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Abstrakt / Abstract
Hlavním cílem práce je implementace

obecného ovladače kompatibilního s
většinou grafických karet počítačů třídy
PC (i386) pro operační systém RTEMS.
Dosud byl pro tuto platformu dostupný
ovladač pro standard VGA, který pod-
poruje pouze nízká rozlišení a ovladač
pro grafickou kartu Cirrus Logic, který
vyžaduje zmíněný již zastaralý hard-
ware, nicméně může být použit v rámci
emulátoru QEMU. Nově implemento-
vaný obecný ovladač překonává zmíněná
omezení využitím rozhraní VESA BIOS
Extensions. Toto rozhraní umožňuje
volání kódu výrobce standardizovaným
způsobem a je výrobci v grafických
kartách ve velké míře podporováno.
Seznam použitelných grafických re-
žimů karty je dostupný voláním VBE
rozhraní. Implementace ovladače volí
pouze mezi módy s podporou přímého
frame bufferu a získává adresu frame
bufferu, aby mohla aplikace vykreslovat
grafický obsah na výstupní zařízení.
Ovladač byl testován s aplikacemi vy-
užívajícími Nano-X Window System,
knihovnu FLTK nebo knihovnu SuiTk.
Kód byl zahrnut do hlavní vývojové
větve systému RTEMS.

Klíčová slova: RTEMS; VESA BIOS
Extensions; ovladače grafické karty.

Překlad titulu: Ovladače a knihovny
pro OS RTEMS podporující grafické
karty současných PC počítačů

The main goal of this work is the
implementation of generic driver com-
patible with most graphic cards on
every PC compatible computer for
RTEMS operating system. Two other
PC graphic drivers are already included
in RTEMS system, but the first one
is the driver conforming to the VGA
standard which supports only low reso-
lutions and the second one is the driver
for Cirrus Logic card that requires
already obsolete hardware or can be
used within QEMU emulator. Newly
implemented generic driver overcomes
limitations by usage of VESA BIOS
Extensions interface. This interface
allows to call vendor code in a stan-
dardized way and it is well supported
across vendor cards. A list of graphic
modes available on the graphic card
can be obtained at the VBE interface.
The driver implementation is designed
to select solely modes with linear flat
frame buffer and acquires the address of
the frame buffer so that the application
can draw its graphic content directly
to the output device. The driver has
been tested with applications utiliz-
ing Nano-X Window System, FLTK
library or SuiTk library. The code of
the generic driver was included in the
RTEMS mainline.

Keywords: RTEMS; VESA BIOS Ex-
tensions; graphic card driver.
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Chapter 1
Introduction

The implementation of operating systems graphic drivers would be very challenging
task if there should be a driver for each existing graphic card. Graphic card is a device
that allows the computer to send visual data to the display as well as it provides ways
to modify the visual data. There exist many graphic cards in the market and there are
usually different ways to control each card. It would require high amount of time to
implement drivers (software that enables to control graphic card) for all of them.

Graphic card and monitor vendors (associated in the VESA) proposed a solution
by releasing a standard describing software interface for display devices named VESA
BIOS Extensions. This standard defines the way to control display device — graphic
card “without specific knowledge of the internal operation of the evolving target hard-
ware” [1]. The standard has been widely adopted by hardware vendors. It would require
enormous effort to support all graphic cards when developing small projects, but this
interface enables us to implement generic driver allowing basic graphic operations in
reasonable time.

1.1 Purpose of the research
RTEMS is a shortcut for the Real Time Executive for Multiprocessing Systems. The
RTEMS is real time operating system. Real time system ensures that it responses
to an event within certain time constraint. The RTEMS supports several processor
architectures and several boards that use these architectures.

The i386 BSP of the RTEMS operating system already contains two frame buffer
drivers. Frame buffer is memory designed to hold a screen frame. The memory contains
consecutive chunks which represent the screen pixels. The first driver implements the
standard VGA. However, there is a disadvantage in the implementation – the quite low
resolution of 640x480 and used color depth of only 4 bits per pixel. The second frame
buffer driver controls Cirrus CLGD 5446 PCI VGA graphic card and requires access of
pixels by plane basis. This card is one of the cards simulated within QEMU PC System
emulator – it currently supports resolutions up to 1280x1024 and bit depths up to 16
bits per pixel. The downside of this driver is that the specific peripheral is needed in
order to run the software on real hardware. Emulators such as the QEMU are often
used to test or to develop new software for various target machines.

In the response to above limitations new driver has been implemented to allow usage
of wider range of graphic cards. The goal of this thesis is to describe its implementation.

1.2 Approach
The VBE Core Functions Standard document defines two interfaces. This standard is
tightly bounded to x86 architecture. The processors which implement this architecture
can operate in several modes. VBE functions can be accessed from real mode by using
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
interrupt mechanism to call the interface functions. The second option is to call 16-bit
protected mode interface.

Since this implementation of the driver is designed for real time operating system
RTEMS, the speed of graphics operations must be considered. Real time systems has
to meet certain deadlines. As the vendor code is generated, it is crucial to maintain the
control over the system for the period of the execution of the graphic operation.

Analysis of possible approaches is discussed in section 2.4.
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Chapter 2
Theoretical part

In this chapter I am going to discuss the background knowledge and tools necessary
for implementation of this particular driver. This includes: i386 processor that runs
the code of the driver as well as the features of the board of the IBM PC compatible
computer. Further, there are notes on the VBE standard which is the base for the
implementation. This chapter also discusses the driver implementation considerations.
Further, there is the description of tools used to build the RTEMS system and the
description of the building process.

2.1 i386 architecture
The knowledge of the i386 architecture and its operating modes is required to describe
driver implementation that uses low level CPU features and mode switching. This
section introduces features of i386 architecture used in this work. In this section,
there is used the document Intel 64 and IA-32 Architectures, Software Developer’s
Manual, Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C [2] as the main source of
the information. I will use i386 throughout this work as a reference to all processors
compatible with Intel 80386.

2.1.1 Registers
In comparison with other architectures i386 does not have many general purpose regis-
ters. This is the list of general purpose registers: A, B, C, D, SI, DI, SP, BP [2, Vol. 1 3–10].
i386 was originally designed as pure CISC architecture. It implies that each register
has also its special purpose.

register meaning special purpose
A accumulator Accumulator for operands and result data
B base Pointer to data in the DS segment
C counter Counter to string and loop operations
D data I/O pointer
SI source index Pointer to data in the segment pointed to by the

DS register; source pointer for string operations
DI destination index Pointer to data (or destination) in the segment

pointed to by the ES register;
destination pointer for string operations

SP stack pointer Stack pointer (in the SS segment)
BP base pointer Pointer to data on the stack (in the SS segment)

Table 2.1. Additional special purpose of i386 general purpose registers. [2, Vol. 1 3–11]

The accessibility of the parts of the general purpose registers in i386 architecture
depends on the operand/address length. The veracity of this statement is going to be

3



2. Theoretical part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
demonstrated on the A register. If the A register is to be accessed as a 32-bit wide
(double word) register, it is denoted as EAX. If it is to be accessed as a word, than lower
word of EAX is used and it is called AX. Both bytes of AX are accessible, higher byte is
called AH and lower byte is called AL. The same method is applicable to other registers
as well – as it is shown in the picture.

31 16  15  78   0

AH
BH

CLCH
DH DL

BL
AL

BP
SI
DI
SP

AX
BX

ECXCX
DX EDX

EBX
EAX

EDI
ESP

ESI
EBP

16-bit 32-bit

Figure 2.1. i386 registers lengths. [2, Vol. 1 3–11]

Even though there exist also 64-bit version of registers which are labeled by the letter
R – e.g. EAX is extended to RAX, it is of no use in solving this particular issue. Therefore,
this thesis is not going to be dealing with the 64-bit processor modes which use this
register length.

There are already mentioned 16-bit segment registers in the processor: ES, DS, CS,
SS, FS, GS. The content of these registers influences the addressing of the processors.
In principle these registers set a segment, which can be interpreted like a window in
a memory where the data can be accessed. If there is memory not accessible from
current segment/memory window, the segment register must be loaded by usage of a
different value that grants the access to the desired part of the memory. The beginning
of the segment/memory window is given by so called base. The described principle is
called the memory segmentation.

Several segmentation registers are used as default if special operations are executed
as described in Table 2.1.

register meaning purpose
SS stack segment along with SP determines current top of the stack
CS code segment segment from which instructions are read
DS data segment e.g. source data segment in string operations
ES extra segment e.g. destination data segment in string operations
FS - custom segment register
GS - custom segment register

Table 2.2. i386 segment registers. [2, Vol. 1 3–11]

The purpose of the EFLAGS register [2, Vol. 1 3–14] is to mark signs after the execution
of the operation (instruction) and it is one of registers that control the state processor.
Flags, such as zero or carry, allows conditional execution of the code.

Register EIP holds address of current instruction. Its content is automatically incre-
mented by the length of the current instruction so that another instruction is executed
after the first one finishes. The content can be also changed with jump and call instruc-
tions. Calls are basically used to execute a function.

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 i386 architecture

The last register that is to be mentioned is CR0 [2, Vol. 3A 2–14]. It is one of control
registers. One of bits it contains is PE – protection enable. This bit allows to toggle
protected mode.

2.1.2 Processor modes used in the work
There exist several operation modes in i386 architecture. RTEMS uses protected mode
with default data length and the address length of 32-bits. The implemented driver
requires running part of its code in real mode which is activated as the processor is
started up.

2.1.3 Real mode
This mode is the first to be active as the processor is started up. This mode has been
used for several decades for compatibility reasons. However, the real mode has limited
memory access given by the evolution of the architecture. The accessible memory
available after startup and under usual conditions is only first 1MB.

The segmentation mechanism allows to access 1MB of memory through 20-bit address
bus using 16-bit registers. The pointer to memory is defined by the segment register and
the offset register commonly written as segment:offset. To form the physical address,
the segment register is shifted by four bits to the left and then the offset register is
added. [2, Vol. 1 2–1]

offset15 0

19 0

base 015

Figure 2.2. Addressing in real mode. The base is stored in the segmentation register and
the offset in one of the general purpose registers.

2.1.4 Protected mode
The protected mode introduced several new features. The main feature of this mode
is the availability of paging as well as the virtual memory [2, Vol. 1 3–7]. This allows
the operating system to separate individual processes in a way that each process is able
to operate with virtual memory of 4GB even though the size of real memory could be
much lower. The size of the virtual memory is calculated as follows: the size of address
bus which is 32-bits in basic protected mode – 232 bytes equals 4GB. However this is
not the feature which we are interested in throughout this work. In addition for the
purpose of this thesis, I will consider paging to be turned off.

In the protected mode, segments are described with segment descriptors. Descriptors
are stored in a GDT or in a LDT – Global/Local Descriptor Table. The position of
GDT is determined by GDTR – GDT Register which has to be loaded with 6 bytes
containing the base of GDT and its limit. LDT is described by one system descriptor
in GDT and current LDT is stored in LDTR – LDT Register.

The segment register content meaning changed too. It is loaded with so called seg-
ment selector. The selector along with other general purpose register, forms protected
mode pointer. The pointer is commonly written as selector:offset. The physical address
is formed by addition of the offset part and the base part from the segment descriptor.
The descriptor is indexed by the selector.

The segment selector bits 15–3 are the index to the descriptor table. Obviously, it is
possible to express 213 indexes, which would count 8192. This result is the maximum
size of descriptor tables.

5
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315 2 01
PLTIIndex to Descriptor Table

Figure 2.3. Segment selector. [2, Vol. 3A 3–10]

The bit 2 is the table indicator (TI) and when it contains 0, it indicates that GDT
will be used. When the TI bit is 1 than LDT will be used.

The zero TI and the zero index to the descriptor table forms an invalid selector. In
other words entry on index 0 in GDT cannot be used.

Bits 1 and 0 form the privilege level. The privileges are not going to be discussed in
this document, I will just state that RTEMS system does not use the segment privilege
level system. The privilege level value is always set to 0 – the most privileged level.

One descriptor table entry has 8 bytes and consists of fields shown in Figure 2.4.

Base (8)  G
63  32 4748 

[31:24]

 D
 B

 L  A
 V
 L

Limit (4)

[19:16]

 P  S

 1

Type (4)DPL
(2)

Base (8)

[23:16]

Base (16)
31  0 1516 

[15:0]

Limit (16)

[15:0]

 A
 W
 R

ED
 C

 D
 C

Figure 2.4. Fields of non-system GDT/LDT entry. [2, Vol. 3A 3–10]

field meaning
Base Base address of segment
Limit Limit of the segment
G Granularity (0 = limit unit is 1 byte; 1 = limit unit is 4kB)
D/B Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
L 64-bit code segment
AVL Available for use by system software
P Segment present
DPL Descriptor privilege level
S Descriptor type (0 = system; 1 = code or data)
Type Segment type

Table 2.3. Fields of descriptor table entry. [2, Vol. 3A 3–10]

Base address is a 32-bit integer specifying the beginning of the segment in memory.
It serves as the physical memory address in case the paging has not been turned on or
it does not remap addresses.

Limit is a 20-bit integer that indicates the last valid unit of a segment. If bit the
G-bit is cleared then the limit value is in units of bytes. If the bit G is set then the limit
value is in 4kB units. In this way, the whole addressable space – 4GB can be covered
with the 20 bit value.

S specifies whether the segment descriptor is for a system segment (S flag is clear)
or a code or a data segment (S flag is set).

D/B if the segment is executable (contains code – see Type filed), the flag is called D
and indicates default length of effective addresses and operands referenced by instruc-
tions in the segment. If the flag is set, 32-bit addresses and 32-bit or 8-bit operands

6
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are assumed. If the flag is cleared, 16-bit addresses and 16-bit or 8-bit operands are
assumed.

There exists instruction prefixes in the i386 architecture that change the default
operand length or the address size if the instruction op-code starts with the prefix. The
prefix 66H switches the default operand length and the prefix 67H switches the default
address size.

For the stack segment the bit is called B (big) and specifies the size of stack pointer
used for implicit stack operations. If the flag is set, the 32-bit stack pointer is used.
When the flag is cleared, the 16-bit stack pointer is used.

P is the bit that indicates whether the segment is present in the memory. When the
bit is cleared and the segment is accessed, then the processor raises an exception.

DPL determines the privilege of the segment addressed by this descriptor. In
RTEMS, there is used only the highest privilege level of zero value.

Type bits depend on the bit S. This work is going to describe just types when S is
set. The most significant bit of the type field – the bit 3 specifies whether the segment
is executable/contains the code (the bit is set) or the segment contains data (the bit is
cleared).

The code descriptor type field further contains the conforming bit (position 2), the
readable bit (position 1) and the accessed bit (position 0). When the Conforming bit
is set, then the subprogram in this segment will have the same privilege level as the
calling segment, otherwise (the bit is 0) it will have this segment’s privilege level. If the
Readable bit is set to zero to make this segment unreadable, the only operation which
could be made with the content is its execution. [3]

The Accessed bit is the same for both the code and the data descriptor. The processor
sets this bit every time it accesses this descriptor in the descriptor table. [3]

The data descriptor type field further contains the expand down bit (position 2), the
writable bit (position 1) and the accessed bit (position 0).

The Expand down bit indicates the direction of the segment expansion. Data seg-
ments contain basic data or stacks. If ED = 0 (data) the segment content will expand
up to higher addresses from the base of the segment. If there is needed the achieve-
ment of the larger segment, the limit value has to be increased. If ED = 1 (stack) the
segment content will expand down to lower addresses. The stack starts at the end of
the segment and grows down to the limit (that is still counted from the base). If the
segment is to be expanded, then the limit value is decreased. [3].

2.1.5 Addressing mechanisms
There are utilized several addressing mechanisms. The first one is the relative address-
ing. To address the range from -128 to 127 bytes, this addressing uses just a short
offset from the current instruction. The second addressing mechanism utilizes the di-
rect pointer contained within the instruction operation code. The third mechanism is
the indirect addressing that reads the pointer value from the memory or the register.
In this case the instruction operation code contains the place where the pointer itself
can be found. [4]

2.1.6 Jump and call operations
This section refers to the instructions changing program execution flow. The instruction
which follows the instruction currently executed is at pointer CS:EIP (or CS:IP in 16-
bit context). There are two keywords used to reference whether the segment register is
affected by the instruction changing place of program execution. Near indicates that

7



2. Theoretical part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
the instruction will operate only within the current CS. Far instruction will reload CS
with the value.

Unconditional jump instructions change program execution flow without the option
to return to the place of the jump. The jump can be either near or far and also relative
(only in the near case), direct or indirect. The jump changes the content of EIP and
CS (for the far jump).

The calling of instructions allows to temporarily change the place of the program
execution and later return the program execution back. Basically these are instructions
for the function execution. Again, it is possible to have near or far calls and to utilize
the direct or the indirect addressing within the calls. When the call occurs the return
values are stored to the stack. For the near call only instruction pointer register is
stored to the stack and for the far call there are stored the CS register value and the
instruction pointer value to the stack. In the end of its execution, the called code
executes the ret instruction either in near or far version which returns the execution
back to the instruction following the call instruction by the usage of the stack values.

Both the jump and the call have direct and indirect addressing versions. Direct
addressing instructions contain the offset value in the instruction if the instruction is
near. They contain the CS segment register value with the offset, if the instruction is
far. Indirect addressing instructions operate with same pointer values for the near and
the far instruction, but the pointer values are stored in the memory or in the register.
The indirect addressing instruction contains the location (memory position or register)
of the pointer.

2.1.7 Interrupt mechanism

The interrupt is similar to the far call, however the interrupt can occur asynchronously
to the program execution. This is useful for handling events that occurred in outer
world since processor is immediately informed about them by the means of sensors
which activate interrupt mechanism. Interrupts are also raised by timers. The operating
system can set a timer so that it starts the interrupt service routine periodically. It
checks the running task and the OS can eventually perform operations such as the
context switch. There is also the possibility to raise the interrupt in a software by the
usage of the instruction int.

The interrupt is invoked with its number. The interrupt number is the index to
the interrupt vector table. An entry of the interrupt vector table contains the pointer
(segment register value and offset) to function that handles the interrupt. This function
is usually called the interrupt service routine – ISR. When an interrupt is raised there
are flags, the CS and instruction pointer registers stored to the stack. As all necessary
steps for handling the invoked interrupt were made, the instruction iret is used to get
back from interrupt service routine. It restores instruction pointer, the CS and flags
registers from the stack.

The interrupt table base (location address) and the limit (last valid byte) is loaded
to the IDTR (interrupt descriptor table register). The IDT can be relocated by loading
the IDTR with a different base. In the real mode each entry has 4 bytes consisting of
pointers segment:offset to ISRs. In the protected mode entries are 8 bytes long. In the
protected mode the IDT entry may contain the pointer selector:offset to the ISR.
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2.2 IBM PC compatible computer
IBM PC compatible computers are widely spread machines that operate with the i386
compatible processor. Several features specific to the IBM PC compatible computer
are going to be introduced below.

 0x0Interrupt Vectors

System BIOS

 0x100000

 0xF0000

 0xC0000
 0xC8000

VGA Video BIOS

 0x400

Figure 2.5. Places in PC physical memory space after startup. [5–6]

2.2.1 BIOS
The Basic Input Output System is a kind of firmware. It serves for initialization of
hardware after every start of the computer. Another function of the BIOS is to serve
as a compatibility layer between the underlying hardware and the overlying software –
hardware abstraction layer. [7] The BIOS provides services to be used by the software
and they are available through the internal interrupt mechanism – the interrupt raised
by the software. [8] It works in a following manner. When a service is to be used, it
stores its parameters to the registers. Subsequently, the ISR is called by the usage of
the i386 instruction int X, where X stands for the interrupt number under which the
service is installed. These interrupts are installed during boot up phase by the BIOS
itself. The majority of the services code is just compatible and can be called in the
real mode. [9]

2.2.2 Video services
Among others, there is the service for graphical operations installed under the interrupt
number 0x10. As this interrupt is invoked, the code in the Video BIOS is executed.

2.3 VESA BIOS Extension
The VBE is a standard which “is intended to simplify and encourage the development
of applications that wish to use graphics, video and audio devices without specific
knowledge of the internal operation of the evolving target hardware”. [1] Manufacturers
of video cards can provide this interface by implementing its functionalities into the
System Video BIOS. When there is a reference to the VBE standard in this document,
it refers to the version 3.0 of this standard.
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2.3.1 Provided functions

The VBE defines several functions to allow unified basic management of graphic cards.
To inform the adapter code that VESA Extension functions are requested, the 0x4F
value is 0x4F passed in the AH register. The function number is passed in the AL register.
The sub-function number, if required, is passed in the BL register.

function name retrieved/delivered information
Return VBE Controller Information VBE version, hw capabilities,

mode list, strings describing
product and vendor

Return VBE Mode Information resolution, bits per pixel, physical
address for flat memory frame buffer

Set VBE Mode mode number, frame buffer model
Read EDID [10] selected EDID block from display

Table 2.4. Selected VBE functions. [1]

The graphical mode describes how the graphic adapter will set the output to the
display if the mode is selected. Modes have parameters such as resolution or bits per
pixel and a way how to pass viewable data to be shown on display – in other words the
type of frame buffer and its parameters.

The frame buffer is a mechanism to “draw on the display screen”. The frame buffer is
located in the physical memory and it is accessed by its mapping to the physical memory
space of the computer in this case. The frame buffer memory represents consecutive
pixels. The bits per pixel field in mode information defines the space covered by one
pixel in the memory. The linear or the flat frame buffer indicates that there are all screen
pixels available at one time. There exist another approach that lowers the amount of
address range required to map the frame buffer. It is called the banked frame buffer
and there are several banks of pixels mapped to one place in the memory. Each bank
represents a part of the display. As there is only one bank active at one moment,
it implies that is possible to draw only to a certain part of the display. There is a
mechanism called the bank switching that selects which bank will be available in the
mapped memory – which part of the display can be redrawn.

2.3.2 VBE Interfaces
The standard itself defines several interfaces to access the subset of functions. It is up
to the manufacturer if these interfaces are supported.

The real mode interface has been used since the first version of the VBE. If the
manufacturer supports the VBE then functions of this interface will be available unless
it is a “stub” implementation [1]. This interface extends video services provided under
the real mode interrupt service number 0x10.

The subsequent interface was introduced with the VBE in the version 2.0 and it
is called the “VBE 2.0 Protected Mode Interface” [1]. It is the 32-bit protected mode
interface but it does not include functions for obtaining graphic mode info or for setting
the mode. It is meant to be used along with the real mode interface and functions
included in this interface are meant to speed up graphical operations such as the bank
switching. The manufacturer is not obliged to implement this interface. The probability
of the availability of this interface also decreased when the protected mode interface,
described in the next paragraph, was introduced.

10
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Another interface introduced with the VBE 3.0 is once again a protected mode in-
terface. This time, it is build as 16-bit code. The video BIOS code is intended to be a
‘dual-mode’ which includes the “new protected mode interface entry point” which is to
be called directly from the protected mode. BIOS vendors are not obliged to implement
this interface. [1]

There is one more interface I would like to mention and that is the VBE/AF –
VESA BIOS Extension Accelerator Functions [11]. Essentially, this standard defines
the software layer implemented in the operating system. This layer interconnects the
software, which uses the accelerated graphic functions, with the underlying hardware.
This VBE/AF driver needs to support many graphic cards to be able to provide generic
functions to the software that wants to use the driver. The implementation of such a
driver would require too much time. The driver would have to support many graphic
cards that are available in the market in order to make this solution portable. There
were projects trying to implement this type of driver e.g. FreeBE/AF1.

2.4 Selecting approach
This section discusses possible ways of the implementation of the VBE frame buffer
driver. The base for this section is the section 2.3.2 in which are summarized standards–
defined interfaces which are available. Below, there are going to be discussed features
of the architecture and the RTEMS system features. The specific problems of the
interfaces which are to be put into consideration are mentioned in this section, too.

2.4.1 16-bit protected mode interface
This optional interface can be called directly from the protected mode. The RTEMS
runs in the 32-bit protected mode so the call requires to switch to the code selector
that points to the descriptor with the 16-bit default operation size, so that the VBE
code runs as the 16-bit code. The next step is to find the protected mode info block
structure within the first 32 kB of the graphical BIOS. In this structure, there is the
protected mode entry point that can be called.

This approach was implemented at first, but it turned out that the interface is not
well supported by manufacturers or their implementations are broken. The VBE code
would require to be patched [12], which gets us close to card/manufacturer specific
drivers.

2.4.2 Real mode interface
This interface requires the processor to be in the real mode. The call of the interface
functions may be executed before the RTEMS executive scheduler is started or the
scheduler has to be stopped and all interrupts has to be disabled to switch safely into
the real mode. The first approach has been selected. The main reason why not to call
the real mode interface while there is the RTEMS executive running and interrupts are
enabled is that the interrupt handlers code would not be interpreted correctly, because
it is compiled as the 32-bit code for the RTEMS, while the real mode runs the 16-bit
code.

If this interface is to be used, then all operations related must be called upon the
RTEMS executive start while there is no critical code running. It follows that the
graphic mode will be set on the system startup and could not be changed later. That
1 http://www.shawnhargreaves.com/freebe/index.html
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should not be a problem, because real time systems would rarely need to change the
mode while running anyway. The graphic mode can be set either before the switch to
the protected mode or utilizing switch from the real to the protected mode and back
again. The RTEMS allows to be compiled as a multiboot image and the loader that
runs the image might switch to the protected mode before the RTEMS code starts its
code execution. Therefore switches between the two processor modes are the better
way to go.

After the fail of the utilizing the 16-bit protected mode interface discussed in previous
section I used this approach which was a safe bet.

2.4.3 Running real mode interface in VM86 mode
i386 processors contain the mode for the virtualization of the 8086 processor. That
allows to run the real mode code while the processor is in the protected mode. Using
this method to call VBE functions would require to rewrite the context switch function
of the RTEMS operating system to support the switching among the VM86 task and
protected mode tasks. That would introduce undesirable slowdown of the context
switch.

This could also run on the executive startup but that introduces needless complexity
in a comparison with switching to the real mode and back to the protected mode.

2.4.4 Utilizing i386 code emulator
This solution requires implementing or porting the x86 code interpreter. There is no
overhead to the context switch as there is in previous cases. Further this would allow to
monitor emulated code actions. This option seems to me as quite complex even though
it would be probably the best way of those mentioned to implement this driver. The
implemented instruction emulator exists in the Seoul Virtual Machine Monitor project1.

2.5 RTEMS RTOS

The RTEMS2 is the Real Time Operating System. Real time systems in general “must
receive and respond to a set of external stimuli within rigid and critical time con-
straints” [13]. The usage of real time systems is truly wide, they are used for example
in the car industry, avionics, manufacturing control mechanisms or the hospital equip-
ment. Real time operating systems have equivalent purpose to the general-purpose
operating systems and that is to provide and manage available resources in the whole
system implying an easier software development. Further, real time systems contain
schedulers that schedule running tasks under given time constraints if that is possible.

The name RTEMS is the abbreviation for Real Time Executive for Multiprocessing
Systems. System has been ported to many processor families and boards build upon a
specific processor. [14]

The RTEMS is available “in the form of source code” [15] That allows the high
reusability of this software. Tools for building binaries from the RTEMS source code
are described in the section 2.6. Further there exists distributed and prebuilt packages.

1 https://github.com/TUD-OS/seoul/tree/master/executor
2 http://www.rtems.org
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2.5.1 License considerations
The RTEMS is developed under the various free and open source licenses. Most of the
source code is covered by the Primary RTEMS License. “The common characteristic
of all of these licenses is that they allow linking with no requirements placed on the
end user application.”1 The RTEMS project rejects any code that uses the GPL or the
LGPL licenses, because the RTEMS License is not compatible with mentioned licenses.

Although the VESA driver implementation already exists for example in the Linux
operating system, non of its parts could be used due to the license issues.

2.5.2 Source code organization
The RTEMS source code is divided amongst subdirectories in a way where architecture
and target board specific code is isolated.

The non-portable source code tree contains separate code for the processors as well
as for the board support packages. The board support package consists of code specific
to particular board allowing the system to run on the board and enabling various board
features.

directory purpose
cpukit/score/cpu/CPU CPU dependent files
c/src/lib/libcpu/CPU CPU dependent support files
c/src/lib/libbsp/CPU/shared Files shared over all boards
c/src/lib/libbsp/CPU/BSP Board dependent files

Table 2.5. RTEMS source directories influenced by this work. [16]

2.6 Toolchain
The RTEMS is built using the cross development environment. The cross development
means that “software development activities are typically performed on one computer
system, the build-host system, while the result of the development effort is a software
system that executes on the target platform”. [13] The effect of cross development is
that one powerful build-host system, powerful in the sense of fast development, can
create software for many low-cost target devices.

“A key component of the RTEMS development environment is the GNU family of
free tools.” [15] GNU tools used in the RTEMS development includes Autotools, the
GCC, Binutils or the GDB.

The generic C standard library used in the RTEMS is the Newlib that is intended to
be used on embedded targets2.

Quite recent version of Autotools is required to build the RTEMS. I installed the
most recent versions of Autoconf and Automake from sources.

GCC and Binutils toolchain configured and build for the RTEMS is necessary. The
GCC stands for the GNU Compiler Collection and it contains the compiler used to
transform RTEMS sources to an executable program. “The GNU Binutils are a col-
lection of binary tools. The main ones are ld – the GNU linker and as – the GNU
assembler” [17]. It is possible to build these from the source as described in Getting
Started with RTEMS [13]. I used packages prepared by my supervisor3.
1 https://www.rtems.org/license
2 http://www.sourceware.org/newlib/
3 http://rtime.felk.cvut.cz/debian/pool/
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2.7 From source to install image

The Autotools system is used to generate scripts for the configuration and to generate
files necessary for building with a minimal effort. The source code files written by
the programmer need to be described for Autotools so that Autotools knows how to
approach these sources. The programmer has to describe the sources in Autotools
specific files.

The RTEMS source root contains the bootstrap script that executes certain Autotools
steps necessary.

There are certain steps performed by the user of by the developer for testing the
software after the running of bootstrap script. The configure script enables to set
options that should be used during the build phase. The building itself is done with
the make command which reads Makefile created by the configure script. The tools
and linkable files created by make can be installed to a place selected in the configure
phase by executing command make install.

Compiles into
install image

Runs MakeRuns
Configure

Makefile

config.status
config.log

config.cache

configure
aclocal.m4

preinstall.am

Makefile.in

Runs
Bootstrap

Writes

Makefile.am

configure.ac

Source code

Developer User

Figure 2.6. Steps from developer to user. [16]

2.7.1 bootstrap
The RTEMS bootstrap script utilizes GNU Autotools namely the GNU Autoconf and
the GNU Automake.

The programmer writes the configure.ac which is an input file for the autoconf that
generates the configure shell script. The configure.ac files consist of definitions of
variables influencing what is build and how it is build. The user can modify or set
these variables when invoking the configure script.

The programmer also writes the Makefile.am which is an input file for the automake
which generates the file Makefile.in. The Makefile.am describes source and header files
to be build incorporating configure conditions on which these files are included.

The configure.ac and the Makefile.am are found all around the source tree describing
files in a particular subdirectory.

2.7.2 configure
The configure script provides ways to determine what will be included in the build
following configuration. There are several options that can be used here. I used

14



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 GCC

the configure script with the following options: ./configure --target=i386-
rtems4.11 --prefix=/opt/rtems4.11 --build=x86 64-pc-linux-gnu --enable-
rtems-inlines --disable-multiprocessing --enable-cxx --enable-rdbg -
-enable-maintainer-mode --enable-networking --enable-posix --enable-
itron --disable-ada --disable-expada --disable-multilib --disable-docs
--enable-rtemsbsp=pc686

The configure creates the Makefile s using the options provided and using files
generated by Autotools.

option purpose
--target=〈TARGET 〉 〈TARGET 〉 is of the form 〈CPU 〉-rtems4.11
--prefix=〈INSTALL POINT 〉 installation point for the tools
--build=〈BUILD HOST 〉 host on which the software is being built
--enable-rtemsbsp=〈BSP〉 selects board support package to be built

Table 2.6. Configure options. [13] Other configure options may be obtained by executing
configure --help command

2.7.3 RTEMS application
The RTEMS operating system binaries are in the install point selected in the configure
phase. When an RTEMS application is written, its sources are first compiled to the
relocatable object file [name].o. The application object file is then linked together with
RTEMS prebuilt binaries and that results in a statically linked [name].exe image file.
For the pc386 BSP there are removed .comment and .note sections and any unneeded
sections and this is stored in a [name].bin image file. This [name].bin file is converted
to a bootable image file [name].ralf that includes the RTEMS switch from the real to
the protected mode. The tool for creating the bootable image is the bin2boot and its
source code is a part of the pc386 BSP.

2.8 GCC
The following section is going to describe some of the information specific for the GCC
compiler used with this project.

2.8.1 C extension - Extended Asm
The GCC allows to use a special construction to write an architecture specific assembly
code mixing it with the C code. This feature is also known as the inline assembler. In
the C code it is introduced as an asm(code : output operands : input operands
: clobbered registers); the function, where the first argument is a string repre-
senting code in the machine specific assembly language including possible instruction
separation by the \n newline placeholder. Further there are optional parts that are sep-
arated by colons. These comma–separated parts are intended to inform the compiler
what is happening in the inline assembler. That makes the compiler’s job easier when
introducing possible optimizations. [18]

If the compiler stores something to registers or on the stack it might expect these
to still be there after operations in the inline assembly were executed. However, while
in the inline assembly we often need to use the registers. It could be the temporary
registers or the specific registers used by the instructions. Here comes the clobbered
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list that informs compiler about registers (or eventually memory) that are being used
so it knows it needs to preserve these somewhere. [18]

Input and output registers allow programmer to pass variables or other data to and
from the inline assembly. There are constraints on operands passed defined to make
the work of the compiler easier. Constraints include the different types of memory,
register, immediate or memory address operands. Each architecture may also have spe-
cial constraints e.g. some of i386 register constraints are a, b, c, d for corresponding
registers. [19]

2.8.2 Calling convention
The code compiled from the assembly and from the C language source files can call
functions from the code which originates in the other source type. Assembly code
has to adhere to the C application binary interface (ABI) calling convention. The
convention describes among other how parameters are passed, the way the return value
is passed, what registers are preserved and whether the stack is handled by a caller or
a callee upon return. It is usual to pass parameters in the registers or on the stack.
There does not exist only one calling convention, but there are more of them defined.

On the i386 in the 32-bit mode the GCC uses a calling convention that passes pa-
rameters in a reversed order on the stack, the return value is passed in the A register.
Registers A, C and D are used as scratch registers so these do not need to be preserved.
All other registers need to be preserved by the callee. The caller removes arguments
from the stack after the callee finishes and returns. The function call is done using the
call instruction and return back using the instruction ret. [20]
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Chapter 3
Implementation

There were several steps necessary in implementing the driver utilizing the VBE real
mode interface (see section 2.4.2). One step was preparing a header file describing
the VBE data structures and macros. The RTEMS had to be extended to provide
functions for the manipulation with global descriptor table entries. The implemented
VESA based driver requires setting up some of the global descriptors. Further the
driver needs to call the real mode interrupt, which lead to the implementation of the
real mode interrupt interface. With all previous steps achieved, the frame buffer driver
itself could be implemented.

In every section there are listed the most important files related to the section.

3.1 VBE and EDID header files

c/src/lib/libbsp/i386/pc386/include/vbe3.h
c/src/lib/libbsp/i386/pc386/include/edid.h

The necessity for creating own VBE header file arose, because I had not found such a
header file under license compatible with the RTEMS anywhere.

For early version of the VBE header file I wrote a simple python script1. The script
used the pdf2txt2 tool to convert the VBE specification to a parsable text. There are
mode list, function numbers and structures retrieved from the text file. The resultant
file was further completed and adapted manually.

I started writing manually only necessary parts of the EDID ending up with structures
in versions 1.4 and 2.0 of EDID definitions written. Nevertheless there was need to
keep definitions endian independent and the first implementation did not satisfy that
condition. Also “the EDID data structure 2.0 defined in the EDID Version 3 Standard
has not been widely adopted, although the standard is still considered valid” [21] and
“new designs are strongly urged to use only the new data structure 1.4” [21]. These
things lead me to drop the support for the EDID version 2.0 and rewrite only the EDID
structure version 1.4 to be an endian independent.

The endian independence of the EDID header file is a factor that makes its defini-
tions multi–platform. There is a real possibility that it will be used on the different
architecture. The VBE header file on the other side is based on the standard that is
very dependent on the IBM PC compatible computer so there was no need to make it
platform independent.

1 https://github.com/dolezaljan/vbe_headers_tool
2 http://www.unixuser.org/˜euske/python/pdfminer/
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3.1.1 Packed attribute

There are many structures defined with a compiler attribute packed. “This attribute
specifies that each member of the structure is placed to minimize the memory re-
quired.” [22] The compiler could incline to align members at a certain boundary e.g.
every eighth byte which might optimize the access to the members of a structure. The
extra space is undesirable because members of underlying structures from used stan-
dards are naturally defined with the exact spacing.

3.2 Descriptor manipulation
To support the global descriptor table entries manipulation in the RTEMS, there was
added an option to change the size of the GDT and there were written functions enabling
to populate the GDT.

3.2.1 Descriptor table modification

c/src/lib/libbsp/i386/pc386/include/bsp.h
c/src/lib/libbsp/i386/pc386/include/tblsizes.h
c/src/lib/libbsp/i386/pc386/startup/ldsegs.S

The size of the GDT was fixed in an assembly (ldsegs.S) even though the bsp C header
contained a macro GDT SIZE defining the size of the GDT. When an assembly file has
an extension .S, it is preprocessed using the as internal preprocessor with GNU C
compiler driver. It means that it might be possible to include the bsp.h C header file
and utilize the GDT SIZE. Doing that the as utility threw an error, because the header
file contains constructions such as function prototypes, that stays in the code after the
preprocessing and that cannot be processed by the as. Nevertheless for defines this
is not an issue. The first implementation introduced guards in the bsp.h header file
checking whether the header file is processed within the assembly context. When it is in
the assembly context, guards ensured that all parts besides those desired by assembly,
such as the size macro, were ignored. The code using these guards became a little bit
hard to read. So then I moved the GDT SIZE macro to a separate file and included it
from both the bsp header file and the assembly file.

The ldsegs.S contains a table of three predefined segment descriptors (including a
null segment) and then it continues with the allocation of the space for the rest of the
descriptors up to the GDT SIZE. The allocation is done using the pseudo instruction
.rept count, that repeats “the sequence of lines between the .rept directive and the
next .endr directive count times” [23]. The repeated lines define a descriptor element.
One descriptor element has 8 bytes and I set its bytes to 0 and consider it an empty
descriptor. Using the GDT SIZE there is also updated the limit of the structure that
is loaded to the GDTR later.

Similarly the construction of an interrupt descriptor table was updated using the
IDT SIZE.

Further there was introduced the macro NUM APP DRV GDT DESCRIPTORS included
from the file bspopts.h that is generated during the configure phase. It might be either
set as an shell environment variable either passed as an argument variable with the
number of descriptors required behind an equal sign.
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3.2.2 Functions dealing with descriptors

c/src/lib/libbsp/i386/shared/irq/idt.c
c/src/lib/libcpu/i386/cpu.h

Several functions for manipulating descriptors of the GDT were implemented.
The most important is the function for installing the GDT entry – uint32 t
i386 raw gdt entry(uint16 t segment selector index, segment descriptors*
sd) where the index selects the entry of the GDT that is filled with values of sd. The
function checks whether the provided index is within the limit contained in the GDTR
and if it is different from 0, which is an invalid index in the GDT. It first sets the
present bit to 0 and when all other fields are filled to the GDT then the value of present
bit that was passed is filled. Although the bit is intended to different purposes, here
this should prevent an application from using descriptors that are not fully prepared.
If an application tries to use the descriptor that is not ready, its present bit contains 0,
the processor generates a segment-not-present exception”. [2, Vol. 3A 3–11] After the
descriptor was filled the segment registers are reloaded with the selectors they contain
so possible changes take effect.

Functions i386 fill segment desc base and i386 fill segment desc limit were
implemented as supporting functions to fill individual parts of the base and the limit.
Complementary functions to those mentioned above are the i386 base gdt entry and
the i386 limit gdt entry that return the base eventually limit of the descriptor when
pointer to the descriptor is passed into the functions.

Another function i386 next empty gdt entry returns the index of another unused
descriptor until their exhaustion. In the case of the exhaustion 0 is returned which is
an invalid index in the GDT.

The function i386 cpy gdt entry copies the entry of the GDT on the passed index
to the structure which pointer is passed to the function as well.

The pointer to the descriptor of the GDT on the given index is returned by the
function i386 get gdt entry.

The existing function i386 set gdt entry is reimplemented under the name
i386 raw gdt entry. The original function remains for the backward compatibility.
Some of the code of the original function was reused in the i386 raw gdt entry.

3.3 Real mode interrupt interface

c/src/lib/libbsp/i386/shared/realmode int/realmode int.c
c/src/lib/libbsp/i386/shared/realmode int/realmode int.h

The interface enables the calling of the given interrupt number with the content of
the registers defined. The interface entry point is called from the protected mode it
switches to the real mode, executes interrupt and switches back to the protected mode.
The interface also provides the buffer accessible from the real mode.
To comfortably work with the real mode pointers there was a need to implement func-
tions converting the pointers to the physical address and vice versa.
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3.3.1 Real mode related functions

cpukit/score/cpu/i386/cpu asm.S
cpukit/score/cpu/i386/rtems/score/i386.h

Converting the real mode pointer to the physical address means to shift the segment
part of the pointer 4 bits left (it is the same as multiplying by 16) and then to add
offset part of the pointer to the shifted segment.

Converting the physical address to the real mode pointer is a little bit trickier. The
highest physical address accessible using the real mode pointer is 0x10FFEF. Indeed
if we have the pointer 0xFFFF:0xFFFF then shifted segment 0xFFFF0 plus offset
0xFFFF is 0x10FFEF. So if the function gets higher physical address to be converted it
returns an error value. I also implemented the function to compute the highest segment
part possible.

3.3.2 Switching between real and protected mode
The problem of the switch from the protected mode to the real mode and back requires
couple steps to be addressed [2, Vol. 3A 9–12][24].

The code switching to the real mode suppose it switches from the 32-bit protected
mode. The code also prepares to switch back into the 32-bit protected mode. It has to
do the following:.Turn off the paging. The code is expected to run only on the startup of the RTEMS

executive when the paging is not yet active, therefore the paging is only tested and
if it is on, an error value is returned..Prepare the entry pointer into the real mode..Prepare the return pointer into the protected mode..Disable interrupts..Back up selectors from segment registers and the ESP register that along with the SS
describes the stack..Back up the current interrupt descriptor table register – the IDTR and set the IDTR
to use the table located in the first MB of the memory so that it is accessible in the
real mode. I actually set it to correspond with the table that is set up by the BIOS
after startup..Load CS register with the real mode alike code descriptor. That means I needed to
create a descriptor that has the 16-bit default operation size, byte granular limit with
a value of 0xFFFF, non-conforming and readable. The load of the CS is performed
by the far jump instruction that loads the CS register and the EIP..Load other segment registers with the real mode alike data descriptor that uses the
16-bit operand size, has the byte granular limit with the value of 0xFFFF, expands
up and is writable..Disable the protected mode by setting the bit PE in the CR0 register to zero..Load the CS register with the real mode base. Again using the far jump instruction..Load other segment registers with appropriate values of the real mode base..Establish the real mode stack.

Now we are in the real mode. To transfer back to the protected mode state we left
earlier we restore backed up values and we perform other necessary steps.
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.Set the PE bit in the CR0 to enable the protected mode..Execute the far jump to previously saved return pointer incorporating previous 32-bit
segment descriptor..Load other segment registers with previous 32-bit segment descriptors..Restore the protected mode stack..Restore the interrupt descriptor table..Enable interrupts if they were enabled prior to the call of the interface.

It is obvious that when transferring back to the protected mode there is not necessary
to load the segment selectors pointing to the 16-bit segment descriptors again.

3.3.3 Calling the interface
Originally the interface had one parameter and that was the pointer to the structure
holding values that are filled into registers before the interrupt is called. Another
parameter was added to select the interrupt number to be called. This way the interface
is more universal.

When there is an interrupt function that requires passing or receiving higher amounts
of data there was a function implemented that provides the buffer accessible from the
real mode. The interrupt function gets the real mode pointer to this buffer in the
registers.

Because the real mode can operate under the normal conditions only in the first MB
of the memory and the RTEMS image is loaded above this boundary, there are several
steps that must be performed before the switch to the real mode occurs:.Copy values/data that should be passed to the real mode into the first MB of the

memory..Copy the code that is to be executed in the real mode into the first MB of the
memory.. In the copied code from the previous bullet rewrite the interrupt number with the
corresponding parameter passed.

Rewrite of the interrupt number is done in the interrupt instruction to which the in-
terrupt number is bounded. Byte of the interrupt instruction code holding the interrupt
number is overwritten by the interrupt number passed to the interface.

In the data copied into the first MB of the memory is included structure holding values
of selected registers. The registers are filled with these values prior to the interrupt call.

Register values (return values) after the interrupt call are stored back to the place
they were filled from before the interrupt call.

3.3.4 Interface memory layout

Code executing
RM interrupt

Data buffer

 Real mode call spot

   512 B

Registers and
backup values

Real mode stack
  8192 B

    50 B

  ~150 B

Figure 3.1. Real mode interrupt call memory layout for data and code used.
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The interface creates the structure shown on the picture in the first MB of the memory

so that these data and the code are accessible while in the real mode. The location
of this structure is determined by an address defined by the preprocessor macro. The
structure is fully relocatable within the available memory in the first MB of the memory
by setting the address of the defined macro to the required value. The top of the stack
is located at the address defining the location of the structure. The size of the stack was
chosen arbitrarily taking the possible stack usage by graphic BIOSes into consideration.
The data buffer size is based on the biggest structure that is passed to/from the VBE.
The code part provides the switch to the real mode, the interrupt execution and the
switch back to the protected mode.

The first MB is not used by the RTEMS operation system therefore it could be used
for the purposes of the interface. The RTEMS is loaded above the first MB of the
memory.

3.4 Implemented frame buffer driver

c/src/lib/libbsp/i386/pc386/start/start.S
c/src/lib/libbsp/i386/pc386/include/fb vesa.h
c/src/lib/libbsp/i386/pc386/console/fb vesa rm.c

In this work the real mode interface is used to access VBE functions and it is imple-
mented in the fb vesa rm.c frame buffer driver. The mode is selected on the boot up.
The frame buffer bootup function is called among other start routines in start.S. The
frame buffer bootup function objective is to set the graphic mode used for the whole
executive runtime. Such a bootup function is not a standard way to initialize the frame
buffer driver. The reasons for this approach are discussed in the section 2.4.2. The ap-
plication code later obtains the information about the set mode through the standard
way.

3.4.1 VBE interface
Introduction to the VBE showed there are several ways to access its functions. The
header file fb vesa.h describing the VBE functions was introduced as an interface to be
implemented by the particular VBE frame buffer drivers.

3.4.2 Selecting graphics mode
The graphics mode description obtained using respective VBE function contains besides
others these attributes: mode attributes, mode resolution, bits per pixel and physical
address for the flat memory frame buffer.

List of graphic mode numbers supported by the graphic card is obtained from the
data returned by the adapter info VBE function. A local list of modes with selected
fields is created and it is filtered using mode attributes field so that the list contains only
modes with these attributes: the mode supported in the hardware, the colored mode
(not monochrome), the graphics mode (not text) and the information if the mode has
the linear frame buffer available. I sort the list of modes from the highest resolution
and the highest bpp to the lowest. The number of pixels in one line has the highest
priority followed by the number of lines in one screen image. The bits per pixel field
has the lowest priority.
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3.4.3 Multiboot options
It is possible to pass so called command line as a multiboot option that can be read by
the loaded image and the image can then modify its behavior according to arguments
in the command line string. When the command line contains the argument in this
format --video=〈resX〉x〈resY 〉[-bpp], the program tries to find the mode from the sorted
list that has corresponding parameters. If such a mode is found then it is also set and
used.

3.4.4 EDID
Monitors and displays in general contains the EDID structure that defines device capa-
bilities. This structure can be obtained using appropriate sub-function of the Display
Data Channel VBE function [10]. If there is no multiboot option --video= or no mode
with corresponding parameters is found then the EDID structure informations are tested
whether at least one mode corresponding to these informations can be found.

The EDID structure may contain four different types of the device timing mode infor-
mation. Each available timing mode information has defined resolution or resolutions in
some way, that is the most relevant information to be used. Types of the timing mode
information have the priority order which suggests the order of testing the modes [21].

3.4.5 RTEMS frame buffer
The RTEMS presents the frame buffer to applications as a named device node in the
file system. The standard file operations need to be implemented by the higher layer of
the VBE support driver. The required functions provided by the frame buffer driver are
initialize, open, close, read, write and control. The control function provides the screen
informations to the higher layers. Screen informations are kept in two structures. The
command parameter of the control function can select the structures to be obtained by
the function. One of the two structures contains the screen resolution, bits per pixel
and then the information about the division of pixel bits among colors. In the one pixel
there are red, green and blue fields. In some cases there is the information about the
pixel transparency also specified. Each color has its bit start position in a pixel and
the number of bits that a particular color takes in one pixel and the indication whether
the most significant bit is on the left or the right side.

Red (5)Green (6)Blue (5)
0123456789101112131415

Figure 3.2. Example of packed pixel with 16 bpp. For example offset of green color is the
fifth bit and number of its bits (length) is 6. Values for transparent part are in this case

equal to zero.

The other structure contains the start address of the frame buffer in the memory, the
number of pixel per line, the length of frame buffer memory available, the pixel type (I
used packed pixels) and the pixel visual type defining color scheme.

For the implemented driver these structures are set up when the mode is selected
which happens in the bootup function. Standard initialize function only registers the
frame buffer device while everything else is initialized in the bootup function. The
frame buffer control function has also nothing else implemented besides commands for
the returning screen info.
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The open and the close frame buffer functions uses a mutex to prevent the opening

of the frame buffer multiple times.
The last two functions handle the frame buffer content. One function allows to write

to the frame buffer and the other to read from it.
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Chapter 4
Testing targets and debugging

In order to test the developed software, there had to be a PC machine with the i386
processor available that would run the software. For the early testing the QEMU virtual
machine software was used. Later the code was tested on the real hardware. There
were used several options to boot the code on real hardware.

When the RTEMS application is compiled there is a bootable image created. This
image can be loaded by the target machine through the standard ways that the machine
supports.

I tested the new driver code itself with graphical applications, that already run with
different frame buffer drivers. The goal was to get a similar graphical output from the
application for the old and the new driver.

The testing of the implementation of parts not specific to the driver itself, such as
the manipulation with GDT entries, by printing debug messages to the output and by
controlling the output for expected messages.

4.1 Virtual hardware
The QEMU utility states on its homepage: “QEMU is a generic and open source
machine emulator and virtualizer.” 1 In this work the QEMU was used for virtualizing
the IBM PC compatible machine. The virtualizer loaded an image containing the new
tested RTEMS code.

This work used the QEMU with several arguments:

argument meaning
-kernel Specifies multiboot format image to be loaded into the virtualizer.
-vga Select type of VGA card to emulate.
-s Starts gdbserver on TCP port 1234.
-S Do not start CPU at startup.
-append Parameters to pass as multiboot options.

Table 4.1. Arguments used with QEMU.

4.1.1 GDB
The GNU Debugger tool was used to trace developed program execution and to find
spots where the code crashed. This tool contains a rich set of commands. There was
also used a graphical front-end for the GDB – the DDD that stands for The Data
Display Debugger.

When using one of these utilities it was necessary to connect to the QEMU that runs
the debugged code. That is done by the starting of QEMU with the parameter that
starts the GDB server on the TCP port.
1 http://qemu.org

25

http://qemu.org


4. Testing targets and debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In the moment the connection to the GDB server is established, the flow of the

debugged program can be controlled by the gdb commands. The list of debugging com-
mands can be obtained by starting the gdb utility and then by running gdb command
‘help’.

4.2 Real hardware
There are standard methods of booting up the system on the PC compatible the com-
puters. The priority of booting can be set in computer’s ‘SETUP’. Even though there
are options such as a floppy disk, a CDROM, a hard drive or a flash disk, the devel-
opment would be significantly slower if these were used for the booting of developed
software, because it would require to install a new version of the software on a mentioned
medium every time the software changes.

The best option is to use the booting over the network. It is often supported in
the BIOS, but many BIOSes I used limit the size of the image that can be loaded.
Therefore I used the iPXE1 bootloader on the target side. I downloaded the image of
the iPXE for a flash disk and set up the target PC to boot from that flash disk. Another
option would be to load another bootloader which could then load the big sized image.
Nevertheless I preferred to use the bootloader on a flash drive for cases where there was
no network bootloader on the PC at all. The iPXE can be also loaded from the floppy
disk or the CD/DVD if the target PC does not support booting from the flash drive.

I also had to set up a machine where I developed the software that would provide
the image that is meant to be run on the target machine. That required to set up the
DHCP and the TFTP servers according to the PXE implementation as stated in the
guide I found2. I used the utility ATFTP as a TFTP server and the ISC DHCP from
the Internet Systems Consortium3.

I added a line to my compile script, that copy the new compiled image to the TFTP
default directory and set the DHCP option filename to refer to the image file.

Now every time the new version of tested software were compiled it is sufficient to
reboot the target hardware and it loads the image automatically.

Later I also used the tool Novaboot4, that automates the network booting and makes
the booting of remote target with the local OS image simple.

There exists also the option to use GRUB multiboot boot loader to boot the RTEMS
executive.

1 http://ipxe.org
2 http://www.syslinux.org/wiki/index.php/PXELINUX
3 http://isc.org
4 https://github.com/wentasah/novaboot
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Chapter 5
Integration

5.1 Graphic demos
As stated in the previous chapter the implemented driver was tested with more graph-
ical applications. The RTEMS is used with Microwindows/Nano-X port in more ap-
plications and the Nano-X was one of the applications–frameworks used for new driver
testing. Demos of the Nano-X were a good way to test the driver by comparing the
generated graphical output with the expected one.

Figure 5.1. Nano-X demo malpha in Qemu with resolution 1280x1024 and 32 bits color
depth.

RTEMS project hosts the RTEMS Graphics Toolkit (RGT), which is “collection
of free software packages that are suitable for use in building graphical interfaces for
RTEMS-based embedded systems”1. Microwindows and Nano-X repositories must be
cloned into RGT subdirectories. I used versions of nxlib and microwin repositories
forked for the RTEMS2. The script do it in the RGT root with the parameter -n then
allows to build Microwindows/Nano-X.

The microwindows repository contains a directory with configurations for systems
using it. Config file for the RTEMS src/Configs/config.rtems needs to be slightly
modified for the driver to work correctly in 32 bit depth modes otherwise there are
1 http://git.rtems.org/rtems-graphics-toolkit/tree/README
2 https://github.com/alex-sever-h?tab=repositories
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color channels mixed. Microwindows does not use the information about color channels
provided by the RTEMS frame buffer driver, the information must be provided manually
in the config file. It only requires to change the pixel type value: SCREEN PIXTYPE =
MWPF TRUECOLORABGR.

The RTEMS config file for Microwindows also needs to be patched to get demos
built. There is mistyped check for the existence of the freetype font library. It checks
for the tiff library instead. When not patched, the tiff library is found which leads to the
freetype compile flag to be set. The Microwindows demos configuration/build does not
know how to process such a flag and demos would need to be patched to recognize and
process it correctly. Further the config file for Microwindows also set similar flags for the
jpeg and the png libraries. The Microwindows/Nano-X demos are not aware of these
flags and the compilation fails if the flags are present. The demos do not need these
libraries, so to build demos it is necessary to not build or remove the existing jpeg, the
freetype and the png libraries. When the libraries are not found by the Mircowindows
config file, problematic flags are not set and the compilation succeeds.

5.2 Code
The RTEMS has a tool that checks some of the coding conventions in the rtems-testing
repository. The tool should be used for the cleaning of the code before it can be included
in the RTEMS mainline. Further the developers which maintain the RTEMS review
the code if sent to the RTEMS devel mailing list.

The RTEMS community and maintainers require that the code is accompanied by
accurate documentation to be accepted. The RTEMS project uses Doxygen for docu-
menting source code. The Doxygen documentation is written in the source code files
as a special comment. Such a documenting comment is bounded to the following lines
of the source code.

The slight adjustment of doxygen configuration file was necessary, so that functions
and structures using preprocessor macros for compiler attributes (e.g. typedef struct
{...} COMPILER PACKED my struct;) are not shown in the documentation under the
macro name (COMPILER PACKED), but under their right names (my struct).

The code was separated into several patches and these were consulted on the RTEMS
developer mailing list. After discussion over these patches with the RTEMS community
and the adjustment of patches if necessary, RTEMS maintainers pushed the patches to
the mainline repository.
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Chapter 6
Conclusion

The first approach to the implementation of the VBE driver used the interface of the
BIOS of the graphic cards (16-bit protected mode interface) is not well supported or not
implemented properly by manufacturers. As my attempt to use this interface failed and
as I searched for the reason why, I started to consult other public resources. Apparently,
the problem I had with the implementation was not an unusual one since I have found
references of the obstacles that other programmers faced as well. It showed me that if
the general interface is to be used as defined by the standard, it is necessary to check
how manufacturers support that standard in reality. It is also reasonable to check with
other sources, if such sources are available, that the features defined by the standard
can be actually implemented.

It seemed the protected mode interface is implemented on tested machines, but it
turned out that it is not correctly/fully implemented by the manufacturers. Although
it might be possible to patch the code of the graphic cards BIOS, in my opinion, the
outcome of such an action would be unsure. Instead, I decided to implement or use
another interface defined by the VBE – the real mode interface. When this interface
has been implemented in the driver it worked on every tested machine. Nevertheless
the interface is utilized only on the system startup and the settings of graphic output
can not be changed later.

The implemented VBE frame buffer driver for the IBM PC compatible computer now
makes it possible to work in the highest resolution mode supported by the graphic card
and the monitor. It can be used for the porting of graphic libraries for the RTEMS.
This application is well suited for PCs since this type of machine is a widespread one.
Moreover, the PC emulators on underlying PC are able to run the native code fast.
Applications utilizing real hardware might also appear due to constant lowering power
consumption of the i386 chips. These chips may further contain integrated graphic
card. This enables us to minimize the size of manufactured devices.

This research enabled me to gain experience with the world wide developers commu-
nity and the community of open source from the developer point of view. Among other
things, I deepened my knowledge of Linux operating system used for the development,
the Git version control system, the network booting or the advanced editor Vim.

6.1 Future work
Apparently, there would be a space for the implementation of an another driver which
would use a PC code emulator. The driver would then interpret the real mode graphic
card BIOS code and that would allow the RTEMS executive to have a full control over
its execution. This implies that the calling of the code would be possible anytime.

The new driver should be set as the default one while using the RTEMS on a PC
which contains a graphic card. That would require another round of testing and review
by the community.
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A.1 Specification in English
Implement and integrate necessary components for the support of the graphical output
of the RTEMS operating system on current PC class computers. Present–day graphics
cards support the VESA BIOS Extension (VBE) standard but there is no RTEMS
driver which implements this standard. The result of this work should be an operational
driver, as well as its testing and integration with libraries for the creation of applications
with the graphical interface for the RTEMS OS.

.Apprise yourself of the real–time operating system RTEMS and of the environment
of the i386/PC emulator (QEMU) for testing..Read the VESA BIOS Extension standard and prepare header files describing its
functions and structures (consider license requirements for the integration with the
RTEMS).. Implement and test the graphic cards driver supporting the VBE..Test graphical libraries Nano-X/Microwindow with the implemented driver..Prepare documentation of the implemented software and the form of testing..Perform necessary steps for the incorporation of the designed code and adjustments
to mentioned projects and suggest adjustments and the testing of the further projects
(e.g. FLTK, SuiTk).



Appendix B
Abbreviations

ABI . Application Binary Interface
BIOS . Basic Input/Output System
bpp . Bits Per Pixel
BSP . Board Support Package
CISC . Complex Instruction Set Computing
CPU . Central Processing Unit
DDD . The Data Display Debugger
DHCP . Dynamic Host Configuration Protocol
EDID . Extended Display Identification Data
FLTK . Fast, Light Toolkit
GCC . GNU C Compiler
GDB . The GNU Debugger
GNU . GNU’s Not Unix!
ISR . Interrupt Service Routine
OAR . On-Line Applications Research Corporation
PC . Personal Computer
PCI . Peripheral Component Interconnect
POSIX . Portable Operating System Interface
PXE . Preboot Execution Environment
QEMU . Quick EMUlator
RTEMS . Real Time Executive for Multiprocessing Systems
RTOS . Real Time Operating System
TFTP . Trivaial File Transfer Protocol
VBE . VESA BIOS Extensions
VESA . Video Electronics Standards Association
VGA . Video Graphics Array
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