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Abstrakt

Bakalá̌rská práce se zamě̌ruje na plánováńı cesty robotického voźıtka ve
známém prosťred́ı. Plánovaná cesta je určena pro robota aproximovaného
bodem, pop̌ŕıpadě kruhem. Ćılem je naj́ıt efektivńı cestu s ohledem na ener-
getickou náročnost a jej́ı bezpečnost, což má minimalizovat možnost koliźı s
p̌rekážkami. Nalezená cesta má být hladká, aby byl zajǐstěn rychlý a plynulý
pohyb robota. Mapa prosťred́ı je jeho rovinným zjednodušeńım a je reprezen-
tována polygonálně. Hlavńım ćılem této práce je navrhnout a implementovat
algoritmus využ́ıvaj́ıćı Voroného diagram pro nalezeńı a optimalizaci cesty a
otestovat jej na několika mapách r̊uzného charakteru. Dosažené výsledky
jsou prezentovány.

Abstract

This work is focused on the planning trajectory of a robotic vehicle at already
known environment. Planned path is assigned to the robot approximated by
a point or a circle. The goal is to find the most optimal path at its energy
consumption and safetiness to eliminate possible colisions. The path must
be smooth to ensure fast and fluent robot movement. For representation
of the environment is used the set of polygonal obstacles in the plane. The
main goal of this thesis is to design and implement the algorithm taking in
advantage the Voronoi diagram for purpose of path finding and its optimiza-
tion then test it on several maps of different character. Finally, the achieved
results are presented.
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Smooth trajectory generation in 2D

Chapter 1

Introduction

The problem of path planning is widely spread into several domains. From planning the
most optimal trajectory of a crane carrying some cargo through planning trajectory of a robotic
manipulator in a factory assembling any kind of parts to finding trajectory of a robotic vehicle
which is the major goal of this thesis. There are generally offering a lot of possible trajectories
connecting requested points, but most of that trajectories hardly fulfils the demanding criteria.
These criterias come principally from the energy costs or time estimation minimizing and from
inaccuracies produced by the control system, inexact measurements or infiltrated from external
influences which could inflict collisions in case of the trajectory leaded closely to the obstacles.

Several techniques dealing with this problem are described in [Escande et al., 2014] and
[Gilbert and Johnson, 1985]. Generally it is possible to plan a path in the 3D space representing
the real world or a part of some environment. It is known that planning is the NP-HARD
problem in general. Due to this fact a number of methods was already invented working with
some sort of environment simplification, see [LaValle, 2006]. We could mention two geometric
methods using representation of the location as the set of polygonal obstacles in the plane.

First of them called Visibility graph means the endpoints of a polygon‘s edges as nodes in the
graph i.e. two nodes are connected with an edge if they can be connected with a straight line
that does not intersects obstacles. Then with collaboration of any graph shortest path finding
algorithm the path could be planned here. The path is passed through vertices of obstacles and
it could cause collisions with them. Also it could be easily imagined that this way will never be
the most effective path if we are looking on its energy consumption.

The second widely used approach is to divide the plane with Voronoi diagrams and then plan
on the graph built from the Voronoi edges and vertices. It guarantees the maximum distance
from the obstacles, but also the path will not be the most optimal at its energy consumption
and will have a lot of sharp corners which is not suitable for the nice, fast and fluent robot
movement.

The plane can be divided into the grid of equivalent parts and search the shortest path there
which would give the smoother and more efficient path to ensure smooth trajectories the grid
must be divided fine enough and it brings the big memory consumption.

1/36



Smooth trajectory generation in 2D

On the other hand, the path planing method described in [Gilbert and Johnson, 1985] uses
the distance functions to compute the distance to every obstacle plus proceeding function of
the rotation. This gives the smooth path solution continuous at C2 and effective to the energy
consumption but if the environment is complex with a large number of obstacles it could be
hard to compute.

The problem of smooth curves generation belongs to path planning at already known en-
viroment which is relevant, because planning in an undiscovered enviroment is very different.
This thesis works with a planar simplification of some real enviroment so it is the most useful
for mobile robots. The approach implemented in this thesis should restrict the evaluation of the
distance only to the closest obstacles with taking the Voronoi graph in advantage.

The paper is organised as follows. The theoretical foundations and mathematical theory
is presented in Chapter 2. The methods of implementation and its problems are described in
Chapter 3. The experiments performed with variation of setting, its comparison and conclusion
are in Chapter 4.

2/36
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Chapter 2

Algorithm

In this chapter the whole process will be described first followed by explanation of the theory
underlying each part of the process. The theory (mathematical theory) and idea introduced here
profits from the diploma thesis [Kulich, 1996].

The enviroment is described by a plane containing polygonal obstacles. This is all represented
by the set of points and line segments and surrounded by a boundary represented the same way.
The robot actual position is assigned into the beginning point and the desired location where
the path is planned is assigned into the end point. A robot control system requires the smooth1

C2 curve expressed as the parametric formula depending on its time.

Algorithm 1: Whole process

input : the set of source segments and points
actual position, desired position

output: path expressed as the parametric formula
1 Build Voronoi diagram (VD);
2 Find the shortest path through VD edges with A* algorithm;
3 Simplify the found path;
4 Create initial B-Spline;
5 Optimize spline;

An overview of the process is described in Algorithm 1. First the plane is partitioned into
regions applying Voronoi diagram computational geometry concept onto an input set of elements
(line 1). The robot begins searching for the shortest path between the initial and desired position
through the graph constructed from Voronoi diagram edges. For that purpose a heuristic A star
algorithm is employed (line 2). It can often happen that the generated path contains a lot of
stages which could be aproximated without any loose of information by one straight line, so
they are merged by a simplification algorithm (line 3). Then the first draft of a path represented

1C2 differentability class i.e. the derivatives f ‘ and f“ exist and are continuous.

3/36
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Figure 2.1: Process overview
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2.1. VORONOI DIAGRAM Smooth trajectory generation in 2D

by a cubic B-spline is generated (line 4). Finally, the drafted spline is optimized with regard to
a path length and distance from obstacles (line 5).

The next sections concern about the particular steps of the algorithm parts in detail and
are formed in the same order as the algorithm goes. Mathematical formulas and necessary
definitions will be introduced together with their theoretical basement.

2.1 Voronoi diagram

Voronoi diagram (VD) presented in [de Berg et al., 1997] is the geometry concept that
divides a given space Rn into parts called cells. This division depends on given objects - source
elements placed into space. Every cell represents a bounded area where all its points are closer
to one corresponding input element than to all the others input elements, which is useful for
path planning at least for two reasons. If the path is planned through edges of Voronoi diagram,
then the found path is at every time in ideal position in consideration to obstacles because
the distance to the nearest obstacle is maximal. Moreover if the cell in which the point lays is
known, the closest source element is obtained easily. This helps with evaluating a distance to
the nearest obstacle. Rigorous definition follows:

Definition 1 Let O = {O1, O2, ..., On} be the set of source elements laying in Rn. For each
two points oi, oj ∈ O; oi 6= oj; i, j ∈ 1, 2, ..., n define

B(oi, oj) = {z ∈ Rn; d(oi, z) = d(oj, z)}
D(oi, oj) = {z ∈ Rn; d(oi, z) < d(oj, z)}
D(oj, oi) = {z ∈ Rn; d(oi, z) > d(oj, z)}

Then the Voronoi cell ν(oi, O) of point oi in set O is defined as intersection of sets:

ν(oi, O) =
⋂

oj∈O\oi

D(oi, oj)

and Voronoi diagram V (O) is defined as union of the boundaries of all the cells in O. Because
Voronoi cells are open sets it is:

V (O) = Rn \
( ⋃
oi∈O

ν(oi, O)

)

5/36



2.1. VORONOI DIAGRAM Smooth trajectory generation in 2D

Figure 2.2: Map divided by Voronoi diagram

In this work the VD will be needed only in R2 plane, so the input elements are in this case
lines and points because they are sufficient to represent planar simplification of obstacles when
formed as polygons. The Voronoi cells are then also polygons moreover convex polygons. In the
following figure 2.2 is shown the example division of the given environment by the VD.

The algoriths ensuring the construction of the VD exist in more varians and they vary in its
time complexity or dimensions of the divided space. Two of the algorithms are described below.

Divide and conquer The given set of source elements is recursively divided by a line into two
roughly same sized subsets until there is a set with three points where it is easy to determine
Voronoi diagram. Then by backtracing the parts of the diagram are merged. The algorithm‘s
running time is O(n · log(n)). This method has been presented at [Shamos and Hoey, 1975].

A Sweepline algorithm The sweepline principle sweeps a horizontal line through the plane
and notes the temporary bound intersections. The sweepline is a line functioning as the refer-
ence element to count a temporary bound with the input elements. This temporary bound is
composed of pieces of parabolas. It simply successively builds a Voronoi diagram in the part of
the plane between beginning position and actual position of sweepline. More could be found at
[Fortune, 1986].

With a rising distance between a source element to the sweepline the corresponding parabola

6/36
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is gaped more. Voronoi edges arise where two of parabolas intersects and Voronoi vertex arises
where at least three of them intersect. The algorithm‘s running time is also O(n · log(n)).

2.2 Path planning

Now the plane is divided by a VD presented at previous section and as the initial and desired
positions have been obtained at the beginning of the process, it is needed to connect these with
the shortest path. Once the plane was divided into Voronoi regions its edges could be used as a
graph well covering the whole plane so the path connecting given positions can be searched by
a planning algorith on a graph. Though positions mostly don‘t lay on graph edges or vertices,
they could be connected with a graph structure by adding an edge between them and their
closest vertice in the graph. The fact that this graph well covers the plane comes out from
definition of the Voronoi diagram it is obvious that there must be graph edges in the middle of
distance between every two source elements.

A star presented in [Delling et al., 2009] is the best algorithm for this purpose as the well
known graph algorithm focused on finding optimal ways. This algorithm is based on greedy
Dijkstra algorithm with addition of heuristic computation. The search is guided by a heuristic
function h(v), which estimates the cost from the vertex v to the goal vertex. In this case,
nodes represents vertices, so heuristic function is definned as h(v) = d(v, goal). The algorithm
uses two sets datastructures named openset and closedset. Openset stores nodes prepared to
be processed and closedset contains nodes already processed. The algorithm iterates repetitely
while the openset contains some nodes. At the beginning of every iteration the node from the
openset is choosen. This choice of the node v depends on the best value of f(v) = h(v)+ g(v)
where g(v) is cost from start to the v along the best known path. The pseudocode is introduced
in Algorithm 2.

2.2.1 Simplification

Simplification is the process of merging the edges of a polyline which is used to decreace
this count of segments then the whole dimension which mainly affects time consumption of
that process. In our case this polyline represents a path found by the graph algorithm and for
optimization.

Many approaches solving this task were developed and use wide representation of a sim-
plification ratio. For the best suiting point-to-edge distance tolerance it has been choosen the
Ramer-Douglas-Peucker algorithm. This algorithm has a worst case running time of O(n2) but
the average running time is O(n.log(n)). The principle of this algorithm is that firstly there is
only one edge from the beginning to the end point. Then the algorithm counts a distance to
each point between these points. The shortest perpendicular distance from point to the edge
is meant by distance. The furthest point which has bigger distance than the tolerance is used
as a division point of this edge. All points having a smaller distance than defined tolerance are

7/36
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thrown, so this causes that both corresponding edges of the thrown point are merged to one
connecting their outlying endpoints. So now there are two edges the both beginning at a new
division point and each of them ends at one of the endpoints. If there are some control points
remained between endpoints, whole algorithm is called recursively to those edges.

2.3 Coons cubic spline

Spline is a polynomial function piecewise definned. The cubic B-spline will be presented at
this section, coordinates of the points laying on the curve are counted from polynomials defined
here and its piece shape unequivocally outgoes from position of points figurating at polynomials
and called control points. The parts of the curve are called segments and are connected and
forms whole curve.

Splines are widely used and the best known from the computer graphics. For the final smooth
path representing it is the best way of representation at least because Coons cubic spline is
C2 continuous function. Next advantage is low memory consumption because for storing a
whole curve only several points called control points are needed. There are always exactly four
points for one segment of a spline and by adding a next point a new segment arises, which is
continuously connected to the previous one. Every change of control points is local, it means
that a change affects only segments defined by these points so maximally at both directions of
curve. Every segment lays within a convex set defined by its corresponding control points and
thus the whole curve lays within a convex set determined by the whole set of the control points.
The definition of the Coons cubic spline presented in [Shikin and Plis, 1995] will be written in
the following part.

Definition 2 Let the ~P = {P0, P1, ..., Pn} be (n+ 1) points in R2;n ≥ 3. Then the Coons
cubic spline segment is

Si(~P , t) =
1

6

3∑
j=0

Pj+iCj(t), for t ∈ 〈0, 1〉 , (2.1)

where Pi are above definned Coons cubic control points and Ci are Coons cubic polynomials

C0 (t) = (1− t)3 ,
C1(t) = 3t3 − 6t2 + 4,

C2(t) = −3t3 + 3t2 + 3t+ 1,

C3(t) = t3.

The whole spline curve is definned as:

8/36



2.3. COONS CUBIC SPLINE Smooth trajectory generation in 2D

C(~P , t) = Sbtc

(
~P , t− btc

)
; t ∈ 〈0, n− 2〉 , where b·c isthefloorfunction

So once a spline is created i.e. its control points are generated it is easy to determine an
arbitary point on the curve by simply specifying the desired time t into Equation 2.1 . This also
gives the possibility of the representation a path curve spline as the vector depending on the
time.

2.3.1 Manipulation

The spline curve will be used for the smooth aproximation of the path represented as the
sequence of the line segments found by the A star algorithm and simplified. In this section the
formulas helpful for the approximation will be introduced. Approximation is the initial shape of
a smooth path which will be at the next step formed into a final shape by moving the control
points.

The first step is to place the beginning and the endpoint of the path curve at its position. By
instating additional poins from the time interval 〈0, 1〉 (where the Coons segment is definned)
into Equation 2.2 statements which will be helpful when building an initial draft spline are
obtained. By placing first three control points on the same coordinates it is possible to initiate
the whole curve here, the same idea is used for the endpoint.

Si(0) =
P0 + 4P1 + P2

6

Si(1) =
P1 + 4P2 + P3

6

The aproximation of the polygonal path is done by placing control points near the middle of
each line segment alternately to its left and right side.

When the spline is shaped at the next step, which involves moving control points, it is
necessary to hold the beginning and the endpoint of the spline at the same coordinates. So all
the control points could be moved except the ultra points, their coordinates are counted from
following statments for holding the beginning and endpoind on the same position.

P0 =
6S0(0)− 4P1 − P2

6

Pn =
6Sn(1)− 4Pn−1 − Pn−2

6

9/36



2.3. COONS CUBIC SPLINE Smooth trajectory generation in 2D

2.3.2 Intersection with an edge

In the next step - shaping the curve, it will be necessary to know the Voronoi cells which the
curve passes through. Knowing the intersection points of the curve with the Voronoi diagram
edges will be helpful in findin such a cells. So in this section we will concern about theory of
computing the intersections of a coons segment with a line segment (edge).

The mathematical parametrical representation of the edge is:

Ei : x = X + s.dx; s ∈ 〈0, 1〉 ,
y = Y + s.dy. (2.2)

Then we got the system of equations by instating the Equation 2.1 into x, y from the
Equation 2.2

Si,x

(
~P , t
)
= X + s.dx; t, s ∈ 〈0, 1〉 ,

Si,y

(
~P , t
)
= Y + s.dy. (2.3)

The intersection of a cubic spline part with a line segment could be solved as a cubic equation
with Cardans formulas after the following adjustment. By substituting to the Equation 2.3 we
get four coefficients of cubic formula equations

at3 + bt2 + ct+ d = 0,

where

a = (3 (P2,x − P1,x) + P0,x − P3,x) dy − (3(P2,y − P1,y) + P0,y − P3,y)dx

b = 3((2P1,x − P0,x − P2,x)dy − (2P1,y − P0,y − P2,y)dx)

c = 3((P0,x − P2,x)dy − (P0,y − P2,y)dx)

d = (6X − P2,x − P0,x − 4P1,x)dy − (6Y − P2,y − P0,y − 4P1,y)dx

Solving this equation generally gives six roots, where we are interested only at real roots

t1, t2, t3 ← Real{t1, t2, t3, t4, t5, t6}

At first, we can throw all solutions where time doesn‘t lay in the interval 〈0, 1〉. Than it is
needed to check whether s also lays in this interval. So by adding together both lines of formula
2.3 and adjusting them for getting s we got
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s =
Cx

(
~P , t
)
+ Cy

(
~P , t
)
− (X + Y )

dx+ dy

The problem occours with dividing by zero when dx
ε
= −dy.4 In this case s will be checked

just for one dimension of coordinates according to the following formula which comes also from
the Equation 2.3.

s =
Cx

(
~P , t
)
−X

dx

Due to the fact that we obtained solutions which even didn’t lie on an intersectioned edge,
it turned out there were still some numerical inacuracies. This issue was fully fixed by matching
coordinates obtained from Coons cubic definition with coordinates obtained by the formula
adjusted from the parametric formula of an edge and testing its equality.

Cx

(
~P , t
)

ε
= X + dx.s

Cy

(
~P , t
)

ε
= Y + dy.s (2.4)

2.4 Optimization

Generally, optimization aims to find such a set of input variables for which some cost function
is evaluated as minimal or maximal and this could be well fitted for our current problem. Our
goal is to find the shape of a spline fullfiling requirements for safety of path and its shortest
path. These requirements are already defined by some mathematical formula called Penalty
function which gives the best solution exactly at the minima. Penalty function will be more
specifically shown in 2.4.1. The input are spline control points coordinates which represent input
variables.

Spline shape is based totally on n control points. As it was described at 2.3.1 the first and
last of them must be reserved for placing endpoints to correct coordinates. Now there are n−2
points entering into the optimization process. The number of points multiplied by the number
of coordinates at plane gives dimension of optimization 2 ∗ (n− 2)

4By equivalency relation here it is meant
(
x

ε
= y
)
⇐⇒ ((x+ ε >= y) and (x− ε <= y)) This epsilon

equivalence is because of numerical inaccuracies
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2.4.1 Penalty function

The penalty function gives global information about safetyness and energy consumption
through the whole curve. Given these requirements the function could be also divided into two
subfunctions each of them dealing with one problem: Safetyness as FS(C) and the function
concerned at energy consumption FE(C). Finally both these functions will be summed up each
of them multiplied by a coeficient definning its relevance. It is also necessary that the penalty
function and all its subfunctions are continuous at all points where the function is definned. So
the penalty function is:

FP

(
C
(
~P , t
))

= αFS

(
C
(
~P , t
))

+ (1− α)FE
(
C
(
~P , t
))

;α ∈ 〈0, 1〉 (2.5)

2.4.2 Energetic function

Energy consumption is unequivocally linked with a spline length so the energetic function is
defined as the sum of lenghts of the particular coons cubics:

FE

(
C
(
~P , t
))

=
n∑
i=0

1∫
0

√(
∂Si,x(t)

∂t

)2

+

(
∂Si,y(t)

t

)2

dt (2.6)

2.4.3 Safety function

The safety function is based on evaluating a distance from obstacles to a current point on
the path curve. As the plane was divided into Voronoi cells the distance is evaluated always to
the source element of an actual cell - i.e. the cell in which the current point lays. There are two
types of elements corresponding to each cell. The first type is an edge of an obstacle and the
second one is a point - i.e. a vertex of a polygon describing an obstacle corner. So it is needed
to split these situations and count by different formulas which are the following:

Distance from a point This formula gives a distance from the obstacle point to the point
laying on a Coons cubic segment at time t.

d
(
C
(
~P , t
)
, Oi

)
=

√(
Cx

(
~P , t
)
−Oi,x

)2
+
(
Cy

(
~P , t
)
−Oi,y

)2
(2.7)
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Distance from an edge This formula gives the shortest perpendicular distance from the
parametrically expressed edge to the point laying on the Coons cubic segment at a time t.

d(C(~P , t), Oi) =

√
dyCx

(
~P , t
)
− dxCy

(
~P , t
)
+ dxY − dyX,

where

dx =
dx√

dx2 + dy2

dy =
dy√

dx2 + dy2

χ function The aim of this function is to specify some zone arround obstacles, where a value
given by a distance will be several times increased compared to a distant space. Finally it should
ensure that the curve is repelled away from this zone and at other space out of this zone will not
be restricted to shaping as it is needed for reaching the shortest length of the whole curve path.
So according to these considerations development of the function should follow high outcome
for small values and then rapidly descent to give multiple time lower outcome. Four variants of
this function were laboured each with slightly different course.

χ1(x) =

{
20000

1+x+offset
if x < offset

20000 if x >= offset
(2.8)

χ2(x) =
20000

(1 + x)
(2.9)

χ3(x) =
10000

(1 + x)2
(2.10)

χ4(x) =
10000

1.5(x+1)
(2.11)

Intersections Let the τ0, τ1, ..., τn; τ0 < τ1 < ... < τn be the ascending sequence
of intersections times of a cubic spline with Voronoi edges. Function Src(τi) gives an source

element o ∈ O linked to a cell containing points C(~P , tp); tp ∈ 〈τi, τi+1〉
Finally all parts needed to build the safety function are defined. So the safety function

is defined as an integral through every part of the spline each time delimited by a pair of
intersections times:

Fs(C(~P , t)) =
n∑
i=0

τi+1∫
τi

χ
(
d(C(~P , t), Src(τi))

)
dt (2.12)
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Algorithm 2: The A* algorithm

input : start - actual position, goal - desired position, graph
output: shortest path from the start to the goal represented as the sequence of line

segments
1 closedset← {};
2 openset← {start};
3 g val(start);
4 f val(start) = g val(start) + h val(start, goal);
5 while openset is not empty do
6 X ← the node from openset having lowest f val;
7 if X = goal then
8 R

9 eturn backtrack path;

10 openset = openset \X;
11 closedset = closedset ∪X;
12 for each n← neighbor node of x do
13 if closedset contains n then
14 continue;

15 tmp g val = g val(x) + |x− n|;
16 if (openset not contains) or (tmp g val < g val(n)) then
17 g val(n) = tmp g val;
18 f val(n) = g val(n) + h val(n, goal);

19 Return error - this path doesn’t exist;

Algorithm 3: Ramer-Douglas-Peucker

input : PointList[] - the sequence of points along the path, tolerance
output: Simplified PointList[]

1 edge← Create edge from PointList[first] and PointList[last];
2 throw all points which are closer to the edge than tolerance;
3 furthestPointIndex← at PointList[] find index of furthest point from edge;
4 if Some points remained between PointList[first] and PointList[furthestPointIndex] then
5 CALL DouglasPuecker(PointList[first, .., furthestPointIndex]], tolerance);

6 if Some points remained between PointList[furthestPointIndex] and PointList[last] then
7 CALL DouglasPuecker(PointList[furthestPointIndex], .., last], tolerance);

8 Return PointList[];
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Figure 2.3: Simplification process ilustration, picture taken from [de Konig, 2011]

Figure 2.4: Coons cubic segment
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Algorithm 4: Optimization

input : initial SplinePointsSet
output: optimized SplinePointsSet

1 repeat
2 Determine how to generate new set of control points;
3 SplinePointsSet← Generate new set of control points;
4 length← Measure spline;
5 Find intersections;
6 safetyV al ← Evaluate safety function integral;
7 optFunction← α ∗ safetyV al + β ∗ length;

8 until optFunction is not minima;
9 Return SplinePointsSet;
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Chapter 3

Implementation

The main goal of the process of smooth curve generation is to implement a library in
C++ programming language on a Linux system. The whole process is visualised thanks to
Visualisation Toolkit library. If there is not need for visualisation, library should work
separately only assuming input data and returning a processed result. C++ was chosen for both
because of demanding calculations which this process requires and due to the fact that this
kind of robots are usually built from modules controlled by some computer or embedded device
running on Linux sytem which is very adaptable and it makes it the most suitable for mobile
robots usage purposes.

3.1 Voronoi diagram

The free open-source Boost C++ library was chosen for VD creation and processing im-
plementation. This set of libraries could be used at a wide range of C++ application domains
for example it provides support and structures for tasks as multithreading, image processing,
geometry, linear algebra, unit testing, graph theory, various system routines and variety of math
or numeric problems.

VD algorithms belongs to the Polygon part of Boost library providing algorithms focused
on manipulation planar geometry data. It implements the generic sweepline algorithm together
with an interface to construct VD of points and line segments. It must be just met the limitations
of input elements coordinations represented by integer type and input line segments should not
overlap except their endpoints. The library fully supports metaprograming based input so it is
possible to work with custom defined input data types.

When the source elements are prepared they are passed to Voronoi creation through iterator
interfaces. The algorithm creates a structure of VD allowing to iterate through its elements and
connects corresponding(related) components by pointers.

A Voronoi vertex represents a point of VD. The Voronoi output point structure stores vertex
coordinates and pointers to the connected edges. It gives us methods to access and iterate
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through incident edges arround this point.

Voronoi edge represents the bounds of Voronoi Cell i.e. points equidistant to the two closest
source elements. Boost implements this structure as half-edge data structure more could be
found at [McGuire, 2000]. The structure implements methods for the acces to related vertices
and other edges with a common cell or a connected half-edge, also provides methods determining
the type of the edge due to it could be a standard line segment, curved as a parabolic arc or
infinite which occours at the borders of the input map. Edges whose endpoint lays on the source
element are called primary edges, testing whether an edge is primary can be done by provided
methods.

A Voronoi cell represents a VD region bounded by the Voronoi edges. As it outcomes from
the definition of VD the source element could be a point or a segment, the structure ensures
the methods for determining which type of the source is and the attached source element could
be accessed by obtaining a unique ID from the provided method. The boundary edges could be
accessed by obtaining a pointer to one of them followed by iteration through them.

The algorithm doesn‘t resolve whether the diagram is created outside obstacles or within
any obstacle it simply creates VD through the whole given plane. This situation is needed to
identify and then to filter the vertices inside the obstacles.

The main connection is estabilished after the creation of VD which allows to easily connect
Boost voronoi output graph structure with its copies or variants through the rest of the
algorithms or visualisation structures. A unique ID to each element is given determining its
position at its container which could be paired through associative array with any structure.
Once if we are able to get voronoi element it is possible to delegate any of its above mentioned
built in methods. This gives us ability to work with diagram with no limitations and no need of
copying all its traits and links to the other structures.

3.2 A* search

Boost well served also for implementing the A* algorithm by supported graphs structures
and A* finding through them belonging to the Boost Graph part of library.

The structure of the graph is different to the VD output structure so it is converted by
iterating through Voroni edges and building the weighted graph. Weights had been set to the
value of a distance between two its endpoints. Only edges whose endpoint donesn‘t lay on the
source element have been added.

The integer IDs of the beginning and end point are passed to the algorithm then when the
way has been succesfully found it is returned as the sequence of points IDs along the found
shortest path.
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3.2.1 Simplification

The polyline simplification algorithm has been implemented thanks to the psimpl library.
It is a lightweight header-only type library. psimpl implements all algorithms using templates.
It is posible to use the library at any dimension at space with defined floating point or signed
data types.

Input of the algorithm is the sequence of points IDs along the path found by A*. The
implementation of the simplification algorithm with psimpl required to create serialized linear
points coordinates sequence. The same kind of sequence outcomes from the simplification
algorithm.

3.3 B-spline

The B-spline curve structure has been implemented as the class working with the set of
control points stored in a container. The methods for obtaining a point laying on the path at
specific time or solving the intersections have been implemented straight forwardly according
the theoretical basis denoted at chapter 2.3.

The whole access to the coonse spline has been implemented from the input side with
methods allowing adding or modyfying the coordinates of the control points and from the
output side by the method returning coordinates of the point laying on the curve at a given
point.

The implementation of the path measuring has been implemented within the framework of
the Coonse spline itself. For optimization evaluation there is a need to evaluate a length of
the whole curve with every iteration. It is inapropriate to count the length analyticaly because
this leads to eliptic integrals. The length could be estimated with an aproximating curve with
several segments and summing up their length using euclidean metric to theirs endpoints. This
approximation could be also used for visualization purposes. Since the method for obtaining a
point at the time has been implemented, it is easy to divide time interval of the path, create
a segmential path approximation by connecting adjacent points obtained from the division and
summing up the length of all that segments.

3.4 Penalty function

The penalty function as was said at the chapter 2.4.1 consists of the path-length part and
safety function part. Path length implementation has been done described in the 3.3. The safety
function must pass through whole path and compute the integral as was written at the chapter
2.4.3 this process has been divided into two subprocesses:

• The algorithm dealing with division of the path and assigning these parts to the corre-
sponding Voronoi cell where they belongs to.
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• Once the part is specified it could be worked out the value of its safety integral and this
is what the second separated process do.

The process of the curve division is described at this paragraph and following pseudocode.
It is needed to determine to which Voroni cell the beginning point of the path belongs at first
then it is computed the intersections with each the line segment bounding the cell. If there
were any intersections, the one of them having laying at the lowest time on the path is used to
switch the actual cell through intersected edge to the next cell. If there wasn‘t any intersection
the intersections are counted again with the same cell but the next segment of the path curve.
Every time before the curve segment is switched or the actual cell has been moved the integral
is counted at this part and summed up to the others. This method is repetively applied since
the whole path is passed.

Algorithm 5: Safety function implementation

input : path stored as CoonsCubic, V D
output: SafetySum

1 actualCell← Determine the cell where the point CoonsCubic(0) lays;
2 segments← CoonsCubic.numberOfSegments;
3 lastIntersectionT ime = 0;
4 for c = 0; c < segments; switchCell?c = c : (c+ 1) do
5 switchCell← false;
6 for i = 0; (i < actualCell.size) and switchCell; i = i+ 1 do
7 if any intersection with actualCell.source then
8 SafetySum = SafetySum+ penalty;
9 BREAK Safety Function evaluation;

10 intersectionT imesTmp← find intersections with actualCell.segment[i];
11 if any intersections at intersectionT imesTmp then
12 for each intrsctn from intersectionT imesTmp do
13 if(CoonsCubic(intrsctn− ε). lays inside

actualCell)and(CoonsCubic(intrsctn+ ε). lays outside actualCell)
SafetySum = SafetySum+
SafetyIntegral(lastIntersectionT ime, intrsctn, actualCell);

14 actualCell← switch cell through the intersected segment;
15 switchCell← true;

As the calculation of the intersections brings the inaccuracies with itself, it could happen that
the path passes through a segment nearby its endpoint common to one or more neighboring
segments and a cell is switched to the incorrect one. This situation has been treated with
a correction mechanism based on a simple check after every switch of the cell. It is verified
whether the point laying closely to the intersection point actually lays in the new switched
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actual cell. If not, the new actual cell is searched into group of cells laying arround the actual
misdetermined cell by the same kind of check. Then the actual cell is updated again.

The integral as it has been said at the section 2.4.1 couldn‘t be counted analytically so it
has been counted numerically with a solid step which could be configured because it has huge
impact on whole algorithm speed and its outcome. This impact will be compared and discusset
in chapter three.

3.5 Optimization

Algorithms from the OPT++ library for the optimization purposes were utilized. OPT++ is
a library written in C++ dealing with nonlinear optimization. The library provides the Newton
method, a nonlinear inferior-point method, parallel direct search a trust region - parallel direct
search hybrid and a generation set search. Most of these methods can be solved as constrained
or not constrained problems, with or without analytic gradients.

We have choosen to use unconstrained parallel direct search and generation set search meth-
ods for the path optimization, these methods no need derivative information. Both of them are
based on standard Direct search method. The parallel direct search could be easily extended for
processing on multiply processors, which is intended to implement in future.

The both optimization methods only need to specify a dimension of the optimized problem,
give the initial situation and provide the function evaluating the given situation of generated
optimized variables accessible at every iteration of the optimization process. The dimension of
the optimization in this case is the number of control points multiplied by constant 2 because
points lays at the plane. The initial situation of the variables is when created permisible B-
spline path. By permissible here it is meant that spline doesn‘t intersects any of obstacles, if
the spline would cross any of obstacles the function will be evaluated by a high value and then
the optimization hardly finds the minima. The evaluation of the generated states is ensured by
a given penalty function where the path is set to the one created from the set of coordinates
generated by the optimization algorithm at its iteration. As the evaluation function the penalty
function described at section 3.4 has been given.

The optimization algorithm implementation provides several parameters affecting the process:

• The number of dimensions of optimized problema.

• Maximal allowed value given by the penalty function.

• The tolerance of the change of evaluation function between iterations before algorithm
stops.

• Maximal number of algorithm iterations.
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3.6 Visualization

VTK - The Visualization toolkit is an open-source, object oriented, freely available
software system for 3D computer graphics, visualization and image processing. VTK consists of
a C++ class library. VTK methods are also available wrapped by several interpreted languages
such as Java, Python or Tcl and could be runned by them. VTK is multiplatform, could be
runned on Unix platforms, Linux, Mac and Windows.
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Chapter 4

Experiments

4.1 α variation

In this section the α parameter determinating between safety and length of the path will
be varied for showing its affection. The higher the alpha parameter is the more the safetiness
of the path should be dominant over its length(energy consumption). Several paths with fixed
beginning and endpoint was generated with changing this parameter.

Parameter was choosen at the sequence:

α =

{
1

200
,

2

200
,

4

200
,
16

200
,
32

200
,
64

200
,
96

200
,
128

200
,
150

200
,
180

200
,
185

200

}
It could be observed in Figure 4.1 in color spectrum changing from blue to red.

In the Figure 4.1(left) can be observed how the path with low α (low safetiness) approaches
to the obstacles and with incrasing its value the path is getting larger spacing from the obstacles.
In the Figure 4.1(right) was moved the endpoint. Here for higher values of α the path durning
optimization jumps besides where the polygonal path wasn‘t even passed through. It happens,
because durning the optimization process the shape of curve oscilates wide and when the
safetiness requirement is more strict the if there are wider spaces between obstacles, safety
function gets lower evaluation and minimum is found here.
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Figure 4.1: α scaling
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4.2 Tolerance variation

Here we can observe the influence of simplification tolerance constant i.e. how much is
simplified the polygonal polyline found by A* algorithm. As was already said the dimension of
optimization problem relates with the number of control points and number of line segments
in polygonal path. Tolerance was choosen at the sequence:

Tolerance = {0, 3, 10, 15}

In figure 4.2 we can observe the influence of simplification tolerance constant as the sequence
passes also the pictures are sorted from the left top corner to the right bottom corner.
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Figure 4.2: Tolerance impact
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4.3 Final paths

This section shows the final paths in several different environments.
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Figure 4.3: Final paths in different environment
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Figure 4.4: Final paths in different environment 2
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Figure 4.5: Final paths in different environment 3
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Figure 4.6: Final paths in different environment 4
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Chapter 5

Conclusion

The thesis aims to design and implement an algorithm for generation of 2D smooth trajec-
tories. The method implemented is based on construction of a spline consisting of a sequence
of cubic Coons curves. The initial shape of the spline is determined from a shortest path on
a generated Voronoi diagram of polygonal obstacles, while the final shape is generated as a
result of an optimization process taking into account a length of the spline and its distance to
obstacles.

The most algorithmically problematic part was to find intersections of the spline with a
Voronoi diagram, where problems with numeric inaccuracies appeared. Finding intersection is
crucial for counting the penalty function and it significantly affects the optimisation process, in
which evaluation of the penalty function is called many times. Due to these facts intersections
determination must be as effective as possible. Inaccuracies were treated with tests denoted at
2.4. The next occasional problem lied in misdetermination of a point to a particular cell, which
was resolved by the correction mechanism denoted at 3.4.

As we can see in Chapter 5, the goal has been reached but the method has still several issues
to be solved before a real deployment for path planning.

The final processed path always depends on configuration of parameters such as integra-
tion/measurement step, α parameter (which trade-offs between safety and a length of the
path) and simplification tolerance affecting the dimension of the optimization problem. We
discovered that these ideal combinations of parameters vary quite widely with the character of
the environment e.g. if there are narrow stages or sharp corners. Of course, the next substantial
affection is the size of the map, a magnitude specifically – it depends a lot if proportions are in
degree of 1 or degree of 100. This settings could be ensured by a detailed analysis of the given
map followed by precomputation of the parameters but it would require deeper research of its
behaviour for design such an autoconfiguration mechanism.

For ensuring the relevant outcome from optimization the generation of the initial spline must
be permissible (not cross any obstacle). The conceptual method of generating was used not
giving certainty in all cases processing the permissible curve. Development of this method would
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add to this generation task a solid foundamentals. For example, this method could be based on
feature of B-spline laying always inside its convex hull constructed over set of control points.

We must always find a compromise between algorithm speed and spline not being crooked
much. If the number of optimization iterations is restricted for higher speeds, knobs sometimes
occur on the spline. This could be improved with keeping higher speed with optimization of
spline curvature.

33/36



BIBLIOGRAPHY Smooth trajectory generation in 2D

Bibliography

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1997. ISBN 3-540-61270-X.

Elmar de Konig. Polyline simplification, 2011. URL http://www.codeproject.com/

Articles/114797/Polyline-Simplification.

Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engineering route
planning algorithms. In Jürgen Lerner, Dorothea Wagner, and KatharinaA. Zweig, editors,
Algorithmics of Large and Complex Networks, volume 5515 of Lecture Notes in Computer
Science, pages 117–139. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-02093-3. doi: 10.
1007/978-3-642-02094-0 7. URL http://dx.doi.org/10.1007/978-3-642-02094-0_7.

A. Escande, S. Miossec, M. Benallegue, and A. Kheddar. A strictly convex hull for computing
proximity distances with continuous gradients. Robotics, IEEE Transactions on, 30(3):666–
678, June 2014. ISSN 1552-3098. doi: 10.1109/TRO.2013.2296332.

S Fortune. A sweepline algorithm for voronoi diagrams. In Proceedings of the Second Annual
Symposium on Computational Geometry, SCG ’86, pages 313–322, New York, NY, USA,
1986. ACM. ISBN 0-89791-194-6. doi: 10.1145/10515.10549. URL http://doi.acm.org/

10.1145/10515.10549.

E.G. Gilbert and D.W. Johnson. Distance functions and their application to robot path planning
in the presence of obstacles. Robotics and Automation, IEEE Journal of, 1(1):21–30, Mar
1985. ISSN 0882-4967. doi: 10.1109/JRA.1985.1087003.
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Appendix

CD Content

In table 5.1 are listed names of all root directories on CD

Directory name Description
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