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Abstract

This thesis focuses on the problem of large scale visual object detection and classification
in digital images. A new type of image features that are derived from state-of-the-art
convolutional neural networks is proposed. It is further shown that the newly proposed
image signatures bare a strong resemblance to the Fisher Kernel classifier, that recently
became popular in the object category retrieval field. Because this new method suffers
from having a large memory footprint, several feature compression / selection techniques
are evaluated and their performance is reported. The result is an image classifier that
is able to surpass the performance of the original convolutional neural network, from
which it was derived. The new feature extraction method is also used for the object
detection task with similar results.

Abstrakt

Tato préce se zabyva problémem detekce objektlt z mnoha tfid a kategorizaci v digitalnich
obrazech. Je navrzen novy typ obrazovych pfiznaku, které jsou odvozené od modernich
konvoluénich neuronovych siti. Daéle je poukdzano na fakt, Zze se tato nova metoda
podobd Fisher Kernel klasifikatoru, ktery byl v neddvné dobé uispésné pouzit na klasi-
fikaci obrazovych dat. Nové piiznaky vykazuji velkou pamétovou naro¢nost, a proto
je otestovano nékolik metod pro vybér a kompresi ptiznaki. Vysledkem je klasifikator
obrazu, jez je schopen piekonat vysledky neuronové sité, od které byl odvozen na tloze
kategorizace obrazu. Tato nova metoda je také pouzita pro detekci objektl, pricemz
bylo dosazeno podobnych vysledki.
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1. Introduction

In this thesis a method for improving the performance of the state of the art convolu-
tional neural networks is presented.

1.1. Motivation

Extracting higher level semantic information from images is one of the oldest and most
commonly known computer vision tasks. In this thesis the problem of extracting the
set of object categories present in a given image is studied. Finding an ultimate method
that solves this problem has become a desired goal, mainly because of the huge amount
of image data available, due to the increased popularity of various hand-held image
devices. Searching in these large databases for an object of given category, by inspecting
the the visual cues of individual images is as an extremely challenging task in the field
of computer vision.

Every year the best computer vision labs submit their image classification and ob-
ject detection pipelines to numerous contests that compare their system’s performance
(namely ImageNet Large Scale Visual Recognition Challenge [12], Pascal Visual Objects
Classes challenge [15], Caltech-101 [16], etc.). In this challenging environment, even a
slightest improvement of a state of the art image classification system is regarded as an
interesting accomplishment.

In the past years, two main types of image classification systems managed to win
the aforementioned competitions. The first were methods based on extracting orderless
statistics of SIF'T descriptors of image patches. Some notable methods are bag-of-words
[10], VLAD [24] or Fisher Vectors [34]. The second and currently unsurpassed type of
image classification systems are convolutional neural networks [18].

The methods proposed in this thesis are closely related to the Fisher Kernel (FK).
The Fisher Kernel consists of deriving the loglikelyhood of a generative probability
model w.r.t. its parameters and using this gradient as a feature vector. Sanchez, et.al.
[32] have shown that by employing Fisher Kernel it is possible to obtain interesting
results for image classification task!.

However it seems that the computer vision community concentrates only on this
one particular variant of the Fisher Kernel for image classification that uses Gaussian
Mixture Model (GMM) as the underlying generative probabilistic model [32]. In this
thesis a different approach is taken and instead of using GMM, a possibility of employing
different underlying probability model is explored.

We propose a way how to extract image specific information from the state of the
art convolutional neural network probability model (CNN), that is similar to the Fisher
Kernel’s derivatives of the loglikelyhood. Note that CNN is a discriminative model, so
it is hard to obtain its generative loglikelyhood. We show that there is a possibility to
obtain a different statistic, which is similar to the generative probability. After this is
accomplished, the newly introduced statistic can be derived w.r.t. CNN’s parameters,
giving rise to features that bear a resemblance to original Fisher Vectors.

!Later Gokberk et. al. [9] have obtained compelling results on the object detection task.



1. Introduction

The motivation here is that by combining the two recent SOTA image classification
methods (CNN and FK), a superior classifier that picks the best the two methods is
obtained.

1.2. Contribution

The following achievements were met in this thesis:

e A new image classification method, that improves the performance of convolu-
tional neural networks on image classification task is proposed.

e Several feature selection / feature compression methods were tested and evaluated.

e The Multiple Kernel Learning based feature selection method [37] is extended such
that it could be used in the multilabel classification task and its performance is
evaluated with very positive results.

e A new object detection pipeline architecture is proposed and evaluated.

1.3. Thesis structure

The thesis is organized as follows. Chapter 2 contains brief introduction into the state
of the art image classification and object detection techniques. Chapter 3 explains the
proposed method for deriving Fisher Kernel based statistics from the CNN discrimina-
tive probability model. The section also shows how is the biggest problem of extremely
high dimension of the introduced image features dealt with. Chapter 4 describes the
architectures of the image classification and object detection systems used in this the-
sis. Chapter 5 contains the list of concluded experiments together with their discussion.
Chapter 6 contains the conclusions of the work presented in this thesis.



2. State of the art image classification and object
detection methods

In this part of the thesis, an introduction to the state of the art object detection and
image classification methods is given.

2.1. Image classification

The image classification task consists of labeling input images with a probability of
presence of a particular visual object class (dog, car, cat, ...). More precisely, given a
set of images, I = {I1, ..., I,,} and a set of label vectors Y = {y1,...,yx }, y; € {0,1}"*}
(where K stands for the number of classes), the task is to produce a set of predictions
Y = {91, ..., Ux }, that match Y as much as possible. Since this type of tasks is typically
solved using machine learning techniques, the sets Y and I are split to testing and
training subsets, while the performance of a given classification method is evaluated on
the testing part.!.

2.1.1. Datasets for image classification

Image classification is a very popular task in the field of computer vision and as such,
many challenging benchmarks exist. The first and probably the most used is the Pascal
VOC 2007 challenge benchmark [15]. Now community tends to use the ImageNet
Large Scale Visual Recognition Challenge [12] which contains incomparably more object
classes and images. Another notable dataset is Caltech 101 [16].

2.2. Object detection

The object detection task is closely related to the image classification one. The main
difference lies in the fact that besides outputting the information about a presence or
absence of a given class in a particular image, a position of an instance (or instances) of
the class also has to be extracted (typically in form of a bounding box). A detection is
regarded as true positive once the outputted bounding box has sufficiently large overlap
with a ground truth object.

2.2.1. Datasets for object detection

The object detection data are typically included in the image classification benchmarks.
This applies for already mentioned datasets [12] and [15].

!Note that for the purpose of generality, the problem is here defined as a multi-label classification task,
which corresponds to the setting of the dataset [15] which is used in the experiments concluded in
this thesis. However there exist datasets that actually define the image classification task as a
multiclass problem (e.g. [16])



2. State of the art image classification and object detection methods

2.3. State of the art image classification pipelines

The first types of the image classification pipelines were mainly based on the orderless
statistics such as bags of visual words [10] (BoW), which described the image as a
histogram of quantized SIFT [30] keywords. Also [10] has presented a basic structure
of image classification pipelines that continued to be used until today. The structure
consists of two main stages - in the first one a raw image is converted to a different
representation (feature extraction), which is in the second part used as the set of data
vectors that is fed to a classifier (typically SVM [6]%). The feature extraction stage tries
to ease up the work of the classifier by embedding the raw image data to a space, where
it is easier to perform classification.

The work of [10] was later improved by using so called spatial pyramid [28] which
presented a way of incorporating spatial geometry into the BoW descriptors by counting
the number visual words inside a set of image subregions.

Yang et.al. [42] defined the process of building a codebook of visual words as a
sparse coding optimization problem and achieved state of the art results with this novel
technique. They also employed a new feature pooling technique called maz-pooling.

Later it has been shown that the bag of words strategy of accumulating just the zero
order statistics (i.e. counts of visual words) discards a lot of valuable information about
the image descriptors. A method that overcame this issue was introduced by Sanchez
et.al. [32] and it consists of extracting higher order statistics by employing the Fisher
Kernel [22]. Another notable feature encoding method called the Vector of Linearly
Aggregated Descriptors [24] (VLAD) was proposed, however it has also been shown
that VLAD is a simplification of the Fisher Kernel method [24].

In 2012 a major breakthrough in the field of image classification happened when
Alex Krizhevsky el.al. managed to train a large convolutional neural network (CNN)
[26] on the ImageNet database [12], thus giving a proof that CNNs could, besides the
handwritten digit recognition [29], also perform well on the harder image classification
task.

The presented CNN architecture (sometimes called ” Alexnet”) gave rise to a novel
feature extraction technique, which consists of removing the top softmax layer of the
CNN and using the lower activations (coming from the last fully connected layer) as
discriminative image features. These could be used as generic image descriptors and in
combination with a multiclass SVM classifier form a very powerful image categorization
system [13] [7].

2.4. State of the art object detection pipelines

The first truly usable object detection system were sliding window classifiers com-
puted on top of HoG [11] features. The original system from [11] was improved by
Felzenschwalb et.al. [17] by introducing the Deformable Part Model, which consisted
of discriminatively trained set of filters called "parts”. Along with the appearance
information contained in the set of HoG filters, the model was also able to capture
geometrical information, thus being able to evaluate the score of a position of a given
filter relative to the center of a bounding box.

2The convolutional neural networks (that are also described later in the text) use on the very top the
softmax classification layer, however it has been shown that by replacing the last layer by a set of
one-vs-rest SVM classifiers, the performance of the network is almost always better or stays roughly
the same ([13], [7]).



2.5. Convolutional neural networks

Dalal et.al [11] have also described a heuristic for training object detectors called
"hard negative mining” (HNM). Since in the object detection task, there is nearly in-
finite amount of negative training examples, it is convenient to pick a ”representative”
subset such that the classifier learned on top of these negatives gives high detection per-
formance. The method of [11] alternates between adding the "hard negatives” (highest
scoring false positive detections) as negative examples to the training set and retraining
the object detector. This bootstrapping method [14] is now used in most of the state
of the art object detection pipelines.

Another type of detectors was developed by utilizing the algorithms that are able to
output a set of bounding boxes which are very likely to contain a generic visual object
in an image ([38], [8], [1]). By reducing the number of evaluated bounding boxes per
image to several hundreds, the object detection pipelines have now been brought close
to the image classification ones. Both of them learn an SVM classifier on top of the set
of descriptors extracted from positive and negative samples. The only difference lies in
the construction of the set of negative training examples, where in the case of image
classification it consists of all images that do not contain an instance of a positive class,
whereas the object detection pipelines use the HNM procedure to obtain a subset of
"hard” negative image subwindows.

The introduction of region proposals gave rise to some successful detection systems,
based on the orderless bag of words like statistics. Some notable representatives are
[40], [9], [38].

The current state of the art object detection systems [19], [20] use the window pro-
posals from [38] together with the CNN image descriptors extracted using the ImageNet
architecture from [26].

2.5. Convolutional neural networks

In image classification/ object detection field the convolutional neural networks [18]
recently became very popular mainly because of the major success of the network
created by Krizkevsky et.al. [26] that surpassed the previous state of the art method
by almost 80 % on the ImageNet dataset [12].

The original idea of the convolutional neural network (CNN) was published by
Fukushima [18]. Yann LeCun then improved the system [29] and achieved compelling
results for the hand written digit recognition. His net consisted of stacked convolutional
and subsampling layers. Convolutional layers improve the generalization properties by
being connected only to a subpart of the neurons that reside in the next higher layer,
thus the learned convolutional filters become invariant to translations. Furthermore the
unwanted effect of vanishing gradients [4] is also partially eliminated [3]. The subsam-
pling layers increase the capacity as well as the scale invariance of the CNN features.

The CNN that was the first of its kind that achieved results superior to bag-of-words
like methods ([10], [32]) was created by Krizkevsky et.al. [26]. It uses, along with
subsampling and convolutional layers, neurons wih ReLU activation functions [31] that
speed up the convergence of the CNN training algorithm. Another addition are local
response normalization layers that inhibit activities of adjacent highly active neurons.
The last very important feature were dropout units (first introduced in [21]) which
further reduced the degree of overfitting of the whole network.

The architecture of the state of the art ImageNet network is depicted in Figure 2.1.
The lower layers consist of cascade of convolutional and maxpooling layers followed by
two fully connected layers and the final softmax layer on the very top, which takes
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Figure 2.1. The state of the art ImageNet CNN architecture. The image was taken from [26].

care of making the final classification decisions. The whole network was trained on the
ImageNet [12] dataset, which was the first very large dataset suitable for training such
high-capacity architectures as deep convolutional neural networks.

Recently Chatfield et.al. [7] have made an exhaustive evaluation of different CNN
architectures and achieved SOTA results on the Pascal VOC 2007 image classification
database with a network who’s architecture was only slightly different from the CNN
described in [26].

2.6. Fisher Kernel

The Fisher Vectors [32] were the previous state of the art image classification framework
that was later surpassed by the CNNs. Because the work in this thesis is closely related
to the this method a short intro is given in this section.

To fully understand the Fisher Vector framework first the Fisher Kernel [22] has to
be described.

Consider a class of generative models P(X|®), ® € O, where X = {z1, ..., 2, } denotes
the set observed data samples x;, ® are the parameters of the model and © is the set
of all possible settings of ®.

The Fisher score Uy, is the gradient of the log-likelyhood of the generative model
evaluated at the currently observed set of samples X;

Ux = Valog(P(X|[®)) (2.1)
X;

this statistic could be seen as an indicator of how much one has to alter the model
parameters @, such that the model better fits the currently observed data samples X;.
The Fisher score is used to measure similarity between two sets of samples, giving rise
to the Fisher Kernel which is defined as:

K(X;, X;) =Ux 1" 'Ux, (2.2)
where [ is the Fisher information matriz, defined as
I = Ex[UxUx] (2.3)

Because [ is positive semidefinite, there is a possibility to perform the Cholesky decom-
position of I and express the kernel function as a dot product of two column vectors

10



2.6. Fisher Kernel

K(Xi, X;) = Y% Tx, (2.4)

Where
Yx=LUx, I=LL (2.5)

Such trick could be then used to train a linear classifier on top of the Y x data vectors,
which is equivalent to learning the Fisher Kernel classifier on top of the sets of samples
X.

Although in many image classification applications it is more convenient to train
the linear classifiers, because of their superior convergence speed and simplicity of the
implementation, it should be noted that in some of the upcoming experiments the
dimensionality of T x is so large that using the original kernel classifier is a necessity.

2.6.1. Improved Fisher Vectors

In [32], a Gaussian Mixture Model (GMM) , which models the generative process of
SIFT [30] patches is used as an underlying generative model P(X|®). Here X stands for
SIFT patches coming from images and @ is a vector which consists of a concatenation
of covariance matrices, means and priors of fitted Gaussians.

More precisely every SIFT patch x; is represented by the point-wise Fisher Vector v;

which is a concatenation of statistics Uz(lk) and Uﬁ)

o .@. 0. o @]"

Vi = Vi1 Vi1 Vig Vg - Vg Uik (2.6)

where vl(lk) stands for the derivative of the loglikelyhood function with respect to the

k-th Gaussian mean py, evaluated at point x; and ’Ul(zk) is the derivative with respect to

the k-th Gaussian covariance matrix oy.

A

e VT Ok

e () ).

Where 7y, o, pui is estimated gaussian prior, covariance matrix and mean of the k-th
gaussian in the GMM respectively.

Note that the derivatives with respect to the Gaussian priors are not expressed here,
since these typically have no influence on the resulting classifier performance. Also the
formulas (2.7) assume that the covariance matrices oy, are diagonal, which is a common
practice [34].

For the set of SIFT patches X coming from an image, it is desired to form a compact
descriptor. The Fisher Vector T x is a mean over all point-wise Fisher Vectors extracted
from a given image.

(Y

(1) _0 logP(X|®)
bk O,

) 0 logP(X|®)

(2.7)

k

(Y

0o},

1 n
Ty = Z ;i (2.8)
=1
In [32] It has been shown that the performance of this Fisher Kernel classifier greatly

improves if the Fisher Vectors T x are further non-linearly transformed using the signed
square rooting (SSR), i.e.:

T}g(SR =sgn(Tx) ® V| Yx]| (2.9)

11
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Also, because a linear classifier is typically used in combination with Fisher Vectors, it
is further convenient to ¢ normalize the data [32]:

SSR T5R
T = sy (2.10)
(a6l
Vectors T_‘?(SR’ZQ are then used as image descriptors and fed to a linear SVM solver.

12



3. Fisher Kernel based CNN features

In this work a combined approach of two recent major state of the art systems [32] and
[26] is proposed.

In [32] the Fisher Kernel with Gaussian mixture model as an underlying generative
model was proposed. In [26] a powerful multilayer discriminative model is trained to
obtain state of the art results.

It is thus tempting to combine these two approaches to create a classification system
that picks the best of the two hopefully giving a superior classifier as a result. In this
work it is shown how to extract Fisher Kernel based features from arbitrary CNN, and
how to use them as image descriptors.

3.1. Expressing generative likelyhood from a CNN

To be able to derive a Fisher Kernel from a probability model, first it is necessary to
express its loglikelyhood function. As noted above the CNN is a discriminative model
and therefore there should not be a way to express the function P(X|®) (recal that X
are observed data variables, i.e. images and ® is a set of CNN’s parameters).

To show that there is a possibility to express the generative loglikelyhood function
the topmost softmax layer of the CNN is inspected. Recall that the CNN’s softmax
function looks as follows:

exp(wl i + b)
> exp(iji’ + b;)

where C}, stands for the k-th class, wg, by are tunable weights and bias respectively. In
the case of CNN z is an image, and & are activations of the penultimate CNN layer. As
it was shown in [5], the softmax function could be seen as an expression for the Bayes
rule with tunable parameters wy and by:

(3.1)

exp(wyd +br) _ p(a]|®, Cy)p(®, C)
Sjexp(wid+b;) 3, p(x|®, Cj)p(P, Cj)

From there it is also possible to see that the joint probability P(x,®,C}) (i.e. the
nominator of Equation 3.2) is equal to:

= p(Cy| 2, ) (3.2)

P(z,®,Cy) = p(z|®, Cx)p(P,Cy) = exp(w%ﬁ: + by) (3.3)

To be able to derive a generative loglikelyhood function one has to be able to express
the generative probability P(X|Q2), where 2 is a newly introduced symbol for the set
of model parameters. In the case of CNN it is thus proposed to move the variables
Ci,...,C) into the set of model parameters (i.e. Q = {®,C},...,Ck}) such that it is
possible to express the probability of set of images X conditioned on €.

At this point P(z|Q) is defined as:

P(z,C1,...Ck,®) _ P(®,2) [}, P(Ck|®, x)

P(x|<I>,Cl,.-.,CK) :P($|Q) = P(Cl o Ok q)) - P(CI ., Ck (I))

(3.4)
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3. Fisher Kernel based CNN features

Where the independence of the probabilities P(Ci|®,x),..., P(Ck|®,z) is assumed.
Note that this assumption arises from the probabilistic interpretation of the softmax
activation function who’s formula is given in (3.2).

Assuming that samples P(z|®,C1,...,Ck) are independent P(X|®,C1,...,Ck) then

becomes:
n

P(X|®,Cy,....Ck) = [ [ P(xil®,C1, ..., Ck) (3.5)
i=1
If we were to follow Fisher Kernel framework, at this point the expression for the
derivative of the loglikelyhood of P(X|®, (Y, ...,Ck) would follow. However, there are
several caveats that make this step very challenging:

Unknown P(®,z) and P(Cy,...,Ck,®) The probabilities P(®, z) and P(C,...,Ck, ®)
from (3.4) are unknown. Note that it would be possible to assume uniform prior over
P(Cy,...,Ck,®), however P(®,z) depends on the data x, which is a property that
cannot be omitted in the Fisher Kernel setting.

Loglikelyhood derivative Even if there was a possibility to overcome the issues with
unknown probabilities, obtaining the derivatives of the loglikelyhood function with
respect to the parameter set 2 would be a very challenging task.

Instead of formulating unrealistic assumptions, that would help us with obtaining the
final evaluable formulation of P(X|®,C1,...,Ck) we opt for defining our own function
Az, ®,CY,...,Ck) that has similar properties as the probability P(z|®,C1,...,Ck):

K
Az, ®,C,...,Ck) = [[ P(x,®,Cx) (3.6)
k=1

Function A in our formulation of Fisher Kernel based features retakes the role of prob-
abilities P(z|®, C1,...,Ck).

The FK classifier uses derivatives of the generative loglikelyhood function with respect
to its parameters. Here since we use our own defined function A(z, ®, C1, ..., Ck), we call
the expression, that is the equivalent to the generative likelyhood L£(X|®,CY,...,Ck)
as pseudo-likelyhood L. Tt is defined as:

n
LA(X,@,C,...,C) = [[A(zi,@,Cn, ..., Ck) (3.7)

i=1
At this point it is important to note that in the case of CNNs, the set of samples X
actually consists of only one observation, which is the image x;, i.e. in our case n = 1.

If the contents of (3.3) are plugged into the pseudo-likelyhood formula (3.7) the
following is obtained:

n K

LA(X,®,Ch,...,Cx) = [[ [] exp(wi'a + be) (3.8)
i=1k=1

Taking the logarithm of 3.8 the corresponding pseudo-loglikelyhood function is formed.

n K
log LA(X, ®,C, ..., Cx) = Y Y wldi + by (3.9)
=1 k=1

After taking a derivative of the function log ﬁA(X, o, (4, ...,Ck) with respect to its
parameters @, C, ..., Ck, Fisher Kernel based features could be obtained.
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3.1. Expressing generative likelyhood from a CNN

Recall that the derivatives of (3.9) are not the proper Fisher Kernel features, be-
cause of our decision to replace probabilities P(x|®, C1, ..., Ck) with A(z, ®,C1, ..., Ck)
which cannot be regarded as generative probability measures. However our selection of
Az, ®,C1,...,Ck) could be justified.

The purpose of the generative probability is to assign higher values of P(z|®, C4,...,Ck)
to images = that are more likely to be observed. Our function A computes the product of
unnormalized class posteriors P(x, ®,Cy). A thus reaches high values once P(z, ®, Cy)
are also elevated. This means that from the view of A the images that are likely to
appear are those that contain objects from classes (', ..., Cx. We hope that the fact
that A assigns high values to the images that contain actual visual objects could be
regarded as a justification of our choice of A function as a suitable replacement of
P(z|®,C,...,Ck).

From the Fisher Kernel point of view, the gradients of the loglikelyhood should have
a "meaningful” form. This means that their directions should be designed such that it
is possible to perform linear classification in this space. In the case of Fisher Kernel,
the gradients of the models that are trained to maximize generative loglikelyhoods are
used. The fact that the loglikelyhood of the model reaches its peak guarantees this
property of the gradient directions. However it is not obvious whether the gradients
of the aforementioned pseudo-loglikelyhood also exhibit this characteristic. While not
giving any theoretical explanations, the empirical observations reported in Section 5
show that our Fisher Kernel based features are suitable for linear classification.

Another positive property of A is the simplicity of the resulting pseudo-loglikelyhood
formula (3.9). Because the exponential terms got eliminated, the expression takes form
of a simple sum of linear functions. Obtaining its derivative is then an easy task.

The fact that n = 1 in formula 3.7 could also be regarded as a theoretical issue,
since the Fisher Kernel was originally defined to compare the sets of samples X which
generally have more than one element. This issue could be for instance resolved by
picking random crops or flips of the original image x and adding them to the set X.
This extension would be another step for improving our proposed method, which is
not covered in this thesis. Also note that in our particular case variables X and x are
ambiguous and both represent image x.

To conclude, the gradients of A cannot be regarded as Fisher Kernel features, because
of the reasons mentioned in the previous paragraphs. However the substitution of
probability P(z|®,C1,...,Ck) by our own function A is the only difference between the
Fisher Kernel and our proposed method. Thus in this thesis we choose to term the
gradients of A Fisher Kernel based features, because of the evident resemblance to the
original method.
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3. Fisher Kernel based CNN features

3.2. Deriving Fisher Kernel based features from CNN

In the following section it is shown how to use the gradients of the pseudo-loglikelyhood
derived from a CNN in combination with a SVM solver and use it for classifying images.
(the pseudo-loglikelyhood formula is given in equation 3.9). The kernel function K,
that uses gradients of the pseudo-loglikelyhood and compares two sample sets X; and
X is the same as in the case of Fisher Kernel:

KA(Xi, X;) = U I Ux, (3.10)

in this particular case Ux stands for the derivative of the pseudo-loglikelihood of the
CNN (3.9) w.r.t. its parameters 2 evaluated at particular point (image) X;:

Ux = Valog £ (3.11)
X;

Furthermore it is again possible to utilize the cholesky decomposition of the matrix I
and express kernel function K(X;, X;) as a scalar product of two column vectors Ty,
and Tx;.

Ka(Xi, X;) = Y% Tx, (3.12)

Where
Yx =LUx, I=LL (3.13)

After obtaining Y x the ¢ normalization follows:

Tx
Th =
XXl

(3.14)

Note that for brevity the vector Tﬁ? will be simply denoted as Yx. Also the kernel
classifier formed by using derivatives of the pseudo-loglikelyhood of CNN will be termed
CNN-FK classifier, the vectors Yx Fisher Kernel based features or shortly CNN-FK
features.

From the implementation point of view, writing an algorithm that evaluates Ux seems
like a complex task, because this amounts to compute a gradient of a very complex CNN
mapping w.r.t. every parameter of the given CNN. However, since CNNs are learned
using the stochastic gradient descend, these derivatives are always available, because
these are the gradient updates of the CNN’s parameters which are used during the SGD
learning phase.

3.3. Memory issues

The CNN who’s pseudo-loglikelyhood is derived has typically from 50 to 100 million
parameters, which means that the dimensionality of the data vectors T x is ex-
tremely large leading to mainly memory related issues that have to be dealt with.
The first apparent problem is the size of the matrix I, which scales quadratically with
the number of dimensions of Uy (leading to ~ 106 elements). Thus in the experiments
concluded in this thesis the approach of [32] is followed and the matrix I is assumed
to be diagonal which means that the number of elements in I becomes the same as the
dimensionality of Ux. Also obtaining an analytical formula for matrix I would be a
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3.3. Memory issues

complex task, thus an empirical estimate is used. More precisely the estimate of I is
computed as follows:

N
1
I=— Z; Ux, ® Uy, (3.15)

Where {X1,..., Xx} is a training set of images. The estimate of L is thus defined as:

N
1
L=\|% ; Ux, ® Ux, (3.16)

Another issue that makes the learning problem hard is that a larger portion of these
extremely high dimensional features cannot be fit into the memory (5000 training vec-
tors - which is the amount of training data used in the Pascal VOC 2007 classification
challenge - would occupy 2 TB of memory), thus it is problematic to learn a SVM clas-
sifier in its primal formulation. The following paragraph explains the memory issues
and shows how they are dealt with.

Perhaps the most crucial issue is that impossibility of training a SVM linear classifier
in its primal form on top of the raw Y x vectors. In this thesis the problem is solved
by utilizing the following four feature selection / compression methods:

Feature binarization The size of vectors T x is significantly reduced using a lossy com-
pression technique (binarization).

Mutual information based feature selection By employing the mutual information mea-
sure between individual dimensions of Tx and the set of training labels y, one can
remove dimensions with the lowest values of this metric.

SVM dual formulation The SVM learning problem is optimized in its dual form leading
to a more memory efficient representation.

MKL based feature selection A Multiple Kernel Learning (MKL) solver is used to
obtain the most discriminative subset of feature dimensions.

The five aforementioned methods are described in the ongoing subsections.

3.3.1. Feature binarization

Recently Zhang et.al. [43] have proposed a feature compression scheme for Fisher
Vectors [32] which consists of binarizing the features and then removing the unimportant
dimensions based on a mutual information measure. They have also shown that just
by binarizing the features the classifier performance could be actually improved.

In this thesis the binarization technique is tested as a potential way to compress the
T x vectors. More precisely denote the vector T)B}I N as the binarized version of Yx.
The binarization process is expressed in the following formula:

1 Tx, >0
THN = { L TE ~0 (3.17)
Where ng N'is the d-th dimension of the feature vector T)B}I N This function corre-
sponds to the quantization of each feature dimension into two bins with the bin decision
threshold set to zero.

It is then easy to represent each dimension of Tf}f N by a single bit value and decrease
the memory usage by the factor of 32 (assuming that uncompressed data are 32-bit
floating point values). By utilizing the SVM solver tricks from [43], a standard SGD
solver (e.g [35]) could then be used to learn a linear classifier on top of YZ/V training
vectors.
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3. Fisher Kernel based CNN features

3.3.2. Mutual information based feature selection

Furthermore the feature selection technique from [43] was also experimented with. The
method uses a mutual information based approach to select the most relevant dimen-
sions given the training data labels. The mutual information measure is computed
between a joint probability distribution of each binarized descriptor dimension and the
set of training labels. More precisely the mutual information is defined as:

(YR, y) = H(y) + H(YR,Y) - H(YR™ y) (3.18)

Where y is a set of training labels. Because H(y) remains unchanged while varying
dimension d it could be removed from the above formula giving:

I(YRIN gy = H(CRIN) — H(YEIN, y) (3.19)

Note that entropy H is defined for probability distributions and not for arbitrary real
values. This is the reason why the binarized fisher vectors ng N are figuring in Equation
(3.19). Once the features are binarized it is then easy to estimate the probabilities of
individual bins on a training set. This enables the use of entropy measures. The same
applies for the set of labels y, with the difference that no binarization is needed, because
y is already discrete.

After the computation of the mutual information measure for each of the dimensions
of Tx;,, it is then possible to discard given number of dimensions that have the lowest
magnitude of 1 (T§£ N y), thus performing feature selection. Note that although the
mutual information measures are computed on binarized features Tf}f N in this thesis
these measures are used to remove dimensions of raw descriptors Tx. Thus in this
case the binarization is just a proxy for obtaining probabilities and mutual information
measures.

The described algorithm that uses mutual information to select features will be
termed MI-FS in the next lines.

3.3.3. SVM dual formulation

Later in this thesis, it is possible to see that the feature compression technique described
in section 3.3.1 discards a lot of information and can lead to inferior results. It is thus
convenient to learn a SVM solver on the raw uncompressed Y x vectors and optimize the
SVM objective in its dual representation who’s memory usage scales quadratically with
the number of training samples and as such, it is not dependent on the dimensionality
of the features Y x.

For completeness, the dual of the SVM objective function that is optimized is defined
as follows [6]:

1
arg max g ai— g g aiajyiij)T(iTXj
st oy >0, (3.20)

> i =0
7

where «; are support vector coefficients and y; are labels of the training vectors.

Here it is possible to see that training vectors T x appear only in the form of dot
products T%T x; thus there is no need to keep them in the memory in their explicit
form.
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3.3. Memory issues

3.3.4. Feature selection via MKL

Because a SVM classifier is learned on top of the high dimensional vectors T x it is
tempting to use a feature selection method that is strongly related to the original
SVM optimization problem. In this thesis a slightly modified SVM solver is used that
performs feature selection by inducing sparsity into the vector of weights w. Once
the sparse vector is obtained, the zeroed dimensions of w could then be removed from
feature vectors T x.

In this thesis the feature selection problem is regarded as a task, who’s goal is to
train a Sparse SVM classifier (SSVM) [41] which is defined as:

1, C .
arggéllr)lmﬁni\\wﬂ —i—;ZmaX(l—ylw (x; ©®d),0)

5 (3.21)
weR, m€R, D={d) di<B,d;€{0,1}}

(2

Where B stands for the number of dimensions that are required to have non-zero weights
and 0 is dimensionality of the features x;! . D is the set of all possible configurations
of binary vectors d.

Luckily Tan et.al. [37] have developed a solver for this optimization problem which
they call FGM. It optimizes the convex relaxation of the Mixed Integer Programming
problem from Equation (3.21). A brief description of the method is given in the follow-
ing paragraphs and we refer to [37] for additional details.

First the SSVM problem is converted to its dual representation and then a multiple
kernel learning [27] (MKL) optimization problem is defined as follows:

: 1 T T
min max —2(a ©y) (dze;) wXi X1 (e ©y)
t

M= {ply =1, >0}

A= {a]Zaiyi =0,a; > 0}
i=1
X;=[x10d,..,z,0d]

(3.22)

Note that instead of presenting the problem with squared empirical loss as it happens
in [37], the hinge empirical loss function is used in Equations 3.21 and 3.22.

! To avoid confusion, we note that for this particular thesis section x; will stand for the SVM features
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3. Fisher Kernel based CNN features

The objective function from Equation 3.22 is then optimized using a cutting plane
method [25] which alternates between two main steps:

1. Adding constraints corresponding to the most violated d;, i.e.:
1 n
dip1 = max §H Zl aiyi(z; © d)||? (3.23)
1=

This problem can be solved trivially by sorting the dimensions of the vector
c=Y"(ay;x;)? in a descending order and setting first B numbers to 1, and
the rest to 0.

2. Solving an MKL subproblem defined by Equation 3.22 with individual d;s fixed
to obtain the kernel weights p; and dual coefficients oy (p; and oy are then fixed
and used in step 1).

These two steps are cyclically repeated until the convergence is reached.

3.3.5. Extending FGM to multilabel classification

Recall that the FGM solver from [37] does a binary classification, thus in its original
form it cannot be used in our multilabel task of image classification. A simple modifi-
cation to the objective function in Equation (3.22) is proposed in this thesis to enable
learning a sparse SVM model on a multi-label classification task:

K
1
feufi 3;232 (o © yi) dtZG:D 1 X X7 ) (o @ ) (3.24)
The above written objective simply sums over all the loss functions and sets the optimal
dy vector to the one that gives the best value of the objective function accumulated over
all the classes (the number of classes is denoted by K).
The original FGM algorithm needs two minor modifications:

1. The step of finding the most violated d; from Equation 3.25 becomes:

dt+1 = maX Z ” Zaz kYik 1’Z © d>H2 (325)

which again has a simple solution of sorting the values of the vector
c = Zszl S (@i kyikri)? in the descending order and regarding the first B
dimensions as the new dyy 1.

2. Once the most violated dis are fixed and new p and « parameters are required
the problem (3.24) can be solved by the multiclass version of the SimpleMKL
algorithm [33].

In the following lines the above described multilabel extension of the FGM algorithm
will be termed Multilabel Feature Generation Machine (ML-FGM). Also the feature

vector T x consisting only of the features selected by the ML-FGM will be termed
TEGM,
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3.4. Combining CNN-FK with CNN neuron activities

There are two remarks of the proposed approach that are worth noting:

Memory efficiency The main property of the proposed ML-FGM supervised feature
selection method is the fact that during learning only kernel matrices are used, thus
the algorithm is memory efficient, solving the problem with extremely high feature
dimension.

Universality of selected features The proposed improvement of extending the original
FGM binary classification task to a multilabel classification task makes it possible to
obtain a set of universal features that could be used in image classification, regardless
of the object class that is being recognized. This is somehow similar to the CNN
models, that are also learned in the supervised way on the ImageNet database to
recognize a set of particular object categories. However because the object categories
have similar properties, the learned features are able to capture generic image patterns
and could then be used for recognizing different unseen objects. In this thesis the
transfer of the selected features from the image classification to object detection task
is demonstrated.

3.4. Combining CNN-FK with CNN neuron activities

When obtaining the gradients of the pseudo-loglikelyhood function of the CNN Uy
(3.11) that are after normalization used as feature vectors Y x, the standard bottom-up
pass through the layers of the CNN has to be performed, producing the activations of the
neurons in the penultimate fully connected layer as a byproduct. It is thus convenient
to use these activations (which, as has been written above, are current state of the
art image features in several image recognition tasks [19], [2], [13], [7]) in combination
with the proposed CNN-FK classifier. In this thesis two approaches to this problem
are proposed:

Late fusion Another classifier on top of the SVM scores outputted from the CNN-FK
classifier and the SVM classifier trained on top of the CNN activations is trained. Its
classification output is then used as a final measure of probability of a class being
present in an image.

Early fusion The vector of neuron activities of the penultimate CNN layer is appended
to the CNN-FK features, and the set of resulting features is then fed to the linear
SVM classifier.

The following sections give more insight on the two proposed classifier combination

methods.

Late fusion
Denote sZC,éV N the score that a SVM classifier learned on top of the CNN activation

vectors to recognize class k assigns to an image X;:
CNN CNN CNN

and also denote the score of the corresponding CNN-FK classifier slcév N-FK,

SgéVN—FK _ <w1§NN_FK7TXi> + bkCNN—FK (327)

2Recall that #; stands for the set of the neuron activations of the penultimate CNN layer.
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3. Fisher Kernel based CNN features

the set of features {z;;} that is fed to the final combined classifier are 2-dimensional

concatenations of S%V N and slc,iv N-FK.
cNN  .ONN-FK]T
Zik = |Sik Sik ] (3.28)

Once all the z; ; values are obtained, K one-versus-rest SVM classifiers are learned for
each set of features Zj, = {z;;|i = {1..n}} and labels y;. Because the used features
are only 2-dimensional, there is a possibility to employ a nonlinear kernel SVM. In this
thesis RBF, hyperbolic tangent (tanh) and polynomial kernels were tried.

Early fusion

Denote the vector of neuron activities coming from the penultimate CNN layer as ¢x
(we will continue to use this also symbol in the following sections). The set of final
features that are fed to the SVM training algorithm is {Fi,..., F,}, where F; stands
for:

F = E}){f] (3.29)

Note that Tx here stands for an arbitrary CNN-FK feature vector, i.e. instead of raw
vectors T x their compressed version (by utilizing methods from Section 3.3) could be
used.
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4. Description of used pipelines

To evaluate the performance of the CNN-FK features, image classification and object
detection systems were implemented and used as benchmarks.

4.1. Image classification pipelines

This section describes individual steps of the image classification pipelines that are used
in the experiments later in this thesis. Figure 4.1 contains a sketch of the architectures
of the three used pipelines.

The first part of the pipelines is common and consists of extracting features from
each image X. This step involves either obtaining Fisher Kernel based features Y x or
activities of neurons denoted as ¢x that reside in the last fully connected layer of the
CNN.

After extracting the features, optional compression / feature selection steps follow.
The compressed or uncompressed features are then either appended with neuron activ-
ities ¢ x (early fusion) or stay unchanged. A multiclass SVM classifier is then learned
on top of these features, which are extracted from the training set of images. The mul-
ticlass SVM classifier is trained in the one-vs-rest fashion. The SVMs can be optimized
in dual or primal depending on the dimensionality of the features that enter them.

At this point the scores outputted by the classifiers could be regarded as a final
classification posterior probabilities or their outputs could be fed to another non-linear
kernel SVM classifier (late fusion).

On the following lines, the three main classification pipeline architectures are de-
scribed. Each is designed to compare different methods proposed throughout this the-
sis.

4.1.1. Late fusion pipeline

The first pipeline is designed to compare the performance of various late fusion ap-

proaches and the binarization compression explained in Section 3.3.1.
The system is further divided to five subtypes depending on the features that are

used and whether the binarization is employed:

CNN-¢x A standard architecture first introduced in [13]. It learns a linear SVM on
top of the ¢x neuron activities.

CNN-T x The pipeline that learns SVM in dual formulation on the raw Tx CNN-FK
feature vectors.

CN N—T)B}I N This architecture learns a linear SVM on top of the binarized Y x features.
No late fusion method is used.

CNN-Y x 4+ ¢x Late fusion utilizing the scores outputted by CNN-¢x and CNN-T x.

CN N-Tf}l N 4 ¢x Late fusion approach that uses scores of linear SVM learned on bi-
narized Y x and the scores of the CNN-¢x classifier.

Note that both late fusion systems used non-linear kernel classifier to learn the combi-

nation of the input linear SVM scores.
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4.1.2. CNN-TEEM and CNN-TY!

To compare the performance of the MKL based feature selection algorithm (ML-FGM
explained in Section 3.3.5) and the feature selection that uses mutual information mea-
sures (MI-FS algorithm from Section 3.3.2), two more pipelines are used - CNN-T{¢M
which is designed to test ML-FGM and CNN-Y4! that uses MI-FS.

The pipeline first extracts raw Y x features. Utilizing one of the two aforementioned
feature selection methods the descriptor dimensionality is reduced. We tried different
values of the target dimensionality. In our experiments the sizes of descriptors were
reduced by the factors of 10%,103, 102, 10! and 1 (no reduction).

Afterwards a standard one-vs-rest SVM classifier is learned and its outputs are used
as final classification scores.

4.1.3. CNN-TE“M & ¢« early fusion pipeline

For comparing the performance of the early-fused vectors the last image classification
system CNN—T?GM &¢,, was created.

At the beginning CNN-FK features together with the neuron activations are extracted
from each image. The Fisher Kernel based statistics are then compressed using ML-
FGM algorithm (again several different dimensionality reduction factors were tried).
The TQGM and ¢x are then concatenated and fed to a linear SVM solver which performs
classification.

4.2. Object detection pipeline

In this thesis the performance of the CNN-FK features on the object detection task is
also evaluated. The proposed detection system is described in this section.

Because CNN-FK features are expensive to compute, it is a necessity to decrease the
amount of these that is extracted from each image. Thus the detection pipeline uses
a multi-stage cascade, where at earlier levels, the features that are easier to obtain are
used and with later stages the amount of bounding boxes that have to be evaluated
decreases. The CNN-FK features are used at the latest stage of the system.

The architecture of the detection pipeline that is used in this thesis is a three stage
cascade system. The first and second step of the cascade is basically the method
proposed by Girshick in [19], i.e. it uses the CNN neuron activations as descriptors for
bounding boxes extracted using the method from [38].

4.2.1. First stage

The first stage is based on the tentative object proposals from [38]. Using this algorithm
2000 bounding boxes that have high probability of containing an object of interest are
obtained from each image.

4.2.2. Second stage

Then similar to [19] the image is cropped around each bounding box and every crop
is fed to the CNN to obtain the activities of neurons in the first fully connected layer.
These are then f3 normalized and scored by each of the K (K denotes number of
classes) linear SVM classifiers, each of them trained specifically for a given class. The
non-maxima suppression is then performed on each of the K sets of scored detections
separately.
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Figure 4.1. Diagrams of proposed image classification systems. The scheme of the early fusion
and binarization pipeline from Section 4.1.1 is located in the upper left part. The upper right
part shows pipelines CNN-TE¢M and CNN-TH! described in Section 4.1.2. The layout of
the CNN-TEEM & ¢« early fusion pipeline (Section 4.1.3) is placed in the in the lower region.
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At this point each of the 2000 bounding boxes is assigned K scores that define the
probability of every class being present in the given bounding box. Thanks to the fact
that the classifiers are learned using the logistic empirical loss function and the value
of the C' parameter is the same for each one-vs-rest SVM, their scores are roughly
calibrated across classes. Denote sgka the score that is assigned to the bounding box
B; by the SVM classifier that is learned to recognize class k. The property of calibrated
scores enables the labeling of each bounding box by the the maximum score across all
K classes. More precisely denote the final score of the bounding box B; as SgiN NIt
is then defined as:

ngVN = max sgf\ka (4.1)
Once each bounding box is labeled with SgiN N it is possible to use these values to
decrease the amount of the bounding boxes that have to be evaluated in the third stage
of the cascade. The decrease in size is performed by simply sorting the set of bounding
boxes in descending order of SgiN N and retaining only top D detections'.

Note that the labeling of each bounding box with a class according to the highest pos-
terior probability (explained in the previous paragraph) could lead to a higher amount
of false positive detections, due to class confusion errors (dog/cat, bus/car, etc.). This
is not a problem because in the next stage this class label information is forgotten. The
only purpose of the second stage is to decrease the amount of windows that need to be
classified in the third stage as much as possible.

4.2.3. Third stage

The third stage operates solely on D windows that come from the second stage. Here
each CNN descriptor corresponding to each of the top scoring D windows (note that
these descriptors were computed during the second step of the cascade) is appended
with the corresponding ¢2 normalized CNN-FK feature vector (early fusion approach).
A second group of K linear SVM classifiers is then learned on top of these concatenated
descriptors. The classifiers are then used to label every bounding box that made it to
the third stage with K scores, that correspond to the probability of each class being
present inside. Note that at this point, no max-pooling approach is employed and
the K sets of scored detections are first separately filtered using another non-maxima
suppression and evaluated according to the Pascal VOC 2007 detection challenge rules.

Figure 4.2 contains the diagram of the aforementioned detection pipeline architecture.

CNN-FK descriptor compression

Because detection pipelines are much more memory demanding than the classification
ones, the CNN-FK descriptor that is appended to the CNN features at the third stage of
the detection process has to be compressed. In the presented system the MKL feature
selection is used. The ML-FGM algorithm was used, because it performed better on
the classification task (as it could be observed from experiments in Section 5.3.4). Note
that the set of dimensions selected by the MKL feature selection algorithm was obtained
via the classification task. The reason why the feature selection algorithm was not run
using the CNN-FK features coming from the detection task is, that obtaining sufficiently
large set of positive and negative detection CNN-FK features for each class would be
extremely memory and time consuming task. In our experiments the dimensionality
was decreased by the factor of 1000.

1D = 100 for all detection experiments in this thesis
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4.2. Object detection pipeline

Non-maxima suppression method

The used non-maxima suppression method is the one that is most commonly employed
in standard detection pipelines. It consists of sorting the set of detections by their
score in descending order and then retaining only those windows that do not have their
overlap with any of the higher scoring detections higher than 30% (intersection over
union measure - see Appendix A.2.1 for further details).

4.2.4. Detection pipeline learning process

The two groups of linear SVM classifiers are learned using the following method. The
first bunch of K linear SVMs is trained using the hard negative mining process first used
in [11]. The method consists of alternating between adding ”hard” negative samples
to the set of training features and retraining the classifier on this augmented set. The
"hard” samples are coming from the training set and are assigned high scores by the
classifier while being labeled as negative. A bounding box is labeled as negative if its
overlap with any of the ground truth objects in the image is lower than 30 %.

The second group of SVM classifiers that are trained to recognize the appended
feature vectors in the third stage of the cascade is also trained using hard negative
mining. The difference is that the "hard” samples are picked solely from the set of
bounding boxes that ”survive” to the third stage of the cascade. Because there is no
need for calibrated SVM outputs, the classifiers are learned using the hinge empirical
loss function.
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4. Description of used pipelines

‘ Image ‘
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Figure 4.2. Detection pipeline diagram explaining individual steps of scoring 2000 object pro-
posals coming from each image.
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5. Experiments

5.1. Datasets and evaluation protocol

All of the experiments in this thesis were concluded on the Pascal VOC 2007 dataset
[15]. It is commonly used standard benchmark for image classification and object
detection pipelines. It contains images with annotations of 20 object categories.

All of the SVMs were trained on the ”train” and ”val” sets and the performance on
the ”test” set is reported. Hyperparameters (such as SVM’s C' regularization constant)
were optimized using the ”val” set.

The reported average precision measures (AP) are the averages of the precision ob-
served each time a new positive sample is recalled [39], i.e. these are not the TREC
AP metrics that were originally used for the Pascal VOC 2007 evaluation. The stan-
dard AP metric was chosen, because these are the numbers that are currently being
reported in the recently published research articles. The mean average precision (mAP)
is the mean over average precisions of each of all the classes 20 classes in the VOC 2007
dataset.

For the description of the average precision evaluation process on the image classifi-
cation task see Appendix A.1. Appendix A.2 then contains the description of reported
object detection metrics.

5.2. Used convolutional nets

Instead of building and training a CNN architecture from scratch, the pretrained net-
works from [7] and [13] were used.

5.3. Image classification experiments

The following subsection describes the set of experiments concluded on the Pascal VOC
2007 image classification task.

5.3.1. Experiments with the Caffe CNN

The first batch of experiments was performed using the ImageNet reference CNN model
from [13]. The performance of the five pipelines introduced in Section 3.4 was com-
pared. For completeness the systems are CNN-¢x (reimplementation of [13]), CNN-Y x,
CNN—T?}IN, CNN-Tx 4+ ¢x and CNN—T’;}IN + ¢x. The summary of the experiment
is captured in Table 5.1.

From the results it is apparent that the proposed gradients of the pseudo-loglikelyhood
contain relevant information and are suitable for use in image classifiers. Already the
basic version of the CNN-FK classifier CNN-T x gives results comparable to the state
of the art. With 74.3 mAP It actually beats the best Fisher Kernel method which used
GMM of SIFT patches as an underlying generative model (68.0 mAP [7]).

It is apparent that the binarization of the features (CNN-TZ/V) discards a lot of
information and a performance drop of 2 mAP points over the CNN-T x version which
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5. Experiments

Class | ONN-TEIV ' CNN-Tx | CNN-¢x [13] [ CNN-YEIN + ¢x [ ONN-Tx + ox
aero 87.7 90.3 92.6 91.9 92.5
bicycle 77.9 80.0 82.2 82 82.5
bird 83.4 84.5 86.6 86.6 86.9
boat 83.5 84.4 87.1 87.1 87.5
bottle 34.2 36.4 40.0 41.1 40.8
bus 70.6 73.0 74.2 74.5 74.7
car 86.2 87.1 88.0 88.0 88.3
cat 79.8 79.9 82.8 83.0 83.2
chair 59.6 59.3 59.5 60.7 61.1
cow 54.5 61.3 65.3 63.5 65.4
dtable 67.5 71.1 70.8 72.4 72.9
dog 74.9 77.9 79.5 79.5 80.3
horse 85.6 87.6 88.3 88.3 89.1
mbike 74.9 77.4 78.4 78.0 78.8
person 93.1 93.4 93.4 93.6 93.8
pplant 49.4 52.1 53.0 54.6 55.0
sheep 68.5 71.5 73.0 73.4 74.1
sofa 60.9 62.2 61.4 62.3 63.4
train 88.7 89.5 91.9 91.6 91.7
tv 64.9 66.8 70.5 70.3 70.1
mAP 72.3 74.3 75.9 75.6 76.6

Table 5.1. Comparison between CNN-FK classifier with binarized features (CNN-Y£/) stan-
dard CNN-FK classifier CNN-Tx and the CNN-¢x system from [13], which classifies the
activities of the topmost fully connected layer. The classifiers formed by combining scores of
CNN-T x with CNN-¢x (CNN-Tx +¢x) and CNN-TEIN with CNN-¢x (CNN-TEIN + o)
are also included.

does not use feature compression is observed. However the advantage of CNN—T];}IN
is that the descriptors are 32 times smaller than in the case of CNN-Y x, thus a linear
SVM classifier could be used. Another benefit of binarization is, that after the learning
is finished the features can be scored using table lookups which speeds up the appli-
cation of model at test time by the factor of eight. Needless to say, from the memory
perspective, the decrease in size of the descriptors is also advantageous.

The CNN-T x method actually does worse in comparison with the standard CNN-¢x
classifier - a performance drop of 1.6 mAP points can be observed, although not that
severe, the proposed method alone does not seem to surpass the original CNN-¢x
pipeline.

However the results of combined classifiers actually show that the information con-
tained in the gradients of the loglikelyhood is not redundant and seems to be useful
for making classification decisions. The improvement of almost 0.7 mAP of the CNN-
T x +¢x classifier combination over CNN-¢x supports this claim. The second combined
classifier CNN—T];}I N 4+ ¢x does not produce improved results, which is expected con-
cerning the inferior performance of CNN—T’;}I N,

5.3.2. Classifier combination analysis

To show that the CNN-FK classifier contains useful information a series of plots in
Figure 5.1 shows the features that enter the final combined classifier, i.e. the scores
of CNN-Tx and CNN-¢x that are assigned to individual examples of the test set are
plotted.

As noted above each point in the Figure 5.1 stands for one test image. Its "x”
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5.3. Image classification experiments

coordinate is the score assigned by the CNN-¢x classifier trained for a particular class
and ”y” coordinate is the CNN-T x’s score. Each point is plotted either as a ”+” sign
(positive example according to the ground truth label) or a circle (negative example).
The color of each point encodes the score of the final combined classifier CNN-Y x +¢x.

After taking a look at the plots in Figure 5.1 it is possible to observe that the scores of
the CNN-T x and CNN-¢x are very correlated. However mainly next to the combined
classifier decision boundary it is possible to observe that there are positive samples
that receive higher score from one classifier, while being ranked lower by the second
one. This inconsistency between the scores seems to help the final combined classifier
to improve the final decision by giving higher weight to the classifier that assigns higher
score to a given positive sample. It is interesting to observe that although the final
classifier is trained using polynomial kernel the decision boundary has the shape of a
(almost) straight line.

5.3.3. Experiments with the state of the art CNN

The next round of experiments was concluded using the CNN-S network from [7].
This network achieved currently highest reported mAP on the Pascal VOC 2007 image
classification challenge.

Note that the network CNN-S TUNE-RNK, which is a fine-tuned version of CNN-S
trained on an augmented training set was not publicly available at the time this thesis
was being written, thus the experiments use the ”vanilla” non-finetuned network CNN-
S. Also in this thesis the training set augmentation from [7] was not implemented, which
is the reason why the reimplementation of the classification pipeline from [7] does not
produce the same performance as reported in [7].

Apart from the classic CNN-S architecture [7] denoted as CNN-S-¢x* in this the-
sis, the classifier with Fisher Kernel based features derived from CNN-S was tested
(CNN-S-T x) together with the late fusion classifier that combines the scores of CNN-S-¢x
and CNN-S-Tx using a nonlinear kernel SVM (polynomial, rbf and tanh kernels were
tried). The combined classifier is named CNN-S-Y x + ¢x The results of these experi-
ments are reported in Table 5.2.

The first thing that is apparent is that the CNN-S-¢ does perform worse than is
reported in [7]. As noted above, the training set augmentation is not implemented in
this thesis which is the most likely reason why the CNN-S-¢x pipeline in this thesis
produces results inferior to the one from [7] - the difference is 0.84 mAP points.

The comparison between CNN-S-¢x and CNN-S-T x is again in favor of CNN-S-¢x.
However the combined classifier CNN-S-¢x + T x beats the CNN-S-¢x by 0.7 mAP
points, proving again that by utilizing the Fisher Kernel based classifier scores the
performance of the final classification system improves.

The conclusion from the experiments in Sections 5.3.1 and 5.3.3 is that it seems very
likely that if the CNN-S TUNE-RNK network from [7] was available the similar per-
formance increase of ~ 1 mAP point, when using the Fisher Kernel based features in
combination with the neuron activities would very likely occur again. However since
these experiments were not concluded, the only verifiable result is that the network
CNN-S-¢x + T x achieves state of the art performance on the Pascal VOC 2007 classifi-
cation challenge when fine tuning is not employed and if the training set augmentation
is not used.

! Note the extra ”S” letter appearing in the abbreviation. It emphasizes the fact that the CNN-S
network is used instead of the Caffe reference ImageNet model, which was utilized in the previous
experiments.
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Figure 5.1. Visualization of scores outputted by the CNN-T x classifier and the CNN-¢x clas-
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sifier. The score of the combined classifier CNN-T x + ¢x is encoded in color. Every point
in the graph is one testing instance (i.e. image from a test set of Pascal VOC 2007 image
classification challenge). The positive instances are plotted as "+ signs and negative ones as
circles. The top plot (a) shows the situation for the classifiers learned for the ”diningtable”
class the plot (b) shows the ”pottedplant” class.



5.3. Image classification experiments

Class | CNN-S-éx [7] | CNN-S-Tx pOCSN Sﬂgfﬁf;;h
aero 92.3 87.1 92.5 | 92.6 | 92.6
bicycle 86.1 84.7 86.2 | 86.3 | 86.3
bird 88.3 87.5 88.8 | 88.9 | 88.9
boat 88.5 84.7 88.1 | 88.3 | 88.3
bottle 42.5 41.3 42.7 | 43.7 | 43.7
bus 78.9 76.2 78.6 | 787 | 78.7
car 89.7 88.7 89.9 | 89.9 | 89.9
cat 88.5 86.7 88.8 | 88.9 | 88.9
chair 62.6 63.4 63.5 | 64.0 | 64.0
dtable 71.6 72.9 73.7 | 74.6 | 74.6 |
cow 67.9 65.8 68.1 | 68.1 | 68.1
dog 85.1 83.7 85.3 | 85.8 | 85.8
horse 89.4 88.5 89.9 | 90.2 | 90.2
mbike 82.6 80.0 82.3 | 82.5 | 825
person 93.8 94.2 94.2 | 94.4 | 94.3
pplant 54.7 54.9 56.5 | 56.8 | 56.8
sheep 79.2 77.4 79.6 | 80.0 | 80.0
sofa 68.5 66.3 68.9 | 69.2 | 69.2
train 93.5 92.5 94.0 | 94.0 | 94.0
tv 74.0 71.4 74.7 | T4.7 | 74.7
mAP 78.9 77.4 79.3 | 79.6 | 79.6

Table 5.2. Comparison between the CNN-S-¢x and CNN-S-T x classifiers, which is a Fisher
Kernel based classifier derived from the CNN-S network. The classifier that combines scores
of CNN-S-¢x and CNN-S-T x is denoted CNN-S-¢x + Y x and its results are also in the table.
Three nonlinear kernels (poly, rbf, tanh) were compared in the case of CNN-S-¢x + T x.

5.3.4. Feature selection experiments

This subsection contains the results of the experiments that were comparing the per-
formance of the both feature selection techniques proposed in Section 3.3, i.e. the MKL
based supervised feature selection (ML-FGM) and the Mutual information based feature
selection (MI-FS).

The experiments were again concluded using the state of the art CNN model from
[7] - CNN-S. This time the pipeline that uses solely Fisher Kernel based features was
tested (i.e. no combined classifier was employed).

To compare the quality of selected features the performance of the pipeline that uses
the T x compressed by both of the methods is evaluated. For each method four feature
selection experiments were concluded, such that every time the dimensionality of the
features is reduced by the factor of 10!, 102, 103 and 10* (the original dimension of
the Tx features is ~ 103 x 10%). After performing the dimensionality reduction the
compressed features were fed to the SVM solver. The results of the aforementioned
experiments are presented in Table 5.3.

The first apparent conclusion from this set of experiments is that the mutual infor-
mation based feature selection approach performs much worse than the multiple kernel
learning method. This observation is quite expected, since the mutual information
based approach does not take into account correlations between individual features and
treats them independently. Also the MKL based method optimizes a objective function
which is very close to the one that is used in the original SVM learning algorithm, thus
giving the final SVM classifier a set of features that are tailored for the problem which
is solved.
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5. Experiments

CNN-S-TEEM dimensionality decrease factor

Class | CNN-S-¢x 1 10% 103 102 10
nocompr. | MI. MKL MI MKL MI MKL MI MKL
aero 92.3 87.1 68.5 | 89.1 | 909 | 91.1 | 91.8 | 91.9 | 92.8 | 92.6
bicycle 86.1 84.7 154 | 80.6 | 73.0 | 83.5 | 84.4 | 85.1 | 86.2 | 86.1
bird 88.3 87.5 70.4 | 864 | 8.5 | 874 | 88.0 | 88.1 | 89.1 | 88.6
boat 88.5 84.7 583 | 824 | 84.7 | 85.8 | 88.0 | 87.7 | 89.0 | 88.4
bottle 42.5 41.3 3.8 | 388 | 383 | 423 | 414 | 446 | 433 | 45.2
bus 78.9 76.2 62.0 | 729 | 71.2 | 76.5 | 79.1 | 78.8 | 80.0 | 79.7
car 89.7 88.7 80.1 | 87.4 | 85.5 | 89.2 | 89.2 | 89.7 | 90.2 | 90.2
cat 88.5 86.7 53.2 | 84.8 8.1 | 87.7 |87.7| 879 | 8.3 | 8.3
chair 62.6 63.4 376 | 594 | 514 | 62.2 | 60.6 | 62.6 | 63.1 | 63.9
cow 71.6 72.9 13.7 | 572 | 54.7 | 65.0 | 67.4 | 67.2 | 69.1 | 68.7
dtable 67.9 65.8 5.0 | 689 | 56.7 | 73.8 | 68.9 | 749 | 73.5 | 75.5
dog 85.1 83.7 171 81.4 | 749 | 842 | 831 | 8.1 | 85.9 | 85.8
horse 89.4 88.5 427 | 85.5 | 83.2 | 83.6 | 884 | 89.6 | 90.4 | 90.1
mbike 82.6 80.0 53.7 | 76.1 | 73.7 | 81.0 | 82.6 | 82.7 | 83.2 | 83.3
person 93.8 94.2 7431 929 | 90.0 | 939 | 934 | 941 | 94.4 | 94.4
pplant 54.7 54.9 155 | 478 | 35.7 | 53.1 | 529 | 549 | 56.2 | 56.8
sheep 79.2 77.4 207 | 734 | 693 | 779 | 775 | 788 | 79.8 | 79.6
sofa 68.5 66.3 50 | 642 | 53.9 | 684 | 64.6 | 69.0 | 69.3 | 70.1
train 93.5 92.5 66.7 | 91.0 | 8.7 | 92.7 | 93.0 | 93.2 | 93.6 | 93.6
tv 74.0 71.4 53.3 | 71.0 | 59.7 | 748 | 73.1 | 75.7 | 749 | 75.3
mAP 78.9 77.4 409 | 746 | 703 | 78.0 | 77.8 | 79.1 | 79.6 | 79.8

Table 5.3. The results of the comparison between the ML-FGM and MI-FS feature selection
methods.

One very interesting observation is the fact, that MKL based feature selection actu-
ally improves the performance of the CNN-Y x by a substantial amount of 2.4 mAP
points (CNN-S-Tx with no compression vs. CNN—S-Tf(GM with 10 times compressed
features). This could be the result of removing noisy features from the training set.
Note that the result of 79.8 mAP points is actually better than the performance the
original CNN-¢x network, which uses neuron activations as features.

The conclusion of the feature selection experiments is that the MKL based feature
selection method gives surprisingly good results. From Figure 5.2 it is possible to
see that the dimensionality of the Fisher Kernel based features Tx could be
decreased by the factor of 10° while obtaining performance superior to the
pipeline that uses uncompressed Yx features. Also when the dimensionality
of the T x features is decreased 10 times, the performance of the CNN-S-T?GM
pipeline is actually superior to the original CNN-S-¢x, which uses neuron
activities as image features, with the difference of almost 1mAP point.

Late fusion with MKL compressed features

The observation from the previous section motivated the experiment where the classifier
scores of the Tf(GM features 10 times compressed using ML-FGM algorithm are used in
combination with the scores outputted by the CNN-S-¢x classifier. Similar to Section
5.3.3 the scores were combined using the non-linear polynomial kernel.

The final result was 79.8 mAP which is slightly better than the CNN-S-¢x + Tx
classifier’s 79.6 mAP. However the performance is the same as the best result from the
previous section (10 times compressed Tf(GM features using ML-FGM).
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5.3. Image classification experiments

The intuition that the improved CNN—S—T?}GM classifier would also improve the
results of the combined classifier is thus not confirmed by this experiment.

Analysis of selected features

Because each dimension of a Fisher Kernel based feature vector corresponds to a deriva-
tive of a parameter coming from a particular layer of the CNN architecture, it is inter-
esting to analyze from which layers the selected features come from.

The CNN-S network consists of 5 convolutional layers that are denoted convl, ...
convd, three fully connected layers above them fc6, ..., fc8 and one layer on the very
top that outputs the value corresponding to the pseudo-loglikelyhood evaluated at given
input image X. All these layers contain parameters, who’s derivatives evaluated at
point X form the final Fisher Kernel based feature vector. The series of pie charts
in Figure 5.3 and Figure 5.4 depicts how many features were selected by ML-FGM
and MI-FS from each layer for different settings of the dimensionality decrease factor.
Note that because each layer contains different amount of parameters the number of
selected features is always normalized per layer by the total number of parameters in
that particular layer.

The charts show that the pseudo-loglikelyhood layer seems to be the most important
one. This is quite expected, because the topmost layer typically contains the most
abstract information that is the most suitable for making final classification decision.
It is interesting that the lower fully connected layers are not as important as the topmost
one. Also there is a not negligible portion of derivatives with respect to the parameters
of the convolutional layers present in the set of selected features. This seems unexpected,
because the lower convolutional layers typically contain simple gabor-like filters [23]
which do not carry much information about the complex structure of object instances
that are being detected by the pipeline.

The comparison between the sets of selected features by MI-FS and ML-FGM shows
that MI-FS typically goes for all the features in the topmost layer, which carry the
most complex information. However because MI-FS neglects the dependencies between
features and treats each feature dimension independently, the lower layers that typically
do not contain enough information for making classification decision are not selected by
MI-FS. This seems like the main reason why MI-FS method is so inferior to ML-FGM,
since smaller perturbations in the lower layers in combination with the higher level
semantic information from the top CNN layer seems to improve the resulting classifier
performance.

The important thing to mention here is that the experiment in this section assumes
that the number of selected features that come from a given layer is proportional to the
importance of the derivatives of the parameters located in that layer. This does not have
to be necessarily true for single dimensional features that contain a lot of information
by themselves and their sole values are sufficient to make complex decisions, thus their
amount does not say anything about their importance.

False positive / true positive images

Figure 5.5 contains the set of some highest ranked false positive images. Figure 5.6 on
the other hand contains some examples of the highest scoring true positive images. The
classification pipeline that was used to output these examples was the CNN—S—T?;}GM
classifier with the dimension of the feature vectors decreased by the factor of 10 using
the MKL feature selection method.
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Figure 5.2. The plot that shows the performance of the ML-FGM and MI-FS feature selection
methods as a function of the dimensionality decrease factor. Note the logarithmic scale of
the ”x” axis.

5.3.5. Early fusion experiments

Another set of experiments was evaluating the performance of the pipeline that classifies
the concatenated ¢x and Y x descriptors (i.e. the early fusion combination explained
in Section 4.1.3). Furthermore the size of Tx descriptors derived from CNN-S was
again decreased by utilizing the better of the two feature selection methods according
to the experiments concluded in the previous section (i.e. using the MKL based feature
selection). The summary of the experiment is in Table 5.4.

The classifier which learns the concatenations of the CNN-S neuron activities with the
Fisher Kernel based features extracted from the CNN-S network is termed CNN—S—Tf(GM &ox.

After taking a look at the results, it is obvious that the early fusion also improves
over the classic CNN-S-¢x network, however the performance is inferior to the CNN-
FK classifier that uses 10 times compressed Fisher Kernel based features. The best
result of 79.7 mAP is actually obtained once the CNN-FK features that are appended
to the CNN-S neuron activations are not compressed at all.

5.3.6. Classification pipeline run-time analysis

The following section discusses the speed of the best performing image classification
pipeline which is CNN—S—TQGM with dimensionality reduction factor equal to 10 (79.8
mAP).

The classification times were measured on a cluster node equipped with Intel Xeon
E5-2630 CPU. Note that although it is a common practice, we did not use a GPU for
obtaining the CNN neuron activities or FK based features.

Mean image processing time measured on a subset of test images is 1.7 sec. This
includes obtaining the CNN-FK features together with their scoring using the K sets
of learned SVM weights. The whole time is in fact spent on extracting the image
signatures. The overall SVM scoring time is below 0.1 seconds. Note that the feature
extraction time is independent of the number of classes K, thus it is expected that the
method scales very well with increasing K. More exactly the SVM scoring time has
complexity of O(K D), where D stands for the descriptor dimension. The time that is
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Figure 5.3. Features selected by ML-FGM. Pie charts showing the distribution of selected fea-
tures across the individual layers of the CNN-S network. Charts (a), (b), (c), (d) correspond
to the setting with the dimensionality decrease factor equal to 10, 100, 1000 and 10 000
respectively. The features were selected by the ML-FGM algorithm. Note that the layers
who’s portion was below 1% were not included in the charts.
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Figure 5.4. Features selected by MI-FS. Pie charts showing the distribution of selected features
across the individual layers of the CNN-S network. Charts (a), (b), (c), (d) correspond to the
setting with the dimensionality decrease factor equal to 10, 100, 1000 and 10 000 respectively.
The features were selected by the MI-FS algorithm. Note that the layers who’s portion
was below 1% were not included in the charts.
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Figure 5.5. Images of highest ranked false positive images for some classes from the Pascal
VOC 2007 classification challenge test set. The images were scored using the CNN—S—T§GM
classifier with the features compressed by the factor of 10 using the MKL based feature
selection method.

tvmonitor

Figure 5.6. Images of highest ranked true positive images for some classes from the Pascal
VOC 2007 classification challenge test set. The images were scored using the CNN-S-TE¢M
classifier with the features compressed by the factor of 10 using the MKL based feature
selection method.

39



5. Experiments

CONN-S-YECM &g«

Class Dimensionality reduction
1 (no compression)  10* 10 10 10t
aero 92.5 92.5 | 92.1 | 92.0 | 92.2
bicycle 86.5 86.2 | 85.5 | 85.7 | 85.9
bird 88.8 88.7 | 88.2 | 88.1 | 884
boat 88.9 88.8 | 87.6 | 87.7 | 88.5
bottle 44.1 44.1 | 41.8 | 42.4 | 43.7
bus 79.6 79.6 | 78.3 | 788 | 794
car 89.9 90.1 | 89.7 | 89.9 | 89.9
cat 88.8 88.6 | 88.1 | 88.6 | 88.5
chair 63.5 63.4 | 63.1 | 63.1 | 63.0
cow 68.1 68.6 | 65.4 | 67.1 | 67.7
dtable 74.9 74.6 | 742 | 74.8 | 74.6
dog 85.6 85.6 | 85.1 | 85.0 | 85.3
horse 90.1 90.0 | 89.2 | 89.7 | 89.8
mbike 83.1 83.3 | 82.5 | 82.9 | 83.0
person 94.1 94.2 | 93.9 | 94.1 | 94.1
pplant 57.2 56.4 | 54.5 | 55.1 | 55.4
sheep 80.0 79.4 | 78.0 | 79.0 | 79.1
sofa 69.2 69.2 | 69.0 | 69.1 | 68.8
train 93.9 93.7 | 93.8 | 93.6 | 93.5
tv 75.3 75.0 | 75.5 | 75.1 | 75.3
mAP 79.7 79.6 | 79.3 | 79.1 | 78.8

Table 5.4. The results of the early fusion experiments on the Pascal VOC 2007 image classifi-
cation challenge. See text for the description of individual classifier settings.

needed to score one class (i.e. performing the dot product between Tﬁ'}GM and vector
of weights wy) is ~ 0.004 sec, thus it should be possible to apply 250 different linear
SVM models per second.

Note that the decrease of D (which could be achieved by setting different dimension-
ality reduction factors) is accompanied with the proportional reduction of SVM scoring
times. Thus the time that the SVM part takes could be completely neglected once the
dimensionality decrease factor is set to the value of 100 and more, while decreasing the
performance by only a small amount.

The comparison of the speed of CNN —¢x and CNN —gbf(GM is biased in favor of the
classic CNN architecture CNN — ¢x. The standard feed-forward pass takes around
0.15 seconds per image which is roughly 10 times faster than the extraction of the
pseudo-loglikelyhood gradients. The SVM scoring part is very fast and in comparison
with the CNN processing time is again negligible.
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5.4. Object detection experiments

5.4. Object detection experiments

Since the experiments in the previous section have shown how to compress the CNN-FK
features such that they form a very compact codes with their dimensionality significantly
reduced, it is further possible to use them for the object detection task of Pascal VOC
2007.

The detection pipeline is described in detail in Section 4.2. Again in this experi-
ment, the network that was used was CNN-S. The Tx features were compressed by
the MKL based feature selection method to decrease their dimension by the factor of
one thousand?. The final dimension of the CNN-S descriptor ¢ x concatenated with the
compressed Tf(GM vector is ~ 10°.

5.4.1. Reference detection system

The detection system that uses solely the CNN-S network features without appending
the Fisher Kernel based vectors is denoted DET-CNN-S-¢x. Note that this network
is basically equivalent to the state of the art detection method of Girschick et.al. [19].
The difference is in the used CNN. Here the architecture has more parameters, thus
should produce better results.

Another important remark here is that the CNN-S network is trained on the ImageNet
classification task and no fine-tuning is employed. Thus the reader of this thesis should
compare all the results with the mAP achieved by the non-finetuned network in [19].
This means that the performance of the baseline detection method [19] is 46.2
mAP.

Also because in [19] it has been shown that the features coming from the first (instead
of last) fully connected layer actually give much better performance, the approach is
adopted in this thesis and as the CNN-S features ¢x, the neuron activations from the
first (instead of last) fully connected layer are used.

5.4.2. DET-CNN-S-¢x vs DET-CNN-S-TEM & oy

The detection pipeline proposed in this thesis (and explained in Section 4.2) is termed
with abbreviation DET-CNN-S-YE¢M &gy The reimplementation of [19] with differ-
ent CNN architecture (CNN-S from [7]) is named DET-CNN-S-¢x. Table 5.5 compares
the results of these two pipelines. Also the results of the reference method [19] are in-
cluded.

The results show that in terms of mAP the DET-CNN-S-¢x pipeline wins over the
proposed DET—CNN—S—T?GM &px by a small amount of 0.1 mAP. However the pro-
posed pipeline is able to surpass DET-CNN-S-¢x by more than 2 AP points on some
classes (tv, motorbike, sheep and cat). R-CNN is slightly inferior due to the lower-
capacity convolutional neural network used in their experiments.

The reason why the appended TffGM features do not improve the results by the same
amount as it happened in the image classification task could be the fact that the set of
selected features is optimized for the image classification task.

5.4.3. Detection pipeline run-time analysis

As it happens in the case of the proposed classification pipeline, the detection system’s
speeds scales well with increasing number of classes K. This is mainly due to the fact

2 Recall that the set of selected features is optimized on the classification task.
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5. Experiments

Class | R-CNN [19] | DET-CNN-S-¢x | DET-CNN-S-YXM& o«
aero 59.3 61.5 56.9
bicycle 61.8 67.7 66.8
bird 43.1 40.7 39.7
boat 34.0 36.4 35.7
bottle 25.1 20.9 21.5
bus 53.1 61.3 58.7
car 60.6 64.1 64.5
cat 52.8 59.7 61.4
chair 21.7 23.8 24.6
cow 47.8 55.2 52.4
dtable 42.7 41.9 39.6
dog 47.8 54.3 54.2
horse 52.5 58.7 59.5
mbike 58.5 62.3 65.5
person 44.6 47.7 46.9
pplant 25.6 19.9 21.6
sheep 48.3 49.8 53.4
sofa 34.0 38.9 38.1
train 53.1 52.4 49.7
tv 58.0 59.9 62.8
mAP 46.2 48.8 48.7

Table 5.5. The performance of the proposed object detection pipeline concluded on the Pascal
VOC 2007 object detection challenge.

that there is always a fixed amount of descriptors that have to be extracted from each
image (2000 ¢x and 100 Y x features).

The mean processing time per image for the proposed pipeline DET—CNN—S—T?GM &px
is 378.8 sec on CPU. The state of the art architecture DET-CNN-S-¢x consumes 218.4
sec per image in average. The SVM scoring and non-maxima suppression times are
again negligible. All the time is spent on extracting CNN and CNN-FK features and
obtaining a set of tentative bounding boxes (~ 20 seconds per image).

The bounding box extraction phase is relatively slow, however there have already
been proposed methods that surpass the used selective search regions from [38]. For
instance by employing [8] the set of 2000 tentative bounding boxes that have the same
quality as [38] could be obtained in 0.01 seconds per image.

Note that 5 minutes per image could seem like a very high number, however we note
that in the case of detection systems, it is a very common practice to move all the
computations on the GPU, which typically speeds up the extraction times by the factor
of ~ 10. Another important thing to mention here is that recently a new method [20)]
that speeds up the extraction of the CNN features from a set of tentative objects in an
image by a large factor of 64 was proposed. If the similar improvement was done for
extracting the CNN-FK features, the extraction times would be around 5 sec per image
on CPU.
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6. Conclusion

In this thesis a novel method for extracting Fisher Kernel based statistics from convo-
lutional neural networks was presented. It has been exhaustively tested on the Pascal
VOC 2007 image classification and also object detection challenge with positive results.

We have shown that an image classification pipeline that is built on top of the Fisher
Kernel based feature vectors is able to produce results comparable with current state
of the art methods. It is further shown that the proposed approach improves the
performance of the standard CNN image classification architecture. This is achieved
by utilizing a classifier that combines the scores outputted by the pipelines that use
Fisher Kernel based features and CNN neuron activations of the last fully connected
layer.

The clear downside of the proposed FK based features is their high dimensionality.
Several compression techniques were tested as a potential solution to this problem.
In this thesis we evaluated the performance of three different methods for decreasing
the descriptor size - mutual information based measures, binarization and Sparse SVM
learning algorithm (SSVM).

The SSVM turned out to be the best performer. The used SSVM solver is an improved
version of the MKL based feature generation machine [37]. The proposed improvement
consists of enabling the use of the original algorithm in the multi-label classification
tasks such as image classification. A surprising result was that the FK based features
compressed using this feature selection algorithm surpass even the standard CNN neu-
ron activations coming from the last fully connected layer. Furthermore it has been
shown that it is possible to decrease the descriptor dimensionality up to the factor of
103 without getting below the performance of the uncompressed features.

The MKL based feature selection algorithm also gave insights on which dimensions
of the FK based feature vectors are important for making classification decisions and
visualizations of the distributions of the most discriminative features were presented.

Several other classification pipeline architectures were tested, including early and late
descriptor fusion for many different settings of the dimensionality decrease factor.

The last contribution was the evaluation of performance of an object detection
pipeline that uses the newly proposed features. It has been shown that the proposed
features improve the performance of the detector on some of the classes. In general the
proposed detector performs on par with the current state of the art architecture.

6.1. Future work

An interesting topic for the further research would be to try the CNN-FK features
derived from the CNN that is used in [7] and gives impressive result of 82.4 mAP.
This is currently the highest reported result of Pascal VOC 2007 image classification
task. We have already demonstrated that the CNN-FK features produce performance
superior to the CNN neuron activities for two strong performing network architectures,
thus it would be convenient to test our method on the currently best performing system,
which unfortunately is not publicly available.

It would also be worth to explore the use of more aggressive descriptor compression
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6. Conclusion

techniques that would decrease still relatively high memory footprint of the used CNN-
FK features. The supervised dimensionality reduction method from [36] was already
tested, however it seems that Pascal VOC 2007 is too small dataset since the method
overfits on the training set.
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A. Evaluation of average precisions

The performance of the proposed methods was evaluated on the Pascal VOC 2007
dataset [15]. The following two sections describe the evaluation protocol for the image
classification and object detection tasks.

A.1l. Image classification evaluation

In image classification, each image {I1, ..., I;,} is labeled with a subset of ground truth
labels {1,..., K}. The fact the task is defined as a multilabel problem means that
classical evaluation using the confusion matrices is not possible. Instead, the image
classifiers are obliged to output a score measure, that expresses the probability of each
class being present in an image (i.e. the higher the more likely it is presence of given
object class).

Once each image is labeled by these K probabilities, the evaluation may start. For
each class separately the images are sorted in descending order according to the assigned
class score measure. The precision-recall curve is then computed using the ground truth
labels for each of the K orderings. The K AP metrics are then computed by obtaining
a mean of precisions that are observed every time a new positive sample is recalled.

The final mAP metric is a mean over APs of each class.

A.2. Object detection evaluation

The object detection task evaluation protocol is very similar to the image classification
one. The classifier is again required to output K sets of bounding boxes together with
the score measure, that estimates the probability of presence of an object from given
class inside each bounding box.

Fach of the K sets of bounding boxes is then sorted according to the score measure.
The detections are then labeled as true or false positives depending on their overlap
with ground truth objects (for definition of the overlap measure see the next section).
To proclaim a bounding box as a true positive detection its maximum overlap with a
ground truth annotation inside an image must be higher than 0.5. Note that subsequent
true positive detections of the same object are not counted and are regarded as false
positive redundant detections.

The PR curve computation followed by the evaluation of the AP for each class then
follows. Again, mAP is the mean of the K obtained AP measures.

A.2.1. Overlap measure

The measure of overlap between two bounding boxes is defined as the intersection-
over-union metric. More precisely it is the area of the intersection of the two regions
divided by the area of their union. The outputted number is in range (0,1), where 1
means identical bounding boxes and 0 means that the bounding boxes do not share any
common part.
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B. Contents of the enclosed DVD

./thesis.pdf The electronic version of the thesis.

./pipe/ Contains examples of the two detection and image classification pipelines pro-
posed in this thesis (see ./pipe/README.txt for details).

./pipe/data/imgs/ Example images from VOC-2007 test set.

./pipe/data/networks/ Pretrained image classification and object detection models.

./pipe/helpers/ A set of MATLAB helper functions.

./pipe/SelectiveSearchCodelJCV/ The code that implements the object proposal method
from [38].
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