ rotation step for the
database observations.
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Figure 32: Visualization of errors in the lighting conditions experiment in the Coffee
place area using the weighted k-NN algorithm with k = 5 and a 20◦ rotation step for
the database observations. Only every 10th query observation is shown to maintain the
readability of the image.
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Figure 33: Box plot of errors in the database density experiment using only observations
belonging to every s-th database position.

The database that we are using is obviously unnecesarilly dense, as the precision of
the position estimation is still almost the same when using only every 5th position. The
memory can be therefore saved by deleting up to 4/5 of the database. It is necessary to
mention that this holds only for using the weighted k-NN algorithm, as leaving out the
positions would have more considerable effect on the simple nearest neighbor algorithm.

4.7 Place recognition

The aim of this experiment is to test, how well does the algorithm identify the rough
location of the robot in terms of areas. We are therefore not interested too much in the
position estimation accuracy in that case, but rather in the classification of the area.
The set of database observations was constructed by joining the datasets corridor1,
lab2 and coffee4, each from a different area. The set of query observations consists
of another three datasets, corridor2, lab3 and coffee5, again one from each area. The
database observations were filtered to achieve the rotation step of 20◦. Only the query
observations with the default 0◦ rotation were used. This yields the total of 18864
database observations at 1048 positions and 960 query observations in this experiment.

The experiment was run with the weighted k-NN algorithm (k = 5) and without
clustering. Figure 36 shows the visualization of the errors. It can be seen that the
accuracy of the place recognition is 100 %, all images were classified to the correct area.
It can be also seen that the position estimation accuracy is the worst in the ViCoS lab
area. It is probably the most difficult one among the captured areas, as it contains
many similarly looking structures.

42



4 EXPERIMENTS

0 2 4 6 8 10 12 14 16 18

−2

−1

0

1

2

3

4

5

6

7

8

Errors

x (m)

y
 (

m
)

 

 

database positions

query positions

position estimates

Figure 34: Visualization of errors in the database density experiment using all database
observations.
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Figure 35: Visualization of errors in the database density experiment using only obser-
vations belonging to every 20th database position.
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Figure 36: Visualization of errors in the place recognition experiment using the weighted
k-NN algorithm with k = 5 and a 20◦ rotation step for the database observations.
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5 Conclusion

A method for vision-based localization using omnidirectional images and convolu-
tional neural networks was proposed in this work and tested in several experiments.
A total of 17 datasets were captured in 3 different areas and then combined to database
and query sets in various scenarios, testing different capabilities of the proposed algo-
rithm. The concept of observations was introduced as a wrapper for an image with its
position and other relevant parameters. The position of a query image is estimated by
making use of descriptors computed by a convolutional neural network. The CNN ap-
proach proved to be suitable and powerful for the vision-based robot localization task,
as expected based on the results from the previous and related work.

The proposed method was tested on a mobile robot in the Visual Cognitive Systems
laboratory at the Faculty of Computer and Information Science at the University of
Ljubljana. The existing framework featuring robot control and mapping, implemented
mainly in ROS by the members of the ViCoS laboratory, was extended in this work by
adding functionality for saving the position of the robot using laser rangefinder and for
saving 360◦ images from the camera.

A collection of Matlab functions and scripts was created to process the recorded
data, build a database of observations and carry out the position estimation task in
various experiments.

5.1 Summary of results

The basic version of the position estimation algorithm consists in finding the nearest
neighbor of the query image by minimizing the dissimilarity measure, defined as the
square of the Euclidean distance between the CNN descriptors. The dissimilarity mea-
sure is minimized over all database observations by linearly iterating through the whole
database. Even the simple nearest neighbor method offers precise localization, which
can be demonstrated on the result of the experiment testing the overall performance
of the algorithm. Provided that the observations in that experiment cover an area of
approx. 6×9 meters, the average position estimation error of 0.15 m can be considered
a good result, moreover taking into account also possible inaccuracies of the measured
positions in the order of centimeters.

Two extensions of the nearest neighbor method were implemented and both proved
to be beneficial. One extension consists in using more observations with the most similar
descriptors by the means of the weighted k-nearest neighbor method. A significant
improvement in position estimation was achieved – in the overall experiment, the mean
absolute error decreased by 33 % and the median of the errors decreased by 50 % when
using the weighted k-NN algorithm with k = 10, as compared to the simple nearest
neighbor method.

Another extension that was implemented and tested is clustering of database obser-
vations. Although the partitioning takes a long time (several hours for a database size
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of the order of 104 observations), it has to be done only once and the speed-up of the
position estimation is significant. The results of the overall experiment show that the
nearest neighbor method is more than 50× faster when using clustering, considering
only one closest cluster to be searched through when looking up the nearest neighbor.

The database of recorded images is enriched by rotating (shifting) the images to
simulate different orientations of the robot. Although this process takes additional time
in the dataset building stage, it proved to be very useful, as the mean absolute error
decreased by more than 70 % in both performed experiments when using 36 rotations
of each database image (step 10◦) in comparison to using only images in the default
orientation, without artificial rotations.

The experiments also showed that the memory used by the database can be reduced
substantially by leaving out some of the artificial rotations or even whole positions
without a significant influence on the position estimation.

The achieved results of the experiment on variable lighting conditions are considered
satisfactory, provided that the appearance of many omnidirectional images taken at the
same positions at different lighting conditions differs significantly.

5.2 Future work

The implementation of the algorithm is focused on performing experiments and
visualization of results. For that reason, several computations could be avoided in
a real application, which would decrease the time needed for the position estimation.
For instance, significant speed-up could be achieved by dewarping the 360◦ images
directly to the size used by the convolutional neural network, which was not desirable
in our case in order to build high-resolution datasets that can be used beyond this work.

Since the implemented framework using the concept of observations is quite general,
it could be easily extended to use other descriptors and methods. It would be convenient
to compare the results of the algorithm on the same datasets with other approaches in
the future.

The algorithm estimates the position of the robot as the x, y coordinates. A possible
extension would be to estimate also the orientation of the robot. This could be done by
modifying the dataset recording process to save the real-world orientation of the robot
together with the x, y coordinates. The concept of observations is already designed
to store the information about the orientation of the robot. The rotation angle, which
is currently used only for artificial rotations and is set to 0◦ for the original recorded
images, could be set to the actual rotation of the robot. The artificial rotation angles
would be then set by adding the step (e.g. 10◦) to the real-world orientation.

The datasets recorded by the mobile robot were captured so far only indoors. Al-
though the framework is prepared to handle outdoor scenes, the algorithm could not be
tested on outdoor sequences in this work due to technical issues with the GPS receiver.
It would be convenient to capture also outdoor datasets to confirm our assumption
that the proposed algorithm should work well both on images captured indoors and
outdoors.
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A Data capturing manual

In order to make the created framework for capturing images available also to other
users of the robot, the step-by-step procedure of capturing the data from the robot’s
sensors will be described in the following text.

All the commands are supposed to be run in a standard Linux shell console.

A.1 Robot control

First of all, roscore has to be run to start the ROS framework services. After that,
we can launch the main operation controller atrv.launch by the command
roslaunch atrv mini ros atrv.launch

This launch file runs the Rumblepad controller and enables us to drive the robot.

A.2 Position

Next, we launch the gmapping hokuyo.launch file by running the command
roslaunch atrv mini ros gmapping hokuyo.launch

This launch file runs several nodes. It operates the laser scanner, runs the ROS visual-
ization tool RViz, which displays the gradually built map, and runs the gmapping node
[19]. Altogether, this launch file is responsible for building a 2D map of the explored
area by reading the odometry data from the robot’s actuators and correcting them by
the data received from the laser scanner.

After that, we can run the laser pose saver node to save the position of the robot.
The node is run by its launch file:
roslaunch atrv mini ros laser pose saver.launch

This node calculates the position of the robot using the tf messages produced by the
gmapping node. The output text file has each row in the format
[timestamp];[x];[y]

The floating point values x, y represent the position and they are in meters. There
are two parameters that can be set in the laser pose saver.launch file: file path,
which is the full path to the file, into which the robot position is saved, and skip rate,
which is an integer n specifying that only every n-th relevant transformation message
published on the /tf topic is processed and the calculated position is saved.

A.3 Images

The camera installed on the robot is not compatible with the ROS system, in par-
ticular with the camera1394 package, so it was necessary to build a standalone program
to capture images. The program TimestampImages is implemented in C++ using the
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FlyCapture SDK that comes with the Point Grey cameras [20]. The program has the
following synopsis:
sudo ./TimestampImages [target directory] [delay between images in ms]

The program saves the images named by the timestamp when they were captured, i.e.,
[seconds].[nanoseconds].jpg.

A.4 Parameters used in experiments

The two parameters controlling the data acquisition process were set in all experi-
ments performed in this work in the following way:
• the skip rate parameter in the laser pose saver.launch file (Section A.2) was

set to 2, i.e., position of the robot is saved every 200 ms,

• the delay parameter of the TimestampImages image capturing program (Section
A.3) was set to 935, which means that an image is captured every 1000 ms (it
was experimentally tested that the image saving process takes 65 ms).
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B Dataset building manual

The following text describes the step-by-step procedure of building datasets from
the captured data.

The data from sensors are by default saved into subdirectories of a directory named
as [year][month][day] [hour][minute], which represents one dataset. Images pro-
duced by the program TimestampImages are saved to the img subdirectory, positions
of the robot are saved to a text file in the laserPose subdirectory.

B.1 Converting 360◦ images to wide panoramic images

First of all, the 360◦ circular images have to be converted to panoramic images. The
process of dewarping images is performed by the following two Matlab scripts, which
have to be run for each dataset:

1. align circles.m – an interactive tool for calibration, i.e., selection of the center
and radii of the inner and outer circles limiting the 360◦ image; it saves the
alignment data to the file alignment.mat in the img subfolder of the dataset,

2. dewarp folder.m – reads the alignment data from the file alignment.mat and
transforms the 360◦ images from the img subfolder to wide panoramic images and
saves them to the pano subfolder with the same filenames.

B.2 Computing descriptors

The descriptors are calculated for all images in the dataset using the Matlab function
describe allrot(). Each panoramic image is rotated in 36 steps, i.e., with a step size
10◦, and for all of these rotations, the descriptors are calculated. This function creates
in the pano subfolder a file desc.mat with the descriptors of all images present in the
pano subfolder.

B.3 Generating observations

Everything is prepared now to generate observations. Observations are from the
implementation point of view instances of a custom Matlab class Observation.

The Matlab script save observations.m finds for each image in the pano subfolder
the matching (time-nearest) position in the text file with the positions present in the
laserPose subfolder and fills in all the fields of the current observation (im pathname,
dataset, position, desc, rotation and timestamp). Each image yields 36 observa-
tions, one for each of the rotation steps (10◦), which is specified in the field rotation.
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The timestamp is the timestamp of the image (not of the position). Both the timestamp
and the dataset fields could be extracted from the field im pathname, yet it is advan-
tageous to have them stored separately for performance reasons.

The script save observations.m produces two arrays, observations containing all
generated instances of the Observation class, and positions, a structure with fields
x, y and timestamp. The latter is used only for faster and easier visualization of results
and it is not necessary for the position estimation algorithm itself. Both arrays are
saved to the file observations.mat in the pano subfolder.

B.4 Captured datasets

The datasets were renamed in this work to improve readability. The matching
between the names of the datasets used in this work and the names used in the code is
presented in Table 8.

Name in the code Name in the text

20150313 2012 corridor1
20150313 2032 corridor2
20150318 0902 corridor3

20150326 0735 lab1
20150327 2013 lab2
20150327 2017 lab3
20150327 2022 lab4
20150327 2025 lab5
20150327 2028 lab6
20150327 2031 lab7

20150326 1852 coffee1
20150326 1858 coffee2
20150326 1903 coffee3
20150327 1712 coffee4
20150327 1715 coffee5
20150327 1720 coffee6
20150327 1725 coffee7

Table 8: Matching between the names of the datasets used in this work and the names
used in the code.
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C Contents of the enclosed DVD

The DVD contains 4 folders:

• matlab – Matlab codes – implementation of the algorithm,

• text – the text of this thesis – PDF and LaTeX source files,

• capturing – contribution to the framework developed in the ViCoS laboratory
for data capturing on the ATRV mini robot – recording of images and positions,

• data – all datasets used in this work, containing original 360◦ images, dewarped
images, ground truth positions and computed CNN descriptors.
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in urban environments using a panoramic GIST descriptor. IEEE Transactions on
Robotics, 29(1):146–160, February 2013.

[5] Zetao Chen, Obadiah Lam, Adam Jacobson, and Michael Milford. Convolutional
neural network-based place recognition. CoRR, abs/1411.1509, 2014.
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