
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Methods for Development of

Industrial Multi-Agent

Systems

DOCTORAL THESIS

2015 Ing. Petr Kadera

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Methods for Development of

Industrial Multi-Agent

Systems

by

Ing. Petr Kadera

Supervisor: Doc. Ing. Pavel Vrba, Ph.D.

Dissertation submitted to the Faculty of Electrical Engineering of

Czech Technical University in Prague

in partial fulfillment of the requirements

for the degree of

Doctor

in the branch of study

Artificial Inteligence and Biocybernetics

of study program Electrical Engineering and Informatics

2015

Acknowledgements

First and foremost, I would like to thank my wife Jana who encouraged me and

believed in me during the long path to my PhD.

I would like to thank Prof. Vladimı́r Mař́ık who guided and supported me

during nearly all of my academic and professional life. His ability to immediately

see the root of a problem and distinguish the promising approaches from fallacy

was a priceless support as well as his willingness to find a slot for his students in

his overbooked schedule.

I want to thank Associate Prof. Pavel Vrba, my supervisor, who supported me

all the way during my PhD.

I want to thank Pavel Tichý for introducing me the world of industrial agents.

I want to thank Vašek Jirkovský and Petr Novák, my colleagues and friends,

for the fruitful discussions we had.

Petr Kadera

Czech Technical University in Prague

Prague, 2015

i

Methods for Development of Industrial

Multi-Agent Systems

Ing. Petr Kadera

Czech Technical University in Prague, Prague, 2015

Supervisor: Doc. Ing. Pavel Vrba, Ph.D.

From the industrial point of view, the beginning of the 21th century is predomi-

nated by fast-changing demands of the global market. This phenomenon is referred

to as a shift from mass production to mass customization and brings new chal-

lenges into the manufacturing domain. The new research and engineering issues

have been reflected also by HMS initiative, which provided the basic concepts of

holonic and agent-based manufacturing. However, there was still lack of complex

methodology and supportive tools that would provide guidelines to developers of

industrial large-scale agent-based systems.

The first part of this work proposes a set of methods integrated into a tool

named Agent Development Environment (ADE) which is designed to fill this gap.

The tool guides the developer through the entire development process starting

with implementation of agent templates consisting of high-level parts written in

an object-oriented language (currently JAVA and C++ are supported) and low-

level parts (IEC 61131) that provide real-time responsiveness on local level. Con-

sequently, the requested number of agents is instantiated. The approach proposed

within this work guarantees the consistence of the high- and low-level parts. The

tool also composes the hardware configuration from hardware components. Then

the agents are simply assigned to selected computational units (Programmable

Logic Controllers, PCs) and the ADE guarantees a correct setup of all communi-

cation links that represent an information backbone of the distributed solution.

Although the ADE ensures development of a syntactically error-free MAS,

ii

meeting the performance requirements is still an open question, which is closely

connected to the assignment of software agents to the hardware components.

The second part of the thesis proposes an approach that utilizes performance

models to estimate the performance limits of various software/hardware configu-

rations. The approach is based on observation of the emergent behavioral patterns

among agents. Consequently, the observation is transformed into a Queueing Net-

work performance model, which enables fast experiments and provides deep insight

into the inner states of individual components. Therefore, it enables to speed up

the configuration of a new MAS and to verify that the selected configuration meets

the performance requirements.

The final part of the thesis introduces a congestion management mechanism

that continuously observes the load of individual system components and, if nec-

essary, postpones the newly arriving requests in order to guarantee the system

responsiveness. Unless such an approach is implemented, the danger of decreased

responsiveness makes setting of communication timeouts difficult.

iii

Metody pro vývoj pr̊umyslových multi-agentńıch

systémů

Ing. Petr Kadera

České Vysoké Učeńı Technické v Praze, Praha, 2015

Školitel: Doc. Ing. Pavel Vrba, Ph.D.

Pr̊umysl počátku 21. stolet́ı je ovlivňován rychlými změnami požadavk̊u na glo-

balizovaném trhu. Tento jev bývá nazýván posunem od hromadné výroby k hro-

madné tvorbě zákaznických produkt̊u, což přináš́ı nové výzvy do oblasti výrobńıch

systémů. Tyto nové výzvy byly reflektovány vznikem iniciativy zaměřené na

výzkum holonických výrobńıch systémů. Výstupem této iniciativy bylo představeńı

základńıch koncept̊u holonických a multi-agentńıch výrobńıch systémů. Navzdory

již vynaloženému úsiĺı je zde stále nedostatek ucelených metodických doporučeńı

a podp̊urných nástroj̊u, které by usnadnily tvorbu holonických a multi-agentńıch

výrobńıch systémů velkého rozsahu.

Prvńı část této práce popisuje sadu metod integrovaných do nástroje nazvaného

Agent Development Environment (ADE), který byl navržen pro zaplněńı této

mezery. Tento nástroj vede tv̊urce multi-agentńıho systému skrz celý vývojový

proces zač́ınaj́ıćı návrhem agentńıch šablon tvořených jednak popisem vysoko-

úrovňové části agentńı logiky vytvořené v objektově orientovaném jazyce (JAVA

nebo C++) a jednak ńızko-úrovňovými částmi vytvořenými pomoćı standardu

IEC 61131, který poskytuje schopnost ř́ızeńı v reálném čase. Daľśım krokem

je vytvořeńı jednotlivých instanćı agent̊u na základě šablon. Př́ıstup navržený

v této práci zajǐsťuje, že vysoko- a ńızko-úrovňové části agent̊u jsou vytvořeny

konzistentně. ADE slouž́ı i ke konfiguraci hardwarové části daného systému z jed-

notlivých hardwarových komponent. V daľśı fázi jsou jednotliv́ı agenti přirazeni

výpočetńım zdroj̊um, což jsou např. programovatelné logické kontroléry nebo os-

iv

obńı poč́ıtače, pro které ADE vygeneruje výsledný kód, kde jsou mimo jiné auto-

maticky vytvořené komunikačńı spoje mezi jednotlivými částmi výsledné aplikace.

Přestože tento nástroj umožňuje vytvořit multi-agentńı systémy bez syntak-

tických a implementačńıch chyb, zajǐstěńı splněńı výkonových požadavk̊u, které

jsou kladeny na výsledný multi-agentńı systém, nijak zajǐstěno neńı. Proto druhá

část této práce představuje metodu, která využ́ıvá výkonové modely (angl. per-

formance models) pro odhad výkonových limit̊u r̊uzných konfiguraćı systému.

Představená metoda je založena na pozorovańı komunikace mezi agenty, z čehož je

následně vytvořen výkonový model založený na modelovaćım př́ıstupu nazvaném

śıtě front (z angl. Queueing Networks), který umožňuje rychlé provedeńı test̊u

r̊uzných konfiguraćı systému a poskytuje vhled do děńı na úrovni jednotlivých

agent̊u (např. jejich zat́ıžeńı nebo délky front př́ıchoźıch požadavk̊u).

Závěrečná část této práce popisuje systém chráńıćı multi-agentńı systémy před

zahlceńım požadavky. Tento systém nepřetržitě sleduje vznik nových úkol̊u řešených

sledovaným multi-agentńım systémem a pokud je to nutné, začátek řešeńı nových

úkol̊u oddaluje, aby nedošlo k neúměrnému prodloužeńı času odezvy celého systému.

V př́ıpadě, že takový př́ıstup neńı použit, prodlužováńı času odezvy, ke kterému

docháźı s r̊ustem zátěže systému, značně ztěžuje správné nastaveńı časových limit̊u

pro komunikaci mezi jednotlivými agenty.

v

vi

Contents

Acknowledgements i

Abstract ii

Abstrakt iv

1 Introduction 1

1.1 Definition of Terms . 4

1.1.1 Agent . 4

1.1.2 Multi-Agent System . 5

1.2 From Flexible to Agent-Based manufacturing systems 6

1.3 Main Characteristics of Industrial Multi-Agent Systems 6

1.4 Goals of this Thesis . 7

1.5 A Bird’s-Eye View of Chapters Contents 8

2 Industrial Applications of Agents 11

2.1 Introduction . 11

2.2 Networks . 12

2.2.1 Chilled Water System . 13

2.2.2 Smart-Grids . 16

2.2.3 Product Transportation and Material Handling 18

2.3 Planning and Scheduling for Industrial Enterprises 20

2.3.1 Car Rental Scheduling . 21

2.3.2 Supplying International Space Station 22

vii

2.3.3 Adaptive Production Planning and Scheduling 23

2.4 Manufacturing Control . 24

2.4.1 Manufacturing Agent Simulation Tool 25

2.4.2 Actor-Based Assembly System 26

2.5 Conclusion . 28

3 Related Work 29

3.1 Introduction . 29

3.2 FIPA . 29

3.3 Platforms for Industrial Multi-Agent Systems 31

3.3.1 ACS . 32

3.3.2 JADE . 32

3.4 Multi-Agent Social Models . 33

3.4.1 Fault Tolerant Structure of DF agents 34

3.5 Development Tools . 34

3.6 Debugging and Visualization . 35

3.6.1 JADE Sniffer . 36

3.6.2 Java Sniffer . 36

3.7 Agents and low-level control with IEC 61499 38

3.7.1 4DIAC IDE . 39

3.7.2 4DIAC RTE . 40

3.7.3 Verification of IEC 61499 Non-Functional Parameters . . . 40

3.8 Diagnostics of MASs . 43

3.8.1 Model-Based Diagnostics 43

3.8.2 Formal Time Analysis for Embedded Systems 43

3.8.3 Qualitative and Quantitative Analysis of Industrial Multi-

Agent Systems . 44

4 Agent Development Environment 45

4.1 Introduction . 45

4.1.1 Integration of HLC and LLC 46

4.1.2 ADE Characteristics . 47

4.1.3 MAS Architecture . 51

viii

4.2 Low-Level Code Generation . 52

4.2.1 Indirect References . 53

4.2.2 Containment . 53

4.2.3 Macro Instructions . 53

4.2.4 Inheritance . 54

4.2.5 Low-Level and High-Level Integration 55

4.3 Conclusion . 55

5 Performance Models for Agents 57

5.1 Introduction . 57

5.2 Bounded Analysis . 57

5.3 Queuing Networks . 60

5.4 Queuing Petri-Nets . 61

5.5 Stochastic Process Algebras . 63

5.6 Conclusion . 63

6 Analyzing Communication 65

6.1 Introduction . 65

6.2 Languages for Agents . 66

6.2.1 KQML . 66

6.2.2 FIPA ACL . 67

6.3 Communication Protocols . 69

6.3.1 Auctions . 69

6.3.2 Contract-Net and Plan-Commit-Execute Protocols 70

6.4 Workflows . 72

6.5 Conclusion . 74

7 Verification of MAS Design 75

7.1 Introduction . 75

7.2 Modeling MASs using Queueing Networks 78

7.2.1 Agents . 78

7.2.2 Workflows . 78

7.2.3 Workload and Service Times 79

7.2.4 Request – Response Distinction 80

ix

7.3 Performance Indices . 81

7.4 Construction of Queueing Networks 81

7.4.1 Loading Matrix . 82

7.4.2 Routing Probabilities . 84

7.5 Experiments . 85

7.5.1 Software Platform for Experiments 85

7.5.2 Hardware Platform for Experiments 86

7.5.3 Simulation Accuracy . 86

7.5.4 Modeled Characteristics . 90

7.6 Conclusion . 93

8 Load-Aware Directory Facilitator 95

8.1 Introduction . 95

8.2 Multi-Agent Social Models . 97

8.3 Identification of Possible System Bottlenecks 98

8.4 Scheduling Extension of the Directory Facilitator 102

8.5 Operational Regimes . 105

8.6 Communication Timeouts . 107

8.7 Experimental Evaluation . 110

8.8 Conclusion . 111

9 Conclusion 115

9.1 Fulfillment of the Thesis Goals . 116

9.2 Contribution of the Thesis . 117

9.3 Future Work . 118

Biblioghraphy 126

List of Author’s Publications I

x

List of Figures

2.1 Automation Pyramid . 12

2.2 Reduced Scale Advanced Demonstrator 13

2.3 U.S. Navy Battle Ship . 14

2.4 CWS configuration . 15

2.5 Organization of the traditional electric energy infrastructure 17

2.6 Organization of the future electric energy infrastructure 17

2.7 CDAC laboratory . 27

3.1 FIPA Agent Management Reference Model. 31

3.2 Example of 3-level DHT architecture (Tichý, 2003) 35

3.3 Java Sniffer – Main Window . 37

3.4 IEC 61499 Function Block . 39

3.5 4DIAC – IDE: Main Window . 40

3.6 AIT Smart Grid SmartEST laboratory. 41

3.7 Brief overview of the laboratory software layer architecture. 42

4.1 Interaction of high-level control (HLC) and low-level control (LLC). 47

4.2 Development flow in the Agent Development Environment. 48

4.3 Eclipse-based Agent Development Environment GUI. 50

4.4 Relay Ladder Logic template GUI example during the adding of a

new TON instruction from the instruction catalogue. 51

4.5 Macro instruction expansion example. 54

5.1 Simple Queueing Network . 61

xi

6.1 PCE Protocol . 71

6.2 The main screen of the Java Sniffer visualizing a part of a commu-

nication log. 73

6.3 Workflow in CWS . 73

7.1 One-Way System. 77

7.2 One-Way system characteristic. 77

7.3 Two-Way System. 77

7.4 Two-Way system characteristic. 78

7.5 Example of a workflow that illustrates a piece of negotiation in CWS

application. 83

7.6 Routing Probabilities . 84

7.7 Schema of the testbed. 86

7.8 Photo of the testbed. 87

7.9 Throughput of the real system and the model - Load = 500. 88

7.10 Throughput of the real system and the model - Load = 1000. . . . 88

7.11 Throughput of the real system and the model - Load = 1500. . . . 89

7.12 Throughput of the real system and the model - Load = 2000. . . . 89

7.13 Queueing Network Model loaded into JMT representing a part of

the CWS application. 91

7.14 Comparison of the simulated and the real MAS behavior. 91

7.15 Utilization of agents. 92

7.16 Number of Customers. 92

7.17 Response time. 93

8.1 Graphical representation of a loading matrix. 100

8.2 Architecture of a MAS with Sniffer and Extended DF. 103

8.3 Computation of customer’s arriving frequencies. 105

8.4 Suspensive mechanism of DF scheduling. 106

8.5 Different match-making mechanisms. 107

8.6 Relation between response time and utilization. 109

8.7 Response time. 109

8.8 System Throughput . 111

xii

8.9 Passage Rate. 112

8.10 Original System. 112

8.11 System with Extended DF . 113

xiii

xiv

List of Tables

5.1 Comparison of performance modeling notations. 64

7.1 Loading Matrix. 82

7.2 Loading matrix for the request “SVC cooling”. The values represent

time in milliseconds. 82

7.3 Loading matrix for the load 500. The values represent time in mil-

liseconds. 88

7.4 Loading matrix for the load 1000. The values represent time in

milliseconds. 88

7.5 Loading matrix for the load 1500. The values represent time in

milliseconds. 89

7.6 Loading matrix for the load 2000. The values represent time in

milliseconds. 89

xv

xvi

Chapter 1

Introduction

The mass production area was predominated by big investments in customized

equipment, in order to produce large quantities of identical products faster and

cheaper. The changing environment of today’s market raises the need for new

production planning and production control models and requires new approaches

for production lines and intelligent machines to provide stability, sustainability

and economy under such production conditions. It is important to be agile and

react fast with minimum risk to the sudden and unpredictable changes of require-

ments. Adaptive, reconfigurable and modular production systems address these

requirements allowing machines and plants to flexibly adapt themselves to chang-

ing demands and interact with each other to fulfill the overall production goal, as

stated in the Manufacture Strategic Research Agenda (Commission, 2007).

While physical components of such systems are available, the implementation

of reconfigurable systems in the manufacturing industry is hindered by the lack of

knowledge-based methods and intelligent tools for their optimal deployment and

control of their operation. Currently available methods and tools are based mostly

on traditional techniques applied in flexible manufacturing systems and are quite

straightforward, addressing specific problems and lacking intelligence and learning

capabilities. Moreover, their application takes place off-line, requiring significant

down times as well as human interference. In order to reach the full potential

of such systems, the adaptation of the system’s performance to an optimal ma-

1

2 CHAPTER 1. INTRODUCTION

nufacturing solution for the appointed task needs to take place autonomously, in

real-time and with as little human involvement as possible. Thus, the development

of an autonomous intelligent governing system for adaptive and reactive manufac-

turing systems is of outmost importance (Commission, 2003), (Commission, 2007).

Holonic and Multi-Agent Systems (MASs) have been widely recognized as en-

abling technologies for designing and implementing next-generation of distributed

and intelligent industrial automation systems (Bussmann et al., 2004). These sys-

tems are characterized by high complexity and requirements for dynamic recon-

figuration capabilities to fulfill demands for mass customization, yet low-volume

orders with reduced time-to-market. Self-diagnostics and robustness that allow

efficient continuing in operation even if a part of the system is down are other

important properties.

The trend of multi-agent systems applications is apparent at all levels of the

manufacturing business. At the lowest, real-time control level, so called holons

or holonic agents are usually tightly linked with the real-time control programs

(implemented in IEC 61131-3 or IEC 61499 standards) through which they can di-

rectly observe and actuate the physical manufacturing equipment (Brennan et al.,

2008). Intelligent agents are also used for production planning and scheduling

tasks both on the workshop and factory levels (Pěchouček et al., 2007). More

generic visions of intensive cooperation among enterprises connected via commu-

nication networks have led to the ideas of virtual enterprises (Camarinha-Matos,

2002).

Common principles in industrial deployment of the agent technology are the

distribution of decision-making and control processes among a community of au-

tonomously acting and mutually cooperating units – agents. At the shop floor

level, for instance, an agent represents and independently controls a particular

physical equipment, like a CNC machine, conveyor belt or docking station. The

substantial characteristic is the cooperation among the agents as they pursue either

their individual goals or the common goals of the overall control system. The inter-

agent interactions vary from simple information exchanges, for example about the

state of processing as the product moves from one machine to another, through

requests to perform a particular operation, for example requesting an automated

guided vehicle to transport a product to a particular work station, to complex

3

negotiations based on contract-net protocol or another auction mechanisms.

Distributed control systems provide many advantages such as efficient resource

utilization, lower hardware investments and higher robustness. Despite these obvi-

ous advantages, the exploitation of the developed concepts in industrial practice is

still very low. The decision makers are reluctant to take the risk of being the first

adopters of this technology at large scale due to many negative factors, such as

higher investments, anxiety over effects of emergent behavior, and lack of skilled

maintenance personnel (Hall et al., 2005). Thus, classical centralized and hierar-

chical control architectures represented mainly by programmable logic controllers

(PLCs) and their respective programming languages of the IEC 61131-3 Standard

are still predominantly used in this area.

All methods introduced within this work have been designed with respect to the

future transfer in the practice. The easiest way, at least up to now, is to preserve

as much from current architectures, including mainly PLCs, as possible and build

the agent layer on top of it. This keeps the most valuable feature of the control

systems: the guaranteed real-time local responsiveness on the level of individual

PLCs that directly control physical components via actuators using data from the

local sensors. It is apparent that any degradation of the responsiveness on this

level is not acceptable for safety reasons.

Although the responsiveness on the global level is not a critical parameter in

terms of safety, it is a key non-functional parameter since large scale distributed

systems suffer from performance problems, such as long response times or over-

loaded computational units. Frequently, the reason for the performance degrada-

tion is inappropriate architecture of the distributed system rather than the inef-

ficient implementation of the components. Performance modeling and evaluation

techniques provide ways to overcome these obstacles to benefit from the promis-

ing advantages. Unfortunately, the design of performance models is a complex

and time consuming task. Therefore, this thesis proposes methods that enable to

create the performance models from the logs of messages automatically.

Although performance models are capable tools for performance and capacity

planning, they do not provide protection against temporal bursts of events that are

hardly predictable and change the responsiveness of the global system significantly.

This thesis proposes a method for online monitoring of the actual system load,

4 CHAPTER 1. INTRODUCTION

detecting possible bottlenecks and if necessary a slow-down of the arriving requests

in order to prevent the system against entering a saturated operational regime.

1.1 Definition of Terms

The terms such as agent or multi-agent system are currently very popular among

researchers and software engineers, but frequently the meaning of these terms lacks

an explicit definition. The reason for various use and interpretation of these terms

is the wide application area of agent-based approaches. Agents are either used for

modeling and simulation of complex systems or for control of complex processes.

In order to avoid the ambiguity, next subsections defines the meaning of these

terms as used throughout this dissertation that is solely as agents designed for

control of industrial processes.

1.1.1 Agent

As there are many application areas for agents, there are also many variations

of the term agent, e.g., software agent, intelligent agent, autonomous agent, and

social agent. Some of the proposed agent definitions follows:

� “An agent is a self-contained problem-solving system capable of autonomous,

reactive, proactive, and social behavior” (Wooldridge and Jennings, 1999).

� “An agent is a computer system, situated in some environment, that is capa-

ble of flexible autonomous action in order to meet its design objectives” (Jen-

nings et al., 1998).

� “An agent is an object that can say go (dynamic autonomy) and no (deter-

ministic autonomy) (Odell et al., 2001)”

� “An intelligent software agent is a program that acts on behalf of their hu-

man users in order to perform laborious information gathering tasks, such as

locating and accessing information from various on-line information sources,

resolving inconsistencies in the retrieved information, filtering away irrele-

vant or unwanted information, integrating information from heterogeneous

1.1. DEFINITION OF TERMS 5

information sources and adapting over time to their human users’ informa-

tion needs and the shape of the Infosphere (Sycara et al., 1996)”.

� “An agent is a software entity that has enough autonomy and intelligence

to carry out various tasks with little or no human intervention” (Wong and

Sycara, 1999).

In the context of this work, the best definition of an agent comes from Matu-

rana (Maturana et al., 2003) and says:

“An agent is an autonomous unit that is able to interact with its environment

in an intelligent manner.”

The main advantage of this definition is that it does not perceive the agent

only as a piece of software, but as a complex unit that consists of both software

and hardware parts.

1.1.2 Multi-Agent System

A general definition of multi-agent system comes from Jennings, Sycara, and

Wooldridge (Jennings et al., 1998). They simply define an agent-based system

as environment where the agent abstraction is utilized. Beside the definition, they

provide a set of characteristics that are essential for any multi-agent system:

� each agent has incomplete information, or capabilities for solving the prob-

lem, thus each agent has a limited viewpoint;

� there is no global system control;

� data is decentralized; and

� computation is asynchronous.

Systems considered within the framework of this thesis meet all these require-

ments.

6 CHAPTER 1. INTRODUCTION

1.2 From Flexible to Agent-Based manufacturing

systems

Holonic Manufacturing Systems (HMS) are mainly results of work done within the

framework of the Intelligent Manufacturing Systems (IMS) programme1, founded

on international cooperation in research and development in manufacturing tech-

nology. The programme started with several projects in 1993. The projects were

launched as feasibility studies, which were lately followed by the full-scale research

programme.

This study conceptualized the abstract of holons as well as formulated the

holonic ideas quite soundly. The first phase was focused on the development

of foundations for generic technologies and the second phase continued with the

demonstration of the potential for distributed systems including physical equip-

ment, manufacturing work cells, factories, and supply chains.

1.3 Main Characteristics of Industrial Multi-Agent

Systems

Design and implementation of MASs and holonic systems are usually very complex

tasks due to their distributed nature. Agents deal only with a partial knowledge

of the whole system and are responsible for specific sections of this system. This

can be both an advantage and a disadvantage at the same time. Let us briefly

summarize the most important ones.

Major advantages are:

� An agent can act on its own when it is disconnected from the rest of the

system (or from its part).

� An agent can be replaced or backed up by another agent; there can be

multiple implementations even using different languages to enhance fault

tolerance.

1http://www.ims.org

1.4. GOALS OF THIS THESIS 7

� Agents can flexibly enter or leave the system if necessary according to de-

mand (i.e., the system can be scaled and adapted automatically if necessary).

� One implementation of an agent can be reused multiple times.

On the other hand, major disadvantages are:

� The development of reusable agent types (i.e., a library of agents) is more

complex.

� The partitioning of the system into parts is often unclear.

� It is difficult to ensure even soft real-time capabilities of the system.

� Agent systems make extensive use of communication facilities to exchange

information among distributed units that might cause undesirable network

overload.

� It is more difficult to debug and test a massively parallel and distributed

system, covering all possible interactions, than it is in the case of a sequential

and centralized one.

Specific attributes of industrial MASs:

� Real-Time behavior;

� Robustness;

� Clearly definable scalability;

� Traceability;

� Physical more than Logical Distribution;

� Agentification of Legacy components.

1.4 Goals of this Thesis

This thesis is aimed at issues related to the design, development and deployment

of industrial MASs in order to create robust industrial MASs in shorter time. In

particular, our goal is to fulfill the following subgoals:

8 CHAPTER 1. INTRODUCTION

� Develop methodology and the corresponding supportive tool that guides sys-

tem engineers through the entire development process;

� Develop a method in order to verify that the final application deployed on a

specific hardware meets the performance requirements;

� Develop a method in order to avoid uncontrolled overloads of hardware re-

sources caused by bursts of incoming requests.

1.5 A Bird’s-Eye View of Chapters Contents

The thesis consists of the following chapters:

Chapter 1 briefly introduces the research field of MASs with the focus on the

specifics of the industrial applications.

Chapter 2 provides an overview of industrial applications of MASs. It de-

scribes both the main application areas as well as concrete applications of the

MAS technology.

Chapter 3 overviews the already existing methods and tools addressing sim-

ilar goals as this thesis, i.e., to enhance development process and robustness of

industrial MASs.

Chapter 4 describes the Agent Development Environment – a tool that guides

a designer of a MAS through the entire development process.

Chapter 5 introduces common performance modeling notations used in software

engineering, enumerates their positive and negative effects and gives reasons for

the performed selection.

Chapter 6 provides a brief insight into the specifics of communication used in

industrial MASs.

Chapter 7 introduces a process of Queueing Networks compilation using a log

of timestamped messages that were sent among the agents as an input as well

as presents a utilization of such models for identification of system performance

indices, which cannot be observed directly, is presented.

Chapter 8 proposes an extension of a regular Directory Facilitator, which ma-

nages the social knowledge within a MAS, by a performance modeling mechanism

that enables to identify a danger of entering a saturated operational regime. When

1.5. A BIRD’S-EYE VIEW OF CHAPTERS CONTENTS 9

such a situation occurs, the execution of newly arrived requests is postponed by

delaying the creation of social links between providers and consumers of the re-

quested services.

Chapter 9 summarizes the achievements and proposes the possible future re-

search directions for further development of the proposed methods.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Industrial Applications of

Agents

2.1 Introduction

The penetration of the agent-based technology in the industrial domain is a long-

lasting process that started more than two decades ago. Agents are perceived as

an alternative way of designing and implementing the industrial control systems.

Traditionally, the control systems are organized in a hierarchical and centralized

way as can be seen in the popular automation pyramid (see Fig. 2.1). Focusing on

the two bottom levels of the pyramid – sensors and actuators on the lowest one

and PLCs (Programmable Logic Controllers) in the level above – highly central-

ized and monolithic architectures are traditionally applied. Typically, one PLC

administers large parts of the controlled system. It means that it receives signals

from dozens, hundreds or even thousands of sensors, executes the control logic and

then sends the control commands to the actuators. The control logic is usually

implemented using the PLC programming languages of the IEC 61131-3 standard

that follow rather procedural than component and object oriented approach. As a

result the control application is monolithic and cumbersome, having the principal

responsibility for processing a huge number of information coming from various

11

12 CHAPTER 2. INDUSTRIAL APPLICATIONS OF AGENTS

ERP

MES

SCADA

PLC, Industrial PC, PID Controllers

Sensors, Actuators, Hardware Components

Figure 2.1: Automation Pyramid

parts of the controlled system to one place.

In this chapter we introduce several industrial domains that might benefit

from adoption of agent-based technology and we also briefly introduce some of

pilot deployments of multi-agent applications.

2.2 Networks

One of the industrial domains with the highest potential of adoption of agents is

management of networks. Many networks are inherently distributed and reconfig-

urable. Frequently, the network is interconnected by different paths and therefore

the selection of the best route has to be done dynamically at run-time. All these

requirements are met by agents. In the remainder of this section, we will describe

three different application fields. The first one is an example of a dynamic routing

mechanism applied for the control of a Chilled Water System (CWS) at a battle

ship. The second one is a general introduction of possible application in electric

energy network named Smart Grids. The last one describes application of agent-

based control for product transportation and material handling on shop-floor level.

2.2. NETWORKS 13

Figure 2.2: Reduced Scale Advanced Demonstrator

2.2.1 Chilled Water System

Chilled Water System (CWS) is a pilot system that is based on the Reduced Scale

Advanced Demonstrator (RSAD) model (see Fig. 2.2), i.e., a reconfigurable fluid

system test platform. The RSAD has an integrated control architecture, which

includes RA technology for control and visualization. The physical layout of the

RSAD chilled water system is a scaled-down version from a real U.S. Navy ship

(see Fig. 2.3).

The first version of the CWS had agents implemented in C++ and LLC in

relay ladder logic. This implementation has been successfully tested on the RSAD

CWS. The second version of the CWS utilizes both C++ and Java versions of ACS

and an Agent Development Environment (see Chapter 4) that has been developed

as an Eclipse plug-in. It emphasizes fast reconfiguration of the system to speed up

the development and debugging process. It is done by integrating design, control,

visualization, and simulation in a single application that can be tested on a PC.

The particular parts are kept independent and communicate via a data table. The

table is a real-data table in a controller or a Java data table emulator developed by

RA. This approach enables a flexible change from a simulation mode to deployment

14 CHAPTER 2. INDUSTRIAL APPLICATIONS OF AGENTS

Figure 2.3: U.S. Navy Battle Ship

on a real system.

The system configuration (see Fig. 2.4) that is considered in our application

consists of two chillers (marked with 1), 11 services (marked with 2), and 32 valves

(marked with 3) that are connected via the water piping system (pipes and pipe

connectors called routers). This configuration is the same as in the RSAD CWS.

Agents of type “chiller” offer cooling, agents of type “service” require cooling,

and agents of type “valve” connect or split segments of the water piping system.

Agents take actions to dynamically create cooling paths, which enable “service”

agents to receive cold water from chillers. The system also provides the capability

to find leakage, isolate broken parts, and find new cooling paths if they exist to

keep other parts of the system sound.

Providing cooling in this application is reduced to creating paths that connect

services and chillers. The components are connected when paths for cold and

hot water exist. Hot water needs to be returned to the same chiller to keep an

equal volume of produced and received water. Paths are composed of pipe sections

connected by opening the relevant valves. Every valve has its own opening price

and each chiller has its price for switching on. The total cost of a path is the sum

2.2. NETWORKS 15

Figure 2.4: CWS configuration

of involved agent costs.

Since the cooling requirements of different services might differ, they are de-

scribed with a number. The number is one of the parameters used for a service

agent and is called “load”. All services have this parameter set to 20 in this appli-

cation. In a similar way, chiller agents have the parameter “capacity” describing

the maximum amount of cooling the chiller is able to produce. Both chillers con-

tained in our application have set this parameter to 100.

Temperature of a service agent is its main parameter which influences its ac-

tions and that is why it was necessary to simulate it. Every service agent is accom-

panied by its own simulation component instance running in a separate thread.

When the service agent has created a cooling contract, the actual temperature is

decreased by one Fahrenheit degree every second to simulate the cooling; other-

wise it is increased by one Fahrenheit degree to simulate heating up. This model

represents only a rough simulation, which is, however, sufficient for the purposes

of testing the MAS behavior. For more precise testing, it is possible to use the

detailed MATLAB simulation (Maturana et al., 2005) that mimics in detail the

functionality of the U.S. Navy’s Reduced Scale Advanced Demonstrator.

16 CHAPTER 2. INDUSTRIAL APPLICATIONS OF AGENTS

To test the water leakage isolation algorithms, a simulation of the water pres-

sure measured by chillers was created. If the leakage identified by the pressure

drop is detected, the agents collectively take appropriate action to locate the leak

and isolate it by closing the appropriate valves. If there is an active water path

used for cooling a device that goes through the isolated section, the agents find an

alternative route for the water to continue in cooling.

2.2.2 Smart-Grids

The ongoing changes on the electricity market involving increasing penetration of

Renewable Energy Resources (RESs) and Distributed Energy Resources (DERs)

in the energy domain require new control approaches because the traditional hier-

archical layout cannot meet the emerging requirements. The integration of DER

in the European electricity network is strongly supported by the EU energy policy.

It is expected that in 2020 the total contribution of DER-based generation could

exceed 20% (European SmartGrids technology platform: vision and strategy for

Europe’s electricity networks of the future, 2006). Moreover, “Energy and climate

change package” proposed by the European Commission in 2007 declares the en-

ergy targets for EU; 20% reduction of greenhouse gas emissions, 20% of renewable

energy sources, and 20 % of the overall energy consumption reduction by year

2020. Some major players such as Germany set even more ambitious targets; 35%

of renewable energy till 2030 and even 80% till 2050. However, the adoption of

RESs and DERs remains slow, mainly due to the issues related to technology,

market, and regulation (Mohd et al., 2008). The report of International Energy

Agency (World Energy Outlook 2013, n.d.) illustrates the global nature of these

issues since similar activities are observed all around the world.

The traditional electrical grid is a hierarchically organized system (see Fig. 2.5).

The production of electric energy is provided by large-scale power plants – bulk

generation, and is adjusted to the consumption. High voltage transmission lines

(>100kV) transport the generated energy over long distances. Step-down trans-

formers are used to reduce the high to medium voltage used on the level of the

distribution grids (1 – 100 kV). Further voltage reduction is applied for the lo-

cal distribution operated on low voltage (<1kV). This traditional organization

2.2. NETWORKS 17

Bulk Generation Transmisssion Distribution Customers

Figure 2.5: Organization of the traditional electric energy infrastructure

Bulk Generation Transmisssion Distribution Customers

Distributed

Generation

Distributed

Generation

Figure 2.6: Organization of the future electric energy infrastructure

is purely hierarchical and characterized by unidirectional energy flow from the

generation to the customer level.

The growing integration of RESs and DERs into electric energy infrastructure

changes the traditional schema. Although the general architecture of the infras-

tructure preserves the hierarchical characteristics, the energy flow is at some levels

bidirectional (see Fig. 2.6). The RES/DER generators are connected to the low

voltage and medium voltage distribution grids causing fluctuations in the distribu-

tion network. Not only the advent of RESs/DERs but also the growing utilization

of Electric Vehicles (EVs) and enhanced availability of controllable loads such as

heat pumps or batteries bring new challenges that have to be tackled by flexible

control approaches.

The Strasser (Strasser et al., 2013) provides the following list of the most

important features of the automation systems for the future electric grid:

� Self-healing: Automatic restoration of grid operation in case of faults/errors;

� Self-optimization: Ability to optimize the grid operation due to fluctuating

generation from RES and the availability of controllable loads/storages;

� Self-monitoring and diagnostics: Advanced monitoring and state estimation

18 CHAPTER 2. INDUSTRIAL APPLICATIONS OF AGENTS

capability; real-time or near real-time based condition monitoring of the grid

components and devices;

� Condition dependent maintenance: Preventive maintenance according to

component condition and remaining life-time;

� Automatic grid (topology) reconfiguration: Automatic adjustment of the

grid topology for grid optimization (e.g., max. amount of DESs and EVs)

or fault management and system restoration;

� Adaptive protection: Automatic adaption of protection equipment settings

due to actual grid condition (e.g., adaptation of the protection system set-

tings due to the bidirectional power flow);

� Demand response support: Advanced energy management taking distributed

generation and controllable loads/storages into account;

� Distributed management: Distributed management and control with auto-

matic decision finding process and proactive fault/error prevention;

� Distributed generators with ancillary services: Possibility to use ancillary

services (e.g., voltage/frequency control) of DERs for grid optimization;

� Advanced forecasting support: Forecasting of generation and load profiles

for optimized grid operation.

The fulfillment of the listed features requires a flexible approach that supports

the dynamical reconfigurability. Thus agent-based systems are a promising tech-

nology to serve this task.

2.2.3 Product Transportation and Material Handling

The task of the discrete material flow control system is to deliver workpieces

(products, parts, raw material, etc.) in a complex and redundant network of

transportation routes from a location A to a location B. Usually, the transportation

routes are in form of conveyor lanes with diverting and merging elements referred

to as diverters and intersections, respectively. Classical approach used in factories

2.2. NETWORKS 19

and warehouses today is the centralized global routing control. It means there is

a single decision making component (PLC) that maintains the routing tables for

each diverter and uses them to route the incoming workpieces according to their

destination. The destination is determined on the basis of the workpiece’s identity

checked by a barcode or RFID reader located in front of each diverter. The routing

tables are computed for given topology of the network using standardized path-

planning algorithms, which involve some graph or tree-search algorithms, such as

Dijkstra (Dijkstra, 1959). This is too complex task to be carried out in real-time

by the PLC due to the limited capabilities of the IEC 61131 languages. Therefore,

the path planning is done in advance and the resulting routing tables are set to the

PLCs as fixed for given network topology. Obviously it is a cumbersome solution

that fails in case the topology changes due to the faulty components (conveyors

or diverters) or when the transportation system should be extended by adding or

changing the routes.

As argued in (Sallez et al., 2009) there are only few works on the application of

multi-agent systems to the distributed material-routing control. The agent-based

solution for the airport baggage-handling system that relies on a single Route agent

that holds the global view of the network topology and computes the optimal routes

is presented in (Hallenborg and Demazeau, 2006). Another conveyor-based bag-

gage handling is presented in (Black and Vyatkin, 2007). The routing paths are

determined online by propagation of messages along the routes among particular

conveyor agents. In the Production 2000+ project manufacturing system is com-

posed of standardized modules consisting of a machine, three one-way conveyors,

and two switches. An agent associated with each workpiece negotiates with the

next switch agent about the routing along the shortest path. The switch agent

can select an alternative route if a capacity bottleneck is detected (Bussmann and

Schild, 2000). In the agent-based system for wafer fabrication production called

FABMAS the agents ensure the routing of lots with wafers between different groups

of parallel machines (Mönch et al., 2003).

Searching for optimal paths in the conveyor network can be generally viewed as

a graph-search problem where work cells (points between which the products are

transported) and diverters represent nodes of the graph and the conveyors are the

valued edges of the graph. There is a well-known Dijkstra’s algorithm (Dijkstra,

20 CHAPTER 2. INDUSTRIAL APPLICATIONS OF AGENTS

1959) and its extensions like the best first search (Pearl, 1984) or A* (Hart et al.,

1968). There are numerous path-searching methods inspired by complex behaviors

of biological societies, like ant colonies. The mobile agents move throughout the

environment while leaving the pheromone signs at specific locations to mark the

trail. This approach is popular, for instance, in telecommunication and ad hoc

wireless-network routing (Di Caro and Dorigo, 1998), (Kumar and Cole, 2005) or

mobile robotics (Wagner et al., 1999). The application of these principles in manu-

facturing domain is presented for instance in (Valckenaers et al., 2004) and (Sallez

et al., 2009). In the latter case the virtual active products move in the virtual

environment and leave the pheromone signs in form of routing tables at decision

points. The physical active products then follow the best path in the real world

using the signs left in the virtual world.

2.3 Planning and Scheduling for Industrial Enter-

prises

At present, almost all of the project-oriented enterprises are facing the following

problem: How to set the optimal production plan to effectively exploit the com-

pany resources while reaching the highest turnover? To keep business running and

to avoid such critical situations when the company production is not balanced (e.g.

the company does not receive an optimal number of production orders to be able to

manufacture), an extra attention to a production planning must be paid. Agent-

based production planning tools could be a choice for enterprises where standard

solution fails. The solution is suitable for enterprises using heterogeneous legacy

systems. The main features and the most interesting properties of using the agent-

based systems in contrast with the conventional software systems are scalability,

modularity, and online reconfigurability. Agent approaches adopt principles and

advantages of distributed algorithms (parallel computing). Automated workflow

management systems have proved to be the driving force behind successful deci-

sion making in industry. Multi-Agent technology offers a convenient platform for

workflow modeling. An environment where each agent represents a real informa-

tion unit of the modeled enterprise is an appropriate model for optimization and

2.3. PLANNING AND SCHEDULING FOR INDUSTRIAL ENTERPRISES 21

visualization of flows of material, work, and information.

The main requirements on an adaptive planner and scheduler are following:

� Intelligent reasoning about the enterprise resources with the aim to produce

accurate estimation of project’s deadline and costs

� System state update and maintenance

� Re-plan, i.e. maintenance of the plans created so far in such a way that they

are dynamically updated with respect to eventual changes in co-operating

agents (e.g. resource/agent breakdown).

Besides workflow management, the multi-agent technology is well suitable for

manufacturing processes simulation, production control as well as scheduling, plan-

ning and re-planning.

2.3.1 Car Rental Scheduling

Rent-a-car business deals with one of the most difficult problems in the modern

theory of optimization. In particular, when it is required to create schedules

of many participants which are connected with each other, and changes in the

schedule of one participant cause changes in the schedules of other participants.

Company Magenta Technology has developed an agent-based scheduler to tackle

this challenge (Andreev et al., 2009). Following the multi-agent paradigm, the

global schedule is the result of distributed decision-making process that the process

of finding of the best global schedule is a continuous negotiation of agents acting

as demands and resources with conflicting interests. In 2009, the application was

available as a commercial product that had proven its advantages in practice.

The application had to meet the following requirements:

1. The schedules of drivers and cars need to contain interconnected operations

which they carry out at different stages of the business process taking into

account logic sequence, a place, time and other attributes;

2. The application has to be able to balance multiple criteria such as car running

costs, driver costs, penalty for late delivery, etc.;

22 CHAPTER 2. INDUSTRIAL APPLICATIONS OF AGENTS

3. The scheduling process has to be event-driven, i.e., an unexpected event (e.g.

car accident) has to be immediately followed by a new round of negotiation

to find the new optimal schedule with the additional constraint;

4. Integration of the scheduling and execution capabilities, i.e., the system has

to be able to execute the found schedules;

5. The acceptable functioning of the system has to be guaranteed even in situa-

tions when not all possible combinations can be investigated, i.e., the system

has to be aware of limited computational resources;

6. Take into account the general expectations (e.g. no driver will be left in the

field without a car).

The solution of the problem is based on the Demand-Resource Networks con-

ception to solve considered task of rent-a-car scheduling in real time (Rzevski et al.,

2007). The scheduling process is represented by interaction of agents representing

entities such as clients, rental orders, and cars. The application provides results

that already outperform other tools for rent-a-car business management, although

there is still great potential for further improvement.

2.3.2 Supplying International Space Station

Supplying the International Space Station (ISS) is a complex task dealing with lots

of interrelated tasks to schedule unmanned cargo space flights (including starts,

dockings and undockings) and piloted (manned) flights considering various re-

quirements, support space crew life activity, deliver laboratory equipment, differ-

ent material and instruments (Ivaschenko et al., 2011). Originally, the solution

of the problem involved millions of iterations among lots of scientists, engineers

and managers to come to a certain compromise solution to support ISS with all

required stuff considering lots of limitations and constraints. The innovative ap-

proach proposed by Smart Solutions1 adopts the agent-based principles to tackle

the complexity of the task in order to assure intelligence and effectiveness of the

decision making process.

The developed application solves the following tasks:

1http://smartsolutions-123.ru/en/

2.3. PLANNING AND SCHEDULING FOR INDUSTRIAL ENTERPRISES 23

1. Overall flight program: the flight schedule has meet the basic requirements

(e.g.: at least one piloted ship has to be docked to the station) and respect the

essential constraints (e.g.: a necessary amount of time between operations

of docking/undocking);

2. Cargo flow scheduling, that results in distribution of deliveries of units,

blocks and systems across individual flights;

3. Schedule of fuel supply considering a forecast of ISS position changes, the

Sun activity, and the ISS program;

4. Supply of basic human needs (e.g.: water and food) with respect to the ISS

program;

5. Flight crew time scheduling.

The proposed agent-based approach treats the ISS supply chain as a complex

network of continuously working and co-evolving specialized schedulers running in

parallel on multiple engines. Scheduling in each engine is performed by agents of

different types. The agents perform repetitive interactions involving other agent’s

communities supported by specialized subsystems and introduce fluctuating cor-

rections of their schedules. Such a behavior mimics a scheduling process among

real human beings, when decision makers, responsible for cargoes, fuel and water,

negotiate about a suitable allocation altogether.

2.3.3 Adaptive Production Planning and Scheduling

The production and ramp-up of complex and highly customized products are ex-

ceptionally challenging for planning and control, especially in small lot sizes. Daily

challenges like late requests for change, immature high technology products and

processes create significant risks. The occurring risks are bigger than production

of big series such as automotive. Thus, new ICT-based approaches are required.

The aim is to develop mitigation strategies to respond faster to unexpected events.

Therefore the knowledge base has to be enriched for real-time decision support, to

detect early warning and to accelerate learning. Our approach is based on a new

generation of service oriented enterprise information platforms, a service oriented

24 CHAPTER 2. INDUSTRIAL APPLICATIONS OF AGENTS

bus integrating service-based architecture and knowledge-based multi-agent sys-

tems (MAS). A holonic MAS combined with a service architecture will improve

performance and scalability beyond the state of the art. The solution integrates

multiple layers of sensors, legacy systems and agent-based tools for beneficial ser-

vices like learning, quality, risk and cost management. Additionally the ecological

footprints will be reduced. The ARUM solution will run in two modes: predic-

tive and real time simulation. The predictive mode supports the planning phase

whereas the real-time operations mode supports dynamic, time-, cost- and risk-

oriented re-planning of operations. The provision of information for engineering

to alter in case of immaturity or late requests for changes is supported equally.

ARUM is strongly end-user driven and the results are tested on two industrial use

cases with a focus on aircraft and aircraft interiors.

2.4 Manufacturing Control

The multi-agent systems are inherently dynamic. The new agents can be created

on-line, existing agents can migrate to different computational units or can destroy

themselves if they are not needed any more, coalitions of agents are dynamically

created to solve a particular problem and when done the coalition is dissolved, etc.

This unique set of features attracted attention of engineers developing the future

generation of manufacturing systems that are focused on fast reconfigurability and

adaptability of industrial control systems.

The term reconfigurability refers to the capability of the control system to

modify its behavior in order to:

1. Cope with the contingencies such as equipment failures,

2. allow for change of the shop floor layout by adding, removing or changing

the equipment, and

3. deal with the modification of the production process as innovated or new

products are introduced.

It is generally acknowledged that the key attributes of agents – the autonomy,

local intelligence, and loose coupling provide effective means for dealing with the

2.4. MANUFACTURING CONTROL 25

reconfiguration issues. As there is no central decision-making component, the sys-

tem can withstand local failures more effectively and thus minimize the possible

impact on the system’s overall functionality. The agent that is in charge of the

failed resource notifies other agents about its unavailability and in subsequent

negotiations and an alternative resource is found. When the new hardware equip-

ment is installed in the factory or existing one is removed, new agent instances

are created and plugged-in, or existing agents, are removed. When an upgraded

or completely new product should be made on the existing production line, the

behavior of the corresponding product agents is modified online without a need

to stop the production line or do changes or reprogramming of other parts of the

system.

2.4.1 Manufacturing Agent Simulation Tool

Manufacturing Agent Simulation Tool (MAST) is an application designed for both

simulation and control of material handling systems. It is built on top of a publicly

available agent platform - JADE (Java Agent DEvelopment Framework)2. The

platform enables to create and run simulation of hardware equipment as one Java

application together with agents. This approach significantly reduces time needed

for development and debugging of new agent-based applications.

MAST tool has been extended to be able to simulate the holonic packing cell

of the Center for Distributed Automation and Control (CDAC) at the Cambridge

University’s Institute for Manufacturing. This lab provides a physical testbed for

experiments with the agile and intelligent manufacturing focusing particularly on

the Automatic Identification (Auto-ID/RFID) systems. This emerging standard

for automatic product tracking introduces the Electronic Product Code (EPC) as

an alternative to the bar code label. The unique EPC number is embedded in an

RFID (Radio Frequency IDentification) tag comprised of small silicon chip and

antenna. Reading and writing is done wirelessly via specialized devices - RFID

readers - using high or ultra high frequency radio waves.

In the Cambridge packing cell (see Fig. 2.7) the RFID technology is used in

controlling the packing of Gillette gift boxes. The user can select from two types of

2http://jade.tilab.com/

26 CHAPTER 2. INDUSTRIAL APPLICATIONS OF AGENTS

boxes that can be filled by any combination of three out of four Gillette grooming

items (gel, razor, deodorant and shaving foam). The lab physically consists of the

following components (numbering corresponds with labels in Fig. 2.7):

1. Conveyor loops (Montech track) to transport the shuttles that carry boxes.

There is one main feeding loop and two subsidiary loops leading to robots.

2. Gates (diverters) that navigate the shuttles out of the main loop to the

subsidiary loops and vice versa.

3. RFID readers that read the EPCs of passing boxes - the data are provided

by the readers to the gates to be able to properly navigate the shuttle.

4. Docking stations at which the shuttles are held while box is being packed.

5. Fanuc M6i robots that pack the boxes by the items picked up from the

storage units.

6. Storage units for temporary holding of the items in four vertical slots (each

for a particular type of the Gillette item).

7. Rack storages that hold shuttle trays with both the empty and packed boxes

as well as with the raw items that can be used to feed the temporary storage

areas.

8. Gantry robot agent that is able to pick the box out of the rack storage and

drop it to the shuttle waiting in the docking station in the main loop.

2.4.2 Actor-Based Assembly System

Another example of an agent-based approach adopted by assembly domain is

Actor-based Assembly Systems (ABAS). According to (Lastra et al., 2005): “ABAS

are reconfigurable systems built by autonomous mechatronic devices that deploy

auction and negotiation-based multi-agent control in order to collaborate towards a

common goal, the accomplishment of assembly tasks.” This system was developed

by the Tampere University of Technology in cooperation with Schneider Electric

and is recognized as the first agent-based simulation tool aimed at visualization

2.4. MANUFACTURING CONTROL 27

Figure 2.7: CDAC laboratory

and simulation of the operation of robot in the 3D manufacturing space. The

authors of the system introduced a term “Actor” which refers to a newly devel-

oped components extending the traditional software agents with a mechatronical

counterpart.

The results of the projects were not limited only to the definition of new con-

cepts, but also provided software tools to emulate actors, societies (groups of

actors) and their behavior, to provide support in the design of a new system. The

developed environment consisted of two independent tools. The first tool addresses

both the modeling and the emulation of physical intelligent agents – actors. The

second one serves as a runtime platform where actor societies can be deployed and

visualized in a 3D environment, and which performs executive control of assembly

processes. The platform can serve as a runtime environment for physical and/or

emulated actors indistinguishably.

28 CHAPTER 2. INDUSTRIAL APPLICATIONS OF AGENTS

2.5 Conclusion

This chapter illustrated how agent-based technology contributes to development

of complex manufacturing systems. We have shown that there are several levels

on which the industry can benefit from the agent paradigm including:

1. Control of various types of networks;

2. Planning and scheduling; and

3. Assembly and material handling.

From the point of view of this thesis, it is important that all the mentioned

projects were developed and implemented by highly specialized engineers and re-

searchers. The dominant reason of their slow adoption by the industrial enterprises

is the lack of methods and supportive tools that would simplify the development

and testing process.

Chapter 3

Related Work

3.1 Introduction

This chapter provides an overview of existing supportive tools that ease the de-

velopment of agent-based systems. The availability of such tools is necessary for

successful transfer of the agent-based technology from laboratories to factories.

3.2 FIPA

The Foundation for Intelligent Physical Agents1 (FIPA) is a non-profit associ-

ation registered in Geneva, Switzerland, founded in 1995. The main goal of the

FIPA is to maximize interoperability across agent-based applications, services, and

equipment, accomplished through FIPA specifications. Especially, FIPA provides

standards for agent communication languages (see section 6.2.2). FIPA specifies

the set of interfaces which the agent uses for interaction with various components

in the agent’s environment, i.e., humans, other agents, non-agent software, and

the physical world. It focuses on specifying external communication among agents

rather than the internal processing of the communication at the receiver.

FIPA produces mainly two kinds of specifications:

1http://fipa.org/

29

30 CHAPTER 3. RELATED WORK

1. Normative specifications that mandate the external behavior of an agent and

ensure interoperability with other FIPA compliant subsystems.

2. Informative specifications of applications for guidance to industry on the

use of FIPA technologies. FIPA standards attempt to be high level, neutral

abstractions.

The core FIPA specifications are neutral with respect to both (i) the application

area and (ii) the hardware and software platforms to be used. Of course, the ex-

isting software infrastructures should be considered when designing the standards

and leveraging the advantages of the existing, non-agent software technology.

The FIPA specification of the message transport protocol (MTP) defines how

the messages should be delivered among agents within the same agent community

and particularly between different communities. For the latter case, the proto-

col based on IIOP or HTTP ensures the full interoperability between different

agent platform implementations. It means that the agent running e.g. on the

JADE agent platform can easily communicate with agent hosted by the FIPA-OS

platform etc.

FIPA defines an Agent Platform (AP) as a system that provides the physical

infrastructure in which agents can be deployed. The AP consists of the machine(s),

operating system, agent support software, FIPA agent management components

and agents. The defined agent management components are as follows:

� Agent Management System (AMS) controls access and use of the agent plat-

form and provides services like maintaining a directory of agent names. It

provides white page services to other agents. Each agent must be registered

with an AMS.

� Message Transport Service (MTS) supports the transportation of FIPA ACL

messages between agents on any given AP and between agents on different

APs.

� Directory Facilitator (DF) is optional and provides yellow pages services to

other agents. Agents may register their services with the DF or query the DF

to find out what services are offered by other agents, including the discovery

of agents and their offered services in ad hoc networks.

3.3. PLATFORMS FOR INDUSTRIAL MULTI-AGENT SYSTEMS 31

Agent
Agent

Management
System (AMS)

Directory
Facilitator (DF)

Agent Platform

Message Transport System

Software

Agent Platform

Message Transport System

Figure 3.1: FIPA Agent Management Reference Model.

All these components form the FIPA Agent Management Reference Model that

describes the architecture of a FIPA compliant multi-agent system (see Fig. 3.1).

3.3 Platforms for Industrial Multi-Agent Systems

A multi-agent platform is a tool which provides developers with a set of code li-

braries for specification of user agent classes with specific attributes and behaviors.

Compliancy with the FIPA standards has been recognized as a crucial property en-

suring the interoperability of agents not only at the lowest real-time control level

(allowing e.g. communication of different kinds of agents hosted by PLC con-

trollers from different vendors) but also the interoperability among agents from

different layers of information processing within the company, e.g. data-mining

agents, ERP agents, supply chain management agents and so on.

32 CHAPTER 3. RELATED WORK

3.3.1 ACS

The Autonomous Cooperative System (ACS) was originally developed as the C++

based agent platform dedicated to the Logix family of PLC controllers. The

agent platform enables to run the agents directly inside the PLCs (ControlLogix,

FlexLogix, etc.), supports the agent management (registration, deregistration, ser-

vices look up, etc.) and ensures the transport of messages among agents. Later,

the ACS was implemented in JAVA, but this version was not compatible with the

most of the PLCs, since it required availability of a JAVA virtual machine.

The ACS platform is designed with respect to minimizing the use of memory

and CPU resources of the PLC so as to not impact the performance of real-

time control programs that run in parallel with the agents. The agents use a

specially designed communication language – JDL (Job Description Language)

for the message exchange in the RT-tasks as well as for the planning purposes.

The JDL messages can be converted into FIPA-compliant messages by adding an

appropriate FIPA wrapper to allow the ACS agents to communicate with other

FIPA-compliant agent platforms (for example JADE or FIPA-OS).

3.3.2 JADE

Java Agent DEvelopment framework (JADE) (Bellifemine et al., 2007) is prob-

ably the most widespread agent platform in use today. JADE is a completely

distributed middleware system with a flexible infrastructure allowing easy exten-

sion with add-on modules. The framework facilitates the development of complete

agent-based applications by means of a run-time environment implementing the

life-cycle support features required by agents, the core logic of agents themselves,

and a rich suite of graphical tools. As JADE is written completely in Java, it ben-

efits from the huge set of language features and third-party libraries, and thus of-

fers a rich set of programming abstractions allowing developers to construct JADE

multi-agent systems with relatively minimal expertise in agent theory. JADE was

initially developed by the Research & Development department of Telecom Italia,

but is now a community project and distributed as open source under the LGPL

licence.

3.4. MULTI-AGENT SOCIAL MODELS 33

3.4 Multi-Agent Social Models

Agents can cooperate only if they can contact each other. Therefore, mainte-

nance of the social knowledge is one of the key capabilities of any MAS. Many

architectures for maintaining social knowledge have been proposed and their com-

prehensive overview provides Tichý (Tichý, 2003). The basic categorization of

architectures distinguishes static and dynamic approaches. The static architec-

tures are characterized by the creation of the social knowledge at design time,

i.e., the social knowledge is established and distributed once and remains constant

at runtime. On the contrary, the dynamic architectures are characteristic for the

continuous development at runtime and changes during agents’ life-cycles. A short

introduction of the most used architectures follows.

Static architectures are either hierarchical or flat. The former are inspired

by a common hierarchical organization in an enterprise. Its advantage is the

efficiency on the other hand its disadvantage is low resilience, since an outage of any

component disconnects all its successors from the rest of the system. In contrary,

the flat knowledge base architecture is free of a superior nodes and therefore these

approaches are also called “point2point” or “peer2peer”.

Dynamic architectures are equipped with a mechanism that enables to main-

tain the social knowledge at runtime. This is necessary for the realization of

the Plug&Play concept which means that a new agent can be easily added to

an already running system. The focal point of any dynamic architecture is the

process of matchmaking during which an specialized agent (frequently denoted

as meta-agent) creates a communication link between two agents. Sycara defines

the matchmaking as “process of finding an appropriate provider for a requester

through a middle-agent” (Sycara et al., 2002).

The most used dynamical architectures are as follows:

� Broadcasting: a simple approach that generates a lot of communication.

Anytime an agent finds a provider of a particular service, it sends the request

to all agents. Only agents that provide the service handle the request and

send a response to the initiator.

� Federated Architectures: more advanced approaches when the agents repre-

34 CHAPTER 3. RELATED WORK

senting service providers and consumers are accompanied with meta-agents

that enable to create cooperation links between agents dynamically according

to the current conditions. There exist various variants such as: Matchmaker,

Broker, Mediator, Blackboard, Monitor, Facilitator, Embassy, Anonymizer,

and Job Agency. The detailed description explaining specifics of individual

approaches can be found in (Tichý, 2003).

The proposed method is applicable for the federated architectures, because the

meta-agents can influence the carrying out of new tasks.

3.4.1 Fault Tolerant Structure of DF agents

One of the main advantages in using MASs is fault tolerance. When an agent fails

a multi-agent system could offer the services of another agent that can be used

instead. However, if a MAS uses a middle-agent to search for the capabilities of

providers, i.e., to search for an alternative agent with the same capability, then

this middle-agent can become a single point of failure, i.e., social knowledge is

centralized in this case. It is not possible to search for capabilities of other agents

and to form virtual organizations any more if the system loses the middle-agent.

The fault tolerance issue is tightly coupled with load sharing. When only one

middle-agent is used it becomes a communication bottleneck and can be easily

overloaded.

Tichý (Tichý, 2003) designed and implemented a special structure of Directory

Facilitators called dynamic hierarchical teams (DHT) (see Fig. 3.2) that has a user-

defined level of fault tolerance and is moreover fixed scalable, i.e., the structure can

be extended by a fixed known cost. This structure is not only usable for Directory

Facilitators, but also for other types of agents, mainly for so called middle-agents

that stand between providers and requesters of capabilities

3.5 Development Tools

Currently, there exist multiple development environments that are used to develop

agents for given MAS platforms, such as the JACK Development Environment

described in (Evertsz et al., 2004), (Systems, 2011), and Cybele in (Manikonda

3.6. DEBUGGING AND VISUALIZATION 35

M-A 111 M-A 112 M-A 121 M-A 122

M-A 11 M-A 12

M-A 211 M-A 212 M-A 221 M-A 222

M-A 21 M-A 22

M-A 2 M-A 1
Team 1

Team 2 Team 3

Associated structure

of teams:

T2

T1

T3

Figure 3.2: Example of 3-level DHT architecture (Tichý, 2003)

et al., 2004). Very detailed reviews of these systems can be found, for example,

in (Bitting et al., 2003). These development environments either only guide the

user during the development of agents or provide more elaborate support when

the user programs the agents as Belief-Desire-Intention (BDI) models developed by

(Bratman, 1999). The resulting runtime code is either interpreted or automatically

generated and then directly executed.

3.6 Debugging and Visualization

Development of a multi-agent system relies not only on the agent development

environment and agent platform, but also on monitoring tools. To create a fully

functional multi-agent system, there is a need for a visualization and debugging

tool to observe the internal communication and behavior of the system and to

discover potential problems. This need led to the design and implementation of

a tool for the visualization and debugging of multi-agent system communication,

the Sniffer.

36 CHAPTER 3. RELATED WORK

3.6.1 JADE Sniffer

While all the other tools are for the most part used for debugging a single agent,

this tool is extensively used for debugging, or simply documenting conversations

among agents. It is implemented by the class “jade.tools.sniffer.Sniffer”. The

“sniffer” subscribes to a platform AMS to be notified of all platform events and of

all message exchanges within a set of specified agents.

When the user decides to sniff an agent or a group of agents, every message

directed to, or coming from this agent/group is tracked and displayed in the sniffer

GUI. The user can select and view the details of every individual message, save

the message to a disk as a text file or serialize an entire conversation as a binary

file (e.g. useful for documentation).

3.6.2 Java Sniffer

This tool allows receiving messages from all agents in the system, reasoning about

this information, and visualizing it from different levels of view. It is also possible

to configure running agents by sending service messages to them from the Sniffer.

Full documentation can be obtained with the tool. Nevertheless, we will briefly

describe its main parts.

The Sniffer visualization screen is divided into four main sections (see Fig. 3.3).

Each section provides the observer with information at a different level of detail.

The window marked with number 1 located at the bottom left corner displays

a temporally organized list of messages as standard sequential UML diagram. The

header of this view contains names of individual agents and each row represents

one message sent from one agent to another agent, displayed as an arrow pointing

from the sender to the receiver of the message. The text assigned to the arrow

shows an overall description of the message and the very left column displays

message numbers and time-stamps.

The content of a selected message is displayed in the partition marked with

number 2. It provides various tabs such as:

1. Tree tab to show the overall structure of the message;

2. Envelope tab shows message parameters as defined by FIPA;

3.6. DEBUGGING AND VISUALIZATION 37

Figure 3.3: Java Sniffer – Main Window

3. FIPA ACL tab shows Agent Communication Language (ACL) slots of the

selected message;

4. JDL Content Tab provides content of the Job Description Language (JDL)

message part;

5. SL Content shows content of the message in FIPA Semantic Language (SL);

and

6. XML Content tab visualizes the content of the selected message as a XML

tree.

The window marked with 3 shows a list of workflows – plans communicated

among agents. Each description of a workflow consists of a workflow identification,

work name, number of subsequent messages belonging to this workflow, and the

original requester of the work. Also, the status of the workflow is pictographically

visualized showing “in progress” or “successfully” or “unsuccessfully” finished.

Window 4 shows details of either selected rectangle or selected arrow in Work-

flow view. If the list is filled with messages that are associated with selected arrow

38 CHAPTER 3. RELATED WORK

the user may select one message from the list. The selected message will be shown

in UML View and Message Detail View will be also updated.

Window 5 displays a dynamically created tree of a workflow that belongs to the

work unit selected in the list of work units. Any request for and reply to planning,

commitment, or execution of the work is visualized as an arrow pointing from

the parent (creator of the work) to child (solver) agent. The arrow represents all

messages that belong to a particular part of the work. The workflow view shows

the whole tree constructed from all parts of the work unit.

3.7 Agents and low-level control with IEC 61499

The call for reconfigurable control system brought many proposals. One of the

most accepted and developed is a set of standards IEC 61499 proposed and stan-

dardized by the International Electrotechnical Commission (IEC) for Industrial

Process Measurement and Control Systems (IPMCS). It introduces concept of a

Function Block-oriented (see Fig. 3.4) paradigm for IPMCS. It is built on top of the

widely used industrial programming languages standardized in the IEC 61131-3.

The most of the ongoing activities related to IEC 61499 are organized by com-

munity around the Framework for Distributed Industrial Automation and Control

– 4DIAC2. It is an open source project enabling the further development of IEC

61499 for its use in distributed IPMCS. The project started in 2007 and from

the beginning provided everything necessary to program and execute distributed

IPMCS. Currently, 4DIAC is the dominant tool for IEC 61499-based projects

and its further development is supported by entering the community of Eclipse

projects. 4DIAC supports the other research activities such as Eclipse Internet

of Things Industry Working Group by addressing the lower level real-time layers

which are not currently targeted by any other project. The framework consists

of two projects: integrated development environment – 4DIAC IDE and runtime

environment – 4DIAC RTE (FORTE).

2http://www.fordiac.org/

3.7. AGENTS AND LOW-LEVEL CONTROL WITH IEC 61499 39

Ev
en

t
In

p
u

ts

Ev
en

t
O

u
tp

u
ts

D
at

a
In

pu
ts

D
at

a
O

u
tp

u
ts

Event Flow

Data Flow

IEC 61499
Function

Block

Data/Event
Associations

Execution Control
Chart

Algorithms

Internal Variables

Figure 3.4: IEC 61499 Function Block

3.7.1 4DIAC IDE

4DIAC IDE is an IEC 61499 compliant engineering environment implemented in

Java as an Eclipse plug-in. The environment was designed with accent on the user-

friendliness of the whole development process. Many configurations can be done in

a graphical way via drag&drop operations. Figure 3.5 depicts development of an

IEC 61499 application. System configuration window provides view on the global

organization of systems and application within a workspace. Application editor

is the central part of the development process. All application components and

their interconnections are here created, configured, and monitored. The function

blocks are created by drag&drop mechanism from the Function Block library. The

bottom editor enables to configure parameters of selected components, e.g.: set

values of data inputs.

40 CHAPTER 3. RELATED WORK

System
Configuration

Application
Outline

Parameters

Function
Block

Library

Application
Editor

Figure 3.5: 4DIAC – IDE: Main Window

3.7.2 4DIAC RTE

4DIAC RTE – FORTE is a IEC 61499 compliant runtime environment. It is im-

plemented in C++ and it is available in several versions for various computational

platforms (PC, Embedded). The runtime is directly runnable from the 4DIAC

IDE and also the code created in the IDE can be directly deployed on the running

FORTE. Both FORTE and the IDE support monitoring to provide the engineer

the view of a running system.

3.7.3 Verification of IEC 61499 Non-Functional Parameters

IEC 61499 provides a concept how to improve flexibility and reconfigurability of

industrial automation and control systems. The key part of the concept is the

replacement of the scan based approach used in traditional control systems based

on IEC 61131-3 with event driven solution. This is crucial for distributed systems

where the flow of events eliminates the need for synchronization between individual

computational units. However, developers of these systems lack efficient methods

to verify the non-functional reliability of such systems. This methodological gap

complicates the design of complex commercial systems with strict performance

requirements.

The author of this thesis was involved in research conducted within the frame-

3.7. AGENTS AND LOW-LEVEL CONTROL WITH IEC 61499 41

work of the AKTION3 project number 69p18 focused on applying performance

models for verification of control systems based on IEC 61499 standard. In order

to show how the performance models can help to identify problems in EBIAS a

real-world scenario has been selected. The chosen application is an event-based au-

tomation system for the AIT Smart Grid laboratory SmartEST (see Fig. 3.6). This

laboratory is a highly flexible and configurable 1 MW research and test/validation

facility for Smart Grid systems. It allows to test power system and ICT compo-

nents in a Smart Grid configuration but also the validation of the component’s

behavior.

Figure 3.6: AIT Smart Grid SmartEST laboratory.

A brief overview of the software architecture of the laboratory is shown in

Fig. 3.7 whereas mainly open source tools are being used to control the laboratory

(Zoitl et al., 2013). The control layer – implemented in the IEC 61499 4DIAC

environment – is responsible for automation tasks, security issues and data pro-

cessing. It interacts with the process/hardware layer (i.e., sensors and actuators)

using mainly Modbus/TCP and Ethernet POWERLINK fieldbus systems. The

supervisory control and visualization layer is implemented with the open source

SCADA ScadaBR. The interaction of the SCADA with the control layer is based

on a TCP/IP communication as defined in the IEC 61499 standard using Abstract

Syntax Notation 1 (ASN.1) encoding of the data.

3http://www.dzs.cz/en/aktion-czech-republic-austria/

42 CHAPTER 3. RELATED WORK

Hardware Level
Sensor

Siemens
I/Os

Control Level
IEC 61499

(Linux)

SCADA/DMS
 Level

(Windows/Linux)

ScadaBRDeWeSoft

Database

ASN.1 TCP/IP (Modbus, OPC, IEC 61850)

Ethernet POWERLINK, Modbus

Visualization/HMI
Level

Labview

Web Services

Automation Safety
Data

Processing

Sensor
Dewetron

Modbus, OPC
(IEC 61850, IEC 60870)

IEC 61499IEC 61499

SQL

MAS
(IEC 61499)

etc.

Web/Java/
C#

Figure 3.7: Brief overview of the laboratory software layer architecture.

The concrete issue that was experienced within the work on control and visual-

ization system of the SmartEST laboratory was the connection of the control and

the SCADA layers. If the frequency of events coming from the control layer ex-

ceeded certain level, i.e., the messages notifying the SCADA system about a data

change came close to each other, then the SCADA system was not able to distin-

guish individual notifications and incorrectly joined two or more. The accidental

notification mixing up caused a data type mismatch error.

Originally, this problem was solved by a specific interconnection of the used

IEC 61499 function blocks which is designed with respect to the detected prob-

lem. This design was possible only because of the thorough understanding to the

controlled system. In general, this solution is not acceptable from the engineering

point of view, because it puts inadequate additional load on the system engineers.

Moreover, this load steeply increases with the size of the controlled system and

therefore it was highly advisable to develop an alternative solution.

The proposed solution was based on identification of characteristics of individ-

ual system components and implementation of two new function blocks. The first

is named Event Aggregator and its task is to aggregate all events coming within

3.8. DIAGNOSTICS OF MASS 43

a time interval which length is specified by a function block parameter. The sec-

ond functional block preserves the overall number of events, but the overall delays

continuously accumulates.

3.8 Diagnostics of MASs

3.8.1 Model-Based Diagnostics

An example of a model-based verification approach for MAS is based on MABLE

(Wooldridge et al., 2002) that is a conventional imperative programming language

and it is extended by constructs from MAS. The agents designed in MABLE main-

tain their social knowledge using linear temporal belief-desire-intention logic. The

major advantage of this approach is the ability to logically prove that any interac-

tion of agents will not lead to a fault state. On the other hand, the fundamental

disadvantage and perhaps the stopper for the wider spread of this technique is the

limited set of constructs that an agent can use. In other words, the agent has to

be designed in the way suitable for MABEL from the very beginning.

3.8.2 Formal Time Analysis for Embedded Systems

The domain of embedded systems is facing a dramatic increase of the network com-

plexity. For example, modern automotive control systems contain more than fifty

electronic control units (ECUs) that are produced by various suppliers (Schliecker

et al., 2009). The units are inter-connected via a communication network that is

a representation of a shared resource. There is the need to assure that a potential

conflict in usage of the shared resource would not lead to a dangerous situation.

It means that for example function of ABS in a car must not be harmed by in-

creased communication of other systems. Similar problem and requirements come

from the aircraft industry and also from the designers of multiprocessor systems

calculus (Richter et al., 2003). In general, networked or distributed systems can

be characterized by observing a high amount of data flows within the network.

To address the challenges posed by the increased network complexity the network

calculus (Cruz, 1991) and its extension – real-time calculus (Thiele et al., 2000)

were introduced. Network Calculus enables to evaluate timing properties of data

44 CHAPTER 3. RELATED WORK

flows in communication networks. Real-Time Calculus extends this concept to

make it suitable for real-time embedded systems. To summarize it, the basic idea

behind these two approaches is to substitute individual events by data flows called

event streams. The validation problem is then translated into the examination of

flows, which is a well-handled task.

3.8.3 Qualitative and Quantitative Analysis of Industrial

Multi-Agent Systems

The investigation of methods for validation of industrial agent-based applications

was addressed by the EU FP7 research project GRACE (Leitão and Rodrigues,

2012). One of the project outputs is the methodology for qualitative analysis

based on Petri net modeling notation. The behavior of each agent is represented

as a single Petri net which can be verified by the regular methods to find out

whether the model is bounded (the resource can only execute one operation at a

time), reversible (the agent can reinitiate by itself) or out of deadlocks (the agent

can make at any state an action). The extension of these models with concept

of time provides methods for quantitative analysis of MASs. The transitions are

extended with the time parameters to capture the times of transition activations.

Such a simulation shows the evolution of the tokens over places and over time.

The complete information about the progress of the agent behavior is summarized

with a Gantt chart.

Chapter 4

Agent Development

Environment

4.1 Introduction

In this chapter the Agent Development Environment (ADE) is introduced. In the

past, the software part of MASs used to be typically developed ad hoc in a target

object-oriented programming language such as Java or C++. This manual process

was error-prone, time consuming, and required highly specialized skills. Thus, the

utilization of a development environment that guides the development process was

essential for acceptance of agent-based technology by the industrial enterprises.

One of the biggest challenges of the MAS development is the requirement to

synchronize and integrate the development of the high-level control (HLC) and

low-level control (LLC) application parts. Therefore, the ADE does not only sup-

port the development of agents that can be used for high-level decision-making,

but also the development of distributed LLC. The LLC guarantees real-time ex-

ecution (both the soft and the hard real-time) at local level. This is important

especially in industrial applications described, for example, in (Mař́ık et al., 2005)

and (Pěchouček and Mař́ık, 2008), or where fault-tolerance is one of the most

important aspects as described in (Tichý et al., 2006).

45

46 CHAPTER 4. AGENT DEVELOPMENT ENVIRONMENT

This thesis proposes several concepts and methods how to enrich the LLC with

concepts of object-oriented programing, which is necessary to enable automatic

interoperability between the HLC and LLC application parts. Namely:

1. Indirect references to mimic static variables;

2. Containment to encapsulate a component within another one;

3. Macro-instructions to proceed an operation over a collection of components,

4. Inheritance to reuse an existing class for definition of a new one.

The detailed description of these concepts can be found in section 4.2.

4.1.1 Integration of HLC and LLC

The main characteristic of the architecture that we call a holonic agent as de-

scribed, for example, in (Christensen, 1994) is to deploy agents at the lowest

control levels and still preserve the ability of the control system to work under

hard real-time constraints. This is achieved by an encapsulation of the HLC and

LLC. This is followed by establishing a control interface for interactions between

the HLC and LLC (see Fig. 4.1).

The LLC application part is implemented as a regular control module deployed

on a programmable logical controller (PLC) that executes the code in a common

scan-based manner in order to meet the requirements on the real-time behav-

ior. The PLC reads the input values from the sensors in a controlled process

through the analog or digital I/O cards; the control programs perform a computa-

tion including calculation of new output values; and finally the output values are

propagated again via the I/O cards to the actuators in the controlled system.

Currently, the ADE supports the IEC 61131-3 standard of PLC programming

languages for implementation of the LLC. In the future, the support for the IEC

61499 standard (see section 3.7) is possible. Utilization of the standard known as

“function blocks” would enable to benefit from its inherent characteristics aiming

at distributed and modular applications.

The HLC module is represented by the agent as it is defined in the agent-

based technology: an autonomous software unit capable of intelligent decision-

4.1. INTRODUCTION 47

Figure 4.1: Interaction of high-level control (HLC) and low-level control

(LLC).

making, communication, and cooperation with other agents. Hence, “HLC” and

“agent” will be used in this chapter as synonyms. The complexity of the agent

behavior requires the employment of some high-level programming language like

C++ or Java. Therefore, a PLC has been augmented to allow direct execution

of agents, i.e., a PLC is able to host a multi-agent system developed in ADE

in an environment called the Autonomous Cooperative System as described, for

example, in (Tichý et al., 2002). For testing purposes it is also possible to execute

this system on a PC.

4.1.2 ADE Characteristics

One of the main characteristics of MASs mentioned earlier is the re-usability of

agent templates. An agent template is designed once and reused multiple times

for as many agent instances as needed. They are then interconnected via social

knowledge and are able to coordinate their actions and cooperate. Thus, the

goal is to develop an agent library, essentially a collection of class definitions

called templates that describe the behavior of both the agents and any non-agent

components. Agents are part of HLC and components reside in LLC.

There can be multiple libraries, each targeted to a specific application domain,

48 CHAPTER 4. AGENT DEVELOPMENT ENVIRONMENT

Figure 4.2: Development flow in the Agent Development Environment.

e.g., material handling systems, assembly, logistics, or batch processing, and thus

can be used to create control systems for multiple similar facilities in the same

domain.

The control code for the components or the low-level part of agents is generated

automatically from the same templates. In this way, the effort to build the library

is amortized over all the facilities (control applications) built with the library.

Moreover, each facility has the benefits of having control system software that

is well structured, predictable, optimized, and tested. This approach leads to

fault-tolerant architecture as described in (Tichý et al., 2010).

Moreover, any additions or modifications to the library subsequently appear

in all affected instances after the code re-generation. In other words, instead of

changing all affected instances individually, the user applies the change only in the

template in the library, thereby not only speeding up the process but also avoiding

any inconsistencies and mistakes in programming.

The process of development within ADE is shown in Fig. 4.2. Arrows rep-

resent information flow and thus also dependencies between various parts of the

environment.

� First, the user creates components and agents in the template library (TL)

4.1. INTRODUCTION 49

or imports them from some existing library and thus reuses previously tested

and optimized code.

� Then the user creates a facility (F) from components and agents of the TL

and customizes their parameters.

� Next, the user establishes a control system (CS) that describes all the PLCs,

I/O cards, and networks, plus their interconnections.

� After the TL, F, and CS parts are completed, the user assigns agents and

components to the execution units (usually PCs and PLCs) via agent assign-

ment.

� The user also assigns inputs and outputs of agents and components to real

I/O points that are connected to real hardware or to the simulation of this

hardware via I/O assignment.

� With all this information available, it is now possible to generate and compile

the control code.

� The last step is to download the code to the execution units and execute it.

Since the TL, F, and CS editors are independent, it is possible to change only

the necessary parts when the system needs to incorporate changes. For exam-

ple, a new PLC can be added by the CS editor and subsequently can have some

agents assigned to it. The system is regenerated in a manner consistent with all

modifications. In a similar way the Agent Assignment and I/O Assignment are

semi-independent from other parts of the system and thus if there are no structural

changes (e.g., removal of an execution unit or addition of I/O) then it is not nec-

essary to modify or enter this information again. Moreover, it is possible to easily

change the distribution of agents and components. This distribution to execution

units strongly influences the non-functional parameters of the final application

such as the maximal throughput of tasks the system can fulfill or the latency of

the system responses. Moreover, it is a complex optimization process that requires

special supportive methods. These methods are proposed within chapter 7.

The ADE software itself is designed using the Model-View-Controller (MVC)

design pattern described, for example, in (Buschmann et al., 2007). Using this

50 CHAPTER 4. AGENT DEVELOPMENT ENVIRONMENT

Figure 4.3: Eclipse-based Agent Development Environment GUI.

pattern allows us not only to distinguish and separate the inherent model from

the user interface (UI) during the development so that sections of the code can

be worked on by multiple development teams, but also to easily replace the UI

in the future. Another advantage is that different parts of the application can

notify themselves about changes that the user made to ensure the data and UI

consistency throughout the whole environment. MVC allows both UI components

(such as editors and views) and parts of the model to subscribe and be notified

about changes in the model.

The ADE (see Fig. 4.3) has been implemented in Java as a plug-in to Eclipse

development platform1. The ADE contains a built-in full Relay Ladder Logic (part

of IEC 61131-3 standard of PLC programming languages) editor (see Fig. 4.4) . Be-

sides standard functionality it allows implementing special ladder logic templates,

indirect references, and macros that will be further explained in the following

section.

1http://www.eclipse.org/

4.1. INTRODUCTION 51

Figure 4.4: Relay Ladder Logic template GUI example during the adding of

a new TON instruction from the instruction catalogue.

The utilization of the Eclipse environment allows us to reuse many of its parts

related to Java and C++ programming such as the project navigation tree, per-

spectives suited for different parts of the development, windows that describe and

manage problems and errors, user defined settings, persistence of open window

positions, and the integrated help system.

4.1.3 MAS Architecture

The agent code generated from ADE is executable by the Autonomous Cooper-

ative System described in (Tichý et al., 2002). This agent runtime environment

is available in both a C++ version, which allows running the C++ agents on ei-

ther a PC or a ControlLogix PLC, and the Java version available only for a PC.

Additionally, it is possible to extend the agent code generation engine to sup-

port other target multi-agent systems such as JADE without changing the way

that templates of agents and their capabilities are defined within ADE. The inter-

agent communication is based on sending messages compliant with the FIPA-ACL

standard, described in (FIPA, 2002). Other important attributes of a message

is information about the conversation protocol that applies to the current mes-

sage (e.g., FIPA-Request) and the conversation ID that uniquely identifies which

context (conversation thread) this message belongs to. This is useful for keep-

ing the track of multiple conversations, which might be happening between two

agents following the same protocol at the same time. For the content language of

52 CHAPTER 4. AGENT DEVELOPMENT ENVIRONMENT

ACL we use our proprietary Job Description Language (JDL), described in (Mař́ık

et al., 2005), with Bit-Efficient encoding. The FIPA messages are encapsulated

inside Common Industrial Protocol (CIP) packets standardized by ODVA2. This

encapsulation enables communication on different types of industrial networks,

e.g., EtherNet/IP, ControlNet, and DeviceNet. The agents are grouped into high-

level organizational structures called agent platforms. Members of each platform

are usually geographically “close”: for example, they may be run on one computer

or PLC, or be located on a local area network. Each platform must provide its

agents with the two following FIPA mandatory services: the Agent Management

System (AMS) and Directory Facilitator (DF); see (FIPA, 2002). Negotiation

among agents in our application is based on the Contract Net protocol described

in (Smith, 1980) and its extension Plan-Commit-Execute protocol (Kadera and

Tichý, 2009b). Any member of an agent group can temporarily become a manager

that initiates a negotiation process and contacts other agents. When the contacted

agent realizes that it cannot satisfy the order with its own resources, it can become

an initiator of another contract to distribute subtasks among other agents. The

manager chooses the best bid from the obtained bids and delegates the contract

to the chosen agent(s).

4.2 Low-Level Code Generation

To support object-oriented features like instantiation, inheritance or virtuality, all

of which are useful for the definition of agents, it is required to enrich the low-level

control languages accordingly to enable the definition of the LLC part of the agent

template. A major issue is that the LLC code cannot be dynamically “created”

at runtime in the PLC as are the instances of the HLC. All the LLC instances

have to be generated in advance before deployment in the PLC. This complicates

the creation of the LLC template, where the system designer needs, for example,

to iterate over a collection of LLC instances although he/she does not know how

many of them will be really created. Additionally, the attribute values of all LLC

instances are stored in PLC tags, each of which must have a unique name. For

example, a LLC for a valve contains a generic I/O point called close. If there are

2http://www.odva.org

4.2. LOW-LEVEL CODE GENERATION 53

two valves V 1 and V 2, their attributes have to be stored in two different tags, e.g.

V 1 close and V 2 close. Again, it is not known at design time what the actual

name of the LLC instance will be; however, there must be support for working

with the attributes in the LLC template. To solve these issues we have developed

unique enhancements of the IEC 61131-3 that are summarized in the following

sections.

4.2.1 Indirect References

Indirect references represent a technique to access attributes of the LLC templates.

A special character $ is introduced with a notion of this from typical object-

oriented (OO) languages. For example, the construct $.close in the valve LLC

template is used to make a reference to the close attribute value of this class. If

this special character is not used then the user references the close attribute (tag)

of common attribute space. This technique is similar to public static variables

that are unique and can be accessed by all components.

4.2.2 Containment

Another technique supported in the LLC definition, which is particularly applica-

ble for hierarchical systems, is the use of containment rules. They allow a designer

to specify that a component (e.g., conveyor) contains subcomponent(s) (e.g., mo-

tor). The construct $.motor1.run can be used in the LLC of the conveyor to

access the run attribute of its subcomponent motor1. References in the opposite

direction, i.e., to a component’s parent, is also possible using the ˆ character. A

notation ˆ.ready in the LLC of the motor means the reference to my parent com-

ponent’s (conveyor) ready attribute. A complementary feature is the specification

of the default attribute value that is set when the LLC instance is created.

4.2.3 Macro Instructions

Yet another technique is the use of macro instructions that gives the system de-

veloper the ability to specify basic operations over a collection of components. A

macro instruction consists of:

54 CHAPTER 4. AGENT DEVELOPMENT ENVIRONMENT

Figure 4.5: Macro instruction expansion example.

1. the definition of the operation type (e.g., AND, OR),

2. the definition of the collection (such as subcomponents of a given type or

list of subcomponents separated by commas) and

3. subinstructions that can contain the special character # that is, step by step,

substituted for by each element of the collection.

Using the OR operation type will in general generate a ladder logic branching

construct, whereas using AND will generate an instruction series. For example, it

is possible to test the value of the variable run of all subcomponents of type Motor

although the instances are not known in advance. Assume that a component

contains two subcomponents of type Motor, namely M1 and M2 and there is

one AND macro instruction (see Fig. 4.5). This macro instruction is, during

code generation, expanded two times by substituting # with $.M1 and $.M2

respectively.

4.2.4 Inheritance

The next technique described is inheritance. As in most OO languages, inheri-

tance allows reuse of an existing class to define a new, more specific class that

extends the original one. We have introduced the same technique also for the LLC

parts of agent templates to provide full object-oriented features in the definition of

control components. The major advantage of applying the object-oriented design

methodology for both the HLC and LLC is the re-usability of the agent templates.

Existing templates, grouped into agent libraries for specific application domains,

4.3. CONCLUSION 55

can be directly reused as building blocks in the development of another applica-

tion. They can also be extended or adapted using the inheritance feature to the

specifics of the developed system.

4.2.5 Low-Level and High-Level Integration

Interoperation between LLC code and HLC code is carried out by both asyn-

chronous and synchronous information exchange, i.e., LLC informs HLC in two

ways:

� By sending messages that are readable by HLC code and are asynchronously

processed by agents. Priorities can be used here to make sure that important

messages are processed before others.

� By altering values in the datatable of PLC. These values are either periodi-

cally processed by agents or, a change notification mechanism can be applied

to automatically generate notifications to agents only about changed values.

The HLC affects the LLC code by changing values in the datatable of the PLC

and does not require any special notification mechanism since the code in the PLC

runs periodically and synchronously tests all required values. The code for com-

ponent communication is generated automatically according to the information

already contained in the development environment.

4.3 Conclusion

The proposed approach of a semi-automated development of industrial MASs that

guides the system developer through the entire process contributes in many ways.

The concept of agent and component template libraries increases the potential

of agent and component re-usability. For commercial engineering applications, it is

expected that the development of the templates will be done only once by an expert

with specialized skills on the agent-based technology, while the implementation of

the individual instances of the MASs will be performed by system integrators, who

will not need to have deep knowledge of agents.

56 CHAPTER 4. AGENT DEVELOPMENT ENVIRONMENT

The ADE tool significantly speeds up the development of the MASs. This

is done on multiple levels. First, much of the code is generated automatically,

second, the deployment of the code is also performed automatically according to

the description of the control system topology.

The ADE decreased the number of errors in the code, because every piece of

information is entered into the system only once and then it is distributed to other

places, where it is needed, automatically.

The seamless integration of the High-Level and Low-Level control significantly

eased the development of large scale MASs. The proposed approach treats both

parts as integral units preserving the advantages of object-oriented programming,

while the automatic code generations guaranties error-free generation of a low-level

code for local real-time control.

Chapter 5

Performance Models for

Agents

5.1 Introduction

This chapter introduces four performance modeling notations and is a prerequisite

for chapters 7 and 8. It is necessary to point out, that there is no universal

method suitable for all performance related issues of MASs. The investigation of

the available performance modeling notations has identified four main candidates

for the deeper analysis – Bounded Analysis, Queueing Networks, Queueing Petri-

Nets, and Stochastic Process Algebras.

5.2 Bounded Analysis

The Bounded Analysis (Denning and Buzen, 1978), (Di Marco and Inverardi, 2011)

based on operational laws represents the basic tool of performance analysis. It is

the most straightforward modeling technique for performance considerations. It

outperforms all other approaches in the speed, is simple for the implementation and

does not require any complex skills from the user. It is well suitable for bounding

estimations, i.e. estimation of the system performance under the best and the

57

58 CHAPTER 5. PERFORMANCE MODELS FOR AGENTS

worst conditions. This notation can be used only for systems with homogeneous

workload, i.e. the behavior of system components (jobs, resources) does not evolve

during the time. Operational laws cannot include any notion of synchronization

or exclusive access. The description of the individual laws follows.

Utilization Law: During a time interval T , tasks arrive at a service station,

the station adds them into the input queue and processes them task by task. The

finished tasks leave the station. The activity of the server with the period T can

be characterized by following attributes:

1. The number of tasks arriving at the server during T , denoted A.

2. The overall amount of time within interval T , during that the service station

processes the incoming tasks B.

3. The number of tasks that were finished during T is C.

Based on this parameters, we can form following equations.

The mean service time:

S =
B

C
(5.1)

.

The output rate:

X =
C

T
(5.2)

.

The utilization rate:

U =
B

T
(5.3)

.

Utilization law is derived from the utilization rate, which is expressed as

U =
B

C
· C
T

(5.4)

that can be written as

Ui = Si ·Xi (5.5)

, where i states for the i-th service station.

Little’s Law: The total number of tasks processed by a server at each time

interval t during an observation period T provides the total amount of waiting and

5.2. BOUNDED ANALYSIS 59

processing time for all tasks during T . The measurement of completed tasks C,

an observation period T , as well as accumulated waiting time W during T lead to

the following calculations.

The mean response time is:

S =
B

C
(5.6)

.

The mean number of tasks that are being processed by a server

n =
W

T
(5.7)

.

The mean throughput of a server

X =
C

T
(5.8)

.

Little’s law is derived from the mean number of tasks at a service station, which

is expressed as

n =
W

C
· C
T

(5.9)

and can be then defined as

ni = Ri ·Xi (5.10)

, where i states for the i-th service station.

Forced Flow Law: This is a very important law, because it calculates the

system throughput using the visit ratio and throughput of any of the service

stations. Consequently, the knowledge of the visit ratio of all service stations and

the throughput of any of them is sufficient to calculate the throughput of the all

remaining service stations.

The law is based on following observations that are done during the period T .

� C0 is the number of transactions done during the period T by the whole

system.

� Ci is the number of transactions done during the period T by the i-th service

station.

60 CHAPTER 5. PERFORMANCE MODELS FOR AGENTS

The visit ratio is defined as the average number of tasks per transaction for

the i-th service station:

Vi =
Ci
C0

(5.11)

The system throughput is defined as the average number of transactions done

during the time interval T :

X0 =
C0

T
(5.12)

The service station throughput is the average number of tasks completed within

T :

Xi =
Ci
T

(5.13)

Simply by multiplying the system throughput by the visit ratio of a concrete

service station we get its throughput:

Ci
T

=
Ci
C0
· C0

T
(5.14)

5.3 Queuing Networks

The basic building block of QNs (Jackson, 1963), (Baskett et al., 1975) is a single

queue. A single queue (also called Service Center (SC) or Service Station (SS))

consists of a buffer, where arriving jobs wait, and a server (in general more than

one server can be assigned to each queue), which serves the jobs (some authors

use customers instead). The queue is characterized by:

� Arrival rate of the jobs

� Buffer Capacity

� Queuing strategy (e.g.: first-come-first-serve, last-come-first-serve, random

selection)

� Number of servers (n : n ≥ 1)

� Service time distributions

5.4. QUEUING PETRI-NETS 61

ServerBuffer for Jobs

Arriving Jobs Departing Jobs

Server Buffer for Jobs

p

(1-p)

Routing
probability

Figure 5.1: Simple Queueing Network

Queueing Network is a system of connected single queues that jobs visit se-

quentially. The characteristics inherited from the single queue system are extended

with routing probabilities (see Fig. 5.1).

For many applications, the QNs are the best compromise between performance

and expressiveness. In comparison to Bounded analysis, QNs are able to capture

the ordering of jobs, both within a queue of a SC, or between particular SCs.

This enables not only to identify the system bottleneck but also to identify the

utilization and the queue lengths at all other SCs. On the other hand, QNs do not

provide any support for modeling synchronization. In other words, this notation

is not able to consider the join probabilities of parameters between various SCs.

However, this can be also seen as a benefit, since this means that the computational

complexity grows linearly with the number of SCs.

5.4 Queuing Petri-Nets

Queueing Petri Nets (Bause, 1993) stands on the top of the family of Petri Nets.

They are time-augmented extension of Generalized Stochastic Petri Nets (GSPN)

(Kartson et al., 1994). GSPN are based on Stochastic Petri nets that extend

classical Petri Nets that are defined as sets of places, tokens, transitions and arcs.

Informally, Queueing Petri Nets extend the conventional ones with a new type

of places - queuing places and ordinary places. A queuing place is composed of two

parts. Any token, it enters to a queuing place, is added into a queue with respect

to the scheduling strategy of this queue (First Come First Serve, Last Come First

62 CHAPTER 5. PERFORMANCE MODELS FOR AGENTS

Serve, etc.).

Formally, Petri Net is a 5-tuple PN = (P, T, I−, I+,M0) where

� P is a non-empty finite set of places

� T is a non-empty finite set of transitions

� I−, I+ : P × T → are output and input incidence matrices that specify the

connection between places and transitions.

� M0 is the initial marking

GSPN is a 4-tuple GSPN = (PN, T1, T2,W) where

� PN is the underlying Petri Net

� T1 ⊂ T is a set of timed transitions

� T2 ⊂ T is a set of ordinary (immediate) transitions, T1
⋂
T2 = ∅, T1

⋃
T2 = T

Colored Generalized Stochastic Petri Net (CGSPN) (Li and Georganas, 1990)

is a double CGSPN = (GSPN,C) where

� GSPN is the underlying Generalized Stochastic Petri Net

� C is a colour set specifying the type of tokens which may reside on the place

Finally, a Queueing Petri Net (Bause, 1993) is a tripleQPN = (CGSPN,P1, P2)

where

� CGSPN is the underlying Colored Generalized Stochastic Petri Net

� P1 ⊂ T is a set of queueing places

� P2 ⊂ T is a set of ordinary places, P1

⋂
P2 = ∅, P1

⋃
P2 = P

Queueing Petri Nets provide rich vocabulary to describe various aspects of

MASs. For example, they enable to describe synchronization among multiple

events (necessary to express that an agent needs input from two or more other

agents before it can perform an action), or they can model a mutually exclusive

access to a shared resource. Their significant disadvantages are the complexity of

the model definition as well as high computational demands of their solvers.

5.5. STOCHASTIC PROCESS ALGEBRAS 63

5.5 Stochastic Process Algebras

Stochastic Process Algebras (SPAs) were introduced in the 90’s as a formalism

for modeling performance and dependencies (Harrison and Strulo, 1995). It is

currently used for modeling of complex biological systems (Hillston, 2005), (Cioc-

chetta et al., 2009). They are build on conventional Process Algebras, but they

provide capability to represent stochastic and time characteristics of system dy-

namics. In comparison to all other notations introduced within this paper, SPAs

explicitly supports compositionality. This is important for systems, where it is

important to model the emergent behavior patterns. The main issue related to

SPAs is that they are prone to exponential state explosion.

5.6 Conclusion

Performance modeling involves multiple approaches. We have considered some of

them for modeling interactions between agents with focus on the time aspects to

identify the system bottlenecks and the maximal system performance. Based on

the both positive and negative aspects of these different notations (see table 5.1),

we have focused our attention on the Queueing Networks (design-time modeling of

MAS behaviour presented in chapter 7) and the Bounded Analysis (run-time con-

gestion management presented in chapter 8), which provide a sound compromise

between the expressivity, usability and solvability.

64 CHAPTER 5. PERFORMANCE MODELS FOR AGENTS

Notation Advantages Disadvantages

Bounded Analysis

+ Straightforward to

use;

+ No special skills re-

quired;

+ Low computational

demands.

– Very limited expres-

sivity (i.e., no in-

teractions between

components, no syn-

chronization).

Queueing Networks

+ Transparent model-

ing notation;

+ Clearly separated

characteristics of

individual compo-

nents.

– Neither support for

modeling synchro-

nization nor joint

probabilities.

Queueing Petri Nets

+ Transparent graphi-

cal modeling nota-

tion.

– Non-trivial applica-

tions generates more

states than is feasi-

ble to handle.

Stochastic Process

Algebras

+ High expressivity

(i.e., synchroniza-

tion, exclusive

access, explicit

connecting compo-

nents);

+ Methods for the

state aggregation

to face state-space

explosion.

– Requires special

skills;

– The aggregation of

states cannot be eas-

ily automated.

Table 5.1: Comparison of performance modeling notations.

Chapter 6

Analyzing Communication

“Communication is something so simple and diffi-

cult that we can never put it in simple words.”

- T. S. Matthews

6.1 Introduction

Since MASs are distributed systems of loosely coupled components (agents), the

communication among the agents is essential. As stated in (Weiss, 2013): “En-

gineering a multi-agent system means rigorously specifying the communications

among the agents by way of interaction protocols.” Usually, the communication

is based on message passing techniques.

Debugging and tuning MASs is a challenging process that cannot be tackled by

methods and tools originally designed for development of monolithic applications.

In order to fill this methodological gap which hinders a faster transfer of the

agent-based technology to industrial enterprises, we proposed a set of methods

based on observation and backward analysis of the agent communication. Because

communication analysis is essential for the methods introduced in the following

chapters, we will cover this topis in a standalone chapter describing the following:

1. The general principles of the communication used in MAS;

2. The traceability of Contract-Net Protocol-based protocols;

65

66 CHAPTER 6. ANALYZING COMMUNICATION

3. The concept of workflows and their retrieval; and

4. The construction of a loading matrix holding information of the computa-

tional load issued from a particular type of request.

6.2 Languages for Agents

Besides many ad hoc developed agent communication languages, there are two of

them with the broadest uptake, namely “KQML” and “FIPA ACL”.

6.2.1 KQML

Knowledge Query and Manipulation Language (KQML) is a language and pro-

tocol for exchanging information and knowledge, which was developed within the

framework of the project Knowledge Sharing Efforts supported by organization

DARPA. It was intended to be an adjunct to the other knowledge management

methods such as ontologies. KQML defines format of messages and a message-

handling protocol that supports run-time knowledge sharing among agents. The

language supports agent activities as identification agents suitable for collabora-

tion, creating connections, and information sharing.

KQML introduced a set of communication primitives such as “query” and

“tell”. The primitives represented specific semantics. For example, an agent us-

ing the communication act “tell” informs another agent/agents about a fact that

is stored in its knowledge base. Similarly, when an agent receives a communica-

tion act “tell”, it inserts the included fact into its knowledge base. This closely

corresponds with an import assumption: the agents are cooperative.

The KQML97 specification contains 36 performatives split into three groups:

� Discourse performatives: These performatives are used for standard discus-

sions

� Intervention performatives: These performatives are used for influence stan-

dard conversation process or abortion of communication.

6.2. LANGUAGES FOR AGENTS 67

� Networking and facilitation performatives. This group of performatives is

used for handling social knowledge such as registering and unregistering

agent capabilities and binding communication among agents.

6.2.2 FIPA ACL

FIPA Agent Communications Language (FIPA ACL) (FIPA, 2002) is a communi-

cation standard proposed by FIPA. The counterparts of speech acts used in KQML

are in FIPA-ACL called communicative acts. However, the syntax of the ACL is

very close to the KQML communication language. Although the principles are

similar, performatives used in FIPA-ACL are mostly new. The total number of

performatives was decreased to 22 that are split within 5 groups:

� Inform

– Confirm: The sender informs the receiver that a given proposition is

true, where the receiver is known to be uncertain about the proposition;

– Disconfirm: The sender informs the receiver that a given proposition is

false, where the receiver is known to believe, or likely believes that the

proposition is true;

– Inform: The sender informs the receiver that a given proposition is true;

– Inform-if: A macro action for the agent of the action to inform the

recipient whether or not a proposition is true; and

– Inform-ref: A macro action for sender to inform the receiver the object

which corresponds to a descriptor,for example, a name.

� Inform about a request

– Agree: The action of agreeing to perform some action, possibly in the

future;

– Cancel: The action of one agent informing another agent that the first

agent no longer has the intention that the second agent perform some

action;

� Negotiate

68 CHAPTER 6. ANALYZING COMMUNICATION

– Accept-proposal: The action of accepting a previously submitted pro-

posal to perform an action ;

– Call-for-proposal: The action of calling for proposals to perform a given

action;

– Propose: The action of submitting a proposal to perform a certain

action, given certain preconditions; and

– Reject-proposal: The action of rejecting a proposal to perform some

action during a negotiation;

� Request an action

– Propagate: The sender intends that the receiver treat the embedded

message as sent directly to the receiver, and wants the receiver to iden-

tify the agents denoted by the given descriptor and send the received

propagate message to them;

– Proxy: The sender wants the receiver to select target agents denoted

by a given description and to send an embedded message to them;

– Request: The sender requests the receiver to perform some action;

– Request-when: The sender wants the receiver to perform some action

when some given proposition becomes true; and

– Request-whenever: The sender wants the receiver to perform some ac-

tion as soon as some proposition becomes true and thereafter each time

the proposition becomes true again.

� Error handling

– Failure: The action of telling another agent that an action was at-

tempted but the attempt failed; and

– Not-understood: The sender of the act (for example, i) informs the

receiver (for example, j) that it perceived that j performed some action,

but that i did not understand what j just did. A particular common

case is that i tells j that i did not understand the message that j has

just sent to i.

6.3. COMMUNICATION PROTOCOLS 69

6.3 Communication Protocols

The cooperation among agents is usually realized according to a jointly accepted

protocol. The protocol defines both the format and the correct sequence of mes-

sages. In this section, we describe the essential auction and Contract-Net-Protocol

based communication protocols.

6.3.1 Auctions

Auction protocols provide a solution to the problem of allocating resources among

agents in a MAS. We provide a short description of the most used auction types:

� English auction: The auctioneer starts English auction with a price bellow

the expected market price and waits for successive bids of buyers. Each bid

has to be higher than the previous price and the minimal increment is set by

the auctioneer. There are various stopping conditions, e.g. (i) the auction

ends at fixed time, (ii) the auction ends if there is no bid for a predefined

amount of time. The deal is closed with the issuer of the last accepted bid.

� Japanese auction: It is similar to the English auction because it is also based

on an iterative price growth. In contrast to the English auction, where the

increases were issued by the potential buyers, in Japanese auction is the price

managed by the auctioneer who starts the auction with a price bellow the

expected market price and waits if any buyer accepts the price. As soon as

a buyer accepts the proposed price, the auctioneer issues a new offer with a

higher price. This process is repeated until no buyer accepts the price. The

contract is closed with the issuer of the latest proposal, but only if the price

is higher than the reserved price of the auctioneer.

� Dutch auction: The auctioneer starts Dutch auction with a price above the

expected market price and decreases the proposed price repeatedly. As soon

as any buyer accepts the price, the deal is closed, unless the price is below

the auctioneer reserved price.

� Sealed auction: The auctioneer calls all buyers for proposals, who make their

proposals privately. Afterwards, the contract is made with the issuer of the

70 CHAPTER 6. ANALYZING COMMUNICATION

highest proposal.

� Vickrey auction: Vickrey auction is similar to the sealed tender, but the

winner of the auction does not pay the price he proposed, but the second

highest proposal.

6.3.2 Contract-Net and Plan-Commit-Execute Protocols

Contract Net Protocol (CNP) is a typical example of a communication scheme

used for agent negotiation. It was introduced by Smith (Smith, 1980). Later, the

protocol became part of FIPA standards and is frequently used for multi-agent

planning. The protocol is based on a straightforward mechanism: any member of

the agent group can temporarily become a manager that initiates a negotiation

process and contacts other agents. If a contacted agent cannot satisfy the request

by himself, he can divide it into suborders and initiate a new conversation in

order to distribute the work among other agents. The contacted agents sent their

proposals, from which the manager selects the best one(s). In other words, the

CNP is used to split the original complex task into a set of simpler sub-tasks that

can be accomplished by multiple agents in parallel.

PCE protocol (Kadera and Tichý, 2009b) was developed in a reaction to de-

mand of developers of industrial multi-agent applications, where the clear separa-

tion of the individual cooperation phases was necessary, because in the distributed

industrial systems holds: “Before everything is agreed, nothing can be done”. To

be more specific, the optimal cooperation plan is sought in the plan phase. If

a sufficient plan is found, the commit phase is used for resource allocation and

if the allocation is possible, the execution phase starts to control the hardware

outputs (see Fig. 6.1). The multiphase process prevents the agents from doing

impetuous actions on the hardware level, where a rollback of an action might be a

very expensive or eventually an impossible task. The negotiation in the all three

phases has to be limited in time by communication timeouts to prevent the sys-

tem from infinity waiting for responses (e.g. responses from a broken agent will

never come). On the other hand, the timeout limit cannot be too short, otherwise

some responses needed for the overall solution might be missed. The setting of the

optimal timeout length is a challenging task, because the value depends on multi-

6.3. COMMUNICATION PROTOCOLS 71

Initiator Participant

Fail Plan

Success Plan

Request Plan

Request Commit

Fail Commit

Success Commit

Request Execute

Fail Execute

Success Execute

Figure 6.1: PCE Protocol

72 CHAPTER 6. ANALYZING COMMUNICATION

ple parameters (e.g. agent assignment to computational resources or frequency of

coming requests).

6.4 Workflows

A workflow is a tree graph, whose nodes are the cooperating agents and the edges

represent the communication links. The root of the tree is the initiator of the

communication. The intermediate nodes represent agents that are not capable of

satisfying the received request on their own, but are able to inquire other agents.

On the contrary, the workflow leafs represent agents, who (i) can fully satisfy the

request or (ii) cannot and even are not able to involve any other participants into

the negotiation process. Java Sniffer supports visualization of multiple commu-

nication protocols such as various action protocols (English, Dutch, First Price

Sealed Bid, and Second Price Sealed Bid Vickery) as well as visualization of 3-

phase extension of Contract-Net Protocol named Plan-Commit-Execute (PCE)

Protocol.

Messages sent among agents are composed according to the FIPA ACL specifi-

cation. This specification defines a set of mandatory parameters that each message

has to contain. These parameters are used to identify who the sender is and which

conversation the message belongs to. Such an identification is necessary to enable

agents to work on multiple tasks in parallel without mixing up messages com-

ing from different conversations. In order to enable the backward communication

traceability, agents use parameter “Reply With” to add additional pieces of in-

formation into the messages. The content of this field is composed iteratively by

all agents participating in the particular negotiation. The seed of the parameter

creates the initiator of the communication and stores in it its name and the num-

ber of the conversation, in which this agent takes part (e.g.: svc1@100:0). The

next participant extends the content of this field by the “∼” character and its own

identifier (e.g. svc1@100:0∼acp@100:310) and so on. This annotation is sufficient

for the reconstruction of the workflows. A workflow visualized in Java Sniffer is

depicted in Figure 6.2.

Frequently, the workflows are composed of hundreds of messages. An example

of a complex worklflow is depicted in Fig. 6.3.

6.4. WORKFLOWS 73

Figure 6.2: The main screen of the Java Sniffer visualizing a part of a com-

munication log.

Following agents

Previous agent

Request Plan (Target = CIC2)
Inform Plan (Price = 151)

Request Plan (Target = CIC2)

Inform Plan (Price = 121)
Request Commit (Target = CIC2)

Inform Commit (Success)
Request Execute (Target = CIC2)
Inform Execute (Success)

Figure 6.3: Workflow in CWS

74 CHAPTER 6. ANALYZING COMMUNICATION

6.5 Conclusion

In this chapter, we have briefly described the prevalent principles of the MAS

communication. The chapter has introduced two dominant languages (KQML

and FIPA ACL) as well as two important negotiation protocols – CNP and its

extension PCE protocol. Based on the knowledge of the cooperation protocol, it

is possible to organize the messages sent within an agent community into a schema

named workflow, which captures the causality of the individual cooperation steps.

This is an important prerequisite for further performance analysis.

Chapter 7

Verification of MAS Design

“All models are wrong, some are useful.”

- George E.P.Box

7.1 Introduction

The chapter Agent Development Environment has introduced methods and tools

for a foolproof design of MASs. Unfortunately, the syntactically correct design of a

MAS is only necessary but insufficient condition for development of an agent-based

application that also meets the performance requirements.

Industrial MASs are usually designed to control complex systems such as water

distribution networks or supply chains and the practical experiments have demon-

strated that the large scale MASs suffer from performance problems, for instance,

long response times and overloaded computational resources. Usually, the reason

for the performance degradation is an incorrect architecture of the distributed

system rather than an inefficient implementation of the individual agents.

The need for specifications is aptly captured by the following quotation, para-

phrased from (Lee and Seshia, 2011):

“A design without specifications cannot be right or wrong, it can only be

surprising!’

Performance models enable to figure out the optimal system configuration that

75

76 CHAPTER 7. VERIFICATION OF MAS DESIGN

meets the performance requirements, yet avoids a resource profligacy. Since the

construction of performance models is a challenging process requiring specialized

skills and deep knowledge of the modeled system, an integral part of the method

is an automatic creation of Queueing Network performance models from logs of

messages sent among agents. These models are used to estimate the performance

indices (e.g. maximal system throughput, system response time or lengths of in-

dividual queues) of a MAS under various loads. This means that an initial system

configuration provides information that can be used to efficiently estimate the

behavior of the system under different conditions. This kind of the performance

simulation assists the developer of the system to select the optimal configuration

for the final MAS in order to meet the performance requirements without wasting

system resources. If the experiments with the models indicate that the system

cannot meet the performance requirements, the developers of the MAS have to

redesign the system, i.e., optimize the behavior of individual agents or use more

powerful hardware. The method is applicable to MASs utilizing the Contract-Net

Protocol (CNP) (Smith, 1980) or its extension Plan Commit Execute (PCE) pro-

tocol (Kadera and Tichý, 2009b), because the messages produced in such systems

create chains which offer to identify initiators and to trace the successors.

It is natural to expect that every MAS has its performance limits, i.e., the

number of tasks that a system can solve within a time unit is limited. Moreover,

it was observed, that if the load posed for the MAS exceeds a certain level, the

performance does not remain on the maximal level, but decreases. Therefore, the

behavior of MAS is sensitive to the current load. The reason for the performance

degradation is the sharing of resources between the forward (e.g., requests) and

backward (e.g., responses) messages. We illustrate this behavior on two simple

models. The first represents a system with only forward propagation of requests

(see Fig. 7.1 and Fig. 7.2). In this case, the system has its maximal performance

limit – maximal system throughput, which cannot be exceeded, but if the load

increases beyond the limit, the throughput remains on the maximal level. On

the contrary, the second example (see Fig. 7.3 and Fig. 7.4) represents a system

with not only forward propagation of requests but also backward propagation

of responses. In this case, beyond certain point, the throughput of the system

decreases.

7.1. INTRODUCTION 77

Figure 7.1: One-Way System.

Figure 7.2: One-Way system characteristic.

Figure 7.3: Two-Way System.

78 CHAPTER 7. VERIFICATION OF MAS DESIGN

Figure 7.4: Two-Way system characteristic.

7.2 Modeling MASs using Queueing Networks

Based on our investigation of available performance modeling notations, we se-

lected Queueing Networks as the most suitable approach. The representation of

the MASs in terms of the QN notation is introduced in this section.

7.2.1 Agents

Agents are represented by service centers. For the sake of simplicity, we assume

that each agent is hosted by a dedicated computational resource, i.e., the agents do

not share the computational resources. Thus, every agent is modeled by a service

center with properties describing the behavior of the agent. The most characteris-

tic parameters and those that are derived from the analysis of the communication

logs describe the service and routing sections of the service center. The former

defines the service times of the particular agent for all types of tasks (customer

types) the agent participates in. The latter describes routing of customers leaving

the service center, i.e., who the next participating agents are.

7.2.2 Workflows

As described in the previous chapter, a workflow represents all communication

activities related to fulfilling a task by a group of agents. Each workflow type is

represented by a single customer class. The processing of a customer by the SC

7.2. MODELING MASS USING QUEUEING NETWORKS 79

depends on the class the customer belongs to.

7.2.3 Workload and Service Times

Workloads describe the service demands of individual tasks on the particular

agents, i.e., the SC in QN terminology. Because the demands might fluctuate

over time, they are expressed using statistical distributions. A brief description of

the most used distributions follows.

Exponential distribution: This is one of the most used probability distri-

butions in the field of QNs mainly due to its simplicity. The probability density

function of this distribution is:

f(x) =

λe−λx x ≥ 0

0 x < 0
(7.1)

Normal distribution:

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(7.2)

Gama distribution: This is a two parameter probability distribution.

f(x) =
1

Γ
√

2π
xk−1e−

x
Θ (7.3)

Student’s T-distribution (studT(ν)):

f(x) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (
1 + x2

ν

) ν+1
2

(7.4)

The listed probability distributions share a disadvantage: their parameters

can be estimated only from a significant amount of data. However, the amount of

available data might be limited and then simpler probability distribution comes

on the scene.

Deterministic distribution: This distribution is used to describe constant

demands on resources.

80 CHAPTER 7. VERIFICATION OF MAS DESIGN

f(x) =

1 x = k

0 x 6= k
(7.5)

Uniform distribution: This distribution is useful when only range data 〈a, b〉
of the service time is known.

f(x) =

 1
b−a x ∈ 〈a, b〉

0 x /∈ 〈a, b〉
(7.6)

Triangular distribution: If the mode c is also given in addition to the range

data 〈a, b〉

f(x) =

0 x < a

2(x−a)
(b−a)(c−a) a ≤ x < c

2
b−a x = c

2(b−x)
(b−a)(c−a) c < x ≤ b

0 b < x

(7.7)

For the sake of simplicity, the experiments conducted within the framework of

this thesis were limited to the deterministic distribution.

7.2.4 Request – Response Distinction

A specific aspect of the agent cooperation based on CNP is the diffusion of re-

quests heading from the initiator to participants and backwards going responses.

Although both the requests and the responses belong to the same workflow, the

processing is different and therefore it is necessary to model these types of com-

munication acts separately. In order to achieve this, a component of QNs called

Class Switch is utilized at agents that act as workflow leafs, because at this point

the communication is reversed and requests are replaced by responses.

7.3. PERFORMANCE INDICES 81

7.3 Performance Indices

The most common indices used in the field of the performance of systems are as

follows:

� Number of customers: This parameter indicates how many customers are

present at a station or in the system as a whole;

� Queue time: Time spent in the station buffer, i.e., the parameter does not

include the service time;

� Residence time: Total time that a customer spends at a station (Queue

time + Service time), if the customer visits the service station during the

execution multiple times, this parameter sums all visits;

� Response time: Total time that a customer spends at a station (Queue time

+ Service time) during a single visit;

� Utilization: Index from interval 〈0, 1〉 represents the utilization rate, i.e, busy

time/total time;

� Throughput: Rate at which customers leave a station (station throughput)

or the system (system throughput);

� System Power: This index is computed as the rate between System through-

put X and System Response time R, i.e., X/R. In the optimal operational

point is this index maximized.

7.4 Construction of Queueing Networks

In general, construction of QNs requires deep knowledge of the system, i.e., it

is necessary to know performance characteristics of individual components, but

also the interconnection of the components, which defines the routing of the jobs

through the system. Since one of the essential characteristics of MASs is that

their behavior emerges from the interactions of individual agents in runtime, the

knowledge on the routing is not available in design time. Therefore, we propose

a two-step method for construction of QNs from communication logs. First, the

82 CHAPTER 7. VERIFICATION OF MAS DESIGN

parameters of individual JCs are set up according to the loading matrix. Second,

the routing probabilities defining interconnections between JCs are deduced from

the captured workflows that are integrated into a single structure.

7.4.1 Loading Matrix

A loading matrix is a table (see Table 7.1) containing information on how each

initial request (Customer class in terminology of performance models) Cr, r ∈ R,

R = {1, 2, . . . , R} loads a resource (Job Center in terminology of performance

models) Ji, i ∈M, M = {1, 2, . . . ,M}.

C1 C2 · · · CR

J1 L11 L12 · · · L1R

J2 L21 L22 · · · L2R

...
. . .

JM LM1 LM2 · · · LMR

Table 7.1: Loading Matrix.

The computation of the loading matrix is based on an assumption that the

effort dedicated to work on a particular request is bounded by an input and an

output message. How it works is described in Algorithm 1 and illustrated with

a concrete example (see Fig. 7.5 and Table 7.2). For instance, the matrix cell

[1,2] holds value 172, which means that the agent “v1” was one participant (with

others) for 172 ms in serving the request triggered by the agent “svc1”. This

was computed from the time distance between the input and output message

(17:05:55.093 - 17:05:54.921) at the agent “v1”.

ACP V1 V2 V3 V4

svc1 request 177 172 330 173 333

svc1 response 99 207 0 202 0

Table 7.2: Loading matrix for the request “SVC cooling”. The values repre-

sent time in milliseconds.

Because the communication among agents is bi-directional (requests flow from

initiators to participants and responses vice versa) and the key part of the method

is a model of the job flow between individual job centers, it was necessary to

7.4. CONSTRUCTION OF QUEUEING NETWORKS 83

Algorithm 1 Agent workload computation

for all workNode in agent.worknode list do

for all

inputMessage in worknode.inputEdge.message list

do

for all

outputMessage in worknode.outputEdge.message list

do

if (inputMessage.phase == outputMessage.phase) then

agent.load = agent.load + (outputMessage.time - inputMessage.time)

end if

end for

end for

end for

Request Plan (PlanPath.getPath)
Time: 17:05:54.921

Request Plan (PlanPath.getPath)
Time: 17:05:55.093

svc1@100

acp@100
acp@100:310

v3@100
v3@100:310

v4@100

acp@100:310
v1@100

v1@100:310

v2@100

svc1@100

Figure 7.5: Example of a workflow that illustrates a piece of negotiation in

CWS application.

reflect this in the construction of the loading matrix. Therefore, each workflow is

represented by two rows. The first row represents the load caused by the forward

propagation of requests (“svc1 request”), while the second row corresponds to the

load caused by the returning responses (“svc1 response”).

This method assumes that the processed tasks do not influence each other,

i.e., at each instance only one task is solved by the MAS. In practice, this can be

accomplished by doing a test run during which the tasks are triggered one by one.

84 CHAPTER 7. VERIFICATION OF MAS DESIGN

A brief introduction of the frequently used probability distributions in the field

of the Queueing theory has been introduced above. The simplest approach repre-

sents the service times by the averages and then uses these values as parameters

for the deterministic probability distribution. However, this approach is suitable

only for systems with low fluctuations of the service times. If the variation grows,

a probability distribution with higher expressivity has to be utilized in order to

model also the reliability intervals of the simulation results.

7.4.2 Routing Probabilities

The flow of jobs through a Queueing Network is defined by routing probabilities.

For each job center and job class the routing probabilities determine how the

jobs are routed from the job center to the other job centers. If we assume that

the formation of workflows is time invariant, then the probabilities can be only

0 or 1 and in fact represent a routing table 7.6. Because an agent can fork the

communication, i.e., for a request start multiple parallel communication branches,

a job in a QN can be also forked to multiple jobs (see Fig. 7.13 where the jobs

leaving job center “ACP1” are forked to job centers “V103C” and “V103H”).

N-1

Service Station B

Queue Server

N-1

Service Station C

Queue Server

1 2 1 2 N-1

Service Station A

Queue Server
1

1

2
2

Routing Probabilities
Customer Class 1
Customer Class 2

Service Station B Service Station C

1
1
0

0

Routing Probabilities at Service Station A

Figure 7.6: Routing Probabilities

7.5. EXPERIMENTS 85

7.5 Experiments

The experimental part of this work was conducted in order to determine the ac-

curacy of the results of the simulation and illustrate how the model can provide

insight into the system by modeling performance indices such as utilization of

agents. For this purpose, a part of the CWS application was implemented and

deployed on a hardware testbed. The communication produced by agents was

logged by the Java Sniffer and processed according to the proposed method. The

obtained performance model was loaded into the JSIMgraph tool and graphically

arranged within this tool (see Fig. 7.13).

7.5.1 Software Platform for Experiments

Simulation runs of the composed QNs are performed by Java Modeling Tools

(JMT) (Bertoli et al., 2009). It is a bundle of six tools for performance experi-

ments and capacity planning of computer systems. Two of them – JSIMwiz and

JSIMgraph are directly compatible with the output of the previous step. The for-

mer is a wizard-based tool while the later provides a graphical user interface (GUI)

for manual construction of QNs. Both tools share the same simulation engine that

performs an on-line statistical analysis of measured performance indices, plots the

collected values, and computes the confidence intervals.

Both JSIMwiz and JSIMgraph tools can be used to simulate the behavior of

the automatically constructed QNs. Because the QNs are stored in XML files

respecting the structure defined by JMT, these files can be opened as if they were

created manually. The only thing, which has to be set up manually and defined via

a wizard dialog of a GUI is a set of simulation parameters such as (i) performance

indices to be computed, (ii) size of the simulation step, and (iii) requested accuracy

are defined via a wizard dialog or a GUI. An example of a performance model

imported and then modified in JMT is depicted in Fig. 7.13.

The tools provide simulation of various performance indices. System through-

put is the key indicator for consideration of what the highest arrival frequency

of tasks is. Its usage is described in the following subsection. Beside this, the

tools provide information on how many jobs are present at each SC (important

for correct settings of buffers), what the response times are (necessary for the set-

86 CHAPTER 7. VERIFICATION OF MAS DESIGN

Network

PC
Sniffer

Raspberry Pi

JADE: Slave
Container
Agent SVC

Raspberry Pi

JADE: Main
Container

Agent Chiller

Raspberry Pi

JADE: Slave
Container

Agent Valve 1

Raspberry Pi

JADE: Slave
Container

Agent Valve 2

Raspberry Pi

JADE: Slave
Container

Agent Valve 3

Raspberry Pi

JADE: Slave
Container

Agent Valve 4

Figure 7.7: Schema of the testbed.

ting of negotiation timeouts) or utilization of individual SCs (to detect resource

profligacy).

7.5.2 Hardware Platform for Experiments

The hardware testbed consists of six minicomputers Raspberry Pi model B con-

nected to a dedicated Local Area Network (LAN) (see Fig. 7.7 and Fig. 7.8). The

minicomputers host JADE platform and mimics the behavior of a part of the

CWS.

7.5.3 Simulation Accuracy

We have conducted a set of experiments to investigate how accurately the es-

timated performance models represent the original system. In order to achieve

this, we have developed a set of testing agents, that contained a method with an

only purpose - to simulate a load. Moreover, the load was adjustable by an input

parameter of the method.

The experiments consisted of two parts: QN simulation conducted in the JSIM-

graph tool and measurements of the real system performance.

In both cases we observed, how the system throughput depends on the fre-

quency of arriving jobs. This performance index was selected because it can be

easily observed at the real system. The procedure of the experiment was identical

for the model and the real system. It started with a low input frequency, which

7.5. EXPERIMENTS 87

Figure 7.8: Photo of the testbed.

was then increased step by step. In all steps the corresponding output frequency

was identified.

It is important to be able to quantify the model accuracy. In order to do so,

we have focused our attention on the identification of the maximal frequency of

arriving jobs that the system can handle from the long term perspective. The

identification of this frequency is based on the following assumption:

The frequency of arriving requests (Input frequency) and the frequency of

finished tasks (Output frequency) have to be equal in a sustainable MAS.

If the input frequency outperforms the output frequency, the difference denotes

how intensively the MAS accumulates the unfinished requests. This accumulation

initially decreases the system responsiveness, but if the imbalance exceeds a certain

limit, the overall cooperation among agents breaks apart (either the buffers are

completely filled, or the processing of a particular request takes so long that it is

stopped by a communication timeout).

The following tables and figures show, how the model accuracy depends on the

load.

88 CHAPTER 7. VERIFICATION OF MAS DESIGN

Experiment 1: Load = 500, Table 7.3, Fig. 7.9

ACP V1 V2 V3 V4

Request 103 93 198 108 214

Response 62 54 0 68 0

Table 7.3: Loading matrix for the load 500. The values represent time in

milliseconds.

Figure 7.9: Throughput of the real system and the model - Load = 500.

Experiment 2: Load = 1000, Table 7.4, Fig. 7.10

ACP V1 V2 V3 V4

Request 136 127 287 132 311

Response 89 159 0 164 0

Table 7.4: Loading matrix for the load 1000. The values represent time in

milliseconds.

Figure 7.10: Throughput of the real system and the model - Load = 1000.

7.5. EXPERIMENTS 89

Experiment 3: Load = 1500, Table 7.5, Fig. 7.11

ACP V1 V2 V3 V4

Request 282 268 466 280 452

Response 214 311 0 307 0

Table 7.5: Loading matrix for the load 1500. The values represent time in

milliseconds.

Figure 7.11: Throughput of the real system and the model - Load = 1500.

Experiment 4: Load = 2000, Table 7.6, Fig. 7.12

ACP V1 V2 V3 V4

Request 559 543 709 548 725

Response 480 627 0 643 0

Table 7.6: Loading matrix for the load 2000. The values represent time in

milliseconds.

Figure 7.12: Throughput of the real system and the model - Load = 2000.

90 CHAPTER 7. VERIFICATION OF MAS DESIGN

The results of the experiments confirmed our initial hypothesis that the simu-

lation accuracy increases with the size of service times. This is caused by the fact

that we do not take into account the load of the communication infrastructure.

Thus, if the service times are short, the effect of the communication is more sig-

nificant and the results of the simulation significantly differ from the reality. As

the load of agents grows, the behavior of the models is getting more realistic.

7.5.4 Modeled Characteristics

The next experiment was focused on modeling of a part of the CWS in order

to provide insight into the performance indices that are not directly observable

(utilization, number of jobs in a queue, response time). The procedure consisted

of the following steps:

1. The communication log was analyzed and the performance model was com-

piled.

2. The throughputs of the model and the real system were compared.

3. The other performance indices were modeled in order to provide insight into

the internal states of the agents.

The comparison of the throughputs is depicted in Fig. 7.14. It can be read

from the plot, that in the case of the real system, the input/output frequencies

start to differ at approx. 2.4 Hz and in the case of the model, at approx. 2.6 Hz.

Thus, the relative failure is approx. 8 %.

The obtained QN model can be further exploited to derive performance indices

that cannot be observed directly. This provides the MAS developer with priceless

information about utilization of individual resources (see Fig. 7.15), number of

task waiting to be served, which is important for the correct setting of buffer sizes

for input messages (see Fig. 7.16) and response times depending on the frequency

of incoming request (see Fig. 7.17).

7.5. EXPERIMENTS 91

Figure 7.13: Queueing Network Model loaded into JMT representing a part

of the CWS application.

Figure 7.14: Comparison of the simulated and the real MAS behavior.

92 CHAPTER 7. VERIFICATION OF MAS DESIGN

Figure 7.15: Utilization of agents.

Figure 7.16: Number of Customers.

7.6. CONCLUSION 93

Figure 7.17: Response time.

7.6 Conclusion

The suitability of the proposed method was tested on a set of various system

configurations which differed in the service time values. It was observed, that

the method provides good results only if the service times of agents significantly

outperform the influence of other factors, e.g. the influence of the communication

network.

Furthermore, this method was used to model a part of the CWS application.

This part consisted of one service agent SVC (requesting cooling), four valve agents

(V1, V2, V3, V4) and one chiller agent ACP (providing cooling). Each of these

agents was deployed on a dedicated mini computer Raspberry Pi. The communi-

cation was logged by Java Sniffer, which integrated the individual messages into

workflows that were analyzed to derive the loading matrix. In this case only a

single type of a request occurs (cooling requested by SVC), thus the integration

of workflows was not applicable and the workflow was directly transformed to the

queueing network model using the parameters from the loading matrix. It was

tested that the model can predict the maximal frequency with a failure 8%. The

obtained model was used to provide insight into other performance indicators:

utilization, number of waiting customers and response times.

94 CHAPTER 7. VERIFICATION OF MAS DESIGN

Chapter 8

Load-Aware Directory

Facilitator

8.1 Introduction

This chapter describes a method that protects MASs based on Contract-Net Pro-

tocol (CNP) against overloading caused by bursts of requests. Providing such

a protection is of the highest importance because even a temporal burst of re-

quests can transfer a MAS to a state from which the system is not able to recover.

In general, these problems are caused by saturation of computational resources.

Highly utilized resources decrease the agent responsiveness, which might end up

with exceeding the communication timeouts and, consequently, stop the particu-

lar negotiation attempt. If so, agents usually invoke new attempts to cooperate,

but it repetitively ends up with not passing the timeouts due to the reoccurring

overloads. This forms a never-ending loop, from which the agents cannot escape

and the system never recovers the correct operational regime.

This closely corresponds with one of the key tasks that developers of a MAS

have to solve – to find a correct setup of communication timeouts, which the agents

use to bound their waiting for responses. The communication timeouts are an in-

tegral part of the most interaction protocols including the Contract-Net Protocol

95

96 CHAPTER 8. LOAD-AWARE DIRECTORY FACILITATOR

and their fine-tuning is essential for reaching the optimal compromise between the

communication efficiency and the system robustness. Too long timeouts decrease

the performance by waiting for messages that never come (e.g. from a broken

agent). On the other hand, the communication timeout cannot be too short ei-

ther, because it might disallow the system to converge to the best solution due

to messages that come, but come after the deadline and are thus discarded as we

have many times experienced during work on the Chilled Water System (CWS)

application (Kadera and Tichý, 2009b). Moreover, the optimal setup is specific for

each system configuration (number of agents, computational performance of the

used hardware, and system load). Thus, any hardware or software change con-

ducted on a well tuned system has to be followed by a new timeout setup. This

significantly limits direct usability of the component-based approach provided by

the ADE, because the communication timeouts have to be tuned for every instance

of the MAS individually.

This work introduces an approach (see 8.6) that replaces the fine tuning of

timeouts with a congestion management mechanism that prevents the system from

entering overloaded operational regimes. Performance analysis based on observa-

tion of the agent communication is utilized to select from all resources the potential

bottlenecks, i.e., such resources that under certain load saturate as first ones. The

impact of the new requests entering the system on the bottleneck candidates is

computed and the requests are delayed if their immediate carrying out would satu-

rate a resource. The low computational complexity makes this method applicable

at runtime, where it extends functions of the regular Directory Facilitator (DF).

Consequently, the DF can spread the possible burst of requests into a longer time

period, to prevent any part of the system to become saturated. The method is

applicable to MASs utilizing the Contract-Net Protocol (CNP) (Smith, 1980) or

its extension Plan Commit Execute (PCE) protocol (Kadera and Tichý, 2009b),

because the cooperation in such systems forms chains, which offer to identify ini-

tiators and trace the successors in order to estimate the overall impact of the initial

requests.

The remainder of this chapter is organized as follows. A brief introduction of

the most used agent social models is provided. Next, a bottleneck identification

using convex polytopes is introduced and followed by description of a regular

8.2. MULTI-AGENT SOCIAL MODELS 97

Directory Facilitator extension with a load monitor. Discussion on issues related

to the setting of communication timeouts and the contribution of the proposed

approach follows. Finally, the results of conducted experiments are presented and

a conclusion is provided.

8.2 Multi-Agent Social Models

Agents can cooperate only if they can contact each other. Therefore, maintenance

of the social knowledge is one of the key capabilities of any MAS. Many archi-

tectures for maintaining social knowledge have been proposed and Tichý (Tichý,

2003) has also provided their comprehensive overview. The basic categorization

of architectures distinguishes static and dynamic approaches. The static archi-

tectures are characterized by the creation of the social knowledge at design time,

i.e., the social knowledge is established and distributed once and remains constant

at runtime. On the contrary, the dynamic architectures are characteristic for the

continuous development at runtime and changes during agents’ life-cycles. A short

introduction of the most used architectures follows.

Static architectures are either hierarchical or flat. The former are inspired by a

common hierarchical organization in an enterprise. On one hand, its advantage is

the efficiency, while on the other hand its disadvantage is low resilience, since an

outage of any component disconnects all its successors from the rest of the system.

In contrary, the flat knowledge base architecture is free of a superior nodes and

therefore these approaches are also called “point2point” or “peer2peer”.

Dynamic architectures are equipped with a mechanism that enables to main-

tain the social knowledge at runtime. This is necessary for the realization of the

Plug&Play concept which means that a new agent can be easily added to an al-

ready running system. The focal point of any dynamic architecture is the process

of matchmaking during which a specialized agent (frequently denoted as meta-

agent) creates a communication link between two agents. Sycara (Sycara et al.,

2002) defines the matchmaking as “process of finding an appropriate provider for

a requester through a middle-agent”.

The most used dynamical architectures are as follows:

98 CHAPTER 8. LOAD-AWARE DIRECTORY FACILITATOR

� Broadcasting: a simple approach that generates a lot of communication.

Anytime an agent finds a provider of a particular service, it sends the request

to all agents. Only agents that provide such service handle the request and

send a response to the initiator.

� Federated Architectures: more advanced approaches when the agents repre-

senting service providers and consumers are accompanied with meta-agents

that enable creating cooperation links between agents dynamically accord-

ing to the current conditions. There exist multiple variants such as: Match-

maker, Broker, Mediator, Blackboard, Monitor, Facilitator, Embassy, Anonymizer,

and Job Agency. The detailed description explaining specifics of individual

approaches can be found in (Tichý, 2003).

The proposed method is applicable for the federated architectures, because the

meta-agents can influence the carrying out of new tasks.

8.3 Identification of Possible System Bottlenecks

As one of the key requirements on the online congestion management is the com-

putational speed, it is of the highest importance to simplify the approach as much

as possible. Thus, in this section we describe a method proposed in (Casale and

Serazzi, 2004) for identification of possible bottlenecks of very large systems. The

method analyzes the loading matrix of the system and identifies such resource

that can be under certain circumstances a system bottleneck. Consequently, the

other resources can be excluded from the performance-related considerations which

decreases the computational complexity of the proposed method.

In case of systems with a single type of customers, the identification of the

bottleneck is a trivial task, since it is the resource with the highest demands Lmax.

For instance, if a customer of class c1 is served by resources R1 for 1 seconds, by R2

for 2 seconds, and by R3 for 3 seconds, the Lmax is the biggest of these values, i.e.,

3 seconds. Consequently, the computation of the saturating workload expressed

as the arrival rate λs is also a straightforward task based on the following relation:

λs =
1

Lmax
(8.1)

8.3. IDENTIFICATION OF POSSIBLE SYSTEM BOTTLENECKS 99

In the terms of the recent example, the λs = 1
3 [Hz].

The identification of the saturating workload is more challenging in systems

with various classes of customer. The global workload is then represented as a

vector λ = {λ1, λ2, . . . , λr}, where λi denotes the arrival rate of customer class ci.

Unfortunately, in case of the MAS we have to deal also with system with many

types of customers that load the resources differently. In such a case, the particular

load of the individual resources depends on the mix of the arriving customers,

which fluctuates and cannot be easily predicted. However, the bottleneck analysis

utilizes an approach coming from convex optimization in order to enable to focus

the attention only to such resources that can really be bottlenecks.

The resources are divided into two basic categories: Possible Bottlenecks and

Impossible Bottlenecks with further subcategories:

� Possible Bottlenecks

– Natural bottlenecks: A resource with the highest load coming from a

certain customer type.

– Composed bottlenecks: A resource that is not a natural bottleneck, but

a certain combination of customer types can make this resource to be

the most demanding.

� Impossible bottlenecks

– Dominated resources

– Masked-Off resources

We illustrate the types of the resources in the Fig. 8.1, which is a grafical rep-

resentation of a loading matrix with 5 resources and 2 customer classes. Points

R1, R2, R3, R4, and R5 represent individual resources (in our case CPUs hosting

agents). Their x resp. y-coordinates represent the load imposed by a single cus-

tomer of the class 1 resp. 2. Each customer class has its natural bottleneck. It

is the resource which is loaded with the particular customer class the most. For

example, resource R1 is the natural bottleneck for customers of class 2, similarly,

R2 is the natural bottleneck for customers of class 1. The last possible bottleneck

is R3 that can be a bottleneck if a particular mixture of load coming from both

100 CHAPTER 8. LOAD-AWARE DIRECTORY FACILITATOR

R1

R2

R3

R4

J1c1 R2c1

R5

R4c1R3c1R1c1R5c1

R2c2

R4c2

R5c2

R3c2

R1c2

Load from Customer 1 [s]

Lo
ad

 f
ro

m
 C

u
st

o
m

er
 2

 [
s]

Dominated

Masked-Off

Figure 8.1: Graphical representation of a loading matrix.

types of customers is experienced. On the contrary, Resource R5 cannot be the

bottleneck because it is dominated by resources R1 and R3. Finally, R4 cannot be

the system bottleneck because it is masked-off by the resources R2 and R3. The

figure illustrates that the possible bottlenecks lie on the edge of the convex hull

that is defined by the resources.

In order to formally prove that the system bottleneck can be only such a

resource that lie on a facet of the convex hull, we will introduce the following

terms: The Set of points induced by matrix L is P (L) = li : i ∈M . All possible

projection of the vector li to the axis representing the customer classes is Π(li).

In general, the points contained in Π(li) can be also included in P (L), therefore

we define Π(L) as

Π(L) =

M⋃
i=1

Π(li)− P (L) li ∈ P (L) (8.2)

8.3. IDENTIFICATION OF POSSIBLE SYSTEM BOTTLENECKS 101

Definition 1: Let L be the loading matrix of a multi-class queueing network

with M queueing centers and R classes. The characteristic polytope CL of L is

the convex hull of the set A = P (L) ∪Π(L) .

Theorem 1: The stations mapped to an internal point of CL cannot be bot-

tlenecks.

Proof: Let lk be a point inside CL. Then for any internal point l of C(L) exists

an ε > 0 that holds that point v = lk + λl is an internal point of C(L) for all

λ ∈ R : 0 < λ < ε.

Because v is a point of a convex set, it can be expressed as a convex combination

of at most d + 1 vertices defining the convex set, where d is the affine dimension

of the set (0 for a point, 1 for a line, 2 for a plane, etc.):

v = αV1 + α2V2 + · · ·+ αd+1Vd+1,

d+1∑
i=1

αi = 1, αi ≥ 0 (8.3)

where Vi are the vertices of the characteristic polytope CL. Because CL =

P (L) ∪ Π(L), each Vi belongs either to P (L) or Π(L). Based on the fact, that

Π(L) is projection of P (L), we get for all Vi ∈ Π(L) a vector Li ∈ P (L) such that

Li ∈ P (L) : Vi ≤ Li, ∀i : 1 ≤ i ≤ d+ 1, Vi ∈ C(L) (8.4)

Based on this, we can express any point of C(L) as a convex combination of

vertices from P(L). Thus, we can write

lk < v ≤ αL1 + α2L2 + · · ·+ αd+1Ld+1,

d+1∑
i=1

αi = 1, αi ≥ 0 (8.5)

Using the relation

Lir
Ljr

=
Uir
Ujr

(8.6)

we get

Uk < αU1 + α2U2 + · · ·+ αd+1Ud+1,

d+1∑
i=1

αi = 1, αi ≥ 0 (8.7)

102 CHAPTER 8. LOAD-AWARE DIRECTORY FACILITATOR

Because none of the stations represented by vertices Li ∈ P (L) is not saturated,

it holds Ui ≤ 1 for all i. Thus we substitute Ui with 1 and finally, we get

Uk < αU1 + α2U2 + · · ·+ αd+1Ud+1 ≤
d+1∑
i=1

αi = 1, αi ≥ 0 (8.8)

which proves the theorem.

For further analysis the transformation to the λ−space, where λr denotes the

arrival frequency of r-customer class, is needed. λ = {λ1, λ2, . . . , λr} is the arrival

frequency vector of all customer classes. This is done only for the bottleneck

candidates identified in the previous step.

The transformation is based on the following equation:

U = λL (8.9)

For each resource r, r ∈ P (L) in a system with n types of customers has to be

guaranteed:

n∑
i=1

λilir ≤ 1 (8.10)

8.4 Scheduling Extension of the Directory Facili-

tator

Attention was paid to the integrability of the designed method with existing sys-

tems. The final implementation comprehends extension of two meta-agents –

Sniffer and DF (see fig. 8.2). The first one is an extension of the Java Sniffer,

which logs the messages and analyzes them in order to derive the loading matrix

L. The matrix is then communicated via the regular messaging channel to the

DF. This meta-agent utilizes the matrix to detect, whether the series of requests

arriving to the system cause saturation of any resource. If the danger of satura-

tion is detected, the particular request is postponed to temporarily decrease the

workload.

The system architecture is depicted in fig. 8.2. Arrows denoted with α repre-

sent regular agent communication, the arrow β stands for logging messages, the

8.4. SCHEDULING EXTENSION OF THE DIRECTORY FACILITATOR 103

Agent 2

Agent 1

Agent N

Messaging

Sniffer

DF

β

δ

α

α

γ

α

Figure 8.2: Architecture of a MAS with Sniffer and Extended DF.

arrow γ represents communication used by the sniffer to provide data obtained

by the workflow analysis to the extended DF, and finally, the arrow δ represents

communication between agents and DF. The proposed approach assumes, that the

loading matrix remains constant for the whole application run. Thus, the loading

matrix is identified during an initialization phase which becomes an integral part

of the MAS development.

The DF’s part extends the standard Jade’s DF in three main parts. The first

one is the register implemented as a HashMap, where keys are the request types

and the values are timestamps denoting the time of the last occurrence of the

request. A request type is a unique combination of an agent and the requested

service. For instance, if the agent “A1” requests “cooling” service then the request

type is “A1 cooling.” The second part is related to the computation of the convex

hull. The computation itself is done in Matlab (version R2014a) which provides

an implementation of an algorithm for computation of the convex hull in the n-

dimensional space1:

1n denotes the number of the unique request types

104 CHAPTER 8. LOAD-AWARE DIRECTORY FACILITATOR

K = convhulln(L) (8.11)

The input L is the loading matrix and the output K is a matrix[x,y] - x is

number convex hull facets, y is the dimension. In other words, the first row of

matrix K contains indices of resources from L, that demarcate the first facet. The

bottleneck candidates are such points that appear among the facet members. Set

of constraints for these possible bottlenecks is created according to (8.10).

When a new MAS is started and its DF is requested by the first agent to

find a provider of a particular service, the DF provides the requested information

immediately and temporally (for the time retrieved from the corresponding field

of the loading matrix) marks the resources involved in the provision of the service

as unavailable (see fig. 8.3). When the DF receives another request, it is checked

whether all needed resources are already available. If they are, the requested

information is again provided immediately and the temporal unavailability is again

denoted. If they are not, the answer to the agent is postponed, until all the

resources are available.

The suspensive mechanism is illustrated in fig. 8.4). The arriving requests are

served either immediately, or are stored in a buffer of waiting messages. We have

proposed a mechanism with separate queues for individual types of requests in

order to avoid a situation, when a request waiting for a resource block is blocking

another request that has all resources available.

There exist two different approaches on how a DF match-makes agents in a

MAS. The DF used in the ACS platform directly forwards the request to registered

providers of the particular service (see fig. 8.5 – (a)). Another method is utilized

in JADE where the DF returns a list of service providers to the initiator of the

communication (see fig. 8.5 – (b)).

The proposed method was tested on JADE. It is important to point out, that

JADE provides both synchronous and asynchronous ways of communication with

the DF. In this case, it is necessary to use the asynchronous one, otherwise a

potential delay created by the DF would block all other actions of the service

requester.

8.5. OPERATIONAL REGIMES 105

r1c1 r2 r3

t0 t1 t2 t3
time

L[1,1]

L[1,2]

L[1,3]

Figure 8.3: Computation of customer’s arriving frequencies.

8.5 Operational Regimes

Up to now, the method was fully applicable for an arbitrary CNP-based MAS

with no need to change the agents themselves, since the overload protection was

implemented within meta-agents (Sniffer and Directory Facilitator). A disadvan-

tage of that approach was a potential accumulation of delayed requests that might

exceed an acceptable level. Although such a situation should not occur because

the accumulation of delays would indicate a long lasting overload of the system,

which should be excluded by the simulation with performance models at design

time as described in chapter 7.

However, in some situations it might be effective to utilize the information

of the actual delays as an indicator of the current state of the system. Then,

the agents might be requested to simplify their actions when a major overload is

106 CHAPTER 8. LOAD-AWARE DIRECTORY FACILITATOR

c1 c2

c1

c3

Sorting

Are all needed
resources available?

No

Limit

Yes Provide requested
information and mark the

resource as unavailable

Arriving Search
Requests

A resource became
available

Are all resources
needed for a waiting

request available now?

Yes Provide requested
information and mark the

resource as unavailable

Figure 8.4: Suspensive mechanism of DF scheduling.

8.6. COMMUNICATION TIMEOUTS 107

Initiator DF Participant 1 Initiator DF Participant 1

(a) DF in ACS (b) DF in JADE

Figure 8.5: Different match-making mechanisms.

detected.

The response time can be expressed as a function of time:

R(t) = (λLn)t− t = ((λLn)− 1)t (8.12)

If (λLn) > 1 the function R(t) grows above any limit and the number of

requests delayed in the DF also constantly grows. If we cannot reduce λ we have

to decrease Ln to Ls for which holds (λLs) < 1 in order to decrease the response

time. The system eliminates the accumulated delay (R(t) = 0) in time t2:

t2 =
λLn − 1

λLs − 1
t1 (8.13)

The proposed approach has to be supported also on the level of agents. The

ADE can contribute to this approach on the level of agent templates which might

contain a skeleton of code where the developer implements the desired agent be-

havior.

8.6 Communication Timeouts

As we have already mentioned above, the correct setting of communication time-

outs is a challenging and time-consuming process and we will discuss it in detail

in this section.

108 CHAPTER 8. LOAD-AWARE DIRECTORY FACILITATOR

Optimally, a timeout is equal to the corresponding response time of the system.

As the utilization of the system resources grows, it becomes more likely that a new

request will have to wait until requests that arrived before will be finished. The

relation between the utilization of a resource and the response times is derived as

follows:

The response time is the service time of the request itself + service times of all

the requests ahead, i.e.,

R = S(1 +N) (8.14)

applying Littles Law

N = XR (8.15)

we get

R = S(1 +XR) = S + SXR =
S

1−XS
(8.16)

Application of Utilization Law brings the final formula:

R =
S

1− U
(8.17)

where R is response time, S is service time and U is current utilization. The

characteristic of this relation is depicted in Fig. 8.6. This shows, how the sensitivity

of the response time grows with the utilization and why the correct setup of the

timeouts is so difficult.

As the proposed method prevents the system from triggering new tasks unless

there are available computational resources to serve them, the jobs do not queue in

service centers and the response times equals to service times. Thus the timeouts

can be adjusted according to the response times observed during the initialization

phase, when all expected types of jobs were triggered one by one to hinder their

mutual influence. A response time of an agent that involves into the cooperation

other agents is composed of several summands (see Fig. 8.7).

In the ideal case, the response time of a job fulfillment is constant and in fact

represents the optimal timeout. However, the system behavior is influenced by

other aspects (e.g. load of the communication network) that are not covered by

this modeling approach, the precision of the method is limited (see (?) where the

problem of performance model accuracy has been already discussed). This has to

8.6. COMMUNICATION TIMEOUTS 109

Figure 8.6: Relation between response time and utilization.

Initiator
Δt = t1+t2+t3+t4

Participant 2

Req. Processing
t2

Resp. Processing
t3

Participant 1

Req. Processing
t1

Resp. Processing
t4

Figure 8.7: Response time.

110 CHAPTER 8. LOAD-AWARE DIRECTORY FACILITATOR

be reflected in the final timeout setup. Therefore the final formula for the timeout

setup is as follows:

Tmax = RC (8.18)

where Tmax is the recommended timeout, R is the observed response time

during the test run during initialization and C is a correction coefficient that

increases the response time. The setup of the coefficient has to be done with

respect to the specific application and it is not possible to provide a universal

method for its computation. Nevertheless, there are several hints that should be

followed.

� The parameter has to be always greater than 1 as the system will never react

faster in run time than during the initialization.

� The higher the error of service time estimation is the bigger the parameter

C has to be.

� The developer of the MAS has also to take into account the trade off between

potential impact of too short or too long timeouts, respectively.

8.7 Experimental Evaluation

Using the testbed already mentioned in the section 7.5.2, we set up a system

with 6 Jade agents respecting the layout of the queueing network experiment (see

Fig. 7.13). The plot (see fig. 8.8) depicts the relation between frequency of request

entering the system (Input Frequency) and the frequency of finishing the jobs

– system throughput. The measured characteristic confirms the existence of a

system throughput maximum, i.e., the frequency at which the system returns the

optimum throughput.

The positive impact of using the extended version of the DF is clearly shown

in fig. 8.9. The points marked by crosses represent measurements done with the

regular JADE system and it demonstrates that after crossing a certain frequency

the amount of jobs passed by a certain deadline steeply decreases. On the other

8.8. CONCLUSION 111

Figure 8.8: System Throughput

hand, the modified version of the DF regulates the frequency of the input jobs,

which ensures the preservation of the passing rate on the level of 100 %.

The further experiments were focused on systems with more customer classes.

We present the contribution of the proposed approach on a 2-customer system,

i.e., on a system, where two types of customer requests occur. It was created by

extending the previous 1-customer experiment by a new type of request, but still

using the same testbed. The measurements go along with the previous results

regarding the performance degradation, but on top of that also demonstrate the

strong influence across input frequency of individual customer classes (see Fig. 8.10

and Fig. 8.11).

8.8 Conclusion

This chapter described how bursts of events can endanger the ability of a MAS to

converge to a solution. The reasons of the steep increase of response times with

growth of utilization were also explained. Consequently, a congestion management

112 CHAPTER 8. LOAD-AWARE DIRECTORY FACILITATOR

Figure 8.9: Passage Rate.

Figure 8.10: Original System.

8.8. CONCLUSION 113
G

lo
b

a
l
O

u
tp

u
t

fr
e
q

u
e

n
c
y
 [

H
z
]

Figure 8.11: System with Extended DF

control was introduced. It is based on an efficient algorithm that identifies from

all resources the potential bottlenecks whose utilization is controlled at runtime.

Furthermore, this chapter provides guidelines on how to set up communication

timeouts in MASs. Results of experiments conducted on a test bed (6 minicom-

puters Raspberry Pii) illustrate the contribution of the proposed method.

114 CHAPTER 8. LOAD-AWARE DIRECTORY FACILITATOR

Chapter 9

Conclusion

This thesis provided an insight into development of industrial MASs. It started

with an introduction of the industrial application areas for the agent technology,

which demonstrated that the agents penetrate the industrial domain on multiple

levels. Not only agents control flow of material in complex networks, but also they

are utilized to plan and schedule manufacturing operations and control assembly

in flexible manufacturing systems.

The advent of the agent-based solutions is followed by the development of

supportive tools. Their survey was presented in chapter 3. Although a lot has

been done in this field, a need for a comprehensive methodology, which would

provide guidelines to developers of industrial MASs, is apparent.

The existence of this methodological gap is reflected by introduction of the

ADE. This tool guides a developer of a new industrial MAS through the entire

development process. This tool interconnects the high-level object oriented ap-

proaches used for development of agents with low-level control designed according

to the standard IEC 61131, which is used for implementation of the local low-level

control with real-time requirements.

The remainder of the thesis solves performance aspects of agent-based ap-

proaches, since the ability to estimate and guarantee certain performance is es-

sential for the wide acceptance of MASs by industrial enterprises. The first

performance-related method eases the performance and capacity planning of a

115

116 CHAPTER 9. CONCLUSION

new MAS at design time. It automatically transforms communication logs into

performance models, which provides insight into the inner states of the system

resources. Moreover, the method enables to derive the maximal throughput of the

system.

The second performance-related method is designed to increase the resistance

of MASs against temporal bursts of arriving requests. The ability of MASs to

handle bursts of events is tightly coupled with correct setting of communication

timeouts that have to respect the corresponding response times. We have shown,

how the response times depend on the actual load of the system resources and

we have proposed a congestion management method that continuously observes

the cooperation among agents and protects the system from potential overload by

postponing of new requests.

9.1 Fulfillment of the Thesis Goals

� A set of methods has been developed and integrated into a tool named

Agent Development Environment. The tool guides a programer of a new

MAS through the whole development process and contributes to its fast and

error free design.

� A method that enables an automated compilation of performance models

based on Queueing Network notation has been developed. The obtained

model provides insight into the behavior of individual components under

various loads, which speeds up and refines the development of a new MAS.

The utilization of the method has been demonstrated on a distributed hard-

ware platform.

� An extension of the existing management of the social knowledge within a

community of agents has been proposed in order to control the load of indi-

vidual computational resources. It has been shown that only some resources

can be system bottlenecks and thus only load of those has to be monitored

and eventually controlled. The monitor and control functions have been in-

tegrated into meta-agents Sniffer and Directory Facilitator. This makes this

9.2. CONTRIBUTION OF THE THESIS 117

approach directly applicable with an arbitrary FIPA-compliant multi-agent

system.

9.2 Contribution of the Thesis

This thesis contributes to the development of industrial MASs on multiple levels.

1. The thesis proposes Agent Development Environment that supports devel-

opers of MASs. Particularly, it provides methods that enable the automated

integration of high-level object oriented programing (e.g. Java, C++) used

for implementation of agents and the low-level programing of Programmable

Logic Controllers (e.g. IEC 61131, IEC 61499) designed for real-time con-

trol on the shop-floor. ADE is a team project. The author of this thesis

designed and developed mechanisms for synchronized instantiation of High-

Level Control parts (agents) and generation of the Low-Level Control Parts

(e.g. concepts of inheritance and macro-instructions).

2. The thesis introduces a method for automatic compilation of performance

models from logs of messages. This enables to speed up the the process of

finding the optimal distribution of the agents across the computational re-

sources. The corresponding part of the work has been completely elaborated

by the author of this thesis.

3. The thesis proposes a new role of a Directory Facilitator. Originally, a Di-

rectory Facilitator is a meta-agent managing the social-knowledge within an

MAS. We propose an extension that builds upon the central position of the

DF agent in the negotiation process. The extended DF keeps a track of

all the requests that entered the system and derives the current load of the

system. The thesis proposes a new approach to dealing with setting of com-

munication timeouts. The approach is based on the congestion management

that enables to face to uncontrolled growth of response times that would

be caused by highly utilized resources. First, the forthcoming saturation

of a computational resource is detected in advance. Second, the new arriv-

ing requests are postponed in order not to exceed the edge of saturation.

118 CHAPTER 9. CONCLUSION

Third, if the cumulative delay of the arriving request reaches a certain level,

the agents are informed to switch from “normal” to a “stressed” mode, in

which the agents simplify their actions (for instance, instead of seeking for

the optimal provider of a service the last one used is contacted directly).

The corresponding part of the work has been completely elaborated by the

author of this thesis.

9.3 Future Work

The proposed methods have a great potential for further development as they are

not limited only to the domain of MASs. For instance, the continuously growing

field of service oriented architectures is another promising application area. The

first step in this direction has been already done by the introduction of a sniffer for

JBoss ESB (Vrba et al., 2014). Further, the proposed principles are also applicable

for event-driven control systems (e.g. IEC 61499) which have to be designed with

respect to the performance limits of the computational resources. Otherwise, a

part of the system might get saturated and cause a failure. We have experienced

this type of problems when working on system connecting IEC 61499 control sys-

tem with an HMI ScadaBR. Under certain circumstances, the control system sent

updates to the HMI too frequently which resulted in a failure and consequently in

a loss of data.

Bibliography

Andreev, S., Rzevski, G., Shviekin, P., Skobelev, P. and Yankov, I. (2009), A multi-

agent scheduler for rent-a-car companies, in ‘Holonic and Multi-Agent Systems

for Manufacturing’, Springer, pp. 305–314.

Baskett, F., Chandy, K. M., Muntz, R. R. and Palacios, F. G. (1975), ‘Open,

closed, and mixed networks of queues with different classes of customers’, Jour-

nal of the ACM (JACM) 22(2), 248–260.

Bause, F. (1993), Queueing petri nets-a formalism for the combined qualitative

and quantitative analysis of systems, in ‘Proceedings of the 5th International

Workshop on Petri Nets and Performance Models’, IEEE, pp. 14–23.

Bellifemine, F. L., Caire, G. and Greenwood, D. (2007), Developing Multi-Agent

Systems with JADE (Wiley Series in Agent Technology), John Wiley & Sons.

ISBN 0470057475.

Bertoli, M., Casale, G. and Serazzi, G. (2009), ‘JMT: performance engineering

tools for system modeling’, ACM SIGMETRICS Performance Evaluation Re-

view 36(4), 10–15.

Bitting, E., Carter, J. and Ghorbani, A. A. (2003), Multiagent system develop-

ment kits: An evaluation, in ‘Proceedings of the 1st Annual Conference on

Communication Networks and Services Research’, pp. 15–16.

Black, G. and Vyatkin, V. (2007), On practical implementation of holonic control

principles in baggage handling systems using iec 61499, in ‘Holonic and Multi-

Agent Systems for Manufacturing’, Springer, pp. 314–325.

119

120 BIBLIOGRAPHY

Bratman, M. E. (1999), Intention, Plans, and Practical Reason, Cambridge Uni-

versity Press.

Brennan, R. W., Vrba, P., Tichý, P., Zoitl, A., Sünder, C., Strasser, T. and Mař́ık,

V. (2008), ‘Developments in dynamic and intelligent reconfiguration of industrial

automation’, Computers in Industry 59(6), 533–547.

Buschmann, F., Henney, K. and Schimdt, D. (2007), Pattern-oriented Software

Architecture: On Patterns and Pattern Language, Vol. 5, John Wiley & Sons.

Bussmann, S., Jennings, N. and Wooldridge, M. (2004), Multiagent systems for

manufacturing control: a design methodology, Springer.

Bussmann, S. and Schild, K. (2000), Self-organizing manufacturing control: An

industrial application of agent technology, in ‘Fourth International Conference

on MultiAgent Systems’, IEEE, pp. 87–94.

Camarinha-Matos, L. M. (2002), Multi-agent systems in virtual enterprises, in

‘Proceedings of international conference on AI, simulation and planning in high

autonomy systems’, pp. 27–36.

Casale, G. and Serazzi, G. (2004), Bottlenecks identification in multiclass queueing

networks using convex polytopes, in ‘Proceedings of the IEEE Computer Soci-

ety’s 12th Annual International Symposium onModeling, Analysis, and Simula-

tion of Computer and Telecommunications Systems’, IEEE, pp. 223–230.

Christensen, J. H. (1994), ‘Holonic manufacturing systems: initial architecture

and standards directions’, Proceedings of the 1st Euro Workshop on Holonic

Manufacturing Systems .

Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M. and Hillston, J. (2009),

The bio-pepa tool suite, in ‘Proceedings of the 6th international conference on

the quantitative evaluation of systems.’, pp. 309–310.

Commission, E. (2003), Futman – the future of manufacturing in europe 2015-2020

– the challenge for sustainability, Technical report, European Commission.

BIBLIOGRAPHY 121

Commission, E. (2007), Manufuture – strategic research agenda, assuring the fu-

ture of manufacturing in europe, Technical report, European Commission.

Cruz, R. (1991), ‘A calculus for network delay. i. network elements in isolation’,

IEEE Transactions on Information Theory 37(1), 114–131.

Denning, P. J. and Buzen, J. P. (1978), ‘The operational analysis of queueing

network models’, ACM Computing Surveys (CSUR) 10(3), 225–261.

Di Caro, G. and Dorigo, M. (1998), ‘Antnet: Distributed stigmergetic control for

communications networks’, Journal of Artificial Intelligence Research 9, 317–

365.

Di Marco, V. C. A. and Inverardi, P. (2011), Model-based software performance

analysis, Springer.

Dijkstra, E. W. (1959), ‘A note on two problems in connexion with graphs’, Nu-

merische mathematik 1(1), 269–271.

European SmartGrids technology platform: vision and strategy for Europe’s elec-

tricity networks of the future (2006).

URL: http://cordis.europa.eu

Evertsz, R., Fletcher, M., Jones, R., Jarvis, J., Brusey, J. and Dance, S. (2004),

Implementing industrial multi-agent systems using jack�, in ‘Proceedings of the

1st International Workshop on Programming Multi-Agent Systems’, Vol. 3067,

Springer, p. 18.

FIPA (2002), ‘Fipa acl message structure specification’.

URL: http://www.fipa.org/specs/fipa00061/

Hall, K. H., Staron, R. J. and Vrba, P. (2005), Experience with holonic and agent-

based control systems and their adoption by industry, in ‘Holonic and Multi-

Agent Systems for Manufacturing’, Springer.

Hallenborg, K. and Demazeau, Y. (2006), Dynamical control in large-scale material

handling systems through agent technology, in ‘IEEE/WIC/ACM International

Conference on Intelligent Agent Technology’, pp. 637–645.

122 BIBLIOGRAPHY

Harrison, P. and Strulo, B. (1995), Stochastic process algebra for discrete event

simulation, in ‘Quantitative Methods in Parallel Systems’, Springer, pp. 18–37.

Hart, P. E., Nilsson, N. J. and Raphael, B. (1968), ‘A formal basis for the heuristic

determination of minimum cost paths’, IEEE Transactions on Systems Science

and Cybernetics 4(2), 100–107.

Hillston, J. (2005), Process algebras for quantitative analysis, in ‘Proceedings of

20th Annual IEEE Symposium on Logic in Computer Science’, pp. 239–248.

Ivaschenko, A., Khamits, I., Skobelev, P. and Sychova, M. (2011), Multi-agent

system for scheduling of flight program, cargo flow and resources of international

space station, in V. Mař́ık, P. Vrba and P. Leitão, eds, ‘Holonic and Multi-Agent

Systems for Manufacturing’, Vol. 6867 of Lecture Notes in Computer Science,

Springer Berlin Heidelberg, pp. 165–174.

URL: http://dx.doi.org/10.1007/978-3-642-23181-016

Jackson, J. R. (1963), ‘Jobshop-like queueing systems’, Management science

10(1), 131–142.

Jennings, N. R., Sycara, K. and Wooldridge, M. (1998), ‘A roadmap of agent

research and development’, Autonomous agents and multi-agent systems 1(1), 7–

38.

Kadera, P. and Tichy, P. (2009), Plan, commit, execute protocol in multi-agent sys-

tems, in ‘Proceedings of 4th International Conference on Industrial Application

of Holonic and Multi-Agent Systems’, pp. 155–164. PT: S; CT: 4th International

Conference on Industrial Application of Holonic and Multi-Agent Systems; CY:

AUG 31-SEP 02, 2009; CL: Linz, AUSTRIA; UT: WOS:000270319700015.

Kartson, D., Balbo, G., Donatelli, S., Franceschinis, G. and Conte, G. (1994),

Modelling with generalized stochastic Petri nets, John Wiley & Sons, Inc.

Kumar, V. and Cole, E. (2005), An ant colony optimization model for wireless ad-

hoc network autoconfiguration, in ‘IEEE International Conference on Systems,

Man and Cybernetics’, Vol. 1, IEEE, pp. 103–108.

BIBLIOGRAPHY 123

Lastra, J. L. M., Torres, E. L. and Colombo, A. W. (2005), A 3d visualization

and simulation framework for intelligent physical agents, in ‘Holonic and Multi-

Agent Systems for Manufacturing’, Springer, pp. 23–38.

Lee, E. A. and Seshia, S. A. (2011), Introduction to Embedded Systems.

Leitão, P. and Rodrigues, N. (2012), Modelling and validating the multi-agent

system behaviour for a washing machine production line, in ‘Proceedings of

IEEE International Symposium on Industrial Electronics’, pp. 1203–1208.

Li, M. and Georganas, N. D. (1990), ‘Coloured generalized stochastic petri nets

for integrated systems protocol performance modelling’, Computer Communi-

cations 13(7), 414–424.

Manikonda, V., Satapathy, G. and Levy, R. (2004), ‘Cybele: An agent infrastruc-

ture for modelling, simulation, and decision support’, AgentLink News (15), 25–

26.

Mař́ık, V., Vrba, P., Hall, K. H. and Maturana, F. P. (2005), Rockwell automa-

tion agents for manufacturing, in ‘Proceedings of the fourth international joint

conference on Autonomous agents and multiagent systems’, ACM, pp. 107–113.

Maturana, F. P., Staron, R., Hall, K., Tichý, P., Šlechta, P. and Mař́ık, V. (2005),

An intelligent agent validation architecture for distributed manufacturing orga-

nizations, in ‘Emerging Solutions for Future Manufacturing Systems’, Springer,

pp. 81–90.

Maturana, F. P., Tichý, P., Staron, R. J., Discenzo, F. M., Hall, K. et al. (2003), A

highly distributed intelligent multi-agent architecture for industrial automation,

in ‘Multi-Agent Systems and Applications III’, Springer, pp. 522–532.

Mohd, A., Ortjohann, E., Schmelter, A., Hamsic, N. and Morton, D. (2008), Chal-

lenges in integrating distributed energy storage systems into future smart grid,

in ‘Proceedings of IEEE International Symposium on Industrial Electronics’,

IEEE, pp. 1627–1632.

124 BIBLIOGRAPHY

Mönch, L., Stehli, M. and Zimmermann, J. (2003), Fabmas: An agent-based

system for production control of semiconductor manufacturing processes, in

‘Holonic and Multi-Agent Systems for Manufacturing’, Springer, pp. 258–267.

Odell, J. J., Parunak, H. V. D. and Bauer, B. (2001), Representing agent in-

teraction protocols in uml, in ‘Agent-oriented software engineering’, Springer,

pp. 121–140.

Pearl, J. (1984), Heuristics: Intelligent Search Strategies for Computer Problem

Solving, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

ISBN 0-201-05594-5.

Pěchouček, M. and Mař́ık, V. (2008), ‘Industrial deployment of multi-agent tech-

nologies: review and selected case studies’, Autonomous Agents and Multi-Agent

Systems 17(3), 397–431.

Pěchouček, M., Rehák, M., Charvát, P., Vlček, T. and Kolář, M. (2007), ‘Agent-

based approach to mass-oriented production planning: Case study’, IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications and Re-

views 37(3), 386–395.

Richter, K., Jersak, M. and Ernst, R. (2003), ‘A formal approach to mpsoc per-

formance verification’, Computer 36(4), 60–67. ID: 1. ISBN 0018-9162.

Rzevski, G., Skobelev, P. and Andreev, V. (2007), Magentatoolkit: A set of multi-

agent tools for developing adaptive real-time applications, in ‘Holonic and Multi-

Agent Systems for Manufacturing’, Springer, pp. 303–313.

Sallez, Y., Berger, T. and Trentesaux, D. (2009), ‘A stigmergic approach for dy-

namic routing of active products in fms’, Computers in Industry 60(3), 204–216.

Schliecker, S., Rox, J., Negrean, M., Richter, K., Jersak, M. and Ernst, R. (2009),

‘System level performance analysis for real-time automotive multicore and net-

work architectures’, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 28(7), 979–992. ID: 1. ISBN 0278-0070.

BIBLIOGRAPHY 125

Smith, R. G. (1980), ‘The contract net protocol: High-level communication and

control in a distributed problem solver’, IEEE Transactions on Computers C-

29(12), 1104–1113. ID: 1. ISBN 0018-9340.

Strasser, T., Andrén, F., Merdan, M. and Prostejovsky, A. (2013), Review of

trends and challenges in smart grids: An automation point of view, in ‘Industrial

Applications of Holonic and Multi-Agent Systems’, Springer, pp. 1–12.

Sycara, K., Pannu, A., Williamson, M., Zeng, D. and Decker, K. (1996), ‘Dis-

tributed intelligent agents’, IEEE Intelligent Systems 11(6), 36–46.

Sycara, K., Widoff, S., Klusch, M. and Lu, J. (2002), ‘Larks: Dynamic matchmak-

ing among heterogeneous software agents in cyberspace’, Autonomous agents

and multi-agent systems 5(2), 173–203.

Systems, R. (2011), ‘http://www. agentbuilder. com’.

URL: http://www.agentbuilder.com

Thiele, L., Chakraborty, S. and Naedele, M. (2000), Real-time calculus for schedul-

ing hard real-time systems, in ‘Proceedings of the IEEE International Sympo-

sium on Circuits and Systems’, Vol. 4, pp. 101–104 vol.4. ID: 1.

Tichý, P., Šlechta, P., Staron, R. J., Maturana, F. P. and Hall, K. H. (2006),

‘Multiagent technology for fault tolerance and flexible control’, IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C: Applications and Reviews

36(5), 700–704.

Tichý, P., P. and Staron, R. J. (2010), Multi-agent technology for fault tolerant

and flexible control, in ‘Innovations in Multi-Agent Systems and Applications-1’,

Springer, pp. 223–246.

Tichý, P., Šlechta, P., Maturana, F. and Balasubramanian, S. (2002), Indus-

trial mas for planning and control, in ‘Multi-agent systems and applications

II’, Springer, pp. 280–295.

Tichý, P. (2003), Social knowledge in multi-agent systems, PhD thesis, Czech

Technical University in Prague.

126 BIBLIOGRAPHY

Valckenaers, P., Kollingbaum, M. and Van Brussel, H. (2004), ‘Multi-agent coor-

dination and control using stigmergy’, Computers in Industry 53(1), 75–96.

Vrba, P., Kadera, P., Myslik, M. and Klima, M. (2014), Jboss esb sniffer, in ‘Pro-

ceedings of the 23rd IEEE International Symposium on Industrial Electronics’,

IEEE, pp. 1724–1729.

Wagner, I. A., Lindenbaum, M. and Bruckstein, A. M. (1999), ‘Distributed cov-

ering by ant-robots using evaporating traces’, IEEE Transactions on Robotics

and Automation 15(5), 918–933.

Weiss, G. (2013), Multiagent Systems, MIT Press.

Wong, H. C. and Sycara, K. (1999), Adding security and trust to multi-agent

systems, in ‘In Proceedings of Autonomous Agents ’99 Workshop on Deception,

Fraud, and Trust in Agent Societies’, pp. 149–161.

Wooldridge, M., Fisher, M., Huget, M.-P. and Parsons, S. (2002), Model check-

ing multi-agent systems with mable, in ‘Proceedings of the first international

joint conference on Autonomous agents and multiagent systems: part 2’, ACM,

pp. 952–959.

Wooldridge, M. and Jennings, N. (1999), ‘Software engineering with agents: pit-

falls and pratfalls’, IEEE Journal Internet Computing 3(3), 20–27.

World Energy Outlook 2013 (n.d.).

URL: http://www.worldenergyoutlook.org/

Zoitl, A., Strasser, T. and Ebenhofer, G. (2013), Developing modular reusable IEC

61499 control applications with 4DIAC, in ‘Industrial Informatics (INDIN), 2013

11th IEEE International Conference on’, pp. 358–363.

List of Author’s Publications

Publications in Journals with Impact Factor

Vrba, P. (16%), Tichý, P. (14%), Mař́ık, V. (14%), Hall, K. H. (14%), Staron,

R. J. (14%), Maturana, F. P. (14%) and Kadera, P. (14%) (2011), ‘Rockwell au-

tomation’s holonic and multiagent control systems compendium’, IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,

41(1), pp. 14–30.

Tichý, P. (20%), Kadera, P. (20%), Staron, R. J. (20%), Vrba, P. (20%)and Mař́ık,

V. (20%) (2012), ‘Multi-agent system design and integration via agent develop-

ment environment’, Engineering Applications of Artificial Intelligence 25(4), pp.

846–852.

Publications in Reviewed Journals

Obitko, M. (20%), Vrba, P. (20%), Mař́ık, V. (20%), Radakovic, M. (20%) and

Kadera, P. (20%) (2010), ‘Applications of semantics in agent-based manufactur-

ing system.’, Informatica 34(3), pp. 315–330.

Kadera, P. (70%), Novák, P. (20%), Jirkovskỳ, V. (5%) and Vrba, P. (5%) (2014),

‘Performance models preventing multi-agent systems from overloading compu-

tational resources’, Automation, Control and Intelligent Systems 6, pp. 96–102.

I

II LIST OF AUTHOR’S PUBLICATIONS

Publications excerpted in ISI

Kadera, P. (90%) and Tichý, P. (10%) (2009), Plan, commit, execute protocol

in multi-agent systems, in proceedings of the 4th International Conference on

Industrial Applications of Holonic and Multi-Agent Systems.

Obitko, M. (25%), Vrba, P. (25%), Kadera, P. (25%) and Jirkovskỳ, V. (25%)

(2011), Visualization of ontologies in multi-agent industrial systems, in ‘pro-

ceedings of the 16th IEEE Conference on Emerging Technologies and Factory

Automation’.

Jirkovskỳ, V. (34%), Kadera, P. (33%) and Vrba, P. (33%) (2012), Semantics

for self-configurable distributed diagnostics, in ‘proceedings of the 17th IEEE

Conference on Emerging Technologies and Factory Automation’.

Kadera, P. (34%), Vrba, P. (33%) and Jirkovskỳ, V. (33%) (2012), Deviation de-

tection in distributed control systems by means of statistical methods, in ‘pro-

ceedings of the 38th Annual Conference of IEEE Industrial Electronics Society’.

Vrba, P. (25%), Kadera, P. (25%), Mysĺık, M. (25%) and Kĺıma, M. (25%) (2014),

JBoss ESB Sniffer Message Flow Visualization for Enterprise Service Bus, in

‘proceedings of the IEEE International Symposium on Industrial Electronics’.

Other Publications

Kadera, P. (70%) and Tichý, P. (30%) (2009), Chilled water system control, sim-

ulation, and visualization using java multi-agent system, in ‘proceedings of the

international conference on Information Control Problems in Manufacturing’.

Tichý, P. (35%), Kadera, P. (20%), Staron, R. J. (20%), Vrba, P. (15%) and

Mař́ık, V. (15%) (2010), Agent development environment for multi-agent system

design and integration, in ‘proceedings of the 10th IFAC Workshop on Intelligent

Manufacturing Systems’.

Vrba, P. (20%), Kadera, P. (20%), Jirkovskỳ, V. (20%), Obitko, M. (20%) and

Mař́ık, V. (20%) (2011), New trends of visualization in smart production con-

LIST OF AUTHOR’S PUBLICATIONS III

trol systems, in ‘proceedings of the 5th International Conference on Industrial

Applications of Holonic and Multi-Agent Systems’.

Vrba, P. (34%), Mař́ık, V. (33%) and Kadera, P. (33%) (2012), Mast: From a

toy to real-life manufacturing control, in ‘proceedings of the 13th ACIS Interna-

tional Conference on Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing’.

Lepuschitz, W. (25%), Jirkovskỳ, V. (25%), Kadera, P. (25%) and Vrba, P. (25%)

(2012), A multi-layer approach for failure detection in a manufacturing system

based on automation agents, in ‘proceedings of the 9th International Conference

on Information Technology: New Generations’.

Jirkovskỳ, V. (25%), Kadera, P. (25%), Obitko, M. (25%) and Vrba, P. (25%)

(2012), Diagnostics of distributed intelligent control systems: Reasoning using

ontologies and hidden markov models, in ‘proceedings of 14th IFAC Symposium

on Information Control Problems in Manufacturing’.

Novák, P. (70%), Kadera, P. (15%), Vrba, P. (10%) and Šindelář, R. (5%) (2013),

Architecture of a multi-agent system for scada level in smart distributed environ-

ments, in ‘proceedings of the 18th IEEE Conference on Emerging Technologies

and Factory Automation.

Jirkovskỳ, V. (25%), Obitko, M. (25%), Novák, P. (25%) and Kadera, P. (25%)

(2014), Big data analysis for sensor time-series in automation, in ‘proceedings of

the 19th IEEE International Conference on Emerging Technologies and Factory

Automation’.

Novák, P. (20%), Kadera, P. (20%), Vrba, P. (20%) and Biffl, S. (20%) (2014),

Engineering of Coupled Simulation Models for Mechatronic Systems, in ‘pro-

ceedings of the International Workshop on Service Orientation in Holonic and

Multi-Agent Manufacturing.

IV LIST OF AUTHOR’S PUBLICATIONS

Patents

Vrba, P. (17%), Hall, K.H. (17%), Kadera, P. (17%), Mař́ık, V. (17%), Obitko,

M. (17%), Radakovič, M. (17%) (2012), ‘Ontology-based system and method

for industrial control’, U.S. Patent No. 8,145,333. Washington, DC: U.S. Patent

and Trademark Office.

Obitko, M. (25%), Vrba, P. (25%), Kadera, P. (25%), Jirkovsky, V. (25%) (2013),

‘System and method for implementing a user interface to a multi-agent dis-

tributed control system’U.S. Patent No. 20,130,055,115. Washington, DC: U.S.

Patent and Trademark Office.

