

2

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Masters thesis

Real-time water surface simulation with user interaction
using Wave particles

Bc. Daniel Mikeš

Supervisor: Ing. Jǐŕı Bittner, Ph.D.

Study Programme: Open Informatics, Masters program

Field of Study: Computer graphics

January 5, 2015

iv

v

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on January 5, 2015 .

vi

Abstract

When rendering large bodies of water in real-time an efficient method is required to model
water waves. This thesis describes a method for real-time interactive generation of such
waves. We use the wave particle method to describe wave propagation in a fluid medium.
The method allows to simulate interactions of water with general shaped rigid bodies in
real-time. We present a GPU implementation of the method and show results in scenarios
such as open ocean waters or pools with water boundaries. Finally we compare the tested
result to the wave propagation in a real life.

Abstrakt

Při vykreslováńı velkých vodńıch ploch v reálném čase, je zapotřeb́ı efektivńı metody k
reprezentaci tohoto jevu. Tato diplomová práce popisuje metodu pro interaktivńı simu-
laci vodńıch ploch pomoćı metody vlnových částic v reálńım čase. Tato metoda umožňuje
simulovat interakci vody s pevnými tělesy obecných tvar̊u. Tato práce představuje GPU
implementaci této metody a demonstruje výsledky ve scénář́ıch jako např. otevřené mořské
hladiny nebo bazény s ohraničeńım. Závěrem porovnává výsledky testováńı se š́ı̌reńım vln
v reálném životě.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Subject of this thesis . 2
1.3 Thesis structure . 2

2 Theoretical background 3
2.1 Volume based fluid simulations . 3

2.1.1 Navier-Stokes equations . 4
2.1.2 Lagrangian approach . 4
2.1.3 Eulerian approach . 6
2.1.4 Hybrid methods . 6

2.2 Heightfield representation . 7
2.2.1 Spatial domain . 7

2.2.1.1 Gerstner Waves . 8
2.2.2 Spectral domain . 9

2.3 Dynamic properties of water body . 10
2.3.1 Wave propagation . 10
2.3.2 Water depth . 11
2.3.3 Breaking waves . 13
2.3.4 Continuous flow . 13
2.3.5 Water wakes . 14

2.4 Optical properties of water . 14
2.4.1 Water caustics . 14
2.4.2 Reflection and Refraction . 15
2.4.3 Godrays . 15
2.4.4 Fresnel term . 15
2.4.5 Water colour . 16
2.4.6 Whitecaps . 17

2.5 Fluid interaction . 17
2.5.1 Volumetric simulations . 17
2.5.2 Heightfield based simulations . 18

3 Water Simulation with Wave Particles 19
3.1 Motivation . 19
3.2 Wave equation . 19

ix

x CONTENTS

3.2.1 1D Wave equation . 20
3.2.2 Solution to the wave equation . 20
3.2.3 2D Wave equation . 21

3.3 Wave particles . 22
3.3.1 Wave particles for 1D wave . 22
3.3.2 Wave particles for 2D wave . 23
3.3.3 Radial deviation function . 25
3.3.4 Longitudinal waves . 26
3.3.5 Wave particle properties . 27
3.3.6 Wave particle subdivision . 29

3.3.6.1 Subdivision criterion . 30
3.3.6.2 Creating new wave particles 31

3.3.7 Water boundary . 33
3.4 Object to fluid interaction . 36

3.4.1 Wave-object collision . 36
3.4.2 Wave generation . 37

3.4.2.1 Wave position . 37
3.4.2.2 Wave propagation . 38
3.4.2.3 Wave volume . 39

3.4.3 Wave particle generation . 39
3.5 Fluid to object interaction . 40

3.5.1 Buoyancy force . 40
3.5.2 Dynamic forces . 41

4 Used technologies 43
4.1 Other dependencies . 43
4.2 OpenGL library . 43
4.3 GLSL . 44

5 Implementation 45
5.1 Application structure . 45
5.2 Wave particle method . 46

5.2.1 Buffer size . 47
5.2.2 Particle data structure . 47
5.2.3 Wave particle simulation . 49

5.2.3.1 Propagation routine . 49
5.2.3.2 Subdivision and delete routine 50
5.2.3.3 Particle generation routine 51

5.2.4 Wave particle reflection . 52
5.3 Filter particles . 53
5.4 Water to object interaction . 54

5.4.1 Buoyancy force . 55
5.4.2 Drag and lift force . 55
5.4.3 Water-object collision . 56
5.4.4 Parallel reduction . 56

5.5 Object to water interaction . 56

CONTENTS xi

5.6 Floating object . 58

6 Results 61
6.1 Simulation scenarios . 61
6.2 Quality testing . 61
6.3 Performance testing . 61
6.4 Volume testing . 63

7 Conclusion 71
7.1 Future work . 71

A List of abbreviations 85

B User manual 87
B.1 Controls . 87

C DVD content 89

xii CONTENTS

Chapter 1

Introduction

One of the goals of computer graphics is to capture and reproduce real life phenomena as
truly as possible. Water has a crucial role in life and people are naturally fascinated with it.
Faithfully water is a very common object in computer graphics. Due to high complexity of
dynamical and optical properties of fluids, water rendering is still an open challenge.

Displaying open water scenes is not necessarily about the optical properties of water and
the rendering part of the process. Phenomena as wind or motion of an object in the water
volume can create waves, foam, water sprinkles and other effects which need to be described
in order to achieve realistic results.

In computer graphics there is always a trade-off in the manner of computational cost and
realism of final image. Today’s methods for modelling and rendering physically correct water
are offering high level of realism. On the other hand these methods are also very complex
and cannot be simply applied in real-time graphics. Thus it is important to distinguish
between real-time and offline methods.

Since the goal is to obtain images of real scenes it is necessary to take interaction with
the environment into account. The major drawback of offline approaches is the fact that it
is not possible to perform interaction with a user on the fly. On the other hand there are
different requirements on computational time and the quality of the result in different simu-
lation scenarios. When we are trying to achieve realistic results in terms of fluid simulation,
representation of fluid is also important part of the application.

1.1 Motivation

In real-time applications such as video games it is crucial that all the computations are fast
enough to be computed in a plausible frame rate, so both the rendering and the simulation
stages should be fast. In general lots of computationally complex tasks can be pre-computed
and then used later on. Even measurements of real life phenomena can be used to speed up
the calculations. The problem is that some applications may also require user interaction
with the object in the water volume which can cause some unpredicted calculations meaning
that pre-computation is not possible in this scenario.

1

2 CHAPTER 1. INTRODUCTION

For reasons mentioned above we usually need to settle for approximate solutions, which
means both the rendering and the simulation step is often not physically correct but offers
reasonable results.

Figure 1.1: Results of out application.

1.2 Subject of this thesis

This thesis investigates the Wave particle method for water wave generation introduced by
Yuksel et al. in 2007 [YHK07] and the research done in the field of real-time methods for
wave generation. The presented method describes a real-time simulation of water surface
with user interactions. In contrast to the original article we will implement this method fully
on the GPU (the original article describes CPU implementation in some parts).

We will mainly aim at open ocean scenes with no boundaries, but we will also focus on
different scenarios. For example closed water areas such as swimming pools where waves can
reflect off of a solid boundary. Another type of scenes are near-shore areas, where breaking
waves can be found. We will also implement method for water surface rendering and discuss
various effects which arise in connection with fluid dynamics. Different approaches used in
both real-time and offline methods will be discussed.

1.3 Thesis structure

Thesis is divided into three main parts. In chapter 2 we will discuss water representation in
computer graphics simulations. In the same chapter we depict main phenomena which occur
in real life water bodies. Chapter 3 describes the wave particle method in detail. Chapter
4 briefly summarizes used technologies. Consequently chapter 5 describes implementations
steps. And finally chapter 6 shows the results of our application.

Chapter 2

Theoretical background

In this chapter we will describe the theory behind the water wave distribution and the physics
of fluids. We will also introduce main problems in this field.

Simulations are usually an imitation of a real life phenomenon. Most simulations tent to
be simplified or approximated forms of some physical law or measurement. It is important
to understand the physical meaning of the phenomenon to develop a suitable simulation.

There are two distinct approaches of how the fluids are represented in computer graphics.
We will describe features, advantages, and drawbacks of these methods.

2.1 Volume based fluid simulations

Volume representation is based on physical nature of fluids where every piece of fluid volume
interacts with its surroundings. This approach tries to imitate all the properties of real life
water phenomenon such as water flow (velocity propagation in the volume), surface tension
or heat propagation. In computer graphics water volumes have to be discretized in order to
be stored in a memory. Different techniques use a different way of discretization.

Eventually results obtained from a volume based simulation are presented. Rendering of
these results can be done by creating a boundary representation of the volume data. This
step is only a presentation of the results and it is not part of the simulation process. In
contrast with boundary representation, volume based methods capture information in each
cell of the volume. Volume data can be directly rendered by a ray marching method, where
no surfaces are created.

Due to the high complexity of 3D fluid volumes, these methods are often used only in
offline computations. Even in offline methods resources are limited, which is the reason why
volume based methods are usually used for detailed but limited simulations such as shallow
waters or in differently restricted water bodies e.g. liquid in a bottle, swimming pool etc.

Volume base methods are also suitable for depicting dynamic effect like splashes, water
drops or breaking waves.

3

4 CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Navier-Stokes equations

Navier-Stokes equations (NSE) describe physics of many phenomenon we can observe in a
real life. NSE are used mainly for computing flow in the fluid volume. It has a practical use
in aerodynamics, weather forecasting and oceanography.

∇u = 0 (2.1)

∂u
∂t

+ u · ∇u = −∇p
ρ

+ µ
∇2

ρ
+ f

ρ
(2.2)

Where u = (ux, uy, uz) is the fluid velocity, t is the time, p is the pressure, ρ is the fluid
density, µ is the fluid viscosity, f is a external force (e.g. gravity), ∇ represents gradient and
is defined as ∇u = (∂ux

∂t ,
∂uy

∂t ,
∂uz
∂t), and ∇2 is the Laplace operator.

A usual case is to capture incompressible flow which can simplify NSE with a constraint
of constant density as shown in equation 2.1. Nevertheless compressible fluids can also be
captured. In terms of modelling water flow for computer graphics there is no need for using
the compressible fluid schema in a standard simulation environment. Phenomena such as
fluid in a strong mechanical vibration requires using compressible schema e.g. air propagation
in an environment with a sound source.

In theory Navier-Stokes equations are still not fully understand. The problem of the
existence of a smoothness solution is even one of the Millennium problems. In addition
NSE is a non-linear equation due to convective acceleration, which is in contrast to local
acceleration not dependent on time but on the position of the fluid element. Convective
acceleration arises from movement of a larger set of elements (e.g. molecules) of a fluid. In
equation 2.2 the term u · ∇u is the representation of this acceleration.

Note that the solution of the Navier-Stokes equation is not the position of the volume,
but its velocity. In order to solve the equation we need to ensure the boundary conditions
in a form of velocity interacting with the fluid, e.g. wind above the water.

Due to high complexity of its solution, NSE has to be discretized. There are two dif-
ferent application of NSE that differs in a way of discretization: Eulerian and Lagrangian
approaches. Quantities of Navier-Stokes equation are velocity, viscosity, pressure and den-
sity. These quantities (if not constant) have to be stored in each fluid element of the discrete
domain.

2.1.2 Lagrangian approach

In Lagrangian approach, discretization is performed spatially1 on the mass of the simulated
fluid. Fluid element in Lagrangian method can be seen as a particle representing some part
of the water mass similarly to molecules in real life. Because all the particles quantities are
variable we formulate a function of particle identification pi.

v = f(pi, t)
1Relatively to the fluid volume.

2.1. VOLUME BASED FLUID SIMULATIONS 5

Lagrangian methods are meshfree which means that there is no need for a grid that holds
the fluid as shown in figure 2.1.

Figure 2.1: Illustration of Lagrangian fluid element forming 2D wave.

We can classify methods from the Lagrangian class by the quantity that the particles
hold. Momentum particles2 are used in a method called Smoothed-particle hydrodynamics.
Another approach is to use vortons which are special particles with circular motion and refer
to the fluid vorticity. Besides water simulation, this method is used mainly for simulation
scenarios such as smoke, fire, and explosions.

Smoothed-particle hydrodynamics Smoothed-particles hydrodynamics is a fluid sim-
ulation technique which uses a set of particles. Contribution of the particle quantities are
weighted and summed together based on the spatial distance from each other. There are
also two approaches in the way of smoothing quantities between particles. One way is to
search for actual neighbours and then linearly interpolate the value. The other way is to
perform smoothing base on a kernel function and the smoothing distance of a particle.

This equation quantifies an arbitrary quantity A (e.g. velocity, density) of fluid particle
in the point x in the volume:

A(x) =
∑
j

mj
Aj
ρj
W (|x− xj |, hj), (2.3)

where xj the position, mj is the mass and Aj is the chosen quantity of j-th particle.
ρj is the density associated with the j-th particle and hj is its smoothing distance, and W
represents the smoothing kernel function.

The choice of the smoothing kernel function is arbitrary but it should fulfil certain quality.
It should be a smooth, non-negative, and differentiable function with compact support3. The
compact support is important in order to achieve profitable performance, because the broader
the support is, the more particles is being weighted.

Onderik et al. [OCv13] presented a SPH method improvement with small scale details
such as splashes and foam. They described a technique for improved surface reconstruction
by density normalization resulting into more compact regions of thin water volume. They
also presented a method for faster spatial particle sorting.

2Description of mass and velocity in the volume.
3The function is non-zero at a finite range.

6 CHAPTER 2. THEORETICAL BACKGROUND

2.1.3 Eulerian approach

Eulerian approach discretizes the domain into a spatial4 grid. In Eulerian approach fluid
elements can be seen as a voxel, which contains quantities of the volume. In each cell,
fluid velocity is evaluated and the volume moves from one voxel to another. In contrast
to Lagrangian class positions are fixed in each cell and volume quantities are dependent
variable. In other words chosen quantity can be formulated as a function of position x and
time t as shown in figure 2.2.

v = f(x, t)

Figure 2.2: Illustration of Eulerian fluid cell forming 2D wave.

Advantage of Lagrangian method is that the mass conservation is computed implicitly
compared to Eulerian method where extra computations are necessary. On the other hand
Lagrangian methods need large number of particles in order to develop same resolution as
the Eulerian methods.

Thurey et al. [TRS06] use a combination of 2D and 3D Eulerian grid. 2D grid is used
for representing wave propagation on the surface, 3D grid is used for a limited area centred
at the position of interacting object and it captures drops of water and other more dynamic
changes in the local area.

Due to the fact that Eulerian methods usually need a large grid for plausible simulation
results, there is an effort to use appropriate data structures. Some of these data structures
are discussed in course notes from Bridson et. al [BMF07].

Irving et al. [IGLF06] described a method which uses Eulerian approach to simulate 3D
water volume with a grid cell reduction. On the water surface where most details occur
the grid has a high granularity while in the lower parts of the fluid grid cells are grouped
together. Grid cells are group into vertical stripes with the same horizontal size as the other
cells. This means that the cells have different size in horizontal dimension in order to simplify
the computations.

2.1.4 Hybrid methods

There are methods which do not fit into strict classification. One of them is method presented
by Chentanez et al. [CM10] which combines SPH with an Eulerian method creating a
shallow water simulation in real-time. They aim simulation scenarios like raging river waters,
waterfalls and breaking waves.

4Relatively to the fluid container.

2.2. HEIGHTFIELD REPRESENTATION 7

Raveendran et al. [RWT11] propose a method for preserving uniform particle density in
SPH. They implement a coarse grid which helps distributing values to the particles instan-
taneously.

2.2 Heightfield representation

An effective way to increase simulation performance of large bodies of water is to reduce
the problem from three to two dimensions. In contrast to volume approaches, which store
information needed for the simulation in 3D space, heightfield methods represent only a 2D
surface. Due to this reduction dynamic effects of the water volume are ignored and only the
information about boundary is present.

The surface can then be deformed in the vertical direction in order to model a wave on
the surface to create an illusion of waves propagating through water body. Representation of
a scalar data in a 2D grid is called height field and it is described as a 2D function h(x, y). A
problem arises when we are trying to assign more values to same input parameters conflicting
with definition of a single value function, which is the case of breaking waves or other high
dynamic effects of the water surface.

Simulations using heighfield representation are usually rendered using boundary repre-
sentation of the water surface. Advantage of this approach is the aforementioned domain
reduction and the fact that rasterization process is well supported on GPUs at the hardware
level and thus it is very fast. The drawback of this class of methods is that we do not have
the information about the object’s inner part.

2.2.1 Spatial domain

The goal of the spatial domain methods is to describe water surface geometry in terms of
a set of sinusoidal functions. Motion of the waves is achieved by changing the phase of
individual source sinusoidals. Every wave sinusoidal function represents the contribution the
surface deformation. This exploits the superposition principle mentioned in 3.2.2.

Similar idea originally came from Max [Max81]. He describes the height function y =
h(x, z, t) as follows:

dv(x, t) = y0 +
N∑
i=1

Ai · cos(ki · x− ωit+ ϕi) , (2.4)

where x = (x, z) is the position in the horizontal plane, y0 is the initial water level height,
N number of wave components, Ai is the amplitude, k = (kix , kiz) is the wave vector which
is a horizontal vector pointing in the direction of wave propagation, ωi is wave speed (also
pulsation), and ϕi is the phase of the i-th wave component.

The wave vector is related to the as:

k = 2π
λ
, (2.5)

8 CHAPTER 2. THEORETICAL BACKGROUND

where k = |k| is the wave number and λ is the spatial frequency of the wave component. In
real fluids the ω is somehow related to the wavelength λ. The origin of the relation will be
discussed in 2.3.2.

Since then there was lot of applications of this formula. For instance Chen et al.
[CLW+07] used this approach using shaders and bump mapping to create small ripples
water surface.

Advantage of this approach is that we have control over all wave components and we can
change the waves in the whole spectrum.

2.2.1.1 Gerstner Waves

Gerstner waves is a model of wave in the spatial domain, which depicts waves with sharper
peaks and flatter thoughts as compared to the model proposed by Max described in section
2.2.1.

The effect of blowing wind in combination of existing waves on the water surface can
result into a sharpening of the wave peaks. This is a common effect and can be observed
mainly on deep waters or oceans where circular wave motion is most significant. Circular
motion will be discussed in 2.3.1.

The Gerstner wave model consists of a vertical deviation component h and horizontal
deviation component dh. Even in real life we can observe similar phenomenon of horizontal
waves as shown in 2.3.1. Figure 2.3 depicts the effect of the vertical deviation on the wave.

dv(x, t) = y0 +A cos(k · x− ωt), (2.6)

dh(x, t) = x− k
k
A sin(k · x + ωt), (2.7)

where, dh (dv) is the horizontal (respectively vertical) deviation function, x = (x, z) is
the position on the horizontal plane, k is the wave vector, ω is the wave speed, t is the time,
and A is the amplitude.

Note that the parameters must be set with caution in terms of water wave simulation,
because horizontal deviation my cause undesirable self intersections. For kA < 1 (figure
2.3 left) we can observe that the Gerstner model produces plausible results without self
intersection. A loop is formed on the wave crest if kA > 1 as shown in figure 2.3 right.

We can apply equation 2.7 to a set of wave components similarly to 2.4:

dv(x, t) = y0 +
N∑
i=1

Ai cos(ki · xi − ωit+ ϕi), (2.8)

dh(x, t) = x−
N∑
i=1

ki
ki
Ai sin(ki · xi + ωit+ ϕi), (2.9)

After summing the horizontal deviation for all wave components i (as shown in figure
2.4), self intersection may be present but not visible for the current phase shift configuration.
The choice of parameters which yield ∑N

i=1 kA < 1 will ensure no intersection.

2.2. HEIGHTFIELD REPRESENTATION 9

Figure 2.3: Model of Gerstner wave in 2D. Plausible result (left), the case of exaggerated self
intersection artefact (right). Green line shows original wave without vertical deviation, sharp
red line shows a wave after vertical deviation, and the blue dotted line shows the vertical
deviation. We put the vertical deviation in one image although the horizontal value is the
deviation in vertical axis.

Figure 2.4: Model of Gerstner wave in 2D composed out of 3 components. Original wave
(green), the final wave (red), and the vertical deviation (blue).

2.2.2 Spectral domain

The idea behind spectral domain approaches is to represent water surface from the knowledge
of spectral distribution of waves. Spectral distribution of real water can be measured by spe-
cialized sensors used for oceanographic research. Spectral domain will be then decomposed
to the spatial representation using inverse Fast Fourier transform [DCGG11].

Tessendorf [Tes01] presented a method for simulating ocean water. He uses spectral
domain to describe the water surface. The input spectrum is computed by Gaussian pseudo-
random generator, which generates data that are somehow similar to the frequency domain
of the real waters. We can write down a Fourier transform based representation of the
heightfield:

dv(x, t) =
∑

k
d̃v(k, t) eikx, (2.10)

10 CHAPTER 2. THEORETICAL BACKGROUND

where x is the spatial position in time t, d̃v is the vertical deviation function dv in
frequency domain, and k is the wave vector (wave frequency for each direction of the wave).

Spectral domain methods can produce waves of high level of realism, although the result
depends on the choice of the spectrum. Tessendorf also described a Philips spectrum, which
is a different spectrum suitable for deep water scenes with wind driven waves.

This method produces periodic waves on a patch with a limited horizontal size. Advan-
tage is that we can use reuse this patch by repeating it infinitely creating seamless tiles. On
the other hand one can observe some linearities when the period (patch size) is not large
enough. Additional noise can be used to conceal this undesirable effect. Disadvantage of
spectral domain approaches is that the whole patch must be computed at once. This makes
it hard to locally modify part of the heightfield. Resulting into difficult adoption of some
extensions such as adaptive shallow water wave modification or user interaction with the
generated water.

2.3 Dynamic properties of water body

In this section we will describe some of the main phenomena which occur in real life water
bodies and are necessary part of a convincing simulation.

2.3.1 Wave propagation

Waves can be perceived at the interface between two different media and are mainly created
by wind changes, underwater flows or by some other mechanical force. The wave is defined
by its amplitude, wave length and phase speed. Other parameters like gravity, density and
surface tension also change the behaviour of the wave propagation in a medium.

Waves do not occur only on the water surface. Turbulence in the water appear in the
whole mass and the nearer to the surface the more influence does the turbulence have. This
phenomenon is hard to observe in clean water volumes but is necessary for proper fluid flow
in more complex simulations.

Typical ocean waves with relatively high wavelengths and small amplitudes are sometimes
called surface gravity waves. The name comes from the fact that these kind of waves carry
a lot of mass leading to the wave being affected by gravity more than a small waves. Swell
is a series of waves with low frequencies, which arise from a strong consistent wind blow.
Due to the low frequency these waves can travel very long distances without dispersing. On
the other hand there are small waves created locally on the water surface also called ripples
or capillary waves. Ripples are formed mostly by the wind and fluid surface tension. The
influence of gravity on these waves is almost neglectable.

Circular water motion When observing a water wave we usually think of it as a set
of water particles are going through the volume from the wave source to the place where
the wave disperses. This is a special case called soliton or the wave of translation. In
contrast to that, particles which are part of the wave crest are not necessarily the same
particles which create the wave at the end of its lifetime. Instead water particles move in a
circular trajectory according to the wave parameters. Figure 2.5 demonstrates this effect in

2.3. DYNAMIC PROPERTIES OF WATER BODY 11

a deep water environment compared to shallow water figure 2.6. Note that the ratio between
amplitude and wavelength affects the distance that the fluid particle travels. Figure 2.6 also
explains the creation of breaking waves in shallow water environments.

Figure 2.5: Frames taken from a water particle motion animation in deep waters. A water
particle in a propagating wave in time (from left to right). The orange point is the initial
position of the water particle. Current water particle position is marked by green point.

Figure 2.6: Frames taken from a water particle motion animation in shallow waters.

Horizontal wave Circular motion of the water particles leads to the observation that
water waves consist of two components: traverse waves (vertical deviation) and longitudinal
waves (horizontal deviation). Figure 2.7 demonstrates these components.

Figure 2.7: Illustration of the horizontal wave. Vertical component (left), horizontal compo-
nent (centre), compounded wave (right). Courtesy of [YHK07].

Wave diffraction Wave diffraction is a effect which occur when a wave encounters an
obstacle or a slit in an obstacle where a portion of the wave is suspended by the obstacle
while the other portion of the wave travels further in the propagation direction. After a
part of wave is separated it can be seen that the other part not only propagates in the
origin direction but also diffracts into other directions. Huygens–Fresnel principle explains
this effect so that each wave is also a source of new waves at the same time. Figure 2.8
illustrates this phenomenon. Consequence of the wave diffraction effect is that the waves
can be observed even if the direct path from the source to the receiver is occluded by an
obstacle.

2.3.2 Water depth

Due to the convective acceleration as the depth in the fluid increases the velocity and the
radius of the particle motion decreases. As can be seen in figure 2.9 particles located deeper
in the water appear to have lower frequency which is the result of Doppler effect since the
particle on the surface level travels longer distance.

12 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.8: Wave diffraction after the wave passes the slit. Courtesy of [YHK07].

Figure 2.9 shows the difference between circular motion in deep water environment com-
pared to the shallow waters. We consider shallow water if the distance from the water level
to the ground becomes less than approximately one half of the wavelength.

In shallow waters the circular motion is disturbed by the ground and the particles is
pushed up. This leads to the sharpening wave crests and eventually into wave breaking.

Figure 2.9: Circular motion of under water flows in deep water (left) compared to the shallow
waters (right). The motion of the water particles located deeper inside the water is reduced
exponentially.

Dispersion relation Dispersion relation refers to the dispersion of wave parameter while
the wave is propagating in a medium. This term is rather general and it can describe
relation of arbitrary parameter. For water waves there is a interesting relation between the
wave vector and its magnitude. In other word we describe a relationship between wave
frequency and the propagation speed. For deep waters the relations is

ω(k)2 = gk, (2.11)

where ω is the phase speed, k is the wave number, and g is the gravitational acceleration.
Indirectly we can see that the phase speed varies as the square root of the wavelength.

For shallow water scenarios phase speed dispersion relation is described as

ω(k)2 = gk tanh(kh), (2.12)

2.3. DYNAMIC PROPERTIES OF WATER BODY 13

where h is the height of the water column from the ground to the water surface.
In contrast to gravitation waves capillary waves neglect the effect of the gravity and its

dispersion relation describes the influence of surface tension.

ω(k)2 = σ

ρ+ σ
|k|3, (2.13)

where σ is the surface tension, and ρ is the density.
One of the consequences of the equation 2.11 is that a wave created by a wave super-

position are not necessarily stable in time because each wave with a different frequency has
a different phase speed. This means that waves with higher frequencies have higher phase
speed and will separate from the distributing wave front.

2.3.3 Breaking waves

Breaking waves occur when the turbulations of underwater flows interact with the water
ground and pull the mass up creating a large amplitude. Similar result may by caused by a
strong wind. While the amplitude is increasing the wave crest steepens and a relatively high
and narrow wave becomes unstable in the motion leading to the collapse of the wave crest.

An offline method using Eulerian approach to simulate breaking waves is described by
Mihalef et. al [MMS04]. They have created a tool for interactive modelling of the breaking
wave called slice method. Artist can modify the breaking wave front by modifying a 2D slice
(solving Navier-Stokes equations in two dimensions) of the 3D wave.

Thurey et al. [TMFSG07] presented a real-time method for breaking waves extraction
from animated heightfield. First they locate regions with steep wave fronts and mark them
with line which will generate particles which are connected together. These particle are used
for creating the surface patch on the breaking wave an extension to the basic heightfield
formulation. Particles which hit the surface of the basic heightfield are absorbed and can be
converted into a foam or water drops.

2.3.4 Continuous flow

Continuous water flow is a simulation scenario where water is continuously moving and does
not become stationary. For example raging rivers are one of most discussed scenarios. This
environment is hard to represent using only heightfield simulations because the depth and
steepness of the ground change rapidly resulting into dynamic velocity change in the water
volume.

Eulerian methods described in 2.1.3 are suitable for simulation scenario like rivers. Al-
though there are some methods for river flow simulation using heightfield representation.
These methods add detail to surface in order to create an illusion of a flow and assume flat
ground rather then focusing rivers with more complex profile.

Yu et al. [YNBH09] depicted a method for real-time animation of rivers. They capture a
local velocity field of the river flow considering obstacles in form of 2D convex hull seen from
above. Then particles are uniformly distributed into visible area and are used for texture
advection, which adds detail to the surface according to the velocity flow.

14 CHAPTER 2. THEORETICAL BACKGROUND

Yu et al. [YNS11] tackled simulation of local surface deformation cased by an obstacle
in the river flow. They analyse this phenomenon on real life scenes and address shock wave
effect. They find a starting point in front of the obstacle in the direction of the flow. At this
point a surface is created in order to display ripples which are surrounding the obstacle.

2.3.5 Water wakes

Water wakes are special waves created by turbulence left by object moving in the water
volume. The shape of the wakes depends on objects hydrodynamical properties, its speed,
and size. Doppler effect can be observed on the water wakes.

2.4 Optical properties of water

The rendering equation is an essential equation in computer graphics. It puts incoming and
outgoing radiance in relation. It is derived from the energy conservation.

Lo(x, ωo, λ) = Le(x, ωo, λ) +
∫

Ω
fr(x, ωi, ωo, λ) Li(x, ωi, λ) cosθi dωi, (2.14)

where Lo (Li) is the outgoing (respectively incoming) radiance, Le is the radiance emis-
sion, x is the point of the surface, fr represent the bidirectional reflectance distribution
function (BRDF), Ω is sphere of all radial angle, ωo = (θo, ϕo) is the direction of outgoing
ray, ωi = (θi, ϕi) is the negative5 direction of incoming ray, θ is the polar angle, ϕ is the
azimuthal angle of the spherical coordinates, and λ is a light wavelength.

Sometimes wavelength parameter is neglected in order to reduce the dimension of the
rendering equation.

The choice of BRDF depends on the optical properties of the surface which we are trying
to describe. Ross et al. [RDP05] presented a BRDF function for ocean rendering. They aim
mainly sun glint and sky reflections.

Rendering equation can be solved with different methods which are part of a rendering
algorithm. For example Monte Carlo methods are used by Path tracing algorithm [Hav].

In this section we will briefly describe some of the visual effects related to water simula-
tion. There are also approximate methods which despite physical correctness try to maximize
perception of the simulated phenomenon.

2.4.1 Water caustics

In optics, a caustic is an effect which arises from refracting or reflecting light from a curved
object. When a set of light rays is reflected from a curved surface and the reflected rays
are projected onto another surface. This rounding causes the rays not being distributed
uniformly resulting into light spots, where more reflected rays met. Dark spots are similarly
created in the place where a small number of rays intersected.

5Put into the same system as the outgoing ray.

2.4. OPTICAL PROPERTIES OF WATER 15

Yuksel et al. [YK09] presented a real-time method for caustic extraction from an existing
height field. They assume a flat ground underneath the water. Contribution to the caustic
field is computed by the water depth and normal per each pixel and then filtered in a local
neighbourhood to produce caustic texture, which can be mapped onto the surface.

2.4.2 Reflection and Refraction

The rendering equation mentioned above describes the relation between incoming and out-
going radiance. The contribution of the reflection is then described by BRDF and by the
angle θi.

By reflection we denote the sum of incoming radiance which was captured from the
hemisphere above the surface an the following is valid θt ∈ (−π

2 ,
π
2). Refraction is denoted

as a sum of incoming radiance which arrived from the hemisphere under the surface.
Note that the requirements for the BRDF function can change according to the dynamic

properties of the water. For instance windy oceans with breaking waves have different
reflectivity compared to the calm water in a mountain lake.

2.4.3 Godrays

Godrays is an effect which occurs when small particles are spread in a optical medium.
Godrays can be observed on the sky in cloudy weather or in a slightly polluted water. It is
also a consequence of light scattering.

2.4.4 Fresnel term

When light crosses the boundary between two optical media, part of the light intensity
transmits into the new medium and part of it reflects according to the index of refraction
of both media. The ratio of reflected and refracted intensity (reflectivity) is depicted by the
Fresnel term.

Fresnel described the reflectivity for horizontally and vertically polarized light:

Rv =
∣∣∣∣η1 cosθi − η2 cosθt
η1 cosθi + η2 cosθt

∣∣∣∣ (2.15)

Rh =
∣∣∣∣η1 cosθt − η2 cosθi
η1 cosθt + η2 cosθi

∣∣∣∣ , (2.16)

where η1 and η2 are indices of refraction for the original and new medium respectively,
θi and θt is the direction of the incoming (respectively transmitting) light ray, Rv and Rh is
the reflectivity component of the vertically and horizontally polarized light.

The relation between angles θi and θt can be expressed by Snell’s law:

sinθi
sinθt

= η2
η1

(2.17)

16 CHAPTER 2. THEORETICAL BACKGROUND

The circularly polarized light can be expressed as mean value:

R = Rv +Rh
2 . (2.18)

Figure 2.10 (left) shows individual components.
Fresnel term can be also approximated by Schlick’s model. Comparison of this approxi-

mation is shown in figure 2.10 (right).

R0 = η1 − η2
η1 + η2

(2.19)

R = R0 + (1−R0)(1− cosθt)5 (2.20)

Figure 2.10: Reflectivity for a smooth water. Difference between the horizontally and verti-
cally polarized component (left). Comparison of Schlick’s approximation (right).

2.4.5 Water colour

Colour of water is highly dependent on the thickness of observed water volume. Small
volumes of water seem to be colourless while large bodies of water are perceived in a shade
of blue. This phenomenon is created by light scattering in the fluid volume. In optically
participating media such as clouds or polluted water we have to take light scattering and
absorption into account.

Rayleigh scattering arises when the light ray is scattered off of a molecule in an optical
medium. Therefore, it depends on the wavelength of the light and the size of the particle
(molecule). The radiant intensity I of the light being scatter from one particle can be
described as [You81]:

I = I0
8π4α2

λ4R2 (1 + cos2θ), (2.21)

where I0 is the initial intensity, α is the polarizability of the molecule, λ is the wavelength,
R is the distance from particle, and θ is the scattering angle.

2.5. FLUID INTERACTION 17

The important idea from equation 2.21 is that the scattering ratio can be simplified as

I = I0
1
λ4 .

We can see from this relation that the higher the wavelength the higher the dispersion is.
This means that only lower wavelengths of the colour spectrum will pass trough and thus
the colour of water is perceived blue.

Note that this applies for clean water. Impurities in the volume may cause dispersion of
different colour spectrum.

2.4.6 Whitecaps

In high dynamic water environment whitecaps may emerge. This phenomenon is created by
small bubbles and foam which can emerge on the water surface on account of wind. Dupuy
et al. [DB12] presented a method for creating and rendering real-time ocean whitecaps.
They use Choppy wave model [Tes01] to represent the ocean waves. They localize changes
in the vertical deviation of the surface in order to find waves which may break and create a
whitecap. These locations are then shaded by a per-pixel Lambertian shading model.

2.5 Fluid interaction

When modelling fluid-solid interaction we need to represent the obstructions in a way in
which the simulation can understand these boundaries. Different simulation approaches
need different data representation of the obstruction. These differences are described in the
next section.

We distinguish one-way from two-way interaction scheme. We speak of one-way scheme
when there is either only water to object or object to water interaction.

2.5.1 Volumetric simulations

In Eulerian framework the solid boundary can be easily depicted as a special voxel value. We
can than recognize which voxels contains fluid and which represent a boundary or solid object.
Unfortunately this leads to irregularly shaped fluid containers. Feldman et al. [FOK05]
describe a Eulerian fluid simulation method for use on general tetrahedral meshes.

Solid boundary treatment (SBT) is an algorithm class for ensuring fluid to solid inter-
action in Lagrangian framework. Since particles in Lagrangian methods are not bounded
to any particular position, there is a need for restraining the simulation space. Similarly to
Eulerian methods one solution is to introduce a new type of particle which does not change
its position and embodies a part of a solid object boundary. This particle is called repulsive
particle and is responsible for creating repulsive force on the fluid particles. Schechter et al.
[SB12] describe another type of particle - the ghost particles. Ghost particles are able to
accumulate velocity which is then used for object motion in the fluid volume.

Treuille et al. [TLP06] present a method for faster object to fluid interaction. They use a
3D semi-Lagrangian approach for simulating the fluid. They optimize the object interaction

18 CHAPTER 2. THEORETICAL BACKGROUND

with precalculation of the boundary bases. A boundary base represents the velocity variation
in the object volume. Linear combination of boundary bases from different time steps is
used to cancel out velocities of particles that would otherwise pass through the object.

2.5.2 Heightfield based simulations

Tessendorf [Tes04] describes the iWave method for simple two-way fluid to object interaction
in height field representation. He proposes using a convolution scheme instead of spectral
method to simulate the water surface waves. This decision has been made considering
low adaptability of spectral methods for interactive scenarios. This convolution is used for
distributing the value changes into corresponding neighbours according to the velocity. He
demonstrates his method on a CPU implementation using 2D regular grids which have the
same resolution as the heighfield grid and are aligned with each other. One of these grids is
used for generating new impulses interacting with the water surface generating new waves.
There is also a grid representing solid object flattened in two dimensions which interacts
with the water surface. The interaction is done simply by masking the height value in the
corresponding height field.

The filter kernel is as follows:

G(x, n) =
n∑

i=−n
x2
i e
−σx2

i J0(|x− xi|), (2.22)

where x is the grid point, n is the kernel size, xi is the neighbour point of x in the
distance of n, σ similarly to Gaussian filter represents the standard deviation, J0 is the
Bessel function. Note that the result should be normalized.

Chou et al. [CF07] described a simple method for ocean simulation with one-way interac-
tion between the water surface and rigid bodies. Water simulation was based on heightfield
using a form of Gerstner waves. They refer to the vertices of the heightfield grid as particles
which store the information about horizontal and vertical surface deviation and represent
the water flow. The flow is then used for water to object interaction.

Chapter 3

Water Simulation with Wave
Particles

In this chapter we will depict the main ideas of the algorithm of Water simulation with wave
particles presented by Yuksel et al. [YHK07].

3.1 Motivation

Phenomena occurring on real life water have been discussed in chapter 2. Successful simula-
tion should maximize the resemblance to these effects. One of the most evident phenomenon
of the water simulation is the wave generation and propagation. More importantly waves
created by user interaction are essential to credibility of the simulation, because the user
pays more attention to the system reaction if he or she is part of the simulation. In addition
the human eye is more sensitive to the correctness of the motion than for instance water
reflections which are hard to comprehend for the bare eye.

Besides the simulation credibility another important aspect is the simulation performance
in order to obtain interactive frame rates. This is true for a general simulation case. In our
water simulation it is also important that we have control over the data because we want to
be able to localize and react to the generated waves. Flexibility to adopt a new simulation
scenario is also important property. We also want our interaction waves to be separable from
the environmental waves.

3.2 Wave equation

We begin by depicting wave equation which describes the propagation principle of elec-
tromagnetic, acoustic and other mechanical waves. Wave equation is hyperbolic partial
differential equation and represents partial second derivative of space with respect to time.

1
v2
∂2dv(x, t)

∂t2
= ∇2dv(x, t) , (3.1)

19

20 CHAPTER 3. WATER SIMULATION WITH WAVE PARTICLES

where v is wave propagation velocity, dv(x, t) represent the vertical deviation function,
x = (x1, x2, . . . , xn−1) is a spatial vector in n-dimensional domain, t is time and ∇2 is the
Laplacian operator.

Equation 3.1 describes propagation of the wave with speed v in a space defined by the
scalar function h. Function h will be later on denoted as vertical deviation function. Vertical
deviation function takes spatial vector of n−1 dimension and time variable as an input. Note
that we can replace time in equation 3.1 with horizontal shift in the domain and transform
this equation into second derivative of space with respect to position of the wave. We will
show 1D and 2D Wave equation in detail and describe how that corresponds to the Laplacian
operator.

Laplacian operator is a convolution function which investigates gradient differential in
local neighbourhood. It can also be seen as a second order spatial derivative. Note that this
convolution is energy conserving.

3.2.1 1D Wave equation

In 2-dimensional domain (change of one variable with respect to the other one) a 1-dimensional
wave can be observed. We can substitute x = x and see it as scalar in 1-dimensional wave.
To create such 1D wave equation we simply take equation 3.1 and substitute y = dv(x, t).

1
v2
∂2y

∂t2
= ∇2y (3.2)

In equation 3.2 we understand ∇2 as 1D Laplace operator, which ultimately represents
second derivative of vertical deviation function y with respect to position of the wave x.
Thus we can substitute this derivative to the formula.

1
v2
∂2y

∂t2
= ∂2y

∂x2 (3.3)

3.2.2 Solution to the wave equation

In order to numerically solve equation 3.3 and describe a concrete wave we have to state
initial condition for this differential equation. Wave particle method solves wave equation
analytically in a discrete domain.

If we assume constant velocity v, we can see that a simple solution to the wave equation is
a single wave propagating in both direction as shown in figure ??. Referring to the equation
3.3 it satisfies the condition that change of y according to t can be expressed in the form of
change of y according to x. Therefore, any solution is eventually in the form

dv(x, t) = f(x + tv) + g(x− tv), (3.4)

where f and g are arbitrary vertical deviation functions. It represents two waves that
are approaching each other in opposite direction. We can also fix one the function, remove
the shift and write it in a integral form to cover the whole function support:

3.2. WAVE EQUATION 21

∫ ∞
−∞

dv(x, t)dx =
∫ ∞
−∞

f(x) + g(t− x)dx. (3.5)

Equation 3.5 is a generalized form of the convolution theorem which explains the appli-
cation of Laplacian operator. It also means that solution to the equation 3.2 can be obtained
via convolution.

Functions f and g in equation 3.4 satisfy an important property of a travelling function

f(x, t) = fs(x + tv), (3.6)

where f is the function defined in space and time and fs is the same function defined
only in space.

Note that even a solution to the wave equation does not result into a physically correct
wave with all the phenomena we discussed in 2.3. On the other hand we can find a wave
configuration which will not satisfy the wave equation and still produce a relatively realistic
results.

Superposition principle Superposition principle states that a response caused by more
stimuli is equal to the sum of the responses caused by the individual stimulus. Consequence
of this is that each wave can be described as a sum of other waves shown in figure 3.1.
Principle of superposition is the basic idea used in Fourier transform.

Since wave equation is linear it satisfies the superposition principle. This applies to the
waves in the manner that if two independent waves satisfy wave equation then sum of these
waves is also a solution to the wave equation.

Figure 3.1: Modelling a wave using superposition principle. The red wave is the superposition
of the blue and green one.

Due to the superposition principle we can separate waves created by user interaction and
the ambient waves created by another unlocalized source.

3.2.3 2D Wave equation

In order to describe water waves in 3D world we need to come up with a 2D wave equation.
Composing this equation is quite straight-forward. In equation 3.1 we substitute z = dv(x, t)
as z is the last coordinate in 3D domain and x = (x, y).

22 CHAPTER 3. WATER SIMULATION WITH WAVE PARTICLES

1
v2
∂2z

∂t2
= ∂2z

∂x2
∂2z

∂y2 (3.7)

3.3 Wave particles

Wave particle method uses a particle system for representing surface deviation. Each particle
symbolizes a local vertical deviation function dv mentioned in 3.2. Every wave particle has
an information about its own position x which is used for localizing the deviation function
dv(x, t). Note that particles are totally independent on each other and keep locally all the
parameters needed for the distribution in the water. Other parameters will be discussed
latter on.

Unlike Lagrangian methods wave particles move in a plane which is coplanar with the
water surface. In other words the wave particles do not represent elements of the water mass,
they represent only a deformation on water surface.

Set of local deviation function is then synthesized to the global deviation function

Dv(x, t) = y0 +
∑
i∈P

dvi(x, t) , (3.8)

where Dv is the global vertical deviation function of space x and time t, dvi(x, t) is the
local vertical deviation function of the i-th particle, y0 is water base level, and P is a set of
all particles.

3.3.1 Wave particles for 1D wave

We will again formulate a solution to the wave equation with the use of wave particles. In
order to create a continuous wave front in 2D domain superposition principle is used to form
one continuous wave front which consist of more particles. A wave created in such a way
satisfies the wave equation because it is continuous, constant, and travelling function.

We formulate the vertical deviation function for the use of 1D wave

dv(x, t) = AiW (x− xi(t)), (3.9)

where x is the position on the x-axis, xi(t) is the position of the i-th particle in time t,
Ai is the i-th wave particle amplitude, and W is the waveform function.

Waveform function is presented in account of weighting the contribution of deviation
function of each particle with reference to its position.

Wi(u) = 1
2

(
cos

(2πu
li

)
+ 1

)
Π
(
u

li

)
, (3.10)

where u is the distance from the position on the x-axis to the i-th particle, Π is the box
function, and li is the length of the i-th particle. Although the particle length li is equal to
the wavelength λ of the original sinusoid function we distinguish these terms to stress out

3.3. WAVE PARTICLES 23

Figure 3.2: Illustration of box function. The grey sine wave is the original signal

that λ is used in the periodic function while li is the wavelength after it has been cut out by
the box function Π and is not periodic again.

Π(x) =
{

1, −1
2 ≤ x ≤

1
2

0, otherwise
(3.11)

The square function is used for restriction of the support due to periodic behaviour of
the cosinus function in two dimensional domain as shown in figure 3.2. The square function
is used in order to localize the wave particle contribution.

Note that to choice of waveform function is arbitrary unless it satisfies certain conditions.
These conditions are in fact general properties of a blending function similar to the one
discussed in 2.1.2. Above that the shape of the function is beneficial in order to describe
water surface waves.

Figure 3.3: Superposition of the particle deviation function. The red line represents the
square function, grey sine wave represents the original waveform function without and the
blue is the

3.3.2 Wave particles for 2D wave

Propagation of the wave particle in three dimensional domain follows the same principle as
in two dimensions but has an additional constraint. Unlike wave particles the previous case
can propagate in only two directions, wave particles in 3D can be propagated into infinite
number of directions onto 2D plane. This fact leads to a requirement of model which can
handle continuous wave fronts in three dimensions. In contrast to the 1-dimensional wave,
the direction of propagation is not the same as the direction of wave blending. The waveform
function W was responsible for blending the waves in the direction of propagation.

In order to represent a continuous wave front we adopt an additional blending function B,
which blends particles located next to each other. In a case of a linear wave front neighbouring

24 CHAPTER 3. WATER SIMULATION WITH WAVE PARTICLES

Figure 3.4: Illustration of the wave front generation. Top images show the position of the
wave particles and its radius ri (green circles). The bottom images show the global deviation
function combined from local deviation function of these particles.

particles are located in the direction perpendicular to the propagation direction. Similarly
to the 1D case, particles in the direction of the propagation are still blended via waveform
function.

dvi(x, t) = Ai W (vi · u) B(vi
⊥ · u), (3.12)

where u = x−xi is the distance to the i-th wave particle, vi is the propagation direction
and B is the blending function.

In figure 3.4 relatively simple wave front is presented as a result of three wave particles.
In practice the simulated wave fronts are more complex and are not necessarily linear.

In addition to linear wave fronts we recognize two other types of continuous wave fronts:
expanding and contracting. These wave front types are formed similarly to the linear wave
fronts but they propagate with a certain curvature κ.

Since the wave fronts are represented by particles which are discrete in space we assume
that the part of the wave front curve which belongs to one wave particle is constant in one
time step.

Expanding wave fronts Expanding wave front is a case of a wave front which arise when
a wave is created in one point and distributes further in all directions.

Important property of expanding wave fronts is that the wave particle size is expanding
in order to form continuous wave with the neighbouring particles while the diameter is
enlarging. Note that due to the energy conservation amplitudes are also decreasing the
further the wave fronts gets.

A perfectly expanding wave fronts can be observed when a round object is thrown in the
liquid in the right angle and is represented in figure 3.5.

3.3. WAVE PARTICLES 25

Figure 3.5: Illustration of wave fronts types: expanding wave front (left) and contracting
wave front (right). Arrows represent the propagation direction.

Contracting wave fronts Similarly to the expanding wave front this is the case when the
wave front propagates with a opposite curvature into one point. In this case wave particles
are getting closer to each other creating a large compounded wave. Contracting wave fronts
can be observed when the source of mechanical oscillation in the fluid has concave shape.

3.3.3 Radial deviation function

Since the wave particles can form arbitrarily shaped wave fronts we use another definition
of vertical deviation function.

Di(x, t) = Ai
2

(
cos

(
π|x− xi(t)|

ri

)
+ 1

)
Π′
(|x− xi(t)|

2ri

)
, (3.13)

where Ai is the amplitude of i-th particle, ri is the wave particle radius, x represents a
point of the water surface, xi(t) is a the position of the i-th wave particle in time t and Π′ is
a box function, which limits cosine function over a finite region in three dimensional domain.

The drawback of the generalized deviation function in equation 3.12 and 3.10 is that the
blending function depends on the direction of the neighbouring wave particles. Waveform
function W from equation 3.10 for the 1D wave can also be used as the blending function B
with the purpose of making the individual wave particles more flexible and less dependent
on each other. The particle length is now replaced by the radius of the 2D wave.

Radial deviation function would not be sufficient by its own because earlier we assumed
that the width1 of the wave particle forming a non-linear wave front is changing with the wave
front propagation. But now the length and the width of the wave particle are represented by
the same parameter (radius ri). Radial definition does not allow changing the particle width
independently on the particle length so it has to be constant in time. That means that we
need to cover the whole size of propagating wave front with particles by placing one particle
next to each other so that even with a constant particle size the wave front is continuous.
Subdivision method enforcing this criterion will be derived in section 3.3.6.

Note that the radial deviation function is only an approximation to the generalized
form discussed above. The approximation error is derived from the coverage of continuous

1Wave particle width represents the area of effect of the blending function described in equation 3.12.

26 CHAPTER 3. WATER SIMULATION WITH WAVE PARTICLES

δ δ

Figure 3.6: Illustration of the wave front generation from particles. Source particles (left)
and generated wave front (right) from the top view.

expanding wave fronts. Note that the approximation error is bounded, which will discussed
in section 3.3.6. Moreover the radial definition allows using wave particles more efficiently.

3.3.4 Longitudinal waves

The motion of the water surface is not limited only to the vertical deviation. In reality water
particles propagate in circles which creates sharper peaks on the surface waves as discussed
in 2.3.1.

We show a method similar to the Gerstner wave model to the wave particle method to
include the influence of longitudinal waves.

dv

dh

Figure 3.7: Illustration of the horizontal and vertical deviation function of a propagating
wave.

Dh(x, t) = x0 +
∑
i∈P

dhi
(x, t) , (3.14)

where Dh(x, t) is the global deviation function, x0 is the initial horizontal position of the
surface.

The global horizontal deviation function represents the horizontal position of the surface
after longitudinal wave takes effect.

dhi
(x, t) = dvi(x, t) Li(u), (3.15)

where L is a vector function which describes the longitudinal component of the wave.
Vertical deviation function dvi(x, t) is used in order to correspond to the shape of the original
wave.

3.3. WAVE PARTICLES 27

Li(u) = −vi sin
(
πu
ri

)
Π′
(
u

2ri

)
, (3.16)

where vi is the propagation direction and Π′ is the box function.
Note that similarly to Gerstner waves amplitude must be chosen properly to handle the

cases of self intersection. Therefore, the strength of the horizontal deviation sv is introduced
as global parameter. Similarly to the case discusses in section 2.2.1.1 intersections may occur
if sv k A > 1.

Figure 3.8: Illustration of the influence of the horizontal deviation on a existing wave particle.
Wave produced by a single wave particle without the effect of the horizontal deviation (left).
Other images (centre, right) show a case of different vertical deviation strength sv.

3.3.5 Wave particle properties

In this subsection we describe the properties od individual wave particles with respect to the
radial deviation function.

oi

xi

αi

δi

ri

Figure 3.9: Properties of the i-th wave particle (blue circle) demonstrated from top 2D view.
Yellow sector represents the dispersion angle δ, red sector is the propagation angle α, x is
the current position, o is the origin and ri is the wave particle radius.

28 CHAPTER 3. WATER SIMULATION WITH WAVE PARTICLES

Propagation angle Wave particles propagate in 2D plane created by the water surface.
Propagation angle α represent the direction in which the particle moves. Linear wave fronts
consist of particles which share the same α in order to distribute consistently. On the other
hand expanding or contracting wave fronts have different α for each wave particle.

Dispersion angle Dispersion angle δ is introduced to describe a spatial range in which
new particles can be placed. It indirectly represents the curvature κ of the wave front in a
place defined by the particle position.

κ = 1
rδ

= δ

w
, (3.17)

where rδ = |x − o| is the radius of a notional circle describing the curvature, and w is
the distance between adjacent particles as shown in figure 3.13. The use of w is discussed
later in section 3.3.6.

Origin The wave particle origin is the position of the particle at time t = 0 and it is fixed
as the wave particle propagates. The dispersion angle forms a circular sector according to
the wave front curvature with the centre in the wave particle origin. The wave particle is
always located on an imaginary line going from the origin in the direction of propagation
as show in figure 3.9. The particle origin is located behind the particle if it is a part of an
expanding wave front. The opposite applies for contracting wave fronts and the origin can
be seen as a focal point as demonstrated in figure 3.10.

oi oi

Figure 3.10: Illustration of the wave particle (dark blue circles) origin in the case of contract-
ing (left) and expanding (right) wave front. The arrows represent the propagation angle, o
is the origin point, and the light blue dotted circles represent the wave particle in an initial
position.

Amplitude Amplitude represent the energy of the wave particle. It contributes to the
water deformation via the deviation function. The amplitude of a single wave particle is
reduced according to the distance of wave propagation. Particles with low amplitude have
also low contribution to the deviation function. To reduce the computational overload,
redundant particles with amplitude lower than threshold TA are deleted from the system.

In some scenarios it is useful to model waves with negative amplitudes. The application
of negative waves is discussed in 3.4.2.2.

3.3. WAVE PARTICLES 29

3.3.6 Wave particle subdivision

t1

t3

t0 t0

t1

t3

Figure 3.11: Illustration of the wave particle (blue circles) behaviour without subdivision
(left) and with subdivision (right) in three time steps. The opacity of the wave particles
colour illustrates amplitude. Yellow sector on the right image represents the dispersion
angle δ of the original (leftmost) particle. Note that the distances between particles should
be even lower to form a continuous wave front; the particles are placed sparsely to increase
readability. The difference in time t0 is in both images is that there are all three particles
placed in the same point on the left image. On the other hand there is only one particle
which will be subdivided in the right image

As an expanding wave front propagates it covers larger area and since the particles have
fixed size the distances between the particles increases. It will eventually increases in such
level that particles will be far from each other resulting into a non-continuous wave front.
Empty places will arise in the positions where the particle density is low. Figure 3.11 shows
an expanding wave front with radial wave particles propagating in time. Solution to this
problem is a concept of a variable number of particles along the direction of wave front
propagation.

The main idea in particle subdivision method is to put two new wave particles to fill
the hole in the wave front. If the distance between two neighbouring particles is larger then
a defined threshold, new particle is created on each side of the parent wave particle. The
amplitude of the parent particle is distributed to the child particles in a way that the overall
amplitude in the system remains the same.

Particle subdivision is used exclusively by expanding wave fronts because in a case of
contracting wave front the particles are moving closer to each other creating a peak. After
a contracting wave meets its origin the dispersion angle turns over and the wave particle
becomes part of a expanding wave front as shown in figure 3.10. In the rest of the section
we will speak about expanding wave fronts.

Important property of the wave particle method efficiency is that individual wave particles
are independent and they do not know about the properties of other particles. In other word
we are not able to compute the distance between two arbitrary wave particles.

30 CHAPTER 3. WATER SIMULATION WITH WAVE PARTICLES

t0

t1

t3

p1 p1

p2

p3

p1

p2

p3

p9

p8

p5

p4

p7

p6

Figure 3.12: Illustration of the dispersion angle partitioning after particle subdivision oper-
ation. Particles are marked by blue circles with a unique identifier. Dispersion angle of each
particle is marked by colour to enhance lucidity.

When a wave front is created we know both dispersion and propagation angles of each
particle in this wave front. Since the particle velocity is constant we can compute in advance
at which time the distance between neighbouring particles will be beyond threshold. The
threshold is set proportionally to the particle radius ri. It also means that neighbouring
particles will never be further from each other than the threshold parameter.

3.3.6.1 Subdivision criterion

Note that distance on the circumference is used rather than Euclidean distance to take the
curvature of the expanding wave front into account. Distance between adjacent particles w
can be computed as follows

w = δ rδ , (3.18)

where δ is dispersion angle, and rδ = |xi− oi| of the i-th wave particle. This means that
as the distance of the wave particle from its origin increases, the distance between adjacent
wave particles also increases.

Furthermore we can rewrite equation 3.18 in order to compute the distance in the time t

wt = w0 + δv|t− t0|, (3.19)

where w0 is the distance between neighbouring particles in the current time t0, and v is
the particle velocity.

3.3. WAVE PARTICLES 31

δ

lt wt

l0

rδ

w0

oi
xi(t)

Figure 3.13: Visualization of the distances used by the particle subdivision method. The
blue circle is the wave particle and the yellow region is the dispersion angle δ in the time of
particle creation when the distance travelled rδ = 0.

Threshold parameter Tw defines how often propagating particles subdivide. If

w > Tw

two additional wave child particles j, k are created on each side of the parent wave particle
i as shown in figure 3.12.

The choice of the threshold parameter affects the shape of the propagating wave front. For
lower values of Tw particles are created more frequently resulting into high particle density
on the wave front curve. For a plausible results we choose T = ri just as figure 3.6 illustrates.
The threshold parameter also modifies the distance of the wave front propagation. Lower
Tw leads to more levels of subdivision in shorter distance. This means that there will sooner
be more particles with low amplitudes. After the amplitudes reach bellow TA, particles are
deleted resulting into shorter wave propagation.

Approximation error of the radial definition of wave particle introduced in section 3.3.3
is also affected by Tw. In fact the approximation error changes with the change of w and
it results from the fact that the curvature of the wave front changes each step but the
subdivision occurs in discrete step with lower frequency. Two neighbouring particles form a
perfectly continuous wave crest if w = ri. On the other hand a valley (peak) is formed if
w > ri (respectively w < ri). Both of these cases are shown in figure 3.14. The value of ri
comes from the radial wave particle definition. So the error of the wave shape can be bounded
by the threshold Tw since w can not exceed it. Figure 3.15 shows the relation between above
mentioned parameters. Note that w in this figure shows the distance between neighbouring
particle although after each subdivision we refer to the newly creates neighbouring particles.
In the very next moment after subdivision is performed the approximation error is zero and
it satisfies the wave equation. Also note that the frequency of the subdivision gets lower as
the particle propagates from its origin.

3.3.6.2 Creating new wave particles

Amplitude Important property of the convincing physical simulation is the energy con-
servation criterion. As mentioned earlier one wave particle can produce exactly two other

32 CHAPTER 3. WATER SIMULATION WITH WAVE PARTICLES

w w
w

Figure 3.14: Exaggerated effect of the approximation error presented by the radial definition
of the wave particle deviation function. Images are ordered by w. Wave front with no error
(centre), wave front with undesirable valleys (left) and peaks (right).

subdivision

rδ

w

Tw

 [0,0]

Tw
3

Figure 3.15: Illustration of the approximation error with respect to the distance between
adjacent particles w and the distance travelled rδ by a particle. Tw refers to the subdivision
threshold. The red line represents the approximation error. The green and blue line is the
upper, respectively lower, bound of the error.

particles in one subdivision step. Moreover due to the fact that we defined the particle size
to be constant it is necessary to delegate the energy of the wave particle to its children
particles. In this case the energy is represented by the amplitude (deviation of the water
surface).

The amplitude of the newly created particles k and j is

Ak = Aj = Ai = 1
3Âi, (3.20)

where Âi is the amplitude before subdivision, and Ai is the amplitude of the i-th particle
after subdivision. We can see that even without any wave ambient dampening, amplitudes
are slowly spread across the enlarging wave front which causes the wave front to slowly fade
away.

Dispersion angle The same is valid for the dispersion angle since both the parent and the
two children particles cover a non-intersecting sector of the parents dispersion angle before
subdivision.

δk = δj = δi = 1
3Tw δ̂i, (3.21)

where δ̂i (δi) is the dispersion angle before (respectively after) subdivision of the i-th
particle, and Tw is the dispersion threshold.

3.3. WAVE PARTICLES 33

Propagation angle Propagation angle of child particles is set according to the propaga-
tion and dispersion angle of the parent particle. It is necessary to cover the whole sector
defined by the dispersion angle uniformly. To do so the propagation angle is adapted as
follows

αi = α̂i, (3.22)

αj = α̂i + 1
3Tw δ̂i, (3.23)

αk = α̂i −
1
3Tw δ̂i. (3.24)

The 1
3Tw comes from the uniform distribution requirement. Adjacent particles cannot

be further from each other than Tw. If both such particles (e.g. p1 and p2 in figure 3.12)
create one additional particle in between (p4 and p7 respectively) it is necessary to divide
the distance Tw into three parts in order to maintain the uniform distribution.

Position Besides the uniformity new particles are placed on the imaginary circle repre-
sented by the dispersion angle δ.

xi = x̂i, (3.25)
xj = ôi + rδ δxy, (3.26)
xk = ôi − rδ δxy, (3.27)

where δxy = (cos(δ̂i), sin(δ̂i)) is the 2 dimensional direction vector made out of scalar
angle δ.

Origin Origin is used for computation of rδ which is the equal for all particles which share
the same ancestor particle. Exception to this is a case of wave particle reflection discussed
later in 3.3.7.

ok = oj = oi = ôi, (3.28)

3.3.7 Water boundary

In open ocean scenes with only one source of localized waves there is no need for handling
collisions of the propagating wave. On the other hand scenarios such as pools or rocky shores
require a model for reflecting incoming wave fronts off the water boundary. The boundary
represents the container which holds the simulated water.

If we assume a flat boundary the reflection is processed simply by mirroring the wave
particle propagation direction.

As mentioned in section 3.3.6.1 the distance from the particle position to the origin rδ
is important for the particle subdivision. Assume the case shown in figure 3.16. Since the

34 CHAPTER 3. WATER SIMULATION WITH WAVE PARTICLES

oi o'i

r'δ

rδ

Figure 3.16: Illustration of the wave particle reflection. In this case rδ is wrongly interpreted
as it does not cover the distance which has been travelled by the current particle.

particle has been reflected off of the boundary its propagation angle changed and all of a
sudden rδ is decreasing instead of increasing with the travelled distance. This results into
the particle is not subdividing as the reflected extracting wave front propagates. This can be
solved by moving the origin of the wave particle inside the boundary in the same distance.
In other word we also mirror the origin point along the axis defined by the boundary.

oi
o'i

δ'δ

oi

o'i

Figure 3.17: Illustration of the wave particle (blue circle) reflection off of the flat water
boundary (left) and curved boundary (right). The grey area represents the boundary with
the mirrored origin. The dotted sector represents the dispersion angle before reflection and
the yellow sector is the dispersion angle after reflection.

Handling curved boundaries is more complicated case because the curvature of the bound-
ary determines the change of particle distribution angle as shown in figure 3.17.

Since the distance between neighbouring particles w does not change during the reflection,
the change of distribution angle can be express by relation

w′ = w (3.29)

δ′ = δ
rδ
r′δ
, (wrt eq. 3.18) (3.30)

3.3. WAVE PARTICLES 35

where δ is the dispersion angle immediately before reflection and δ′ is the dispersion angle
immediately after reflection; the same notation is used for other symbols.

Figure 3.17 depicts the change of dispersion angle according to the curvature of the
boundary after reflection. Note that on the right image δ 6= δ′ since the rδ 6= r′δ in equation
3.30. This is valid for both concave and convex boundaries.

Wave front diffraction When assuming arbitrarily shaped boundaries, wave diffraction
effect may occur. In case of small slit in the boundary, wave front interacting with the
boundary is split and the wave particle are separated. In order to handle this state the
particle which crossed the slit has to change its dispersion angle. Nevertheless the problem
is that we cannot detect such situation since the particles are independent thus the separated
particle does not know the exact position of previously neighbouring particles.

Consider a wave front being separated into two parts. Without a model which supports
wave diffraction phenomenon, solution formed by two disjoint parts of a wave front is not
a valid solution to the wave equation. Therefore, in terms of the valid solution to the
wave equation, we make an assumption about the boundary shape to evade the lack of the
dispersion effect in the wave particle method.

We assume that inside the boundary there are no obstacles which could break the convex-
ity of the boundary and separate the wave front. Corners of the boundary can also affect the
wave front continuity. Consider a linear wave front approaching a corner containing obtuse
angle as shown in figure 3.18. Part of the wave front reflect off of one edge of the corner and
the other part off of the second edge and the wave front is again separated into two disjoint
parts. This is true when the boundary contains corners with obtuse angle. Rectangular
boundary is a special case where particle which reflect from one edge eventually reflect from
the other one. This results into the wave front remaining continuous after the reflection.

Figure 3.18: Demonstration of a wave front (blue line) approaching corner of water boundary
in time (from left to right). Red arrows represent the propagation angle of the wave front.
Valid reflection with the right angle corner (top) and reflection from an obtuse angled corner
(bottom).

36 CHAPTER 3. WATER SIMULATION WITH WAVE PARTICLES

3.4 Object to fluid interaction

User interaction is a important part of the real-time simulation. Directly modifying water
wave by the user interaction is not an interesting case because such interaction does not have
a physical meaning. We aim a different interaction scenario where a rigid bodies are coupled
with the wave generation process and the user can indirectly interact with the water using
an object.

Modelling a physically correct water interaction simulation is a computationally demand-
ing process since a volumetric approach is needed to take all the forces into account. Fur-
thermore the rigid body can have a complicated shape on the fluid intersection. On the
other hand physically correct model is not crucial in the real-time application rather than
performance. We present some simplifications which allow us to efficiently detect placed
where new waves emerge.

Static objects are not part of this sections because they can be handled as water boundary
as discussed in 3.3.7.

First simplification is to separate the process of water interaction into two parts: object
to fluid interaction and fluid to object interaction. In real life these processes are concurrent
and cannot be separated. This separation is beneficial in terms of simulation because we can
focus on the parts independently.

This section describes the process of adding dynamic waves into the simulations according
to the motion of a rigid body in a fluid. The behaviour of the floating object is described in
the following section 3.5 which aims the fluid to object interaction.

In real life the motion of a rigid body in water volume forces the water particles to move.
This movement convects the velocity inside the volume which forms new waves. In contrast
to that the simulation aims waves formed directly by the rigid body motion in the water
rather than indirectly simulating the water flow and waves which it forms. This leads to
a major simplification that waves are created immediately after the object hits the water.
This means that waves are continuously created as the object moves in the water volume.
Using this assumption turbulations in the water volume are completely ignored. The visual
error produced by this simplification is large only for adjacent waves and the further the
wave gets, the more the error decreases.

3.4.1 Wave-object collision

Floating objects also modify the behaviour of the wave propagating under the object. When
a propagating wave encounters a floating object it enters a different medium and one part of
the energy reflect and other one continues propagating. The change of behaviour depends on
the wavelength of the propagating wave with respect to the size of the floating object. Waves
with low wavelengths are easily reflected from the object and they have a small influence
on the position of the floating object. On the contrary waves with high wavelengths move
are almost not affected by the object. Note that this is also a simplification of the real-life
phenomenon.

Due to the high number of wave particles in the system it would be computationally
expensive to handle the collision of each wave particle with each floating object.

3.4. OBJECT TO FLUID INTERACTION 37

Therefore, we use a method based on superposition principle to cancel the effect of a
wave under the object. We locate a particle under the floating object and add new reducing
particle at the same location as the original one. Reducing particle has negative amplitude
in order to locally decrease the global deviation function using superposition principle. The
advantage of this method is that we do not need to address single particle nor compute
intersection with the object.

3.4.2 Wave generation

This subsection describes the way of particle generation due to object interaction. Wave
generation process is separated into three steps:

• Wave position,

• wave propagation,

• and wave volume.

3.4.2.1 Wave position

We assume arbitrary object located in the water volume. When the object moves from a
position to another it pushes certain amount of water in the motion direction. At the same
time certain amount of water is pulled in the location where part of the object mass used
to take place. This state is illustrated in figure 3.19. Consider the object being totally
submerged into the water. Volume conservation principle ensures that the Vpushed = Vpulled.
Even if the object is inside the water it can cause waves at the surface due to the convective
flow of the fluid. The influence of the convective flow is suppressed exponentially by the
distance from the water surface.

We distinguish two cases of the object’s influence on the water surface: direct and indirect.
The upper part of the submerged object displayed in figure 3.19 has a direct influence

on the water surface. That means there is no obstacle between the object and the surface.
When a portion of water is pushed or pulled it will directly affect the surface.

The lower part of the object (figure 3.19) has an indirect contribution to the surface
deviation, meaning the whole mass of the object prevents directly influence the surface. A
portion of water induced on the lower part of the object has to be transmitted in order to
influence the surface. The object boundary is a ideal place for the induced wave effect to
take place because its the nearest location with a direct connection to the surface.

These two cases can be summarized such that the wave effect will influence the water
surface from the place where it has been induced if it is on the top of the object. If not, the
wave effect will be distributed to the boundary.

Silhouette of the object seen from a top view represents the object boundary in 3D
domain. Another issue is to distribute the indirect wave effect to the object silhouette. Since
we avoid using full 3D simulation we have no mechanism for determining the flow under the
object. Therefore, indirect wave effect of each face is distributed uniformly according to the
distance from the silhouette.

38 CHAPTER 3. WATER SIMULATION WITH WAVE PARTICLES

3.4.2.2 Wave propagation

In order to create wave front from the distributed indirect wave effect, the silhouette normal
has to be computed. The normal vector of the 2D silhouette is used as the propagation
direction of the wave particle in a point of the silhouette.

Since the simulation lacks the description of the flows in the water volume obtained by
a full 3D simulation, we have no framework how to describe wave propagation based on the
knowledge of its source. Therefore, we will establish basic rules for the propagation of a
wave formed by an object motion in the fluid. These rules will be based on observation of
real-life phenomenon. Results of the observation is generalized for the use in our simulation.

There are four distinct cases of the wave configuration after it is being created by an
object motion. Figure 3.19 shows these cases in the context of the motion induced by the
object motion. Cases where the object moves horizontally is a combination of the presented
cases with vertical motion.

O1 O2 I1 I2

Figure 3.19: Different cases of wave propagation with respect to the position and the motion
of the floating object. Striped line represents the object position in the previous time step.
Cases O1, O2 (outside) show the influence of only the indirect wave effect since the object
is on the water surface level. Cases I1 and I2 (inside) show the influence of both direct and
indirect wave effect inside the volume.

The consequence of figure 3.19 can be summarized into two conditions: direction and
orientation condition.

Direction condition Direction condition is specification of the wave propagation direction
from the knowledge of the object motion.

• If the object is on the surface wave effect forms waves propagating in all directions
away from the object.

• If the object is fully submerged into the volume it forms waves which move toward the
object.

Orientation condition Orientation condition determines whether the wave amplitude is
positive or negative in account of the object motion in the water.

• Amplitude sign of the indirect wave depends on whether it sinks (positive) or rises
(negative).

3.4. OBJECT TO FLUID INTERACTION 39

• Amplitude sign of the direct wave depends on whether it sinks (negative) or rises
(positive).

3.4.2.3 Wave volume

In section 3.4.2.1 it has been described how to locate the position of new particles as a part
of the wave effect induced on the object surface. Each face of the surface contributes to
the total volume induced by the object. Subsequently the total volume is evenly distributed
across the object boundary.

Another problematic part is to determine the ratio between the amplitude and the radius2

ri and divide the volume appropriately. Since we do not have any other constraints we assume
fixed size of the particle leaving the amplitude to be the dependent variable. This means
than we cannot model waves with different frequencies natively by wave particle method.
On the other hand superposition principle can be used to composite the result into lower
frequencies.

3.4.3 Wave particle generation

This sections describes the actual process of wave particle generation. We will refer to the
findings in the previous sections.

The process starts with the object motion in the fluid. Note that even static objects may
induce waves when in the influence of the water flow. Therefore, we refer to the motion of
the object relatively to the motion of the fluid. The water velocity at surface level can be
captured easily using directly the wave particle velocity.

Each face of the object mesh displaces a portion of the water volume. The velocity
direction determines whether the face pushes or pulls the water volume. If the water is
pushed, positive wave effect volume is induced. Similarly if the face pulled the water volume,
the effect is negative. The wave effect sign refers to the sign of the amplitude of the wave
created in such way. The wave effect induced by the face f can be expressed as

Vf = Af (vf · nf)∆t, (3.31)

where Af is the area of the face, vf is the relative velocity, n is the normal vector of the
face f , and ∆t is the time from the last step and is presented in order to include the length
of trajectory from the last frame.

Wave effect induced by the faces which are deeper in the volume is scaled down exponen-
tially. After this step the total wave effect induced by all the faces is known. The indirect
effect is then distributed to the boundaries and smoothed out. Direction of wave propagation
for both direct and indirect wave effect is covered in the previous section.

For each spatial portion of the wave effect a particle is created. In terms of using wave
particles it is required to convert the wave effect into the amplitude. Volume of wave particle
deviation is derived as a integral of the vertical deviation function defined in equation 3.13

2Wave particle radius refers to the wavelength of the original sine function used to represent the wave
particle size.

40 CHAPTER 3. WATER SIMULATION WITH WAVE PARTICLES

V =
∫ 2π

0

∫ r

0

A

2

(
cos

(2πu
r

)
+ 1

)
u du dθ = π

2Ar
2, (3.32)

where u is the distance |xi − x|, r is the wave particle radius, θ is the revolution angle,
and A is the amplitude. The multiple of u in equation 3.32 comes from the integration of
cylindric revolution [Wei] of a function in the equation 3.13.

In the next step propagation direction and the dispersion angle are computed. In case of
direct wave effect the wave propagates into all direction on the 2D surface. Particle which
covers all the directions (δ = 2π) will subdivide into new particle in the very next moment.
Therefore, the propagation direction can be chosen arbitrarily.

After the indirect wave effects distribution to the object boundaries, particles representing
the indirect wave effect are placed on the object silhouette boundary as mentioned in previous
section. Subsequently the propagation direction must be computed with respect to the
silhouette curvature.

The dispersion angle δ is also dependent on the silhouette curvature. With an increasing
curvature, the sector which will be covered by the particle at the current position is enlarging.

Consecutively, wave particles can be finally put into the simulation. After that, wave
particles lose their connection to their source and each other.

3.5 Fluid to object interaction

Section 3.4 described the process of generating new waves from the motion of the an object
in a water. This sections depicts the influence of the water body to the object, which is
submerged in it. The fluid influences the object in form of multiple forces.

3.5.1 Buoyancy force

Buoyancy is a force which is created by the fluid and opposes the gravitational force. Buoy-
ancy force is created by the object submerged in water which due to the gravitational force
pushes the molecules around it down in the water volume. Because of the low compressibility
of liquids, pressure inside the volume rises resulting into a force which keeps objects with
lower density on the water surface. Buoyancy force is described by the Archimedes law.

Fb = −gV ρf , (3.33)

where Fb is the buoyancy force, g is the gravitation acceleration, V is the volume of the
submerged part of the object and ρf is the density of the fluid.

To compute the buoyancy force we need to know at least two variables from m = V ρ of
the submerged part of the object. For simplicity we assume that objects are created from
one material. This means that the object mass is uniformly distributed across the object
volume. Using this assumption is it sufficient to compute the volume of the submerged part
to obtain the submerged mass and vice versa. We chose to directly compute the submerged
volume. We describe an approximative method of volume computation for the use in real-
time graphics in section 5.4.1.

3.5. FLUID TO OBJECT INTERACTION 41

3.5.2 Dynamic forces

Dynamic forces originate from the relative motion of the object in the fluid. We distinguish
two kinds of dynamic force: drag and lift force.

Drag force Drag force is exerted by the fluid friction and acts in the direction opposite
to the rigid body motion. Drag force is based on similar principle as buoyancy force. With
increasing velocity the object forces water particle to move resulting into higher pressure and
slowing the object down. Drag force Fd is expressed as [NAS10]

Fd = 1
2 Cd A ρf (−v2), (3.34)

where Cd is a drag coefficient, A is the area of the rigid body, v is the velocity, v2 = v2 v
v

and v = |v|.

Lift force Lift force is the component of the dynamic force which cause the rigid body to
move in the direction perpendicular to the motion. This means that the motion direction is
changed based on dynamical properties of the rigid body. Lift force Fl is formulated similarly
to the drag force

Fl = 1
2 Cl A ρf v⊥2, (3.35)

where Cl is the lift coefficient, and v⊥ represent perpendicular vector to motion velocity.
Note that both of these equation 3.34 and 3.35 use a special coefficient. The shape of the

rigid body determines these coefficients and there is no formula so they must be measured
for each shape or simulated by a full 3D simulation.

We make an assumption that the total force applied on the object is the sum of the forces
applied on each face of the object. This is rather radical simplification but it can be shown
that it still offers a plausible solution which reflects the rigid body description.

Another simplification is to replace the parameters Cd and Cl with a constant which
determines the intensity of the force. By this step we lose the dependence of the rigid body
shape on the drag and lift force. To restore the dependence we use an effective area Ae
parameter

Ae = A (ξ n · vu + (1− ξ)), (3.36)

where vu = v
v is the unit velocity vector, n is the face normal, A is the area of the face,

and ξ is an user defined parameter which interpolates between the original face area and the
area weighted by the direction of motion.

The last thing is to depict the lift force direction vu
⊥. As mentioned before lift force acts

in the direction perpendicular to the propagation direction. In addition we assume that the
lift force is also perpendicular to surface normal.

vu
⊥ = vu × n (3.37)

42 CHAPTER 3. WATER SIMULATION WITH WAVE PARTICLES

Chapter 4

Used technologies

The application is written in the C++ language using the OpenGL library. Algorithms used
on the GPU are implemented in the GLSL shading language, which is part of the OpenGL
library. In our application OpenGL is used both for simulation computing and rendering of
results.

4.1 Other dependencies

In our application we use GLEW library with combination of GLFW to create OpenGL
context. For assets handling we use the Assimp library to load 3D models and the Lodepng
library to decode and encode png images. User interface is created by the AntTweakBar
library. Parameters in the user interface can be also changed by an ini configuration file,
which is parsed by a simple inih library.

Library Version
Assimp 3.0.0
AntTweakBar 1.16
GLW 1.11.0
GLFW 3.0.4
GLM 0.9.3
inih r29
devIL 1.7.8
noise1234 1.0

Table 4.1: List of dependencies of our application and their versions.

4.2 OpenGL library

OpenGL is a multi-platform API for hardware accelerated rendering of 2D and 3D graphics.
Modern versions allow using a programmable pipeline on the GPU. The pipeline is divided
into stages where the data are processed from the input to the resulting image. Shader is a
programmable stage of the pipeline operating over specific data. Simplified OpenGL pipeline

43

44 CHAPTER 4. USED TECHNOLOGIES

is shown in figure 4.1. Some stages of the pipeline are optional so the figure shows that there
are more paths to chose from.

In a typical scenario, vertex shader transforms the object vertices according to the virtual
camera and passes them into primitive assembly. It can also modify other vertex attributes.
If neither geometry nor tessellation shader is present, primitives are processed by the ras-
terization process. After rasterization, fragments are passed into fragment shader, where
properties of the future pixels can be adjusted.

Geometry shader can be used to calculate per-primitive properties and even change the
primitive type.

Tessellation shader is used to subdivide input primitives to create a finer geometric detail.
The tessellation itself is implemented at the hardware level. The tessellation evaluation
shader is used to set the tessellation level before the actual subdivision process. Tessellation
control shader is used as control attributes of newly created vertices.

VertexkShader

Tessellation

TessellationkEvaluationkShader

Primitivekassembly

TessellationkControlkShader

GeometrykShader

Rasterization FragmentkShader

FramebufferTransformkFeedback

Figure 4.1: Simplified OpenGL pipeline. Yellow coloured boxes represents the programmable
stages, blue are the fixed stages, and violet represents output buffers.

4.3 GLSL

GLSL is the programming language used in the OpenGL shaders. Although each shader
stage operates with different data, GLSL presents an uniform interface for each of these
shaders with some stage-specific functions.

The control flow of the program on the GPU is different from the control flow of the
CPU architecture. In contrast of the CPU approach, branching may introduce performance
overhead when part of the threads have a different flow than the other threads. In this case,
both branches are synchronized and processed serially. Therefore, in out implementation we
try to minimize the number of occurrences of non-uniform1 branching.

1Branching with uniform variable, which is same for all threads.

Chapter 5

Implementation

In this chapter, we describe our implementation in detail. First we depict the structure of
our application and used technologies. Following sections describe individual steps of water
simulation using wave particle method on GPU. Rendering of the water surface is presented
at the end of this chapter.

5.1 Application structure

Computer graphics application usually use object oriented approach to model the application
entities similarly to the respective domain in real life. In our application we use a similar
approach. However, large level of abstraction in the application may lead to performance
drops. Therefore, we have designed simple model structure.

It is a common practice to design a Drawable base class to introduce a level of ab-
straction in the rendering loop. To delegate an input parameter to a uniform interface we
introduce GraphicsContext, which is a structure that holds assets and global parameters
that are required in the rendering stage of a drawable class.

Each drawable class in our application represents a single step in the whole simulation
pipeline. We will describe each of these steps in detail in following sections.

• Wave particle simulation

• Filter particles

• Water to object interaction

• Object to water interaction

• Process rigid bodies

• Water optics

• Water surface

45

46 CHAPTER 5. IMPLEMENTATION

5.2 Wave particle method

One of the advantages of the wave particle method is its simplicity. It allows us to use an
efficient implementation of such algorithm.

As mentioned before, wave particles do not require information about other particles and
they are completely independent. Moreover, the interaction between water and rigid body
is designed in a way that wave particles do not require information about the rigid bodies
either. What makes our problem computationally complex is the large number of particles
needed to represent a wave front. This means that we have a relatively simple problem, with
a minimum of shared data but very large number of iterations. Since the GPU is designed
for a high level of parallelism, this problem is more than suitable for a GPU implementation.

In terms of OpenGL, particles can be understood as points. Therefore, we decide to use
OpenGL pipeline with programmable shaders to implement the simulation. This is suitable
for our purposes because we can easily visualize these points and display the simulation
results without using OpenGL Interoperability.

Considering OpenGL is mainly aimed for direct visualization, it is designed in a way GPU
is reading lot of data, which are eventually displayed and thrown away. In our particle system
it is essential to preserve the data on GPU memory without unnecessary data transfers from
main memory to GPU buffer and vice versa.

Vertex 1
Vertex 2
Vertex 3

Vertex n

Vertex Buffer Object A

Trasform Feedback Buffer A

buffer base = A;

Vertex 1
Vertex 2
Vertex 3

Vertex n

Vertex Buffer Object B

Trasform Feedback Buffer B

buffer base = B;

store
datastore

feedback
data

store
data

Figure 5.1: Illustration of Transform feedback buffer swapping. The output of first TFB is
used as an input of the second TFB.

OpenGL Transform Feedback Buffer (TFB) allows us to capture the output of vertex or
geometry shader inside the GPU memory. Location of TFB in the OpenGL pipeline is shown
in figure 4.1. In each draw step the GPU fetches vertices1 and pushes them in the vertex
shader, where attribute properties can be modified or simply passed further in the pipeline.
After that, the points can be stored in the TFB meaning that the data are persistent in one
draw step.

Transform Feedback Buffer is rather a mapping to an existing buffer than a buffer by
itself. The actual buffer where the primitives are stored can have different types. We use
Vertex Buffer Object as the destination of Transform Feedback operation because we reuse
captured vertices in the next frame.

Therefore, we use two Transform Feedback Buffers and we chain them together in a way
that output of the first buffer is the input of the second buffer. The TFBs are connected

1Point is a 1D geometry primitive and can be represented by one vertex. Therefore, the term point and
vertex is interchangeable in this context.

5.2. WAVE PARTICLE METHOD 47

in the other way respectively. Two buffers are used due to the fact that OpenGL does not
allow reading from the same Vertex Buffer Object (VBO) as is the target of the Transform
feedback operation (read-write collision).

In each frame the vertices which represent our particles are sent into OpenGL pipeline.
We use attribute data members to pack all the essential information to each individual wave
particle. All the computations mentioned in section 3.3 are done on vertex shader. Only
limitation in the vertex shader stage is that there is only one vertex in the input and one
vertex on the output for one shader invocation. That means we cannot use vertex shaders for
particle subdivision. Luckily geometry shader can handle this problem. Since the purpose of
the geometry shader is different, it is less efficient in terms of performance. On the other hand
geometry shader can emit new vertices, which are then also stored in transform feedback
buffer.

Advantage of the Transform Feedback approach is that we do not address individual
particles because the geometric topology is stored in TFB and the addressing is done at the
hardware level.

Particle can be represented persistently on the GPU using a different approach. Particles
can be stored in a preallocated array (texture), which contains particle information in each
cell. While creating a new particle we need to find the array index to store its parameters.
Since particles can be deleted, the array does not form a continuous structure which makes
addressing even more difficult. Moreover, this process runs in parallel, so synchronization
would be needed to handle array access collision.

5.2.1 Buffer size

As mentioned in section Transform Feedback captures processed geometry primitives into a
buffer storage. The buffer size2 is set prior to buffer allocation.

Transform Feedback does not have the information about the size of the output buffer
without explicitly specifying it. Without this specification point generation is not limited
by the buffer size resulting into undefined behaviour leading into overwriting the captured
geometry.

Figure 5.1 shows the initialization of Transform Feedback Buffer in OpenGL. After spec-
ifying the buffer range, particles which would exceed the allocated size are not generated at
all.

5.2.2 Particle data structure

In our implementation we represent parameters of the wave particles in attribute variables.
Attributes variables represent additional data packed with the vertex. This means that the
information is present in any part of the OpenGL pipeline and is stored in VBO along with
position of each vertex. In order to avoid large memory consumption, we need to efficiently
represent vertex attribute data.

2Buffer size reflects the maximum number of particles in the simulation.

48 CHAPTER 5. IMPLEMENTATION

1 GLuint vbo, tfb; // vertex buffer object, transform feedback buffer
2 glGenBuffers(1, &vbo);
3 glGenTransformFeedbacks(1, &tfb);
4 ... // set up vbo and attribute properties
5

6 glBindTransformFeedback(GL_TRANSFORM_FEEDBACK, tfb);
7 glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, vbo);
8 glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, 0, vbo, 0, nMaxParticles *

sizeof(WaveParticle));

Source code 5.1: Initialization of the Transform Feedback Buffer.

Vertex attributes are internally packed and aligned into a multiple of vec43 in OpenGL[Ope14].
This means that it is beneficial to use vec4 data type and fit all necessary information to
it as few member variables as possible.

Figure 5.2 (left) shows the wave particle structure with all its parameters. The right
figure shows our GPU packing of the wave particle structure.

• Position Since the wave particle propagates in a 2D plane aligned with the water
surface, the position is sufficiently encoded into two floating point numbers each of
them represent one axis of freedom.

• Origin In order to correctly compute the timing of the subdivision process the wave
particle origin is required. Since we know the position and the propagation direction,
we can reconstruct the origin from the knowledge of the travelled distance. Therefore,
we use one float to store only the distance from the origin rather than a point in 2D
plane.

• Amplitude The wave particle amplitude is simply stored in one floating point number.

• Dispersion angle To represent the angle of the wave particle dispersion, we use one
floating point number.

• Propagation direction Direction in 2D domain can be also described by a single
float representing angular coordinates.

• Speed Although section 3.2.2 describes an assumption of constant wave particle ve-
locity, it is useful to add speed parameter to wave particle structure. The assumption
is still valid for all wave particles representing one wave front. On the other hand,
different wave front may have different propagation speed. Speed is encoded into one
float.

• Amplitude orientation For implementation purposes we need additional boolean
information to describe the sign of the amplitude. We need this information in order
to represent wave dampening for both positive and negative amplitudes. Without
this information a positive particle could become negative and vice versa. Since the
speed is separated from the propagation direction, we need only the speed magnitude.
Therefore, we use the sign of the speed to encode the amplitude sign.

3GLSL representation of 4-dimensional 32-bit floating point number.

5.2. WAVE PARTICLE METHOD 49

• Size Wave particle size is the object of a similar assumption of constancy as the
previous one. Adding this parameter allows us to create a broader wave front using
lower number of particles. We encode the wave particle size as an half float into a
floating point number. The other half represent half integer.

• Number of consecutive border frames Since this is a integer variable we can pack
it along with the size as shown in ??. Detailed purpose of this field will be discussed
in the section 5.2.4.

1 vec2 unpackSize(float compound){
2 float brdFrames = floor(compound / 65536);
3 float size = (compound - brdFrames * 65536);
4 return vec2(brdFrames, size);
5 }
6

7 float packSize(int brdFrames, float size){
8 return brdFrames * 65536 + size;
9 }

Source code 5.2: Data packing of the wave particle size

vec4 a_Pos2_Orig_Size

vec4 a_Ampl_Prop_Disp_Spee

Size

Dispersion angle

Position.x Position.y Origin distance nBrdFrm

sgnA SpeedPropagation angleAmplitude

Figure 5.2: Wave particle structure encoded for the use on the GPU.

5.2.3 Wave particle simulation

The implementation of the wave particle simulation routine is distributed into four parts
according to the shader stage which handles it.

5.2.3.1 Propagation routine

As mentioned previously in section 5.2 particles are treated as geometry consisting of points
with attribute variables. Therefore, the entry point for the simulation process is in the vertex
shader, where particles are properly placed and the parameters are passed further into the
pipeline.

50 CHAPTER 5. IMPLEMENTATION

Figure 5.3 shows the vertex shader source code for the wave particle propagation. We
choose using 2 vec4 variables to represent a particle as mentioned in 5.2.2. We use bitwise
operations in order to encode the info field shown in figure 5.2..

1 void particlePropagation(){
2 vec4 position = vec4(a_Position, 0, 1); // z coordinate is not important
3 float amplSign = sign(a_Speed);
4 float absSpeed = abs(a_Speed);
5

6 Out.f_Pos2_Orig_Size.zw = a_Pos2_Orig_Size.zw;
7

8 Out.f_Ampl_Prop_Disp_Spee.x =
9 a_Ampl_Prop_Disp_Spee.x - (absSpeed * u_Dampening * amplSign);

10 Out.f_Ampl_Prop_Disp_Spee.yzw = a_Ampl_Prop_Disp_Spee.yzw;
11

12 Out.v_Info = bvec4(false); // x = delete, y = create new
13

14 // Subdivision criterion
15 float w = a_DispersionAngle * a_OriginDistance;
16 Out.v_Info.y = w > T_w; // Current particle will be divided
17

18 // If the amplitude changes from + to - (delete it)
19 Out.v_Info.x = (Out.f_Amplitude * amplSign < 0);
20

21 ... // Boundary reflection
22

23 // Move wave particle
24 position.x += cos(Out.f_Ampl_Prop_Disp_Spee.y) * absSpeed;
25 position.y += sin(Out.f_Ampl_Prop_Disp_Spee.y) * absSpeed;
26

27 Out.f_Pos2_Orig_Size.z += absSpeed;
28 Out.f_Position = position.xy;
29 }

Source code 5.3: Main part of the wave particle propagation program on vertex shader

5.2.3.2 Subdivision and delete routine

Vertices are passed to the geometry shader, where the vertex can be either discarded or
emitted. According to the input and output geometry specification, geometry shader may
emit new vertices which are passed further into the pipeline. In other words the deletion
process is done simply by not emitting the incoming vertex.

Deleting particles may occur from various reasons. The main reason is that the amplitude
is lower than the threshold TA as discussed in 3.3.5. The other two reasons are implementa-
tion dependent and are mentioned later in 5.2.3.3 and 5.2.4. The deletion detection is left to
the vertex shader in order to increase the performance. The actual deletion has to be done
on geometry shader so we keep the information in one bit of wave particle data structure.

Figure 5.5 shows the subdivision control on the geometry shader. The data structure of
tfOut and In is shown in figure 5.2.

5.2. WAVE PARTICLE METHOD 51

1 layout(points) in;
2 layout(points, max_vertices = 3) out; // Create max 2 additional vertices

Source code 5.4: Specification of input and output primitives in geometry shader.

3 ... // Declaration of input variables omitted
4 void main(){
5 if (doDelete(In[0].f_Ampl_Prop_Disp_Info)) return; // Delete particles
6

7 // Copy input to the transform feedback output
8 tfOut.f_Pos2_Orig_Spee = In[0].f_Pos2_Orig_Spee;
9 tfOut.f_Pos2_Orig_Spee = In[0].f_Ampl_Prop_Disp_Info;

10

11 bool doSubdivide = (feedOut.f_Info.g == CREATE_VERTEX);
12 float angle = In[i].f_DispersionAngle * ONE_THIRD;
13

14 if (doSubdivide){
15 tfOut.f_DispersionAngle = angle;
16 tfOut.f_Amplitude = In[0].f_Amplitude * ONE_THIRD;
17 }
18 EmitVertex();
19 EndPrimitive();
20 // Create additional particles
21 if (doSubdivide){
22 prepareNewParticle(+angle)
23 EmitVertex();
24 EndPrimitive();
25

26 prepareNewParticle(-angle);
27 EmitVertex();
28 EndPrimitive();
29 }
30 }

Source code 5.5: Geometry shader implementation of subdivision procedure.

5.2.3.3 Particle generation routine

Particle generation is the process of creating new particles based on the object to water
interaction. The result of the interaction step is stored in the wave particle distribution
texture. Wave particle distribution texture obtains information about spatial distribution
of direct and indirect wave effect which is converted into particles in this step. Propagation
direction is also part of the texture. The process of obtaining wave particle distribution
texture is described in section 5.5.

Each pixel of the texture represents a potential wave particle. Therefore, we create a
source vertex buffer and fill it with vertices organized into 2D grid with the same resolution
as the texture. Consequently we set the wave particles properties to the vertices from the
texture and we convert the wave effect to the amplitude as shown in equation 3.32. Delete flag
of wave particles with zero amplitude is set. Once these particles reach the geometry shader
they are discarded from the pipeline. On the contrary particles with non-zero amplitude and

52 CHAPTER 5. IMPLEMENTATION

3 void prepareNewParticle(float newDispAngle){
4 tfOut.f_Pos2_Orig_Spee.zw = In[0].f_Pos2_Orig_Spee.zw;
5 tfOut.f_Ampl_Prop_Disp_Info.x = In[0].f_Amplitude * ONE_THIRD;
6 tfOut.f_Ampl_Prop_Disp_Info.y = In[0].f_Ampl_Prop_Disp_Info.y +

newDispAngle;
7 tfOut.f_Ampl_Prop_Disp_Info.z = abs(newDispAngle);
8 tfOut.f_Ampl_Prop_Disp_Info.w = In[0].f_Ampl_Prop_Disp_Info.w;
9

10 feedOut.f_Pos2_Orig2.xy = In[i].f_Position
11 // Subtract the parent propag direction from position => Origin
12 - (vec2(cos(In[0].f_PropagAngle), sin(In[0].f_PropagA)) *
13 In[0].f_Pos2_Orig_Spee.z)
14 // Add the new direction => Position
15 + (vec2(cos(tfOut.f_Ampl_Prop_Disp_Info.y), sin(feedOut.

f_Ampl_Prop_Disp_Info.y)) *
16 In[0].f_Pos2_Orig_Spee.z);
17 }

Source code 5.6: Procedure of generating new particles on geometry shader.

a valid propagation direction are emitted and eventually captured by the transform feedback.
This operation actually copies vertices from one buffer to another. Therefore, we can reuse
the source vertex buffer in order to generate more particles.

Moreover, we organize the vertices in the vertex buffer in way that it can be reused while
using differently sized textures. We assume that the distribution texture is a square texture
with a power of two dimension. Figure 5.3 shows the data organization in the vertex buffer.

Figure 5.3: Illustration of the data organization in the particle generator vertex buffer.

5.2.4 Wave particle reflection

For performance purposes we represent boundaries as a texture. Normal vector of the bound-
ary is encoded into each pixel of the texture in order to compute the reflection.

Discrete boundary Discrete step collision detection can produce errors when the object
is moving too fast and the object passes through the boundary in one frame. We adjust the
texture mapping with respect to the particle speed to handle these situations.

Another problem can arise when a particle subdivides. Imagine that the parent particle
is moving along a boundary and subdivides. After the subdivision the child particle can
appear behind the boundary as shown in figure 5.4.

We rather choose to handle the prone situation than the prevention. A prior collision
detecting such as ray shooting is too computationally expensive for our use case. Instead we
detect that the particle is behind the boundary and discard it. Data member nBrdFrames
from figure 5.2 represent the number of consecutive frames behind the boundary for each
particle.

5.3. FILTER PARTICLES 53

Figure 5.4: Illustration of a prone state of wave particle subdivision in the environment with
water body boundary.

5.3 Filter particles

To perform a deviation of the water surface we need to render the wave particles. Particles
are rendered as circles with the radius equal to particle size. Internally it is still a GL_POINT
with a square shape but it is used with a texture sprite which defines the shape in the render.

The final deviation of the water surface can be obtained by rendering all the particles with
additive blending from a top orthographic view similarly to the texture splatting. The radius
directly influences the number of generated fragments. The performance of the blending
operation depends on the number of fragments which result into single pixel. For larger
particle radii this approach leads to a significant performance drop.

Instead we use a smaller points to represent the information about the particle presence
and render them into texture. The wave particle render texture is filtered and the contribu-
tion of each wave particle in a local distance is accumulated. This is similar to the texture
gathering process.

Figure 5.5 depicts the difference between these approaches. Note that the particle size
and particle radius denote the same thing in the first case. On the other hand, in gathering
approach the particle size represents the actual point size while the radius denotes the filtering
distance.

r

r

Figure 5.5: Illustration of splatting (left) and gathering (right) approach.

Nevertheless, even with a small particle size it is likely that the new particle overrides a
previously rendered particle. Specially due to the nature of particle generation. Therefore,
we use blending for point rendering to avoid the overriding.

In this step wave particle deviation function is applied. The contribution of each wave
particle in the filtering step is weighted by te deviation function mentioned in 3.13. Ad-
vantage of the radial definition of wave particle deviation is that the filter kernel of such
function is separable. This means we can perform 1D filtering process consecutively for each
axis and compose the final result. Compared to the 2D convolution separable filters reduce
the number of texture lookups to increase the performance.

54 CHAPTER 5. IMPLEMENTATION

The filtering process is implemented on the fragment shader, where the particle ren-
der texture is read in a local neighbourhood in X axis. Consequently the result is stored
stored into filtered_by_x texture. The texture is used as the input of the second stage,
where the filtering by Y axis occurs. The size of the filtering kernel is a global user defined
parameter.

The filter function can be denoted as

dXh (p) = 1
2

(
cos

(
πp

r

)
+ 1

)
, (5.1)

dYh (p) = 1
2

(
cos

(
πp

r

)
+ 1

)
, (5.2)

where dXh (x) is aX-axis horizontal deviation filter function, r represents the radius (kernel
size), and p = [−r, r] is the distance of a pixel to the kernel centre. The same notation is
valid for Y .

The case of horizontal deviation is more difficult because it depends on the wave particle
propagation direction. As discussed in the original article we cannot simply blend the direc-
tions because the horizontal deviation is computed independently per each wave component
of the final superposition. Therefore, we use an approximation where the propagation direc-
tion in equation 3.16 is replaced by the filter shift. In other words the horizontal deviation
pushes the wave to centre of the wave particle as shown in figure 3.8. This results into the
horizontal deviation is applied on each individual wave particle rather than on the wave
front. The approximation slightly breaks the continuity of the wave front crest but can be
compensated by subdivision error and the threshold Tw discussed in section 3.3.6.1.

dXvx
(p) = −1

2sin
(
πp

r

)(
cos

(
πp

r

)
+ 1

)
, (5.3)

dYvx
(p) = 1

4

(
cos

(
πp

r

)
+ 1

)2
, (5.4)

dXvy
(p) = 1

4

(
cos

(
πp

r

)
+ 1

)2
, (5.5)

dYvy
(p) = −1

2sin
(
πp

r

)(
cos

(
πp

r

)
+ 1

)
, (5.6)

where dXvx
(p) is a filter function for the x component of the vertical deviation in the

X-axis.
Surface normals may also be computed at this step from a surface gradient. We can obtain

the gradient by filtering the particles with kernel derived from the analytical derivation of
the vertical deviation function. In our application we compute the normals on existing height
field because we use more sources of the surface deformation.

5.4 Water to object interaction

All the forces acting on the object in the fluid in our simulation are computed by this module.
We distinguish four types of forces, all of which have similar implementation details.

5.4. WATER TO OBJECT INTERACTION 55

Throughout the application we use silhouette camera, which is a orthographic virtual
camera capturing the rigid body from a top view. It follows the object while moving and
the projection tightly the bounding box of the rigid body.

Each of the forces is computed on the GPU and the result is stored in a texture rendered
from the silhouette camera.

5.4.1 Buoyancy force

For computing the buoyancy force we need to compute the part of the object which is
submerged in the water. Deriving the force from the underwater volume fraction is described
in section 3.5.1. In the initialization phase of our application we use the same technique to
compute the volume of the whole object by moving it below the water surface plane.

We describe an implementation of an approximative method of 3D mesh volume com-
putation. In the first step we render the rigid body by the silhouette camera using additive
blending. In the fragment shader, fragments which are above the water level are discarded.
Consequently each face of the object contributes to the overall volume accordingly to its ori-
entation. As shown in figure 5.6, faces which are oriented down form the bottom part of the
object while the faces oriented up form the upper boundary of the object. The distance from
the water surface to the bottom boundary forms a positive volume while upper boundaries
contribute with negative volume. After the rasterization process each fragment represents
the depth of the object boundary along a single ray.

Figure 5.6: .

1 vec3 normal = normalize(In.normalObj);
2 int orientation = (int(normal.z < 0) * 2) - 1; // up = 1, down = -1
3 v_FragColor.x = orientation * (In.position.z - u_WaterPosClip.z);

Source code 5.7: Volume computation on the fragment shader.

Consequently the values from the texture are summed together and used to compute
the buoyancy force on CPU. Note that the result is not in word coordinates. We convert
the depth from the clip to the object space by using inverse projection matrix of silhouette
camera. Moreover, pixel size is expressed in the world coordinates from the projection matrix.

5.4.2 Drag and lift force

Simplifications used in the drag and lift force computation are described in section 3.5.2.
We use GPU implementation to compute forces acting on each face of the object mesh.
Centroid of each face is computed and uploaded to GPU as a point. Each vertex computes
drag and lift force with respect to the equation 3.34 and 3.35. The object velocity is passed
into the shader as uniform variable. We use glPointSize(1) to ensure that each vertex
will be rasterized into one fragment. Similarly to the buoyancy texture, fragments which are
above the water surface are discarded since they do not affect the floating object. Forces are
encoded as colours and rendered into a texture with additive blending.

56 CHAPTER 5. IMPLEMENTATION

5.4.3 Water-object collision

When a floating object encounters a wave front, part of the energy is transformed into a
kinetic energy. Nevertheless the object motion is mainly induced by the relative motion of
water beneath the floating object.

This force is calculated from the wave particle render texture. In addition of height
value we also render wave particle propagation direction and speed in the remaining colour
channels of the texture. Again we sum the texture in order to obtain the final force. While
summing the forces we use buoyancy texture as an object silhouette stencil to precisely select
which particles are affecting the object.

5.4.4 Parallel reduction

The common operation in the previously mentioned methods is the part where the texture is
summed and the results are used on CPU. Although aforementioned texture does not require
high resolution, transferring the whole data to the client memory in each frame would be
time consuming. Therefore, we use a compute shader implementation of parallel reduction
to sum the texture on the GPU and pass only the result to the CPU.

5.5 Object to water interaction

This section describes the implementation behind the object to water interaction. We have
covered the process of the particle generated based on the wave particle distribution texture
in section 5.2.3.3. This section denotes the distribution texture generation on the GPU.

In order to create wave particle distribution texture we precompute three additional
textures, all of which have the same resolution. Additionally in each step of the algorithm we
discard all the fragments that are outside water because they have no influence on generated
waves.

Silhouette texture In the first step we use the silhouette camera to render the object
seen from a orthographic top view to a silhouette texture. Since we will generate a particle
for each pixel of the particle distribution texture, the resolution is set so that the pixel size
in the world coordinates is similar to the size of the wave particle.

We discard all the fragments above the water level and render the depth in the water
and orientation of the normal. We are interested only in the z component of the normal
which tells us whether the pixels represents inner or outer part of the object. We also add
a small bias to the normal in order to categorize faces which are perfectly perpendicular to
the camera view. Moreover, we disable the face culling in order to see the inner part of the
object.

Wave effect texture Consequently we upload face centroids on the GPU and query the
silhouette texture. Figure 5.8 shows vertex shader snippet which recognizes faces with direct
or indirect wave effect. Part of the vertex attribute data is the face area. Wave effect is
rendered into the wave texture according to the equation 3.31. Note that blending is used.

5.5. OBJECT TO WATER INTERACTION 57

Figure 5.7: Red area represents the silhouette of the floating object.

1 // x = depth of the surface in water
2 // y = z-component of the normal
3 vec4 silhouette = texture(u_SilhouetteTex, Out.position.xy * 0.5f + 0.5f);
4

5 if(silhouette.y > 0){ // face is submerged
6 // Is the centroid depth larger than silhouette depth?
7 if((Out.position.z - u_WaterPosClip.z) - 0.01 > silhouette.x){
8 // Face is not on top => Indirect
9 } else {

10 // Face is on top => Direct
11 }
12 } else {
13 // Face is on the bottom => Indirect
14 }

Source code 5.8: Wave effect categorization of individual faces on vertex shader.

Contour texture In this step we recognize the contour of the object silhouette where
particles with indirect wave effect are placed. Also the normal of the contour is included in
order to assign propagation direction to the future particles.

The contour represents the boundary of the object part that is not submerged in water.
Examples of object contour are shown in figure 5.8. A pixel represent a contour point if it
satisfies the contour condition (shown in figure 5.9) and at least one adjacent pixels does not
satisfy the condition. Pixels with neighbours that satisfy the condition form the inner part
of the contour.

1 int isSilhouetteContour(vec4 silhPix){
2 // underwater && backface
3 return int(silhPix.x > 0 && silhPix.y <= 0);
4 }

Source code 5.9: Recognizing the silhouette contour pixel.

There are special cases when this method fails to recognize the contour. Since this method
operates on image projected from an orthographic top view, it cannot handle models with
valleys in vertical direction. Such models form an additional contour in locations where the
water plane intersects the model as shown in figure 5.9.

58 CHAPTER 5. IMPLEMENTATION

Figure 5.8: Upper image row represents a water tank seen from side view. We show different
positions of a sphere relatively to the water level. Note that the sphere is green on the top
(positive z-coordinate of the normal) and red on the bottom (negative normal). The bottom
row shows the same object seen from a top view without the part which is above the water
level. The silhouette is the union of the green and red part while the contour is outer border
of the red part.

In order to handle this limitation we assume using models which are monotonous in the
vertical direction. In other words we use models which do not have holes in the vertical axis.
Benefit of using such models is discussed in section 5.6.

Distribution texture The last step of the object to water interaction stage is distributing
the indirect wave effect to the object contour. This routine also smooths out the contour
normals in order to uniformly cover the circular area around the object by the wave particle
propagation angles.

Similarly to a parallel reduction approach we sum up neighbouring pixels into one. In
each step we merge four adjacent pixels into one pixel. After few iterations when the tex-
els are summed together the process is reversed and we reconstruct the original silhouette
while using the textures from the intermediate steps. While descending to higher texture
resolutions we distribute the total indirect wave effect pixels recognized as contour pixels.

5.6 Floating object

Each object which is part of the water simulation interaction is aggregated into FloatingObject
class. The class aggregates every instanced information which is used by the rest of the sim-
ulation. Floating object is actually composed out of the object. The first object is used for
solid body rendering while the convex object is used for object to water interaction. This is
beneficial because we can choose from a simpler model for higher performance or finer model
for higher resolution. The convex is not necessarily convex. The important property is the
aforementioned

Besides this, floating object aggregates sillhouetteCamera, particleCamera and
affiliated textures. Floating objects even store the identifier of the vertex buffer object and

5.6. FLOATING OBJECT 59

Figure 5.9: Illustration of the contour generation. Object (above) is not monotonous by
z-axis a forms an prone contour. The object bellow forms a valid contour. The arrows
represent 2D normals of to contour.

transform feedback buffer. This means we allocate a OpenGL buffer for each floating object.

60 CHAPTER 5. IMPLEMENTATION

Chapter 6

Results

In this section we will present results of our simulation. We depict different use cases of water
simulation and show that the wave particle technique can be used to model such scenarios.

6.1 Simulation scenarios

We tackle three main simulation scenarios: Open oceans where nothing else than water is
around, near shore area where interaction between other ships may occur, and finally water
pools with limited boundaries. Render of simulation scenes from our application is seen in
figure 6.1.

6.2 Quality testing

We have captured a simple testing scenario in real life a compared it to the simulated testing
scenario.

6.3 Performance testing

We have tested our application on the following configuration.

• Intel Core i5-4590 CPU, 3.30GHz

• GPU: GIGABYTE GTX970 4GB

• RAM 8.0 GB

• Windows 7 64-bit

• Compiler: Visual C++ 18.00

61

62 CHAPTER 6. RESULTS

We have used two timers to measure the performance, both of them are on the GPU. In
order to measure frame rates we used asynchronous approach using two timer queries on the
GPU. Code in figure 6.1 depicts the usage of such approach. This ensures that the measured
GPU commands are finished by the time of the query and no synchronization is needed[Lig].
Therefore, is not slowed down by the time measuring. Except for the frame rate we measured
the performance of each stage of our simulation. Since the previously mentioned solution
measures the time of the whole frame we have used the synchronous timer query to measure
each stage.

1 %glBeginQuery(GL_TIME_ELAPSED, query[frontBuffer]); // queryBackBuffer
2 // Code to measure
3 %glEndQuery(GL_TIME_ELAPSED);
4 %glGetQueryObjectui64v(query[frontBuffer], GL_QUERY_RESULT, &timer);
5 // Swap buffers

Source code 6.1: OpenGL asynchronous time measuring.

We implemented a simple solution for reproducing the user inputs in each test case.
Each floating object is given a set of impulses to either accelerate or turn together with a
information about timing.

We have tested the performance of each simulation step in four testing cases.

Test case A The first case is a single boat floating in the ocean scene. We fix the length
of the simulation to 2000 frames and count the time of each simulation phase. The ship is
forced to move around the scene in a circular motion. We performed three modifications
to this test case. In the first run we test the influence of rigid body complexity on the
performance of each phase. For example computation of drag and lift force is done per each
face of the rigid body. Figure 6.7 shows the testing results.

Similarly we measured the influence of the both silhouette (figure 6.7) and wave particle
texture (6.8) on the application performance. Note that this parameter affects not only the
texture resolution but also indirectly affects the number of fragment shader invocation etc.

Test case B In the second test case particles are added to the buffer until it is full. This
test cast measures the performance of the wave particle propagation procedure. Note that in
the wave particle method the number of particles is not directly proportional to the quality
of visual result. Especially when most of the particles in the system are the ones with low
energy.

Figure 6.8 shows the performance of the each algorithm stage with respect to the number
of wave particles.

During the implementation, we measured the performance while using different wave
particle data structure. We measured the usage of 64 byte1 wave particles and compared
it to the current 32 byte implementation described in 5.2.2. Unfortunately the performance
tests did not show any signs of optimization.

1Four vec4 member variables, each of which is composed of 4 floats and float is a 4 byte data type.
4 × 4 × 4 = 64.

6.4. VOLUME TESTING 63

Test case C We put the third test case into the lighthouse scene and place boats in the
nearby. The purpose of this test is to show the usage of the wave particle method in a
real simulation scenario. The rest of the boats in the environment does not accelerate by
itself and is floating on a constant position. We position the boats in order to maximize the
number of interaction between nearby floating object. Once a moves, it creates wave which
pushes away the other floating objects. We measure the performance for different number
of boat along the direction of motion.

Test case D The fourth test case captures a scenario with high number of boats. Un-
like the test case C, all the boats are moving. Results are shown in figure 6.9. In our
application, the number of ships is somewhat limited. Because we render the water surface
in one step, all the vertical deviation functions are added at once. And since the number
of GPU texture units is limited we cannot apply deviation function from more ships than
GL_MAX_TEXTURE_IMAGE_UNITS.

Sphere x20 Sphere x60 Boat x20 Boat x60

Used method 32912,570313 888638,812500 4254,864746 114881,203125
Precise 32795,530 890339,293 3745,223 101121,294

Table 6.1: Evaluation of the approximative volume computation method used in our simu-
lation.

6.4 Volume testing

Since the volume computation method is based object projection it is discretized into pixels.
It means that the method is not consistent for different scales. Therefore, we present different
scales of the object in the volume testing. Table 6.3 show results of our testing.

Ship count 1 2 4 8 16 32
Test case D 199 144 93 60 35 18
Test case C 145 136 97 60 33 24

Table 6.2: Average frame rate for the test case C and D.

64 CHAPTER 6. RESULTS

Figure 6.1: Simulation environment rendered in our application

6.4. VOLUME TESTING 65

Figure 6.2: Comparison of wave propagation of real life scene with a simulated scenario.

Figure 6.3: Video sequence of real wave propagation in a water tank.

66 CHAPTER 6. RESULTS

Figure 6.4: Video sequence of simulated wave propagation in a pool.

6.4. VOLUME TESTING 67

Figure 6.5: Video sequence of the floating boat in lighthouse scene.

68 CHAPTER 6. RESULTS

Figure 6.6: Video sequence of the boat interaction in lighthouse scene.

Figure 6.7: Mesh complexity influence on the simulation performance (left). Variable part
represents number of object faces. Particle texture resolution complexity (right).

6.4. VOLUME TESTING 69

Figure 6.8: Influence of the silhouette texture resolution in different algorithm stages (left).
Performance testing with respect to the number of wave particle (right).

Figure 6.9: Result of the test case C (left) and case D (right).

70 CHAPTER 6. RESULTS

Chapter 7

Conclusion

This thesis addresses simulating a virtual environment with large bodies of water. We
presented a theoretical background and described various water phenomena, which occur in
real life. In the field of fluid simulation we focus the real-time methods and we have described
techniques which are used in high frame rate applications such as video games.

We have implemented the wave particle method developed by Yuksel et al. [YHK07].
Moreover, we described the process of a handling interaction between water body and a rigid
body and implemented a water simulation with user interaction. We have showed that the
simulating can produce plausible results and that it can be used at interactive frame rates.
Simulation scenario have been created to show the capabilities of this method.

Even though we first addresses the method to work with arbitrary shaped objects, we
have described some limitations for the use of a rigid body in our simulation.

Consequently, we have created water rendering module which offers an approximative
solution to light reflection and refraction. Adaptive tessellation had been implemented to
save the performance and further increase the speed of surface rendering.

7.1 Future work

Interesting improvement of the wave particle method would be handling the diffraction effect.
This would allow to use this method extensively in the scenarios with local boundaries. As
can be seen on the pool scenario, it is hard to comprehend the shape of the simulated water
without seeing the water caustics. Besides caustics, there are localized water phenomena
which could be mapped onto wave particle method. For example extracting the water white
caps from existing high velocity particle. Moreover, adding breaking waves factor to wave
particle method is a great opportunity for improvement.

71

72 CHAPTER 7. CONCLUSION

Bibliography

[BMF07] Robert Bridson and Matthias Müller-Fischer. Fluid simulation: Siggraph 2007
course notes. In ACM SIGGRAPH 2007 Courses, SIGGRAPH ’07, pages 1–81,
New York, NY, USA, 2007. ACM.

[CF07] CT Chou and LC Fu. Ships on real-time rendering dynamic ocean applied in
6-dof platform motion simulator. In CACS International Conference, volume 3,
2007.

[CLW+07] Haogang Chen, Qicheng Li, Guoping Wang, Feng Zhou, Xiaohui Tang, and
Kun Yang. An efficient method for real-time ocean simulation. In Kin-chuen
Hui, Zhigeng Pan, RonaldChi-kit Chung, CharlieC.L. Wang, Xiaogang Jin,
Stefan Göbel, and EricC.-L. Li, editors, Technologies for E-Learning and Digital
Entertainment, volume 4469 of Lecture Notes in Computer Science, pages 3–11.
Springer Berlin Heidelberg, 2007.

[CM10] Nuttapong Chentanez and Matthias Müller. Real-time simulation of large bod-
ies of water with small scale details. In Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’10, pages
197–206, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Associa-
tion.

[DB12] Jonathan Dupuy and Eric Bruneton. Real-time animation and rendering of
ocean whitecaps. In SIGGRAPH Asia 2012 Technical Briefs, SA ’12, pages
15:1–15:3, New York, NY, USA, 2012. ACM.

[DCGG11] Emmanuelle Darles, Benôıt Crespin, Djamchid Ghazanfarpour, and Jean-
Christophe Gonzato. A survey of ocean simulation and rendering techniques in
computer graphics. CoRR, abs/1109.6494, 2011.

[FOK05] Bryan E. Feldman, James F. O’Brien, and Bryan M. Klingner. Animating gases
with hybrid meshes. ACM Trans. Graph., 24(3):904–909, July 2005.

[Hav] Vlastimil Havran. Lecture notes for course realistic image synthesis.

[IGLF06] Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald Fedkiw. Effi-
cient simulation of large bodies of water by coupling two and three dimensional
techniques. ACM Trans. Graph., 25(3):805–811, July 2006.

[Lig] Lighthouse3D. Opengl timer query.

73

74 BIBLIOGRAPHY

[Max81] Nelson L. Max. Vectorized procedural models for natural terrain: Waves and
islands in the sunset. SIGGRAPH Comput. Graph., 15(3):317–324, August
1981.

[MMS04] Viorel Mihalef, Dimitris Metaxas, and Mark Sussman. Animation and control
of breaking waves. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’04, pages 315–324, Aire-la-Ville,
Switzerland, Switzerland, 2004. Eurographics Association.

[NAS10] NASA. The drag equation, 2010. Online: http://www.grc.nasa.gov/WWW/k-
12/airplane/drageq.html accessed on Dec 19, 2014.

[OCv13] Juraj Onderik, Michal Chládek, and Roman Ďurikovič. Sph with small scale
details and improved surface reconstruction. In Proceedings of the 27th Spring
Conference on Computer Graphics, SCCG ’11, pages 29–36, New York, NY,
USA, 2013. ACM.

[Ope14] OpenGL. specification of opengl version 4.40, 2014.

[RDP05] Vincent Ross, Denis Dion, and Guy Potvin. Detailed analytical approach to the
gaussian surface bidirectional reflectance distribution function specular compo-
nent applied to the sea surface. J. Opt. Soc. Am. A, 22(11):2442–2453, Nov
2005.

[RWT11] Karthik Raveendran, Chris Wojtan, and Greg Turk. Hybrid smoothed particle
hydrodynamics. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’11, pages 33–42, New York, NY,
USA, 2011. ACM.

[SB12] Hagit Schechter and Robert Bridson. Ghost sph for animating water. ACM
Trans. Graph., 31(4):61:1–61:8, July 2012.

[Tes01] Jerry Tessendorf. Simulating ocean water. 2001.

[Tes04] Jerry Tessendorf. Interactive water surfaces. Game Programming Gems 4,
Charles River Media, 2004.

[TLP06] Adrien Treuille, Andrew Lewis, and Zoran Popović. Model reduction for real-
time fluids. ACM Trans. Graph., 25(3):826–834, July 2006.

[TMFSG07] Nils Thurey, Matthias Müller-Fischer, Simon Schirm, and Markus Gross. Real-
time breaking waves for shallow water simulations. In Proceedings of the 15th
Pacific Conference on Computer Graphics and Applications, PG ’07, pages 39–
46, Washington, DC, USA, 2007. IEEE Computer Society.

[TRS06] Nils Thürey, Ulrich Rüde, and Marc Stamminger. Animation of open water
phenomena with coupled shallow water and free surface simulations. In Pro-
ceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, SCA ’06, pages 157–164, Aire-la-Ville, Switzerland, Switzerland,
2006. Eurographics Association.

http://www.grc.nasa.gov/WWW/k-12/airplane/drageq.html
http://www.grc.nasa.gov/WWW/k-12/airplane/drageq.html

BIBLIOGRAPHY 75

[Wei] Eric Weisstein. Method of shells. MathWorld - A Wolfram Web Resource.

[YHK07] Cem Yuksel, Donald H. House, and John Keyser. Wave particles. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH 2007), 26(3), 2007.

[YK09] Cem Yuksel and John Keyser. Fast real-time caustics from height fields. The
Visual Computer (Proceedings of CGI 2009), 25(5-7):559–564, 2009.

[YNBH09] Qizhi Yu, Fabrice Neyret, Eric Bruneton, and Nicolas Holzschuch. Scalable
real-time animation of rivers. Computer Graphics Forum (Proceedings of Eu-
rographics 2009), 28(2), mar 2009.

[YNS11] Qizhi Yu, Fabrice Neyret, and Anthony Steed. Feature-based vector simulation
of water waves. Computer Animation and Virtual Worlds, 22(2-3):91–98, 2011.

[You81] A. T. Young. Rayleigh scattering. Applied optics, 1981.

[Yuk10] Cem Yuksel. Real-time Water Waves with Wave Particles. PhD thesis, Texas
A&M University, 2010.

76 BIBLIOGRAPHY

List of Figures

1.1 Results of out application. 2

2.1 Illustration of Lagrangian fluid element forming 2D wave. 5
2.2 Illustration of Eulerian fluid cell forming 2D wave. 6
2.3 Model of Gerstner wave in 2D. Plausible result (left), the case of exaggerated

self intersection artefact (right). Green line shows original wave without ver-
tical deviation, sharp red line shows a wave after vertical deviation, and the
blue dotted line shows the vertical deviation. We put the vertical deviation
in one image although the horizontal value is the deviation in vertical axis. . 9

2.4 Model of Gerstner wave in 2D composed out of 3 components. Original wave
(green), the final wave (red), and the vertical deviation (blue). 9

2.5 Frames taken from a water particle motion animation in deep waters. A water
particle in a propagating wave in time (from left to right). The orange point
is the initial position of the water particle. Current water particle position is
marked by green point. 11

2.6 Frames taken from a water particle motion animation in shallow waters. . . . 11
2.7 Illustration of the horizontal wave. Vertical component (left), horizontal com-

ponent (centre), compounded wave (right). Courtesy of [YHK07]. 11
2.8 Wave diffraction after the wave passes the slit. Courtesy of [YHK07]. 12
2.9 Circular motion of under water flows in deep water (left) compared to the

shallow waters (right). The motion of the water particles located deeper
inside the water is reduced exponentially. 12

2.10 Reflectivity for a smooth water. Difference between the horizontally and ver-
tically polarized component (left). Comparison of Schlick’s approximation
(right). 16

3.1 Modelling a wave using superposition principle. The red wave is the superpo-
sition of the blue and green one. 21

3.2 Illustration of box function. The grey sine wave is the original signal 23
3.3 Superposition of the particle deviation function. The red line represents the

square function, grey sine wave represents the original waveform function with-
out and the blue is the . 23

77

78 LIST OF FIGURES

3.4 Illustration of the wave front generation. Top images show the position of
the wave particles and its radius ri (green circles). The bottom images show
the global deviation function combined from local deviation function of these
particles. 24

3.5 Illustration of wave fronts types: expanding wave front (left) and contracting
wave front (right). Arrows represent the propagation direction. 25

3.6 Illustration of the wave front generation from particles. Source particles (left)
and generated wave front (right) from the top view. 26

3.7 Illustration of the horizontal and vertical deviation function of a propagating
wave. 26

3.8 Illustration of the influence of the horizontal deviation on a existing wave
particle. Wave produced by a single wave particle without the effect of the
horizontal deviation (left). Other images (centre, right) show a case of differ-
ent vertical deviation strength sv. 27

3.9 Properties of the i-th wave particle (blue circle) demonstrated from top 2D
view. Yellow sector represents the dispersion angle δ, red sector is the prop-
agation angle α, x is the current position, o is the origin and ri is the wave
particle radius. 27

3.10 Illustration of the wave particle (dark blue circles) origin in the case of con-
tracting (left) and expanding (right) wave front. The arrows represent the
propagation angle, o is the origin point, and the light blue dotted circles
represent the wave particle in an initial position. 28

3.11 Illustration of the wave particle (blue circles) behaviour without subdivision
(left) and with subdivision (right) in three time steps. The opacity of the
wave particles colour illustrates amplitude. Yellow sector on the right image
represents the dispersion angle δ of the original (leftmost) particle. Note that
the distances between particles should be even lower to form a continuous wave
front; the particles are placed sparsely to increase readability. The difference
in time t0 is in both images is that there are all three particles placed in the
same point on the left image. On the other hand there is only one particle
which will be subdivided in the right image 29

3.12 Illustration of the dispersion angle partitioning after particle subdivision oper-
ation. Particles are marked by blue circles with a unique identifier. Dispersion
angle of each particle is marked by colour to enhance lucidity. 30

3.13 Visualization of the distances used by the particle subdivision method. The
blue circle is the wave particle and the yellow region is the dispersion angle δ
in the time of particle creation when the distance travelled rδ = 0. 31

3.14 Exaggerated effect of the approximation error presented by the radial defini-
tion of the wave particle deviation function. Images are ordered by w. Wave
front with no error (centre), wave front with undesirable valleys (left) and
peaks (right). 32

LIST OF FIGURES 79

3.15 Illustration of the approximation error with respect to the distance between
adjacent particles w and the distance travelled rδ by a particle. Tw refers to
the subdivision threshold. The red line represents the approximation error.
The green and blue line is the upper, respectively lower, bound of the error. . 32

3.16 Illustration of the wave particle reflection. In this case rδ is wrongly inter-
preted as it does not cover the distance which has been travelled by the current
particle. 34

3.17 Illustration of the wave particle (blue circle) reflection off of the flat water
boundary (left) and curved boundary (right). The grey area represents the
boundary with the mirrored origin. The dotted sector represents the disper-
sion angle before reflection and the yellow sector is the dispersion angle after
reflection. 34

3.18 Demonstration of a wave front (blue line) approaching corner of water bound-
ary in time (from left to right). Red arrows represent the propagation angle of
the wave front. Valid reflection with the right angle corner (top) and reflection
from an obtuse angled corner (bottom). 35

3.19 Different cases of wave propagation with respect to the position and the mo-
tion of the floating object. Striped line represents the object position in the
previous time step. Cases O1, O2 (outside) show the influence of only the
indirect wave effect since the object is on the water surface level. Cases I1
and I2 (inside) show the influence of both direct and indirect wave effect inside
the volume. 38

4.1 Simplified OpenGL pipeline. Yellow coloured boxes represents the programmable
stages, blue are the fixed stages, and violet represents output buffers. 44

5.1 Illustration of Transform feedback buffer swapping. The output of first TFB
is used as an input of the second TFB. 46

5.2 Wave particle structure encoded for the use on the GPU. 49
5.3 Illustration of the data organization in the particle generator vertex buffer. . 52
5.4 Illustration of a prone state of wave particle subdivision in the environment

with water body boundary. 53
5.5 Illustration of splatting (left) and gathering (right) approach. 53
5.6 . 55
5.7 Red area represents the silhouette of the floating object. 57
5.8 Upper image row represents a water tank seen from side view. We show

different positions of a sphere relatively to the water level. Note that the
sphere is green on the top (positive z-coordinate of the normal) and red on
the bottom (negative normal). The bottom row shows the same object seen
from a top view without the part which is above the water level. The silhouette
is the union of the green and red part while the contour is outer border of the
red part. 58

80 LIST OF FIGURES

5.9 Illustration of the contour generation. Object (above) is not monotonous by
z-axis a forms an prone contour. The object bellow forms a valid contour.
The arrows represent 2D normals of to contour. 59

6.1 Simulation environment rendered in our application 64
6.2 Comparison of wave propagation of real life scene with a simulated scenario. . 65
6.3 Video sequence of real wave propagation in a water tank. 65
6.4 Video sequence of simulated wave propagation in a pool. 66
6.5 Video sequence of the floating boat in lighthouse scene. 67
6.6 Video sequence of the boat interaction in lighthouse scene. 68
6.7 Mesh complexity influence on the simulation performance (left). Variable part

represents number of object faces. Particle texture resolution complexity (right). 68
6.8 Influence of the silhouette texture resolution in different algorithm stages

(left). Performance testing with respect to the number of wave particle (right). 69
6.9 Result of the test case C (left) and case D (right). 69

List of Tables

4.1 List of dependencies of our application and their versions. 43

6.1 Evaluation of the approximative volume computation method used in our
simulation. 63

6.2 Average frame rate for the test case C and D. 63

81

82 LIST OF TABLES

List of source codes

5.1 Initialization of the Transform Feedback Buffer. 48
5.2 Data packing of the wave particle size . 49
5.3 Main part of the wave particle propagation program on vertex shader 50
5.4 Specification of input and output primitives in geometry shader. 51
5.5 Geometry shader implementation of subdivision procedure. 51
5.6 Procedure of generating new particles on geometry shader. 52
5.7 Volume computation on the fragment shader. 55
5.8 Wave effect categorization of individual faces on vertex shader. 57
5.9 Recognizing the silhouette contour pixel. 57
6.1 OpenGL asynchronous time measuring. 62

83

84 LIST OF SOURCE CODES

Appendix A

List of abbreviations

API Application Programming Interface

CPU Central Processing Unit

GPU Graphic Processing Unit

GUI Graphics User Interface

OpenGL Open Graphics Library

GLEW OpenGL Extension Wrangler Library

GLSL OpenGL Shading Language

GLM OpenGL Mathematics

NSE Navier-Stokes Equation

VBO Vertex Buffer Object

TFB Transform Feedback Buffer

TF Transform Feedback

SBT Solid Boundary Treatment

SPH Smoothed Particle Hydrodynamics

BRDF Bidirectional Reflectance Distribution Function

85

86 APPENDIX A. LIST OF ABBREVIATIONS

Appendix B

User manual

When running the application from the command line, it takes 3 arguments.
Part of the distribution is configuration directory where are the necessary information for

the simulation and rendering phase. Most of these parameters are also accessible via GUI.
Although parameters, which are set in the GUI, are not persistent to the next application
run.

path Relative path to the configuration file, which sets simulation parameters.

isTest Second parameter is boolean flag (1/0) whether to use testing loop or the standard
rendering loop.

scene Number of of the current testing scenario.

B.1 Controls

User input can be also done by keyboard. The most important keys are as follows:

F Follow mode. Fix the camera to the current floating object (toggle)

R Ride mode. Redirect the effect of the WSAD keys to control the ship instead of camera
(toggle)

W Move forward

S Move backwards

D Move right

A Move left

K Reset the the active floating object position

Z Change the active floating object to the next one

P Pause the wave particle simulation

87

88 APPENDIX B. USER MANUAL

I Display textures

O Orthographic view

Appendix C

DVD content

/
bin
videos
resources

config
images
models
shaders

docs
doxygen
thesis

src
lib

AntTweakBar
assimp
DevIL-SDK-x86-1.7.8
dirent
glew-1.11.0
glfw-3.0.4.bin.WIN32
glm
inih
lodepng
noise
rapidjson

vsproj

89

	Introduction
	Motivation
	Subject of this thesis
	Thesis structure

	Theoretical background
	Volume based fluid simulations
	Navier-Stokes equations
	Lagrangian approach
	Eulerian approach
	Hybrid methods

	Heightfield representation
	Spatial domain
	Gerstner Waves

	Spectral domain

	Dynamic properties of water body
	Wave propagation
	Water depth
	Breaking waves
	Continuous flow
	Water wakes

	Optical properties of water
	Water caustics
	Reflection and Refraction
	Godrays
	Fresnel term
	Water colour
	Whitecaps

	Fluid interaction
	Volumetric simulations
	Heightfield based simulations

	Water Simulation with Wave Particles
	Motivation
	Wave equation
	1D Wave equation
	Solution to the wave equation
	2D Wave equation

	Wave particles
	Wave particles for 1D wave
	Wave particles for 2D wave
	Radial deviation function
	Longitudinal waves
	Wave particle properties
	Wave particle subdivision
	Subdivision criterion
	Creating new wave particles

	Water boundary

	Object to fluid interaction
	Wave-object collision
	Wave generation
	Wave position
	Wave propagation
	Wave volume

	Wave particle generation

	Fluid to object interaction
	Buoyancy force
	Dynamic forces

	Used technologies
	Other dependencies
	OpenGL library
	GLSL

	Implementation
	Application structure
	Wave particle method
	Buffer size
	Particle data structure
	Wave particle simulation
	Propagation routine
	Subdivision and delete routine
	Particle generation routine

	Wave particle reflection

	Filter particles
	Water to object interaction
	Buoyancy force
	Drag and lift force
	Water-object collision
	Parallel reduction

	Object to water interaction
	Floating object

	Results
	Simulation scenarios
	Quality testing
	Performance testing
	Volume testing

	Conclusion
	Future work

	List of abbreviations
	User manual
	Controls

	DVD content

