

Czech Technical University in Prague
Faculty of Electrical Engineering

diploma thesis

Portfolio algorithms for combinatorial
optimization

Bc. Marek Šrank

Department of Computer Science
advisor: Ing. Petr Pošík, Ph.D.

January 2015

Declaration
I declare that I worked out the presented thesis independently and I quoted all
used sources of information in accord with Methodical instructions about ethical
principles for writing academic thesis.

In Prague on .
Marek Šrank

Abstrakt
Táto diplomová práca skúma vybrané portfólio algoritmy pre kombinatorickú op-
timalizáciu. Cieľom je zistiť, či tieto algoritmy poskytujú efektívnu alternatívu k
najčastejšie používaným reštartovacím stratégiám. Porovnáva niekoľko verzií Me-
taMax algoritmu, s fixnou ako aj neobmedzenou veľkosťou portfólia a algoritmus
MultiEA, ktoré používajú online plánovanie. Sú tiež navrhnuté dve modifikované
varianty MultiEA algoritmu. Do porovnania je zahrnutý aj zástupca bandit straté-
gií, algoritmus Epsilon-greedy, ktorého plán je vopred známy a dve reštartovacie
stratégie. Všetky tieto algoritmy sú testované na skupine úloh kombinatorickej
optimalizácie a je vyhodnotená ich rýchlosť konvergencie a tiež schopnosť nájsť
riešenie.

vi

Abstract
This diploma thesis studies selected portfolio algorithms for combinatorial opti-
mization. The goal is to find out whether these algorithms provide an efficient
alternative to the most commonly used restarting strategies. It compares several
versions of MetaMax algorithm with fixed and also unbounded portfolio sizes and
the MultiEA algorithm, that both use an online schedule creation. Two modi-
fied variants of MultiEA algorithm are also proposed. A representative of bandit
strategies, Epsilon-greedy algorithm, whose schedule is known in advance, and
two different restarting strategies are included in comparison as well. All these
algorithms are tested on the set of combinatorial optimization tasks and their
convergence rate as well as the ability to find a solution is evaluated.

vii

Acknowledgements
I would like to express my thanks to Mr. Petr Pošík, my supervisor, for his guid-
ance and help. My thanks also go to my family and friends for supporting me.

This diploma thesis was typeset in LATEX using the FELthesis template by Vít
Zýka.

Computational resources were provided by the MetaCentrum under the program
LM2010005 and the CERIT-SC under the program Centre CERIT Scientific
Cloud, part of the Operational Program Research and Development for Inno-
vations, Reg. no. CZ.1.05/3.2.00/08.0144.

ix

Contents

1 Optimization problems and local search algorithms 2
1.1 Local optimization . 2
1.2 Travelling salesman problem . 2
1.3 Centroid-based clustering . 4
1.4 Warehouse Location Problem . 5

2 Evaluation of algorithm quality 7
2.1 Fitness function . 7
2.2 ECDF of running times . 8
2.3 Aggregated performance index . 8

3 Meta-strategies 10
3.1 Restarting strategies . 10
3.2 Bandit strategies . 11

3.2.1 Epsilon-first . 11
3.2.2 Epsilon-greedy . 11
3.2.3 Epsilon-decreasing . 12

3.3 Portfolio algorithms . 12
3.3.1 MetaMax . 12

MetaMax(k) . 13
MetaMax(∞) . 15
MetaMax . 17

3.3.2 MultiEA . 17

4 Experiments 21
4.1 Optimization problems and their instances 21
4.2 Meta-strategies and their configuration 22
4.3 Results . 24

4.3.1 Travelling salesman problem 25
4.3.2 K-means clustering . 29
4.3.3 Single-swap clustering . 33
4.3.4 Warehouse location problem 37

5 Conclusion 41

Appendices

Bibliography 44

A API by strategy and parameter settings 45
A.1 Travelling salesman problem . 45
A.2 K-means clustering . 48

x

A.3 Single-swap clustering . 51
A.4 Warehouse location problem . 54

B Convergence curves 57
B.1 Travelling salesman problem . 57
B.2 K-means clustering . 59
B.3 Single-swap clustering . 61
B.4 Warehouse location problem . 63

xi

List of Figures

1 Convergence curves for the best strategies on tsp-42. 25
2 Convergence curves for the best strategies on tsp-175. 26
3 MultiEA strategies with different prediction functions on tsp-175. 26
4 Convergence curves for the best strategies on km-18. 29
5 Convergence curves for the best strategies on km-29. 30
6 MultiEA strategies with different prediction functions on km-29. . 30
7 Convergence curves for the best strategies on ss-18. 33
8 Convergence curves for the best strategies on ss-29. 34
9 MultiEA strategies with different prediction functions on ss-29. . . 34
10 Convergence curves for the best strategies on wlp-50. 37
11 Convergence curves for the best strategies on wlp-500. 38
12 MultiEA strategies with different prediction functions on wlp-500. 38

13 Convergence curves for the best strategies on tsp-42. 57
14 Convergence curves for the best strategies on tsp-175. 57
15 Convergence curves for the best strategies on tsp-535. 58
16 Convergence curves for the best strategies on tsp-1032. 58
17 Convergence curves for the best strategies on km-5. 59
18 Convergence curves for the best strategies on km-10. 59
19 Convergence curves for the best strategies on km-18. 60
20 Convergence curves for the best strategies on km-29. 60
21 Convergence curves for the best strategies on ss-5. 61
22 Convergence curves for the best strategies on ss-10. 61
23 Convergence curves for the best strategies on ss-18. 62
24 Convergence curves for the best strategies on ss-29. 62
25 Convergence curves for the best strategies on wlp-50. 63
26 Convergence curves for the best strategies on wlp-200. 63
27 Convergence curves for the best strategies on wlp-500. 64

xii

List of Tables

1 APIs of the best settings of tested strategies for TSP. 27
2 APIs of portfolio algorithms and fixed restarting strategy for TSP. 28
3 APIs of the best settings of tested strategies for k-means. 31
4 APIs of portfolio algorithms and fixed restarting strategy for k-

means. 32
5 APIs of the best settings of tested strategies for single-swap. . . . 35
6 APIs of portfolio algorithms and fixed restarting strategy for single-

swap. 36
7 APIs of the best settings of tested strategies for WLP. 39
8 APIs of portfolio algorithms and fixed restarting strategy for WLP. 40

9 APIs of restarting strategies for instances of TSP. 45
10 APIs of MultiEA strategies for instances of TSP. 46
11 APIs of MetaMax strategies for instances of TSP. 46
12 APIs of Epsilon-greedy strategies for instances of TSP. 47
13 APIs of restarting strategies for instances of k-means. 48
14 APIs of MultiEA strategies for instances of k-means. 48
15 APIs of MetaMax strategies for instances of k-means. 49
16 APIs of Epsilon-greedy strategies for instances of k-means. 50
17 APIs of restarting strategies for instances of single-swap. 51
18 APIs of MultiEA strategies for instances of single-swap 51
19 APIs of MetaMax strategies for instances of single-swap. 52
20 APIs of Epsilon-greedy strategies for instances of single-swap. . . 53
21 APIs of restarting strategies for instances of WLP. 54
22 APIs of MultiEA strategies for instances of WLP. 54
23 APIs of MetaMax strategies for instances of WLP. 55
24 APIs of Epsilon-greedy strategies for instances of WLP. 56

xiii

List of Algorithms

1 MetaMax(k) algorithm . 14
2 MetaMax(∞) algorithm . 16
3 MetaMax algorithm . 18
4 MultiEA algorithm . 20

xiv

Abbreviations
List of abbreviations used in the text:

API Aggregated performance index
ECDF Empirical cumulative distribution function
ERT Expected running time
KDE Kernel Density Estimation
TSP Travelling salesman problem
WCSS Within-cluster sum of squares
WLP Warehouse location problem

xv

Introduction

The aim of our work is to compare some promisingly-looking metaoptimization
portfolio algorithms with commonly used restarting strategies in the domain of
combinatorial optimization by local search.

Many problems that we encounter in real world could be described as searching
the best solution that can be described by some configuration in a discrete state-
space. Configurations in such space are often being searched by local search, that
is by trying to find a better configuration near the best one found so far. In the
continuous space we can often employ some of the methods from mathematical
analysis that can help us to approximate the direction in which the search for
better solution should follow, for us to be as efficient as we can. There are usually
no such analytical methods that could be used in a discrete space which accounts
for the higher complexity of searching for optimal configurations.

Another problem, found both in combinatorial and continuous optimization by
local search is a problem of getting trapped in a local optimum. This problem is
often tried to be overcome by restarting the search multiple times from different
points of the configuration space. An alternative is to conduct more instances of
such search in parallel and give computational time to the ones that seem to be
the most promising.

In our work we will analyse algorithms that can be used to build such paral-
lel strategies — MetaMax and MultiEA — and we will compare them with the
most common restarting strategies and also Epsilon-greedy algorithm, the repre-
sentative of bandit strategies. Our aim is to find out whether these algorithms
provide viable alternatives that would be comparable with restarting strategies
in efficiency. Therby we also continue the work of Viktor Kajml who compared
effectivity of MetaMax algorithm with restarting strategies in the domain of con-
tinuous optimization (Kajml 2014).

One of the most fundamental questions when solving any computational prob-
lem is the question of which of the possible algorithms to choose. The answer to
this question depends primarily on the criteria that should such algorithm sat-
isfy. In the case of optimization tasks it will often be some kind of requirement
to converge as fast as possible to the solution that is as good as possible. The
algorithms examined by us can also help us to find an answer to this question.

The first chapter is devoted to the optimization problems and local search
algorithms that we will use to test our selected meta-strategies. In the following
chapter we address the question of evaluating the quality of algorithms. We also
introduce the measure that we will use to compare the meta-strategies. In the
third chapter we look at meta-strategies that we study and explain how they
work. Finally in the fourth chapter, we describe our test setup and share our
results. Discussion of the results is in the following chapter.

1

1 Optimization problems and local search
algorithms

In a sense, we will deal with two types of algorithms in our work. First, there
will be local search algorithms that are used to solve the optimization tasks.
Then there will be meta-algorithms that will manage and run the local search
algorithms, whether repeatedly or more of them in parallel, trying to improve their
performance and efficiency when finding the solution. For these meta-algorithms
we will prefer to use the term meta-strategies (or simply strategies) to distinguish
them from local search algorithms themselves, to which we will refer simply as
algorithms.

Throughout our text, we will also use a term fitness function, by which we will
mean an objective function which value we want to minimize or maximize. We
will define one step of an algorithm as the smallest amount of fitness function
evaluations needed by the algorithm to obtain a new solution.

Selected meta-strategies we tested on a few chosen combinatorial optimization
problems that will be described in this chapter.

1.1 Local optimization
Under optimization task we understand a problem of finding minimum or maxi-
mum value of some function over a set of all possible values 𝑆. In the combinato-
rial optimization this set is finite. Local search is one way to solve optimization
tasks. Having a neighbourhood structure that defines the relations between the
elements of set 𝑆, local search algorithms start with some initial solution which
they iteratively improve. In each iteration they move along the defined neighbour-
hood structure, generating a new solution from the previous one. This way the
search continues unless no improving solution can be found in the neighbourhood.

Since local search algorithms need at any time just one active instance of a
problem, they can be used to solve even tasks with very large state-space without
problems with available memory.

When a local search ends, it does mean that no improving solution could be
found nearby an actual one, but it doesn’t mean that no such solution exists
globally. Therefore we say that we reached just a local optimum.

1.2 Travelling salesman problem
Travelling salesman problem (TSP) is one of classical problems in combinatorial
optimization. We are given a set of cities and mutual distances between them.

2

1.2 Travelling salesman problem

Our task is to find the shortest path starting in one of the cities, visiting all the
other cities and returning to the city it started in. This problem belongs to the
class of NP-complete problems.

It can be mathematically described as follows (Hahsler and Hornik 2006). We
have a list of 𝑛 cities 𝐶1, 𝐶2, ..., 𝐶𝑛 and their distances in the form of a distance
matrix 𝐷 in which an element at a position 𝑑𝑖𝑗 represents the value of a distance
between cities 𝐶𝑖 and 𝐶𝑗. We can construct such permutation 𝜋 consisting of
elements 1, 2, . . . , 𝑛 where each element at position 𝜋(𝑖) is an index of a city that
follows the city 𝐶𝑖 on the path that describes one particular solution to the TSP
problem. The goal here is to find such permutation 𝜋 that minimizes the total
distance:

𝑛∑︁
𝑖=1

𝑑𝑖𝜋(𝑖) (1)

There are algorithms that can find exact solutions of TSP, but as it is NP-
complete, they are not very fast on larger instances. In these cases algorithms
incorporating various heuristics are used instead. They are not guaranteed to find
an optimal solution, however in many cases this is not so important as long as
they find a sufficiently good one.

Heuristics for solving TSP can be divided into two main groups. There are
construction heuristics that build solution from scratch. Another group consists
of iterative improvement heuristics that iteratively try to construct a better path
from the existing one. This group contains also local search algorithms that we
are interested in. They impose some additional rules that enable us to build a
valid path from another one, thus allowing to use the local search.

K-opt heuristic
This heuristic first removes a set of 𝑘 edges that are not adjacent, thereby dividing
the path into multiple disconnected segments. It then reconnects these segments
by adding another 𝑘 edges so that the segments will form a cyclic path again.
This is called a k-opt move. Usually, 2-opt or 3-opt moves lead to good solutions
in acceptable time.

Lin-Kernighan heuristic
This heuristic, described by Lin and Kernighan in (Lin and Kernighan 1973), is
a generalization of k-opt heuristic explained above. Instead of using k-opt moves
with the fixed value of k during the search, it uses the value of 𝑘 that leads to the
biggest improvement in that particular move. Implementation of this heuristic
is simplified by the fact that for any 𝑘-opt move there exists a sequence of 2-opt
moves such that the path that is a result of applying all the moves from this
sequence is the same as the one created by given k-opt move.

3

1 Optimization problems and local search algorithms

1.3 Centroid-based clustering
In centroid-based clustering we are given a set of 𝑛 samples, represented by points
in euclidean space, and goal is to find 𝑘 representatives for this set, such that
the distance between a point and its closest representative is minimized. The
most common measure is called within-cluster sum of squares (WCSS) and is
formulated as:

𝑘∑︁
𝑖=1

∑︁
𝑥∈𝑆𝑖

||𝑥 − 𝜇𝑖||2 (2)

where 𝑆𝑖 is a set of points that are assigned a representative 𝜇𝑖 - i.e. a cluster.
This problem is NP-hard but there exists many heuristic algorithms that can be
used to find a sufficiently good solution.

K-means algorithm
K-means is one of the most popular heuristic algorithms used to solve the tasks
of centroid-based clustering. It begins by finding an initial solution and then it
works by improving the solution in iterations comprised of two phases. In the
first phase, each point 𝑥 from 𝑛 input samples is assigned a centroid to which the
point has the lowest within-cluster sum of squares. Points that have the same
centroid 𝑖 together form a cluster, a set 𝑆𝑖:

𝑆𝑖 =
{︂

𝑥 : ||𝑥 − 𝜇𝑖||2 ≤ ||𝑥 − 𝜇𝑗||2 ∀𝑗 = {1, ..., 𝑘}∖{𝑖}
}︂

(3)

In the second phase the recomputation of centroids is being done. Each set of
points 𝑆𝑖 is assigned a new centroid which becomes the mean of all the points
from the set:

𝜇𝑖 = 1
|𝑆𝑖|

∑︁
𝑥∈𝑆𝑖

𝑥 (4)

While the k-means algorithm is guaranteed to converge to the local optimum,
overall quality of such solution is heavily dependant on the initialization. One
simple initialization approach is to take 𝑘 random points of the euclidean space
and make them centroids. There are also advanced initialization techniques such
as doing preliminary clustering on the subset of the input samples or choosing
the random sample as the first centroid, then selecting the next centroid as the
sample that is the most distant from the centroids already chosen and continuing
in this way until all 𝑘 centroids have been specified1.

1This is called k-means++ algorithm

4

1.4 Warehouse Location Problem

Single-swap algorithm
Single-swap algorithm uses a simple local search heuristic that creates a new
solution from the previously obtained one by swapping one centroid with another
as described in (Kanungo et al. 2002). Specifically, it begins by choosing initial 𝑘
centroids from the set of 𝑛 sample points. Then it chooses the centroid 𝑖 that will
be replaced by another one. New set of centroids is then constructed by removing
the selected centroid and replacing it with a new centroid taken from the set of
sample points as well. If the resulting solution has better value of the fitness
function 2 than the previous one, it is kept. Otherwise the algorithm returns
to the previous solution. This process is repeated until no substantially better
solution can be found by swapping the centroids.

1.4 Warehouse Location Problem
Warehouse location problem (WLP, see (Kuehn and Hamburger 1963)), also
known as Facility location problem, is an example of optimization problem with
constraints. Using similarity with set-packing, Krarup and Pruzan in (Krarup and
Pruzan 1983) showed that this problem is NP-complete. It has many variants and
definitions. The one we used in our work can be formulated as follows. Assume
that a company has 𝑚 customers which it want to serve with goods located in
its warehouse facilities. Each of these customers has a demand 𝑑𝑐. The company
has 𝑁 warehouses, each with the capacity 𝑐𝑎𝑝𝑤. Every customer has to be served
by exactly one of the warehouses. To serve a customer 𝑐 by a warehouse 𝑤, an
amount of 𝑡𝑐𝑤 equal to the transport cost from the warehouse to the customer is
needed to be spent. Warehouses can satisfy the demands of their customers just
within the limits of their capacities. In the case that some warehouse serves at
least one customer, the amount of 𝑠𝑤, needed to open the new warehouse, has to
be added to the costs. Goal is to find such assignment of warehouses to customers
that minimizes the cost to satisfy all their demands.

Mathematically, we can describe the problem as follows. Let’s introduce a
symbol 𝑎𝑤 representing a set of customers served by warehouse 𝑤. We want to
minimize the value of:

∑︁
𝑤∈𝑁

(︂
(|𝑎𝑤|) > 𝑠𝑤 +

∑︁
𝑐∈𝑎𝑤

𝑡𝑐𝑤

)︂
(5)

subject to the conditions:
∑︁

𝑐∈𝑎𝑤

𝑑𝑐 ≤ 𝑐𝑎𝑝𝑤 ∀𝑤 ∈ 𝑁 (6)

∑︁
𝑤∈𝑁

(𝑐 ∈ 𝑎𝑤) = 1 ∀𝑤 ∈ 𝑀 (7)

2Usually WCSS, see above for definition.

5

1 Optimization problems and local search algorithms

One simple local search algorithm that can be used to solve this problem is
based on the idea similar to the clusterswap algorithm described above. At the
beginning we assign a warehouse to all customers in the following manner. Start-
ing from the customers with the highest demand, to each customer we assign a
warehouse with the lowest transport cost that has any capacity left to serve this
customer. If there is no warehouse able to satisfy the demand of the customer,
we assign the customer to a randomly selected one. Then in each step of the
algorithm we randomly select a customer and try to assign it to other randomly
selected warehouse. If this move results in a better fitness value, we change the
assignments appropriately. Otherwise we revert to the previous configuration. To
avoid stepping into the invalid solution, that would violate the constraints, we
make such solutions practically unacceptable by giving them a very large fitness
value.

6

2 Evaluation of algorithm quality

In this chapter we will look at the problem of evaluating the algorithm quality.
This is a key question as there exists many ways how to do so and the answer
is crucial when it comes to comparing the performance of different algorithms
among themselves.

Another area when this is quite important is finding a good algorithm configu-
ration. Almost every algorithm usually has several parameters, setting values of
which is left to the concrete implementation. These settings are often problem-
specific and their optimal values may be different for each instance of the prob-
lem. Coming up with optimal configuration can be a complex problem in itself
and likely will include running the algorithm many times with different values
of parameters. Such parameter tuning may, however, dramatically improve the
performance of an algorithm.

2.1 Fitness function
Essential aspect of the quality of optimization algorithm is the quality of solutions
it finds, which is reflected in the fitness function.

A simple way how to compare the ability of algorithms to find a good solution
is, for example, graph of the average fitness value of the best solution found so
far, dependent on the number of fitness evaluations available to the algorithm.
In addition to the quality of the final solutions it also shows the whole search
process and the convergence of the fitness.

When comparing algorithms, we often want one concrete number according to
which we could determine which of them will be considered better for our needs.

One option to obtain such number from the graph of a fitness value is to specify
a certain number of fitness evaluations 𝑏 and to take as a metric the quality of
the best solution found with a budget of 𝑏 fitness evaluations.

However this quality measure has a few problems. One of them can be shown
in the case of two algorithms, which converge to the same value of a fitness
function using different number of fitness evaluations. In both cases, the number
of evaluations used is lower than the specified budget 𝑏, so this measure will report
the same quality although one of the algorithms is clearly superior.

Another option is to specify a certain value of fitness function 𝑣 and compare
the algorithms according to how much fitness evaluations they consume until they
find the first solution with fitness value that is equal or better than 𝑣.

Though here remains a question what to do with algorithms whose fitness value
has never reached the value 𝑣. One solution could be to penalize such algorithms
with large value of metric (or even infinity).

7

2 Evaluation of algorithm quality

Common problem, that both metrics described above share, is that the quality
of algorithm does not take into account the ongoing progress in the quality of the
solutions found during the search.

2.2 ECDF of running times
Another indicator that is used when comparing the quality of algorithms in gen-
eral is their expected running time, that is, the time that we can expect that
the algorithms will take to find a solution of a particular quality. We use the
definition from (Hansen et al. 2010):

𝐸𝑅𝑇 (𝑓𝑡) = 𝑓𝑒(𝑓 ≤ 𝑓𝑡)
𝑠𝑟

(8)

where 𝑓𝑡 is target value of a fitness function, 𝑓𝑒(𝑓 ≤ 𝑓𝑡) is the number of
fitness evaluations in which the target value was reached and a total number of
evaluations otherwise and 𝑠𝑟 is the number of successful runs of the algorithm,
i.e. those in which the target fitness value was achieved.

ERT of algorithms can be compared, for example, using the graph of empirical
cumulative distribution function (ECDF), which shows what fraction of algorithm
runs achieved some target value of a fitness function, depending on the size of the
fitness evaluations budget for given runs of the algorithm.

2.3 Aggregated performance index
For similar reasons as mentioned above, we have compared the tested meta-
strategies using a measure called Aggregated performance index (API), as defined
in an article of P. Pošík which has not been published yet (Pošík 2012). It gives
us one number that takes into account the whole ECDF graph of ERTs and can
be derived as follows.

If one had a perfect algorithm that immediately finds the optimal solution
for any problem, its ECDF graph of ERT would consist of a line defined by
equation 𝑦 = 1. In other words, the better the algorithm the smaller the area
above the curve of the ECDF graph. Consider now ERT of some algorithm for
a given problem and target function. This ERT can be depicted by horizontal
line connecting a point on the 𝑦 axis with a point on the curve. The length of
this segment is proportional to the value of ERT. If we place more such lines
that represent various problems on the graph, the sum of their lengths will be
proportional to the area above the ECDF curve. Instead of the sum we can use
their arithmetic mean which is equivalent to the logarithm of the geometric mean.
And since the logarithm is an increasing funcion we can take the geometric mean

8

2.3 Aggregated performance index

of ERTs for many problems as our measure, the Aggregated performance index:

𝐴𝑃𝐼𝐴 = exp
⎛⎝ 1

|𝑃 |
∑︁
𝑝∈𝑃

log(𝐸𝑅𝑇𝐴,𝑝)
⎞⎠ (9)

9

3 Meta-strategies

In this chapter we will describe various strategies that can be used to improve
the efficiency of problem-solving by local search, some of which we tested in our
work.

3.1 Restarting strategies
Quality of solutions found by search algorithms to some extent always depends on
their initial parameters. As for local search algorithms, probably the most impor-
tant initial parameter is the location from which the search is started. Without
taking any special measures there is a high probability that the solution found
by local search will be at most as good as the local optimum accessible from that
initial location, even when better solutions may exist in other parts of state-space.
This problem is inherent to many of the local search tasks.

Restarting strategies are one means of how to overcome this problem. Run of
an algorithm is interrupted and the search is started anew from another location.
This is done repeatedly, every time certain conditions are met. Using restarting,
algorithm searches in different parts of state-space and finds a solution that is
equal to the best of their local optima.

There are many restarting strategies, some of which are algorithm-dependent.
We will focus on a few basic ones that are easy to implement regardless of the
type of a search algorithm used and often dramatically improve results obtained
by local search.

One of the simplest restarting strategies is to start a new search from a different
location every time after some predefined, constant number of steps 𝑛. We will
call it constant restarting strategy. Proper selection of parameter 𝑛 is important,
because its optimal value can be different for each used search algorithm and
instance of a problem that is being solved.

Another approach is to restart the search only when the algorithm is not able
to find another improving solution. The question is how to detect that.

One option is to keep track of where the algorithm currently is in the solution-
space and start a new search when it has already searched certain part of it. This
approach, however, is dependent on the particular representation of a search space
and cannot be used, for example, in the case of black-box optimization where we
don’t explicitly see the solution-space.

Another option is to look at the succesive development of the quality of solutions
found by algorithm and restart the search if no further improvement can be
observed. Since we don’t look into the solution-space in this case, we also cannot
decide at any time whether a better solution will be found somewhere in the

10

3.2 Bandit strategies

future or not. Therefore we need some method to make at least a guess. We
can say, for example, with certain probability, that no improving solution will be
found when it hasn’t been found during the last 𝑘 steps taken by the algorithm.
In our work we will call this strategy stagnation-detecting restarting strategy.

3.2 Bandit strategies
Multi-armed bandit is a decision problem of an agent choosing from some available
actions, each of which provides a reward, in a such way as to maximize the sum
of the rewards obtained. More formally, let’s have a set of 𝑛 different actions
𝑎1, 𝑎2, . . . , 𝑎𝑛. The agent is selecting actions in repeated trials, one action at a
time. At time 𝑡 he chooses the action 𝑎𝑖(𝑡) and obtains the reward 𝑟𝑖(𝑡) related
to taking the selected action. Rewards of each action are random, unknown and
independently distributed.

Multi-armed bandit problem can be also viewed as an explore-exploit task. To
perform well, agent should choose the action providing the best reward as many
times as possible. But to find out which of the different available actions are
the most promising ones at the moment, he should also try as many of them as
possible during the trials. This is also called an exploration-exploitation trade-
off. There have been proposed many strategies that can be used to select an
appropriate action while maintaining some form of balance between exploration
and exploitation.

3.2.1 Epsilon-first
Epsilon-first is a simple bandit strategy that keeps the phases of exploration and
exploitation unmixed. Pure exploration is used first for 𝜖 · 𝑇 trials to explore the
rewards of the actions at the beginning. For the remaining (1 − 𝜖) · 𝑇 trials, the
most promisingly looking action is being selected (where 𝑇 is the desired number
of trials). The value of 𝜖 must belong to the open interval (0, 1). Question is how
to choose this parameter 𝜖 as optimally as possible and there’s no specific receipt
defined by the strategy.

3.2.2 Epsilon-greedy
Epsilon-greedy is probably the most commonly used from the family of simple ban-
dit strategies. First introduced in (Watkins 1989), this strategy chooses random
action uniformly with the probability of 𝜖 and with the probability of 𝑃 = (1 − 𝜖)
it chooses the action with the highest reward. This distribution of explorative vs.
exploitative behavior has the advantage that the agent can compare the quality
of the chosen action with the other ones during the whole duration of the process.
The choice of parameter 𝜖 is left to the specific implementation here as well.

11

3 Meta-strategies

3.2.3 Epsilon-decreasing
Epsilon-decreasing strategy is similar to the epsilon-greedy in that that it chooses
the best action with the probability of 𝜖. However, this time the value of 𝜖
decreases over time with the factor 1/𝑡. This provides plenty of space for explo-
ration in the beginning when rewards of all the actions are not known very well
yet. As the process progresses and agent tries more and more actions he gains
more knowledge about their suitability and he gradually reserves more and more
time to spend on the best one.

3.3 Portfolio algorithms
When solving an optimization problem we are often faced with the fact that there
are several different algorithms that we can use to find a solution. However, it is
often difficult to say in advance which of these algorithms will be the best when
dealing with the given problem instance. One possible solution to this problem
is to solve the given instances of an optimization problem with all algorithms.
Thus we are guaranteed to find as good solution as is able to find an algorithm
that is the most suitable for the given instance. On the other hand, running all
of these algorithms sequentially would be a very unefficient process. Here come
the so-called portfolio algorithms.

Portfolio algorithm is a meta-strategy that solves an instance of a problem
using multiple algorithms at once, assesing their suitability for given instance of
an optimization problem and trying to allocate computing resources efficiently, i.e.
so that the amount of resources allocated to a particular algorithm corresponds
to its success in finding a solution.

3.3.1 MetaMax
MetaMax presented by Gyorgy and Kocsis in (György and Kocsis 2011) is a
portfolio algorithm that can be used as a multi-start optimization strategy that
dynamically allocates processing resources to the algorithm instances that seem
to be the most promising ones.

It works in iterations divided into two parts. Firstly it runs all local search
algorithms from the portfolio on the given problem instance for one step. After
that it computes the value of a fitness function of their new solutions and based
on that it choses those of them that will be run in the next iteration, using some
heuristic function.

There are three different variants of this meta-strategy that we will describe.
Please note that although we used a version of MetaMax modified for searching
of minima in our experiments, here we describe its variant designed for solving
maximization tasks, as it is presented by its authors in (György and Kocsis 2011).

12

3.3 Portfolio algorithms

MetaMax(k)

MetaMax(k) is a version of the strategy having a constant number of algorithms
in its portfolio whose goal is to achieve the solution quality similar to the quality
of the solution that the best of the algorithms in the portfolio is able to achieve.

Inputs (see Algorithm 1) are portfolio of algorithms and a heuristic func-
tion ℎ, that must be positive, monotone and decreasing with ℎ(0) = 1 and
𝑙𝑖𝑚𝑛→∞ℎ(𝑛) = 0. In the initial phase all algorithms in the portfolio are stepped
once and the values of a fitness function of their respective solutions are saved.

In the next step there is a selection of algorithms that will be run in the fol-
lowing iteration. In each iteration we choose algorithms 𝐴𝑖 for which the point
(ℎ(𝑛𝑖, 𝑓𝑋𝑖

)) lies on the corner of an upper right convex hull of a set:{︂
(ℎ(𝑛𝑖), 𝑓𝑖) : 𝑗 = 1, ..., 𝑘} ∪ {(0, 𝑚𝑎𝑥𝑖=1,...,𝑘(𝑓𝑖))

}︂
(10)

Role of the point (0, 𝑚𝑎𝑥𝑖=1,...,𝑘(𝑓𝑖)) in this set is to ensure that we will subtract
left convex hull from the upper one defined by points {(ℎ(𝑛𝑖), 𝑓𝑖)}. We do that
because we are not interested in algorithms that use equal or grater number of
steps (and thus have lower or equal value of a decreasing function ℎ(𝑛𝑖)) to find
a solution with at most equal value of a fitness function then other ones. This
selection principle is somewhat similar to the process of finding a pareto-optimal
front (set of non-pareto-dominated solutions) with two criteria: maximizing value
of a fitness function and minimizing the number of steps used.

This selection process guaranties that in each iteration we select algorithms
that achieve the highest values of a fitness function and also those that have
been run for the lowest number of steps so-far. Thus we approach an optimal
distribution of computational resources between exploitation of the effective and
exploration of new and potentionally promising algorithms.

In the case that multiple algorithms with equal number of steps are about to
be selected we will choose just one of them at random because we don’t want to
assign unnecessarily much of the computational resources to similarly behaving
algorithms.

Mathematically, the selection process described above is derived as follows. In
(György and Kocsis 2011) authors show a lemma that states that there exist such
non-negative non-increasing function 𝑔(𝑛) with 𝑙𝑖𝑚𝑛→∞𝑔(𝑛) = 0 that:

𝑃
(︁
𝑓 * − 𝑓(𝑋̂𝑛) ≤ 𝑔(𝑛)

)︁
≥ 1 − 𝛿 (11)

where 𝑓 * represents a local optimum and 𝑓(𝑋̂𝑛) is a sequence of fitness func-
tion values of the best solutions found so-far by the algorithms in the portfolio.
The problem is that in most cases an equation of a function 𝑔 is unknown and
therefore also the convergence rate of a local search algorithm can’t be accurately

13

3 Meta-strategies

input : Algorithm instances 𝐴1, 𝐴2, ..., 𝐴𝑘

Positive monotone decreasing function ℎ with ℎ(0) = 1
and 𝑙𝑖𝑚𝑛→∞ℎ(𝑛) = 0

output: best solution found and corresponding value of fitness function
Initialization:

1 for 𝑖 = 1 to 𝑘 do
2 Step algorithm instance 𝐴𝑖 to the location 𝑋𝑖 and set its variables:
3 number of steps 𝑛𝑖 = 1
4 best fitness reached 𝑓𝑖 = 𝑓(𝑋𝑖)
5 location of maximum 𝑋̂𝑖 = 𝑋𝑖

end
Evaluation:

6 for 𝑟 = 1, 2, ... do
7 for 𝑖 = 1 to 𝑘 do
8 Select algorithm 𝐴𝑖 if there exists 𝑐 > 0 such that:

𝑓𝑋𝑖
+ 𝑐ℎ(𝑛𝑖) > 𝑓𝑋𝑗

+ 𝑐ℎ(𝑛𝑗)) for all 𝑗 = 1, ..., 𝑘 such that
(𝑛𝑖, 𝑓𝑋𝑖

) ̸= (𝑛𝑗, 𝑓𝑋𝑗
). If there are more algorithms 𝐴𝑖 selected that

have the same number of steps 𝑛𝑖, select only one of them at
random.

end
9 Step each selected algorithm 𝐴𝑖 to the location 𝑋𝑖 and update its

variables:
10 number of steps 𝑛𝑖 = 𝑛𝑖 + 1
11 best fitness reached 𝑓𝑖 = 𝑚𝑎𝑥(𝑓𝑖, 𝑓(𝑋𝑖))
12 if best fitness has changed then
13 new location of maximum 𝑋̂𝑖 = 𝑋𝑖

end

14 index of currently best algorithm 𝐼 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,...,𝑘(𝑓𝑖)
15 estimate of location of optimum 𝑋̂ = 𝑋̂𝐼

16 fitness of the estimated optimum 𝑓 = 𝑓𝐼

end
17 return (𝑋̂, 𝑓)

Algorithm 1: MetaMax(k) algorithm

determined. In some cases, however, it can be estimated at least asymptotically,
with unknown constant factor 𝑐. In those cases we can use the lemma mentioned
above to construct a group of several estimates of a local optima 𝑓 * as:

𝑓𝑖 + 𝑐𝑔(𝑛𝑖) ∀𝑐 ∈ R (12)

In each round we can then select those algorithms that for some value of a

14

3.3 Portfolio algorithms

constant factor 𝑐 achieve the greatest estimates of a fitness function value in the
optimum. However, since in most cases the equation of a function 𝑔 is not known
even up to a constant factor, in the MetaMax strategy this condition is loosened
and function 𝑔 is replaced with any positive monotone decreasing function ℎ with
lim𝑛→∞(𝑛) = 0 and ℎ(0) = 1.

Algorithms chosen by the selection process described above are then stepped
once and respective variables storing the number of steps used and the best solu-
tion found are then updated for each of them. This whole process of selection and
stepping the selected algorithms is then repeated. When designated termination
conditions are met1 the best solution found by all algorithms from the portfolio
is returned.

By optimal algorithm we will mean such an algorithm that converges to the best
estimate of 𝑓 *. The authors in (György and Kocsis 2011) prove that with increas-
ing number of iterations the quality of a solution found by MetaMax(k) strategy
becomes asymptotically identical to that of the best algorithm in its portfolio.
For any two suboptimal algorithms converging to the same solution applies that
in each iteration just one of them will be selected. MetaMax(k) therefore pre-
vents a large number of such algorithms to overtake the computational resources.
There also exists such iteration 𝑟 that from this iteration further on the optimal
algorithm will be selected as well. And if the local search algorithms from the
portfolio converge at least exponentially fast, provided that some additional con-
ditions 2 placed on the convergence rate of a function ℎ are met, it holds that
half of the total number of fitness function evaluations is used by the optimal
algorithm.

MetaMax(∞)

MetaMax(∞) (see Algorithm 2) is an adaptation of MetaMax(k) with unlimited
number of algorithms in the portfolio. At the beginning the portfolio contains only
one algorithm and in each iteration another one is added. Thus we can bypass the
problem that when there is a constant number of algorithms in the portfolio our
search is inconsistent (except when the algorithms are guaranteed to be able to
find a global optimum, but with the local search algorithms this case is unlikely).
However, when we are adding more and more new algorithms to the portfolio,
and run the strategy for unlimited time, MetaMax(∞) can guarantee that the
optimum will be found. Note that the term new algorithm can be understood
both as a completely new local search algorithm, as well as an instance of the

1E.g. after some fixed number of iterations, after reaching some value of the fitness function,
after exceeding some predefined time-period during which no improving solution has been
found, etc.

2See (György and Kocsis 2011) for mathematical details.

15

3 Meta-strategies

input : Positive monotone decreasing function ℎ with ℎ(0) = 1
and 𝑙𝑖𝑚𝑛→∞ℎ(𝑛) = 0

output: best solution found and corresponding value of fitness function
1 actual round 𝑟 = 1
2 for 𝑟 = 1, 2, ... do
3 Add new algorithm 𝐴𝑟 and initialize it by setting its variables:
4 number of steps 𝑛𝑟 = 0
5 best fitness reached 𝑓𝑟 = 0
6 for 𝑖 = 1 to 𝑟 do
7 Select algorithm 𝐴𝑖 if there exists 𝑐 > 0 such that:

𝑓𝑋𝑖
+ 𝑐ℎ(𝑛𝑖) > 𝑓𝑋𝑗

+ 𝑐ℎ(𝑛𝑗)) for all 𝑗 = 1, ..., 𝑟 such that
(𝑛𝑖, 𝑓𝑋𝑖

) ̸= (𝑛𝑗, 𝑓𝑋𝑗
). If there are more algorithms 𝐴𝑖 selected that

have the same number of steps 𝑛𝑖, select only one of them at
random.

end
8 Step each selected algorithm 𝐴𝑖 to the location 𝑋𝑖 and update

variables:
9 number of steps 𝑛𝑖 = 𝑛𝑖 + 1

10 best fitness reached 𝑓𝑖 = 𝑚𝑎𝑥(𝑓𝑖, 𝑓(𝑋𝑖))
11 if best fitness has changed then
12 new location of maximum 𝑋̂𝑖 = 𝑋𝑖

end

13 index of currently best algorithm 𝐼 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,...,𝑟(𝑓𝑖)
14 estimate of location of optimum 𝑋̂ = 𝑋̂𝐼

15 fitness of the estimated optimum 𝑓 = 𝑓𝐼

16 actual round 𝑟 = 𝑟 + 1
end

17 return (𝑋̂, 𝑓)
Algorithm 2: MetaMax(∞) algorithm

same algorithm that is initialized to another (random) location in the state-space
in which we search an optimum. In this way we can easily create an unlimited
number of algorithms that we can add to the portfolio.

The authors also mention the possibility to use a different function ℎ in each
round by which we could control the length of individual iterations. The function
ℎ could, for example, depend on the overall number of steps used by all algorithms
selected in the previous round. In our work we don’t examine this possibility
further.

16

3.3 Portfolio algorithms

MetaMax

MetaMax (see Algorithm 3) differs from the MetaMax(∞) in that that each newly-
found best algorithm 𝐴𝐼𝑟 is stepped so many times until his number of steps 𝑛𝑟

equals to the number of steps taken by previously best known algorithm 𝐴𝐼𝑟−1 .
Random selection of algorithm from the ones having equal number of steps is also
replaced with chosing the first one (the one that has the smallest index).

Practical problem which the authors in their work don’t address is that with
growing number of algorithms in the portfolio the space and time complexity as-
sociated with their management grows as well. This is why we limit the number
of algorithms contained in the portfolio at the same time. In each iteration of
MetaMax, before adding a new algorithm to the portfolio, we remove the algo-
rithm that was lately selected by the MetaMax selection in the iteration with the
smallest index 𝑟 among all algorithms in the portfolio. In cases where multiple
algorithms satisfy these conditions, the algorithm with the lowest index number3

is always selected.

For variants of MetaMax with unlimited number of algorithms in the portfolio
the authors show that these are consistent in the sense that with high probability
it holds that:

lim
𝑟→∞

𝑓𝑟 = 𝑓 * (13)

They further demonstrate that suboptimal algorithms can be selected only a
finite number of times and thus they also show the upper bound for the duration
of each round. For MetaMax variant of the strategy, they then restrict the number
of steps of an optimal algorithm as:

𝑛𝐼,𝑟 ≥
√

2𝑡𝑟 + 7 − 1
2 (14)

where 𝑡𝑟 represents the total number of steps taken by all algorithms in the
portfolio. From that they derive the convergence rate of MetaMax as:

𝑓 * − 𝑓𝑟 ≤ 𝑔

(︃
𝑛𝐼,𝑟 ≥

√
2𝑡𝑟 + 7 − 1

2

)︃
(15)

3.3.2 MultiEA
Multiple Evolutionary Algorithm (MultiEA) is a portfolio algorithm proposed by
Yuen, Chow and Zhang in (Yuen, Chow, and Zhang 2013) that can be used
as a strategy that selects algorithm that is the most suitable for solving given

3The one that was the earliest added to the portfolio.

17

3 Meta-strategies

input : Positive monotone decreasing function ℎ with ℎ(0) = 1
and 𝑙𝑖𝑚𝑛→∞ℎ(𝑛) = 0

output: best solution found and corresponding value of fitness function
1 actual round 𝑟 = 1
2 for 𝑟 = 1, 2, ... do
3 Add new algorithm 𝐴𝑟 and initialize it by setting its variables:
4 number of steps 𝑛𝑟 = 0
5 best fitness reached 𝑓𝑟 = 0
6 for 𝑖 = 1 to 𝑟 do
7 Select algorithm 𝐴𝑖 if there exists 𝑐 > 0 such that:

𝑓𝑋𝑖
+ 𝑐ℎ(𝑛𝑖) > 𝑓𝑋𝑗

+ 𝑐ℎ(𝑛𝑗)) for all 𝑗 = 1, ..., 𝑟 such that
(𝑛𝑖, 𝑓𝑋𝑖

) ̸= (𝑛𝑗, 𝑓𝑋𝑗
). If there are more algorithms 𝐴𝑖 selected that

have the same number of steps 𝑛𝑖, keep only the one with the
smallest index.

end
8 Step each selected algorithm 𝐴𝑖 to the location 𝑋𝑖 and update

variables:
9 number of steps 𝑛𝑖 = 𝑛𝑖 + 1

10 best fitness reached 𝑓𝑖 = 𝑚𝑎𝑥(𝑓𝑖, 𝑓(𝑋𝑖))
11 if best fitness has changed then
12 new location of maximum 𝑋̂𝑖 = 𝑋𝑖

end

13 index of currently best algorithm 𝐼𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,...,𝑟(𝑓𝑖)
14 if 𝐼𝑟 ̸= 𝐼𝑟−1 then
15 step algorithm 𝐴𝐼𝑟 (𝑛𝐼𝑟−1 − 𝑛𝐼𝑟 + 1) times
16 set number of steps 𝑛𝐼𝑟 = 𝑛𝐼𝑟 + 1

end
17 estimate of location of optimum 𝑋̂ = 𝑋̂𝐼𝑟

18 fitness of the estimated optimum 𝑓 = 𝑓𝐼𝑟

19 actual round 𝑟 = 𝑟 + 1
end

20 return (𝑋̂, 𝑓)
Algorithm 3: MetaMax algorithm

optimization problem. Authors describe implementation of MultiEA aimed at
minimization tasks.

Basic instrument that MultiEA uses to compare algorithms from the portfolio
between themselves is so called convergence curve. It consists of the set of points
𝐶 = {(𝑗, 𝑓𝑖(𝑗))}, where 𝑗 is an ordinal number of actual MultiEA iteration and
𝑓𝑖(𝑗) is a fitness function value of the best solution found by algorithm 𝐴𝑖 up

18

3.3 Portfolio algorithms

to the 𝑗-th iteration (inclusive). Convergence curves of each algorithm are then
used to make estimates of their fitness values in some future point, common to
all algorithms. These estimates are constructed using novel prediction measure
introduced by authors, which according to them overcomes some of the problems
found in standard extrapolation techniques and also takes into account the fact
that convergence curve of a fitness function is non-increasing.

Estimation works as follows (Yuen, Chow, and Zhang 2013). For each conver-
gence curve defined by set of points {(𝑗, 𝑓𝑖(𝑗))} we define a subset:

𝐶(𝑙) =
{︂

(𝑗 − 𝑙, 𝑓𝑖(𝑗 − 𝑙)), (𝑗 − 𝑙 + 1, 𝑓𝑖(𝑗 − 𝑙 + 1)), ..., (𝑗, 𝑓𝑖(𝑗))
}︂

(16)

Symbol 𝑙 denotes the history length. We do linear regression of multiple such
subsets with different history length and obtain lines in a form 𝑦 = 𝑎𝑥 + 𝑏 where
(𝑥, 𝑦) ∈ 𝐶. We choose some future point 𝑡 for which we want to estimate the
fitness values. Using subsets of a convergence curve we than compute these es-
timates as 𝑝𝑓(𝑙, 𝑡) = 𝑎𝑡 + 𝑏. We construct a bootstrap probability distribution
𝑏𝑝𝑑(𝑡) over the set of these estimates obtained from subsets with different history
length. By sampling from this distribution we get the final estimate 𝑓(𝑡) of a
fitness function value. Authors implemented computing the bootstrap probabil-
ity distribution using kernel smoothing estimate function 𝑘𝑠𝑑𝑒𝑛𝑠𝑖𝑡𝑦 from Matlab,
stating they used default values for all of its optional parameters.

MultiEA (see Algorithm 4) starts by stepping every algorithm 𝐴𝑖 that is in
the portfolio so many times until the fitness value of its best found solution
changes. After that the common future point 𝑡 is chosen. For each algorithm
we then construct subsets of its convergence curve described above, compute
corresponding estimates 𝑝𝑓(𝑙, 𝑡) and from them compute final estimates 𝑓𝑖 using
bootstrap probability distribution. Algorithm which gives the best estimate is
stepped in the next iteration of MultiEA.

Authors in their work assume that portfolio consists only of evolutionary al-
gorithms that work with a population of solutions and therefore they use some
additional variables denoting e.g. the population size of an algorithm. For our
purposes this was not needed so we ommited those symbols from the description
of the algorithm. Note that we also modified the notation as a whole to make it
somewhat similar to the one used when describing MetaMax.

19

3 Meta-strategies

input : Algorithm instances 𝐴1, 𝐴2, ..., 𝐴𝑘

history length 𝑙
output: best solution found and corresponding value of fitness function
Initialization:

1 for 𝑖 = 1 to 𝑘 do
2 number of steps 𝑛𝑖 = 0
3 𝑋𝑖 = initial solution
4 best fitness reached 𝑓𝑖(0) = 𝑓(𝑋𝑖)

repeat
5 step algorithm 𝐴𝑖 to new location 𝑋𝑖 and update its variables:
6 number of steps 𝑛𝑖 = 𝑛𝑖 + 1
7 best fitness reached 𝑓𝑖(𝑛𝑖) = 𝑓(𝑋𝑖)
8 location of minimum 𝑋̂𝑖(𝑛𝑖) = 𝑋𝑖

until 𝑓𝑖(𝑛𝑖) < 𝑓𝑖(𝑛𝑖 − 1);
end
Evaluation:

9 for 𝑟 = 1, 2, ... do
nearest common future point 𝑡 = 𝑚𝑎𝑥(𝑛1 + 1, 𝑛2 + 1, ..., 𝑛𝑘 + 1)

10 for 𝑖 = 1 to 𝑘 do
11 from convergence curve 𝐶𝑖 = {(𝑗, 𝑓𝑖(𝑗))|𝑗 = 1, ..., 𝑛𝑖} create

subcurves 𝐶𝑖(𝑙), ..., 𝐶𝑖(𝑛𝑖 − 1)
12 for each subcurve compute a prediction 𝑝𝑓(𝑙, 𝑡) ∀𝑙 = 1, ..., 𝑛𝑘 − 1
13 construct bootstrap probability distribution 𝑏𝑝𝑑(𝑡) and sample

from it to get 𝑝𝑓(𝑡)𝑖.
end

14 index of algorithm with the best prediction 𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖=1,...,𝑘(𝑝𝑓(𝑡)𝑖)
15 step algorithm 𝐴𝑝 once and update its variables:
16 number of steps 𝑛𝑝 = 𝑛𝑝 + 1
17 best fitness reached 𝑓𝑖 = 𝑚𝑖𝑛(𝑓𝑖, 𝑓(𝑋𝑖))
18 if best fitness has changed then
19 new location of maximum 𝑋̂𝑖 = 𝑋𝑖

end

20 index of currently best algorithm 𝐼 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖=1,...,𝑘(𝑓𝑖)
21 estimate of location of optimum 𝑋̂ = 𝑋̂𝐼

22 fitness of the estimated optimum 𝑓 = 𝑓𝐼

end
23 return (𝑋̂, 𝑓)

Algorithm 4: MultiEA algorithm

20

4 Experiments

In the following text we describe how we tested selected algorithms and meta-
strategies and the results we observed.

4.1 Optimization problems and their instances
For our tests we have chosen four problems that were introduced in the chapter 1
alongside with the algorithms that we use for solving them.

The first one is the Travelling salesman problem (TSP), a classical problem of
combinatorial optimization. We used four TSP instances from TSPLIB project1

with different number of cities, namely 42, 175, 535 and 1032. They all have
known optima, so we could see how will our algorithm behave. While the optimum
of the easiest TSP instance is rather easy to find, solving the largest one takes
much more computational resources. We implemented a local search algorithm
that uses 2-opt heuristic to find solutions for the instances.

Another problem we were testing meta-strategies with is the centroid-based
clustering. It is a common problem that is being used in many real-world tasks
and it is also one of the tasks which authors of (György and Kocsis 2011) used to
illustrate the abilities of MetaMax. We studied two different versions of cluster-
ing task. First is the k-means algorithm that uses informed search with heuris-
tic and converges relatively quickly. We therefore expected that this will be
the task in which portfolio algorithms with unbounded number of instances, like
MetaMax(∞) or MetaMax, will shine. The question is, how will they compare to
restarting strategies for which this task is suited as well. We synthetically gener-
ated many instances of a clustering problems in the two-dimensional space from
which we selected a few that were nicely separable with the following number of
clusters: 5, 10, 18 and 29. We also employed another clustering algorithm, single-
swap local search described in the first chapter. It uses less clever heuristic than
k-means, so it will converge slower and therefore the portfolio algorithms with
unbounded number of instances shouldn’t have so much of an advantage against
the ones with the fixed number of them, we suppose.

We also included the Warehouse location problem (WLP) that represents a
task of combinatorial optimization with constraints. This types of problems are
somewhat harder to solve with just a simple modifications of local search algo-
rithms and we are curious to see how will meta-strategies help here. We use
the instances with 50, 200 and 500 warehouses (the number of customers in each
instance is equal to the number of warehouses) that have known optima.

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

21

4 Experiments

4.2 Meta-strategies and their configuration
Meta-strategies that we tested are of a several varieties. There is a group of com-
monly used restarting strategies, then there is a family of portfolio algorithms
consisting of MetaMax variants and MultiEA strategy. Bandit strategies are rep-
resented by Epsilon-greedy strategy. They are described in the previous chapter.
Here we will outline what specific configuration we used for our experiments.

Sometimes we wanted to make certain parameters of a strategy dependent on
the size of a problem instance. For these cases, we introduce a symbol 𝑠, that
denotes the size of a problem instance, depending on the type of a problem. When
we talk about TSP, it will mean the number of cities in a particular TSP instance.
In clustering tasks it represents the designated number of clusters and in WLP it
refers to the number of the warehouses.

The first and the most simple restarting strategy that we tested is constant
restarting. In this strategy we restarted local search every 𝑟 × 𝑠 evaluations of a
fitness function, where 𝑟 is a restarting coefficient. This is a simple stategy whose
efficiency when solving the problems will probably heavily depend on the proper
setting of a parameter 𝑟. For our purposes we used these values of the coefficient:
100, 200, 500, 1000, 2000 and 5000.

Another restarting strategy that we use we called stagnation-detecting restart-
ing. This strategy restarts the local search when no improving solution has been
found during the last 𝑟𝑐×𝑠 evaluations of a fitness function. This strategy is more
robust and it should be less sensitive to the proper setting of the parameter 𝑟.
We also expect this strategy to achieve better results than constant restarting,
especially in larger (and more difficult) problem instances. The values used for
tuning the parameter 𝑟 are the same that we used with the previous strategy.

The other group of meta-strategies we examined is the MetaMax family of
portfolio algorithms. It should be able to automatically detect and assign more
computational resources to promising instances of local search.

We did experiments with all three variants of MetaMax described in the pre-
vious chapter. MetaMax(k) is the most simple one of them, with fixed number
of algorithms in its portfolio. For the number of local search algorithms in the
portfolio, we tried six different settings: 10, 20, 50, 100, 200 and 500 to see which
value will be the most efficient for different instances of the tasks.

MetaMax(∞), the modification of MetaMax(k) with unbounded number of in-
stances adds an effect similar to that of random restarts. In every iteration it adds
a new instance of local search into its portfolio. Because with increasing number of
iterations this brings consistency, it should be more successful than MetaMax(k),
especially when solving more difficult problems. MetaMax is another variant from
this family of strategies that improves the convergence of a promising local search
instances. If some instance of an algorithm from the portfolio becomes the best
one, it is run for increased number of evaluations.

Due to practical reasons we modified MetaMax(∞) and MetaMax strategies
so that before adding a new algorithm to the portfolio, one algorithm instance

22

4.2 Meta-strategies and their configuration

is also removed, as we described in the previous chapter. For both of them, we
tested the same six portfolio sizes as with MetaMax(k).

Another portfolio algorithm we looked at is the MultiEA. Despite the fact that
the authors in (Yuen, Chow, and Zhang 2013) state that it is parameterless, in
fact it has a few parameters which values could vary. The first one is history
length, the number of the last 𝑙 fitness values achieved by a particular algorithm
from the portfolio that will be recorded to predict its potential in the future.
While the authors describe a variant of MultiEA that keeps the whole history of
runs for each instance, because of practical reasons we limited it to the last 15
records. We believe this shouldn’t affect the prediction in a significant way.

Another, even more important parameter of MultiEA is function used for the
prediction of future values of solutions found by algorithms contained in its port-
folio. Authors in their work stated: "We use Matlab statistical toolbox function
ksdensity. Strictly speaking, ksdensity has some parameters that can be varied;
in this paper, we have used the standard values provided in Matlab for a «stan-
dard» interpolation." (Yuen, Chow, and Zhang 2013). With default values of its
parameters, this implementation of a kernel density estimator estimates proba-
bility density function using gaussian kernel and bandwidth defined according to
the Silverman’s rule of thumb, that is:

ℎ = 𝜎 ×
(︃

4
3𝑛

)︃ 1
5

(17)

where 𝜎 is the standard deviation and 𝑛 is the number of samples from which
we want to estimate the density. This, according to the documentation of Matlab
ksdensity function, "is optimal for estimating normal densities" 2. One of the
MultiEA variants that we use is implemented with the same prediction process,
sampling from the density estimated by kernel density estimator with gaussian
kernel and bandwidth value determined according to the rule described above.
We also implemented another two variants of this meta-strategy that replace the
sampling process with the arithmetic mean and median of the interpolations of
the last 𝑙 fitness values achieved by given algorithm instance. We think that the
process of selecting the predicted values by KDE bootstrapping is unnecessarily
complicated and we expect these two modified versions of MultiEA to deliver
similar results than the original one, despite their simplicity.

The last strategy that we tested is the Epsilon-greedy that belongs to the larger
group of bandit strategies. Epsilon-greedy is one of the simplest and the most
commonly used of them. With the probability of 1 − 𝜖 it runs the instance of a
local search algorithm from the portfolio that achieved the best results so-far and
otherwise it runs another randomly selected instance. For parameter tuning we
used the values of 𝜖 : 0.1, 0.3, 0.5 and 0.7. To try also other values of 𝜖 would mean
twice the number of the test cases which would require too much computational
resources. We also didn’t consider values of 𝜖 higher than 0.7 because values

2http://www.mathworks.com/help/stats/ksdensity.html

23

4 Experiments

higher than that bring too much randomness into the selection process in our
opinion. Both MultiEA and Epsilon-greedy we tested with the same number of
instances in the portfolio as the MetaMax strategies.

Although we initially wanted to run all of the tests with the generous budget
of 100000 × 𝑠 fitness function evaluations and to repeat each single test of the
particular strategy configuration on a given problem instance 25 times, we found
out that in some of the tasks this would need very large number of computational
resources and would take larger amount of time that we could afford. Therefore,
after we’ve come to this conclusion while running the tests of the TSP task, each
of the remaining optimization problems we tested with the fitness function budget
lowered to 1000 − 10000 × 𝑠 evaluations, according to the difficulty of each task
instance. We also changed the number of runs for a particular test to 10.

4.3 Results
For each of the optimization tasks we provide a section describing the results we
observed. To compare the behaviour of the tested meta-strategies we use the
convergence curves of each of the strategy with its best settings, determined by
the value of the Aggregated performance index (API). The lower the API value
the better the convergence of that particular strategy. The convergence curves
are shown in the log scale. The x-axis shows the number of fitness function
evaluations used and the y-axis shows the distance from the optimum or the best
known solution for the task instances when the optimum is not known. In each
plot we include just one of the MultiEA variants and one of the MetaMax or
MetaMax(∞) with the best API value.

We provide two different tables. One shows API values of all the meta-strategies
with their best parameters. The other table shows values of API for constant
restarting strategy and all of the strategies with the fixed portfolio sizes. Portfolio
algorithms in each of the horizontal sections of such API table have the portfolio
size that is similar to the number of restarts done by the constant restarting
strategy, in each of the problem instances. Columns of the API tables represent
the instances of optimization tasks tested.

Labels of the column consist of the name of the task (using two non-standard
abbreviations: km and ss to denote the k-means and single-swap algorithms,
respectively) and the number indicating the size of the task instance, for example
the number of the cities in the case of TSP. The same labels are also used in the
captions of the figures.

Labels of the rows consist of the name of the meta-strategy (where the eps
denotes the Epsilon-greedy strategy) and the number that shows the portfolio
size or the value of the restarting coefficient in the case of restarting strategies.
The letter k is sometimes used as an abbreviation of thousands to conserve space
(e.g. 5k represents the value of 5000).

24

4.3 Results

4.3.1 Travelling salesman problem
Figures 1 and 2 show the convergence of different meta-strategies tested on the
Travelling salesman problem (TSP) instances with 42 and 175 cities3. Of all the
TSP instances we used, the instance with 42 cities was the only one for which the
optimum was reached.

From the figures we can see that MultiEA and Metamax strategies converge
slower than restarting strategies and Epsilon-greedy. In fact, in the beginning
the convergence curve of the Epsilon-greedy strategy looks very similar to the
convergence of the restarting strategies.

The only strategies that were able to find the optimum in the instance with
42 cities are the stagnation and constant restarting strategies and the meta-
max. These three strategies also exhibit the best convergence trend of all meta-
strategies tested and are the ones that seem to have the potential to reach better
solutions with larger evaluations budget also in more difficult TSP instances.

On the other hand, MultiEA, MetaMax(k) and Epsilon-greedy are the strate-
gies that cease to converge more after about 104 − 105 and 105 − 106 evaluations
in instances with 42 and 175 cities respectively. This is to be expected, as these
three strategies are the ones with the fixed number of algorithms in their portfo-
lios. As each of the search instances reaches its local optimum, the meta-strategy
converges as well. In larger instances, namely the ones with the 535 and 1032
cities, MetaMax(k) seems to have a potential to find a little bit better solution
than MultiEA or Epsilon-greedy, but we would need larger evaluations budget to
confirm this.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

500

1000

1500

2000

2500

3000

3500

fitness evaluations

d
is

ta
n

c
e

 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−k

metamax

multiea

stagnation

Figure 1 Convergence curves for the best strategies on tsp-42.

3See appendix B.1 for convergence curves of more TSP instances.

25

4 Experiments

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

0.5

1

1.5

2

2.5

3
x 10

4

fitness evaluations

d
is

ta
n

c
e

 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−k

metamax

multiea

stagnation

Figure 2 Convergence curves for the best strategies on tsp-175.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

10
4

10
5

fitness evaluations

d
e

v
ia

ti
o

n
 f

ro
m

 o
p

ti
m

u
m

multiea−avg

multiea−kde

multiea−med

Figure 3 MultiEA strategies with different prediction functions on tsp-175.

26

4.3 Results

Table 2 compares the APIs of different portfolio algorithms with fixed number
of local search instances in their portfolios and constant restarting strategy. With
the increasing complexity of the TSP task the optimal value of restart coefficient
for constant restarting strategy increases as well. In all TSP instances this strat-
egy has the best API value, which confirms that it converges the most quickly.
Stagnation-detecting restarting strategy is not so sensitive to the proper setting
of the restarting coefficient as the values of API for this strategy are similar across
wider spectrum of portfolio sizes4.

With smaller portfolio sizes, when increasing the number of the cities in the
TSP instance, MetaMax(k) converges at a slower rate than MultiEA. However,
the portfolio size of 100 algorithm instances is a point at which this trend changes
and MetaMax(k) starts to exhibit better API values than MultiEA even for larger
TSP instances.

Figure 3 shows the performance of MultiEA strategies with different types of
prediction. When we compare them, we see that the strategy that uses boot-
strapping from the probability estimated by kernel density estimator (kde), is
always a little bit behind the other ones that use just the average or median.
Differences betwen the latter two are negligible, with the average slightly better
in smaller and median in larger instances of TSP. This is also shown in the table 2
where the APIs of the multiea-kde strategies are higher than multiea-avg or
multiea-med in almost all cases.

tsp-42 tsp-175 tsp-535 tsp-1032
constant-best 5.85 7.72 9.19 9.86
eps-best 6.68 8.02 9.30 10.01
metamax-k-best 7.38 9.50 11.02 11.76
multiea-kde-best 7.63 9.02 10.14 10.85
multiea-avg-best 7.44 8.77 9.87 10.44
multiea-med-best 7.58 8.73 9.83 10.40
stagnation-best 5.82 7.72 9.17 9.85
metamax-inf-best 7.00 9.61 11.26 11.99
metamax-best 6.99 9.59 11.25 11.96

Table 1 APIs of the best settings of tested strategies for TSP.

4See the table with more API values in appendix A.1. It is more evident in the larger TSP
instances.

27

4 Experiments

tsp-42 tsp-175 tsp-535 tsp-1032
constant-5k 6.10 7.75 9.19 9.86
eps-20 6.99 8.15 9.35 10.04
metamax-k-20 7.62 9.75 11.30 12.10
multiea-kde-20 8.00 9.51 10.75 11.33
multiea-avg-20 7.96 9.20 10.28 10.82
multiea-med-20 7.97 9.21 10.25 10.80
constant-2k 6.00 7.74 9.21 9.95
eps-50 7.44 8.43 9.46 10.13
metamax-k-50 7.92 10.02 11.59 12.44
multiea-kde-50 8.63 10.34 11.53 12.05
multiea-avg-50 8.59 9.94 10.97 11.48
multiea-med-50 8.68 9.87 10.91 11.41
constant-1k 5.90 7.73 9.19 10.11
eps-100 7.91 8.68 9.59 10.23
metamax-k-100 8.20 10.18 11.78 12.64
multiea-kde-100 9.32 10.94 12.12 12.65
multiea-avg-100 9.06 10.52 11.56 12.04
multiea-med-100 9.21 10.47 11.46 11.93
constant-500 5.91 7.72 9.36 10.31
eps-200 8.39 9.00 9.78 10.37
metamax-k-200 8.59 10.30 11.89 12.80
multiea-kde-200 9.85 11.54 12.73 13.29
multiea-avg-200 9.65 11.08 12.17 12.63
multiea-med-200 9.72 11.08 12.07 12.53
constant-200 5.86 7.97 9.88 10.83
eps-500 9.32 9.52 10.11 10.63
metamax-k-500 9.18 10.60 12.02 12.92
multiea-kde-500 10.58 12.36 13.63 14.13
multiea-avg-500 10.34 11.89 12.99 13.46
multiea-med-500 10.45 11.87 12.91 13.34

Table 2 APIs of portfolio algorithms and fixed restarting strategy for TSP.

28

4.3 Results

4.3.2 K-means clustering
The K-means clustering is different to other combinatorial optimization tasks
that we used for testing the meta-strategies in that that the k-means algorithm
converges relatively quickly in comparison to the other local search algorithms.
This is also reflected in the fact that the optima were reached for all but the last
problem instance.

Figures 4 and 5 show the convergence of meta-strategies on the k-means clus-
tering task instances with 18 and 29 clusters respectively5.

As was expected, the strategies with unbounded number of local search in-
stances achieve better results than those with the fixed portfolio size. Portfolios
with the fixed number of local search algorithms converge very quickly and then
the exploration of the state-space ends, while the unbounded portfolios are able
to fully utilize the good k-means heuristic and explore much of the promisingly
looking regions of the solution space.

In this clustering task MetaMax(∞) shows slightly better convergence rate than
MetaMax. Even more interestingly, the convergence rate of the best MetaMax(∞)
strategy surpasses even that of the constant and stagnation-detecting restart
strategies. In the largest tested clustering instance by far the worst results are
delivered by the Epsilon-greedy strategy.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

2

4

6

8

10

12
x 10

4

fitness evaluations

d
is

ta
n

c
e

 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−inf

metamax−k

multiea

stagnation

Figure 4 Convergence curves for the best strategies on km-18.

5See appendix B.2 for more instances.

29

4 Experiments

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

2

4

6

8

10

12
x 10

7

fitness evaluations

d
is

ta
n

c
e

 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−inf

metamax−k

multiea

stagnation

Figure 5 Convergence curves for the best strategies on km-29.

10
1

10
2

10
3

10
4

10
5

10
6

12589254.1179

15848931.9246

19952623.1497

25118864.3151

31622776.6017

39810717.0553

fitness evaluations

d
e

v
ia

ti
o

n
 f

ro
m

 o
p

ti
m

u
m

multiea−avg

multiea−kde

multiea−med

Figure 6 MultiEA strategies with different prediction functions on km-29.

30

4.3 Results

In contrast with the TSP task, in k-means clustering the variant of MultiEA
that uses kernel density estimator (KDE) reaches better results and with the op-
timal protfolio size even converges faster than the variants using the average or
median. The figure 6 compares the convergence rate of these MultiEA strategies
with the portfolio sizes that achieve the best API values. The multiea-kde sur-
passes both multiea-avg and multiea-med. This could be due to the fact that
predicting the future performance of the local search instance by bootstrapping
from the probability density estimated by KDE leaves more space for exploration
than more simple approaches that predict it using median or average of the ex-
trapolated fitness values.

As we noted before, in the k-means task the best MetaMax(∞) strategies for
each tested instance converge a little bit faster than MetaMax strategies. This
can also be seen in the table 3, which shows APIs of the best strategies for each of
the k-means instances. This is probably because of the informed search, backed
by k-means heuristics, which is fast and so the additional runs of the best local
search instances performed by MetaMax aren’t worth the extra evaluations of the
fitness function.

With such quickly converging local search algorithm as this one it is also not
neccessary to increase the restarting coefficient so much to improve the conver-
gency of the constant restarting strategy. For example, the differences between
the APIs of the constant-200 and constant-2000 in the largest instance, shown
in the table 4, are not so large as it was e.g. in the case of the TSP.

km-5 km-10 km-18 km-29
constant-best 0.77 1.34 1.94 4.75
eps-best 2.38 3.23 4.97 8.54
metamax-k-best 2.37 3.22 5.32 9.02
multiea-kde-best 2.42 3.43 4.93 8.57
multiea-avg-best 2.43 2.78 5.11 8.75
multiea-med-best 2.40 3.23 5.26 8.97
stagnation-best 0.62 1.28 1.99 4.66
metamax-inf-best 0.76 1.28 1.79 4.27
metamax-best 0.89 1.32 1.80 4.34

Table 3 APIs of the best settings of tested strategies for k-means.

31

4 Experiments

km-5 km-10 km-18 km-29
constant-/500/1k/2k/2k/ 1.04 1.45 2.17 4.76
eps-10 2.38 3.39 5.10 9.47
metamax-k-10 2.37 3.55 5.41 9.56
multiea-kde-10 2.42 3.51 5.10 8.85
multiea-avg-10 2.43 2.78 5.25 9.39
multiea-med-10 2.40 3.34 5.32 9.05
constant-/200/500/1k/1k/ 0.77 1.49 1.94 4.98
eps-20 3.02 3.23 4.97 8.54
metamax-k-20 3.01 3.22 5.32 9.12
multiea-kde-20 3.03 3.43 4.93 9.58
multiea-avg-20 3.05 3.35 5.11 9.51
multiea-med-20 3.05 3.23 5.26 9.25
constant-/100/200/500/500/ 0.85 1.34 2.11 5.01
eps-50 3.92 4.06 5.27 9.04
metamax-k-50 3.92 3.95 5.61 9.37
multiea-kde-50 3.93 4.09 5.77 9.35
multiea-avg-50 3.93 4.09 5.30 8.75
multiea-med-50 3.93 4.08 5.37 9.22
constant-/—/100/200/200/ —– 1.44 1.98 4.80
eps-100 4.61 4.67 5.65 8.86
metamax-k-100 4.61 4.62 5.80 9.15
multiea-kde-100 4.61 4.70 5.84 9.27
multiea-avg-100 4.61 4.73 5.82 8.80
multiea-med-100 4.62 4.73 5.60 9.19
constant-/—/—/100/100/ —– —– 1.97 4.95
eps-200 5.30 5.35 6.01 9.01
metamax-k-200 5.30 5.31 6.07 9.02
multiea-kde-200 5.30 5.38 6.37 8.57
multiea-avg-200 5.30 5.38 6.02 8.84
multiea-med-200 5.31 5.39 5.99 8.97
eps-500 6.22 6.23 6.66 9.14
metamax-k-500 6.21 6.22 6.60 9.57
multiea-kde-500 6.22 6.26 6.74 9.34
multiea-avg-500 6.22 6.27 6.69 9.03
multiea-med-500 6.22 6.26 6.71 9.31

Table 4 APIs of portfolio algorithms and fixed restarting strategy for k-means.

32

4.3 Results

4.3.3 Single-swap clustering
The single-swap algorithm, in contrast with k-means, doesn’t use any clever
heuristic to determine the direction of the search. This results in strategies having
low convergence rate and finding solutions with not so good fitness as in the case
of k-means.

Figures 7 and 8 show the same instances of a clustering task that were displayed
for the k-means task, with 18 and 29 clusters and plots showing the average
convergence rates for the settings of strategies that yield the best values of API.
We can see that none of the displayed strategies reached the optima.

Epsilon-greedy strategy converges almost at the same rate as the restarting
strategies and the MultiEA strategy shows similar rate, albeit a little bit slower
in the beginning. Both also converge faster than any MetaMax strategy.

Using the single-swap algorithm, MetaMax strategy exhibits a little bit higher
convergence rate than MetaMax(∞), except for the first instance with 5 clusters.
This is opposite to the k-means, as well as is the fact that in the largest clustering
instance the MetaMax(k) doesn’t seem to achieve better results than the restart-
ing strategies, although admittedly, larger budget of fitness function evaluations
would be needed to confirm this.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3
x 10

5

fitness evaluations

d
is

ta
n

c
e

 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−k

metamax

multiea

stagnation

Figure 7 Convergence curves for the best strategies on ss-18.

33

4 Experiments

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

0.5

1

1.5

2

2.5
x 10

8

fitness evaluations

d
is

ta
n

c
e

 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−k

metamax

multiea

stagnation

Figure 8 Convergence curves for the best strategies on ss-29.

10
1

10
2

10
3

10
4

10
5

10
6

10
6

10
7

10
8

10
9

fitness evaluations

d
e

v
ia

ti
o

n
 f

ro
m

 o
p

ti
m

u
m

multiea−avg

multiea−kde

multiea−med

Figure 9 MultiEA strategies with different prediction functions on ss-29.

34

4.3 Results

From the figure 9 which shows the convergence curves of different MultiEA
strategies on the largest single-swap clustering instance, we can see that the con-
vergence curves shown here resemble more the ones from the TSP than the ones
from the k-means problem. However, in this task the eps-med strategy has the
highest convergence rate, especially in the beginning phase and by fair margin.
From the table 6 we see that this phenomenon occurs in all but the smallest
problem instance.

The table 5 shows the best APIs reached by a particular strategy in a single-
swap tasks. Comparing restarting strategies, the constant restarting strategy has
better API value only in the smallest clustering instance. In all other instances,
the more difficult ones, stagnacy-detecting restarting converges faster. MetaMax
strategies with unbounded number of algorithms in their portfolios dominate the
MetaMax(k) strategy, but with much smaller improvements over it as it was in
the case of the k-means clustering. Except for the smallest clustering instance,
MetaMax has slightly better convergence than MetaMax(∞), which is the oppo-
site to the k-means. Overall we can tell that the restarting strategies are the ones
most performant here.

In the table 6 we see the similar trend as was noted before - MetaMax(k) seems
to be using larger portfolios more efficiently than the MultiEA strategy, more so
with increasing the number of clusters in a single-swap task. Take for example
the task ss-18. While with the portfolio comprised of 10 local search instances the
MetaMax(k) has the API value of 4.17 whereas the best MultiEA variant has the
API of 3.91, with increasing portfolio size the API values of MultiEA strategies
increase faster than that of MetaMax(k). With the portfolios of 100 algorithms
they are equal and further on MultiEA strategies have higher API values than
MetaMax(k).

ss-5 ss-10 ss-18 ss-29
constant-best 1.70 2.48 2.84 3.89
eps-best 3.15 3.53 3.77 4.47
metamax-k-best 3.27 3.82 4.17 5.22
multiea-kde-best 3.22 3.77 4.13 5.04
multiea-avg-best 3.27 3.81 4.11 4.98
multiea-med-best 3.25 3.66 3.91 4.66
stagnation-best 1.83 2.36 2.69 3.85
metamax-inf-best 2.09 2.92 3.40 4.82
metamax-best 2.15 2.83 3.37 4.72

Table 5 APIs of the best settings of tested strategies for single-swap.

35

4 Experiments

ss-5 ss-10 ss-18 ss-29
constant-/500/1k/2k/2k/ 2.11 2.48 3.05 3.89
eps-10 3.15 3.53 3.77 4.47
metamax-k-10 3.27 3.82 4.17 5.22
multiea-kde-10 3.22 3.77 4.13 5.04
multiea-avg-10 3.27 3.81 4.11 4.98
multiea-med-10 3.25 3.66 3.91 4.66
constant-/200/500/1k/1k/ 2.23 2.52 2.85 3.94
eps-20 3.68 3.94 4.23 4.78
metamax-k-20 3.81 4.28 4.63 5.56
multiea-kde-20 3.75 4.38 4.68 5.51
multiea-avg-20 3.82 4.29 4.61 5.50
multiea-med-20 3.77 4.18 4.39 5.06
constant-/100/200/500/500/ 1.70 2.63 3.20 4.00
eps-50 4.41 4.60 4.82 5.20
metamax-k-50 4.54 4.90 5.28 6.08
multiea-kde-50 4.58 5.07 5.41 6.24
multiea-avg-50 4.57 5.03 5.39 6.16
multiea-med-50 4.52 4.86 5.13 5.71
constant-/—/100/200/200/ —– 2.71 3.00 4.08
eps-100 5.03 5.17 5.32 5.64
metamax-k-100 5.11 5.45 5.69 6.31
multiea-kde-100 5.19 5.65 5.95 6.84
multiea-avg-100 5.19 5.62 5.96 6.72
multiea-med-100 5.11 5.49 5.69 6.20
constant-/—/—/100/100/ —– —– 2.93 4.17
eps-200 5.66 5.77 5.87 6.12
metamax-k-200 5.72 5.98 6.22 6.70
multiea-kde-200 5.80 6.24 6.60 7.38
multiea-avg-200 5.79 6.20 6.53 7.32
multiea-med-200 5.75 6.08 6.30 6.79
eps-500 6.53 6.60 6.66 6.80
metamax-k-500 6.57 6.74 6.91 7.27
multiea-kde-500 6.67 7.04 7.42 8.21
multiea-avg-500 6.67 7.03 7.36 8.11
multiea-med-500 6.62 6.93 7.15 7.58

Table 6 APIs of portfolio algorithms and fixed restarting strategy for single-swap.

36

4.3 Results

4.3.4 Warehouse location problem
The Warehouse location problem (WLP) is a combinatorial optimization task
that is hard to solve with a simple local search algorithm, because many of the
generated solutions will inevitably violate some of the constraints the task defines.

Figures 10 and 11 show the average convergence curves of tested meta-strategies
with the best settings determined by the smallest API value. Portfolios with un-
bounded number of algorithms as well as the restarting strategies continue to
perform best. With the given budget of fitness evaluations, MetaMax(∞) de-
livers the best solutions in both displayed wlp instances. It is however closly
followed by constant and stagnacy-detecting restarting strategies. Regarding the
convergence rate, both variants of Metamax converge at the slowest pace up to
about 105 fitness evaluations, where the convergence rate of the other strategies
considerably slows down while the MetaMax(∞) continues to converge at almost
the same rate, even higher than constant or stagnation-detecting restarting strate-
gies. While the MultiEA strategy in the beginning converges almost as quickly
as the restarting strategies, in the end it performs worst.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−inf

metamax−k

multiea

stagnation

Figure 10 Convergence curves for the best strategies on wlp-50.

37

4 Experiments

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

4

fitness evaluations

d
is

ta
n

c
e

 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−inf

metamax−k

multiea

stagnation

Figure 11 Convergence curves for the best strategies on wlp-500.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

19952.6231

25118.8643

fitness evaluations

d
e

v
ia

ti
o

n
 f

ro
m

 o
p

ti
m

u
m

multiea−avg

multiea−kde

multiea−med

Figure 12 MultiEA strategies with different prediction functions on wlp-500.

38

4.3 Results

In WLP instances with 50 and 200 warehouses, there are practically no differ-
ences in the convergence rate of the best MultiEA strategies with the different
means of predicting the future performance of the algorithm instance. Their con-
vergence curves look almost the same. In the WLP instance with 500 warehouses
there’s a small difference though. While the multiea-avg and multiea-med
have the best API values with the portfolio size of 50 algorithms, in the case
of multiea-kde the best API value is achieved with 500 algorithms. However,
given that the multiea-kde uses 50 times larger portfolio, the difference in the
convergence that is visible in the figure 12 seems minor.

When we compare the best API values achieved by the strategies, shown in the
table 7, we see that restarting strategies converge faster, with the constant restart-
ing having slightly better API values than stagnacy-detecting restarting strategy.
MetaMax doesn’t make any improvement over the convergence of MetaMax(∞).
In fact, it performs slightly worse.

In the table 8, that compares the constant restarting strategy and various
strategies with fixed portfolio sizes, we can see similar trends as in some of the
other problems tested. Constant restarting strategy converges the most quickly.
Epsilon-greedy shows better convergence than MultiEA or MetaMax(k). Note
that in the WLP tasks with 200 and 500 warehouses the differences between the
best and the worst APIs shown in the table for any portfolio size are quite small.

wlp-50 wlp-200 wlp-500
constant-best 6.86 15.96 17.73
eps-best 7.54 16.12 17.80
metamax-k-best 8.60 16.43 18.01
multiea-kde-best 8.46 16.33 17.87
multiea-avg-best 8.00 16.24 17.87
multiea-med-best 8.19 16.27 17.90
stagnation-best 6.90 16.00 17.87
metamax-inf-best 8.84 16.40 18.03
metamax-best 8.89 16.42 18.05

Table 7 APIs of the best settings of tested strategies for WLP.

39

4 Experiments

wlp-50 wlp-200 wlp-500
constant-/—/1k/200/ —– 15.96 17.73
eps-10 7.54 16.12 17.80
metamax-k-10 8.60 16.43 18.01
multiea-kde-10 8.46 16.34 17.89
multiea-avg-10 8.00 16.30 17.90
multiea-med-10 8.19 16.46 17.93
constant-/5k/500/100/ 7.45 16.01 17.85
eps-20 7.55 16.12 17.89
metamax-k-20 8.89 16.52 18.14
multiea-kde-20 8.57 16.33 17.93
multiea-avg-20 8.00 16.24 17.99
multiea-med-20 8.19 16.27 17.93
constant-/2k/200/—/ 7.05 16.04 —–
eps-50 7.84 16.15 17.84
metamax-k-50 9.09 16.43 18.10
multiea-kde-50 8.73 16.38 17.88
multiea-avg-50 8.36 16.46 17.87
multiea-med-50 8.34 16.39 17.90
constant-/1k/100/—/ 7.22 16.09 —–
eps-100 7.93 16.21 17.92
metamax-k-100 9.14 16.47 18.21
multiea-kde-100 9.15 16.59 17.98
multiea-avg-100 8.85 16.49 18.01
multiea-med-100 8.47 16.56 17.98
constant-/500/—/—/ 7.02 —– —–
eps-200 8.26 16.27 17.98
metamax-k-200 9.08 16.45 18.20
multiea-kde-200 9.62 16.40 18.05
multiea-avg-200 9.22 16.27 18.07
multiea-med-200 8.91 16.36 17.94
constant-/200/—/—/ 6.86 —– —–
eps-500 8.71 16.51 17.97
metamax-k-500 9.25 16.50 18.18
multiea-kde-500 9.99 16.44 17.87
multiea-avg-500 9.77 16.70 17.97
multiea-med-500 9.38 16.47 18.07

Table 8 APIs of portfolio algorithms and fixed restarting strategy for WLP.

40

5 Conclusion

The goal of this work was to compare the performance and efficiency of selected
portfolio algorithms for combinatorial optimization with commonly used restart-
ing strategies for local search.

We tested two portfolio algorithms that use a different approaches to build an
online schedule, MetaMax and MultiEA, two commonly used restarting strategies,
the one with constant period of restarts and the other one that restarts the search
when it detects that the quality of the solutions found by the search process isn’t
improving anymore (the search process stagnates). We also included the Epsilon-
greedy strategy whose schedule is known in advance. Some of the strategies have
more variations. We studied three versions of MetaMax. MetaMax(k) with fixed
number of algorithm instances in the portfolio, MetaMax(∞) that adds a new al-
gorithm instance to its portfolio in every iteration and the MetaMax itself, which
is a modification of MetaMax(∞) that performs some additional evaluations of
promising algorithm instances. We also tested two new modifications of Mul-
tiEA strategy, that replaces the usage of kernel density estimator (KDE) in its
prediction process with median or average.

All these strategies we tested on four combinatorial optimization tasks. The
first one is the Travelling salesman problem (TSP). We also used two different
clustering tasks. One uses relatively fast k-means algorithm and the other one
uses randomized local search algorithm, that we call single-swap, which converges
slower. The last task is the Warehouse location problem (WLP), a combinatorial
optimization task with constraints.

For comparing the convergence of the strategies and also selecting the best
values of their parameters for every instance of an optimization task, we used the
measure called Aggregated Performance Index (API).

We found out that the constant and stagnation-detecting restarting strategies
give very similar results, both in the terms of convergence and the quality of the
solutions found. In the case of TSP the stagnation-detecting strategy seemed to
be less sensitive to the proper setting of its parameters, giving better API values
than the constant restarting on a wider range of values of its parameter, especially
on larger problem instances. Similar behaviour was seen in the WLP task.

Comparing the three MetaMax variants, MetaMax(k) is the one that clearly
gives the worst results, although it often has steeper convergence curve in the
beginning than the other MetaMax variants that use unbounded number of algo-
rithm instances. From these two, MetaMax exhibits slightly better convergence
in the TSP and single-swap clustering and MetaMax(∞) in the other two tasks.
We speculate that in some cases, when the convergence of the local search is too
fast the extra fitness evaluations that the MetaMax gives to some perspective
algorithm instances won’t pay out. This could be the case of the k-means. In

41

5 Conclusion

the WLP task, the problem probably is, that given an algorithm instance that
looks like it could deliver some good solution in the future doesn’t guarantee that
this solution will also satisfy the constraints defined by the task. Therefore many
of the extra fitness evaluations are probably used on some promisingly-looking
algorithm instances that in the end turn out to find solutions violating the con-
straints. In this case, the more conservative strategy MetaMax(∞) delivers a
little bit better results.

As for the different variants of the MultiEA strategy, they all gave similar results
except for the k-means task, where the MultiEA variant using KDE showed better
convergence rate in the largest problem instance. It may be the case that when
the optimization uses efficient heuristic, the KDE process which gives more space
for exploration than the variants using average or median has an advantage. This
can be explored further in the future. However, we think that at least with
difficult blackbox combinatorial optimization tasks, like the other ones we tested,
it is perfectly possible to replace the process of bootstrapping from the probability
density estimated by KDE with more simple and direct median or average of the
historical fitness values.

From the strategies with fixed number of algorithms in the portfolio, the
Epsilon-greedy has the best API values most of the time. In the beginning of the
search process it converges fast, sometimes on par with the restarting strategies.
MetaMax(k) exhibits the worst convergence rates in both TSP and single-swap
problems. However, regarding the solution quality, it is one of the better per-
forming fixed portfolios. On the other side, the MultiEA algorithm is the worst
performant both in TSP and WLP tasks. In fact, this strategy dissappoints us
a bit, especially when compared with much more simple Epsilon-greedy strategy
that gives similar or better results with higher convergence rate overall.

One of our main questions that we wanted to find an answer for is how will
these portfolio algorithms compare with the restarting strategies. We must say
that when it comes to the solution quality, the only portfolio algorithms that
could be compared with the restarting strategies are the unbounded versions
of MetaMax strategies, the algorithms MetaMax and MetaMax(∞). In all of
the combinatorial optimization tasks we tested, only these were able to obtain
the solution quiality similar to those of restarting strategies within the provided
budget of fitness function evaluations. However both of these algorithms usually
converge slower than the restarting strategies. In the k-means task they showed
slightly better convergence than restarting strategies in large clustering instances
and in the WLP task they surpassed the convergence rate of restarting strategies
later in the search process. While the advantage of MetaMax is that the user
doesn’t have to do extensive parameter tuning to obtain good results, stagnation-
detecting restarting strategy showed similar behaviour in some of the tasks. When
we also consider that the implementation cost of MetaMax is higher than that
of the restarting strategies, we come to conclusion that overall the restarting
strategies seem to be more effective approach and the user should start with
them. However, MetaMax seems to be delivering good long term results in a

42

combinatorial optimization tasks with constraints and it would be interesting to
investigate this more in the future. Another thing that might be worth exploring
is a modification of MultiEA strategy that would have an unbounded number of
algorithms in its portfolio.

43

Bibliography

György, András and Levente Kocsis (May 2011). “Efficient Multi-start Strategies
for Local Search Algorithms”. In: J. Artif. Int. Res. 41.2, pp. 407–444.

Hahsler, Michael and Kurt Hornik (2006). “TSP – Infrastructure for the Traveling
Salesperson Problem”. In: Journal of Statistical Software.

Hansen, N. et al. (2010). Real-Parameter Black-Box Optimization Benchmarking
2010: Experimental Setup. Tech. rep. RR-7215. INRIA.

Kajml, Viktor (Jan. 2014). Black box optimization: Restarting versus MetaMax
algorithm. Prague, Czech Republic: Czech Technical University.

Kanungo, Tapas et al. (2002). “A Local Search Approximation Algorithm for
K-means Clustering”. In: Proceedings of the Eighteenth Annual Symposium on
Computational Geometry. SCG ’02. Barcelona, Spain: ACM, pp. 10–18.

Krarup, Jakob and Peter Mark Pruzan (Jan. 1983). “The simple plant location
problem: Survey and synthesis”. In: European Journal of Operational Research
12.1, pp. 36–81.

Kuehn, Alfred A. and Michael J. Hamburger (1963). A Heuristic Program for
Locating Warehouses. Pittsburgh, Pennsylvania: Carnegie Institute of Technol-
ogy.

Lin, S. and B. W. Kernighan (1973). “An Effective Heuristic Algorithm for the
Traveling-Salesman Problem”. In: Operations Research 21.2, pp. 498–516.

Pošík, Petr (2012). Building an Aggregated Performance Index.

Watkins, Christopher John Cornish Hellaby (1989). “Learning from Delayed Re-
wards”. PhD thesis. Cambridge, UK: King’s College.

Yuen, Shiu Yin, Chi Kin Chow, and Xin Zhang (2013). “Which Algorithm Should
I Choose at Any Point of the Search: An Evolutionary Portfolio Approach”.
In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation. GECCO ’13. Amsterdam, The Netherlands: ACM, pp. 567–574.

44

Appendix A

API by strategy and parameter settings

A.1 Travelling salesman problem

tsp-42 tsp-175 tsp-535 tsp-1032
constant-100 5.85 8.49 10.54 11.40
constant-200 5.86 7.97 9.88 10.83
constant-500 5.91 7.72 9.36 10.31
constant-1k 5.90 7.73 9.19 10.11
constant-2k 6.00 7.74 9.21 9.95
constant-5k 6.10 7.75 9.19 9.86
stagnation-100 5.82 7.75 9.18 9.85
stagnation-200 5.89 7.73 9.17 9.87
stagnation-500 5.91 7.75 9.19 9.85
stagnation-1k 5.99 7.72 9.19 9.86
stagnation-2k 6.08 7.77 9.22 9.85
stagnation-5k 6.23 7.75 9.18 9.86

Table 9 APIs of restarting strategies for instances of TSP.

45

Appendix A API by strategy and parameter settings

tsp-42 tsp-175 tsp-535 tsp-1032
multiea-kde-10 7.63 9.02 10.14 10.85
multiea-kde-20 8.00 9.51 10.75 11.33
multiea-kde-50 8.63 10.34 11.53 12.05
multiea-kde-100 9.32 10.94 12.12 12.65
multiea-kde-200 9.85 11.54 12.73 13.29
multiea-kde-500 10.58 12.36 13.63 14.13
multiea-avg-10 7.44 8.77 9.87 10.44
multiea-avg-20 7.96 9.20 10.28 10.82
multiea-avg-50 8.59 9.94 10.97 11.48
multiea-avg-100 9.06 10.52 11.56 12.04
multiea-avg-200 9.65 11.08 12.17 12.63
multiea-avg-500 10.34 11.89 12.99 13.46
multiea-med-10 7.58 8.73 9.83 10.40
multiea-med-20 7.97 9.21 10.25 10.80
multiea-med-50 8.68 9.87 10.91 11.41
multiea-med-100 9.21 10.47 11.46 11.93
multiea-med-200 9.72 11.08 12.07 12.53
multiea-med-500 10.45 11.87 12.91 13.34

Table 10 APIs of MultiEA strategies for instances of TSP.

tsp-42 tsp-175 tsp-535 tsp-1032
metamax-k-10 7.38 9.50 11.02 11.76
metamax-k-20 7.62 9.75 11.30 12.10
metamax-k-50 7.92 10.02 11.59 12.44
metamax-k-100 8.20 10.18 11.78 12.64
metamax-k-200 8.59 10.30 11.89 12.80
metamax-k-500 9.18 10.60 12.02 12.92
metamax-inf-10 7.01 9.61 11.26 11.99
metamax-inf-20 7.02 9.61 11.32 12.09
metamax-inf-50 7.00 9.66 11.38 12.13
metamax-inf-100 7.05 9.71 11.42 12.19
metamax-inf-200 7.07 9.71 11.42 12.21
metamax-inf-500 7.07 9.68 11.44 12.22
metamax-10 7.00 9.59 11.25 11.96
metamax-20 6.99 9.59 11.32 12.08
metamax-50 7.02 9.64 11.34 12.14
metamax-100 7.01 9.64 11.40 12.17
metamax-200 6.99 9.68 11.40 12.17
metamax-500 7.06 9.63 11.40 12.20

Table 11 APIs of MetaMax strategies for instances of TSP.

46

A.1 Travelling salesman problem

tsp-42 tsp-175 tsp-535 tsp-1032
eps-10-0.1 6.68 8.02 9.30 10.01
eps-10-0.3 6.75 8.24 9.52 10.22
eps-10-0.5 7.02 8.49 9.83 10.53
eps-10-0.7 7.27 8.92 10.30 11.03
eps-20-0.1 6.99 8.15 9.35 10.04
eps-20-0.3 7.10 8.33 9.58 10.28
eps-20-0.5 7.12 8.57 9.89 10.58
eps-20-0.7 7.45 9.00 10.32 11.03
eps-50-0.1 7.50 8.43 9.46 10.13
eps-50-0.3 7.44 8.56 9.66 10.35
eps-50-0.5 7.52 8.79 9.95 10.64
eps-50-0.7 7.74 9.15 10.39 11.10
eps-100-0.1 7.97 8.68 9.59 10.23
eps-100-0.3 7.91 8.80 9.79 10.43
eps-100-0.5 7.95 8.99 10.05 10.72
eps-100-0.7 8.11 9.32 10.45 11.16
eps-200-0.1 8.57 9.00 9.78 10.37
eps-200-0.3 8.39 9.11 9.94 10.56
eps-200-0.5 8.48 9.27 10.19 10.81
eps-200-0.7 8.53 9.55 10.58 11.23
eps-500-0.1 9.49 9.52 10.11 10.63
eps-500-0.3 9.26 9.60 10.26 10.80
eps-500-0.5 9.27 9.79 10.46 11.02
eps-500-0.7 9.21 9.95 10.80 11.40

Table 12 APIs of Epsilon-greedy strategies for instances of TSP.

47

Appendix A API by strategy and parameter settings

A.2 K-means clustering

km-5 km-10 km-18 km-29
constant-100 0.85 1.44 1.97 4.95
constant-200 0.77 1.34 1.98 4.80
constant-500 1.04 1.49 2.11 5.01
constant-1k 0.83 1.45 1.94 4.98
constant-2k 1.05 1.68 2.17 4.76
constant-5k 0.92 1.34 1.98 4.75
stagnation-100 0.93 1.50 2.11 4.66
stagnation-200 0.71 1.28 2.23 4.70
stagnation-500 0.99 1.59 2.02 5.15
stagnation-1k 0.62 1.47 2.08 5.03
stagnation-2k 1.09 1.38 2.18 5.15
stagnation-5k 1.16 1.35 1.99 4.71

Table 13 APIs of restarting strategies for instances of k-means.

km-5 km-10 km-18 km-29
multiea-kde-10 2.42 3.51 5.10 8.85
multiea-kde-20 3.03 3.43 4.93 9.58
multiea-kde-50 3.93 4.09 5.77 9.35
multiea-kde-100 4.61 4.70 5.84 9.27
multiea-kde-200 5.30 5.38 6.37 8.57
multiea-kde-500 6.22 6.26 6.74 9.34
multiea-avg-10 2.43 2.78 5.25 9.39
multiea-avg-20 3.05 3.35 5.11 9.51
multiea-avg-50 3.93 4.09 5.30 8.75
multiea-avg-100 4.61 4.73 5.82 8.80
multiea-avg-200 5.30 5.38 6.02 8.84
multiea-avg-500 6.22 6.27 6.69 9.03
multiea-med-10 2.40 3.34 5.32 9.05
multiea-med-20 3.05 3.23 5.26 9.25
multiea-med-50 3.93 4.08 5.37 9.22
multiea-med-100 4.62 4.73 5.60 9.19
multiea-med-200 5.31 5.39 5.99 8.97
multiea-med-500 6.22 6.26 6.71 9.31

Table 14 APIs of MultiEA strategies for instances of k-means.

48

A.2 K-means clustering

km-5 km-10 km-18 km-29
metamax-k-10 2.37 3.55 5.41 9.56
metamax-k-20 3.01 3.22 5.32 9.12
metamax-k-50 3.92 3.95 5.61 9.37
metamax-k-100 4.61 4.62 5.80 9.15
metamax-k-200 5.30 5.31 6.07 9.02
metamax-k-500 6.21 6.22 6.60 9.57
metamax-inf-10 0.76 1.39 1.79 4.35
metamax-inf-20 0.91 1.28 1.90 4.39
metamax-inf-50 0.90 1.39 1.87 4.27
metamax-inf-100 0.86 1.43 1.90 4.30
metamax-inf-200 0.89 1.42 1.87 4.40
metamax-inf-500 0.92 1.35 1.85 4.28
metamax-10 0.91 1.32 1.93 4.34
metamax-20 0.96 1.56 1.94 4.46
metamax-50 1.05 1.38 1.80 4.35
metamax-100 0.90 1.41 1.89 4.45
metamax-200 0.97 1.43 1.87 4.47
metamax-500 0.89 1.39 1.86 4.40

Table 15 APIs of MetaMax strategies for instances of k-means.

49

Appendix A API by strategy and parameter settings

km-5 km-10 km-18 km-29
eps-10-0.1 2.59 3.60 5.16 10.26
eps-10-0.3 2.44 3.48 5.29 9.91
eps-10-0.5 2.40 3.65 5.49 10.03
eps-10-0.7 2.38 3.39 5.10 9.47
eps-20-0.1 3.09 3.52 4.97 8.54
eps-20-0.3 3.04 3.31 5.37 9.49
eps-20-0.5 3.02 3.23 5.23 9.16
eps-20-0.7 3.03 3.85 5.11 9.36
eps-50-0.1 3.95 4.24 5.58 9.10
eps-50-0.3 3.92 4.11 5.67 9.42
eps-50-0.5 3.93 4.06 5.27 9.04
eps-50-0.7 3.93 4.07 5.45 9.11
eps-100-0.1 4.62 4.81 5.65 8.86
eps-100-0.3 4.62 4.76 5.72 8.89
eps-100-0.5 4.61 4.71 5.77 9.02
eps-100-0.7 4.61 4.67 5.79 9.21
eps-200-0.1 5.31 5.44 6.14 9.14
eps-200-0.3 5.31 5.38 6.15 9.13
eps-200-0.5 5.30 5.35 6.01 9.54
eps-200-0.7 5.30 5.35 6.11 9.01
eps-500-0.1 6.23 6.27 6.84 9.31
eps-500-0.3 6.22 6.25 6.66 9.14
eps-500-0.5 6.22 6.24 6.69 9.20
eps-500-0.7 6.22 6.23 6.76 9.28

Table 16 APIs of Epsilon-greedy strategies for instances of k-means.

50

A.3 Single-swap clustering

A.3 Single-swap clustering

ss-5 ss-10 ss-18 ss-29
constant-100 1.70 2.71 2.93 4.17
constant-200 2.23 2.63 3.00 4.08
constant-500 2.11 2.52 3.20 4.00
constant-1k 1.77 2.48 2.85 3.94
constant-2k 1.90 2.68 3.05 3.89
constant-5k 2.05 2.63 2.84 4.08
stagnation-100 1.93 2.70 3.01 4.11
stagnation-200 2.01 2.84 2.99 4.09
stagnation-500 1.88 2.46 2.69 3.97
stagnation-1k 1.91 2.36 2.74 3.87
stagnation-2k 1.83 2.55 3.03 3.85
stagnation-5k 2.12 2.49 2.74 3.96

Table 17 APIs of restarting strategies for instances of single-swap.

ss-5 ss-10 ss-18 ss-29
multiea-kde-10 3.22 3.77 4.13 5.04
multiea-kde-20 3.75 4.38 4.68 5.51
multiea-kde-50 4.58 5.07 5.41 6.24
multiea-kde-100 5.19 5.65 5.95 6.84
multiea-kde-200 5.80 6.24 6.60 7.38
multiea-kde-500 6.67 7.04 7.42 8.21
multiea-avg-10 3.27 3.81 4.11 4.98
multiea-avg-20 3.82 4.29 4.61 5.50
multiea-avg-50 4.57 5.03 5.39 6.16
multiea-avg-100 5.19 5.62 5.96 6.72
multiea-avg-200 5.79 6.20 6.53 7.32
multiea-avg-500 6.67 7.03 7.36 8.11
multiea-med-10 3.25 3.66 3.91 4.66
multiea-med-20 3.77 4.18 4.39 5.06
multiea-med-50 4.52 4.86 5.13 5.71
multiea-med-100 5.11 5.49 5.69 6.20
multiea-med-200 5.75 6.08 6.30 6.79
multiea-med-500 6.62 6.93 7.15 7.58

Table 18 APIs of MultiEA strategies for instances of single-swap

51

Appendix A API by strategy and parameter settings

ss-5 ss-10 ss-18 ss-29
metamax-k-10 3.27 3.82 4.17 5.22
metamax-k-20 3.81 4.28 4.63 5.56
metamax-k-50 4.54 4.90 5.28 6.08
metamax-k-100 5.11 5.45 5.69 6.31
metamax-k-200 5.72 5.98 6.22 6.70
metamax-k-500 6.57 6.74 6.91 7.27
metamax-inf-10 2.11 3.02 3.40 4.82
metamax-inf-20 2.25 2.92 3.45 4.86
metamax-inf-50 2.21 2.94 3.46 4.82
metamax-inf-100 2.27 2.93 3.47 4.90
metamax-inf-200 2.09 2.97 3.56 4.85
metamax-inf-500 2.11 2.96 3.49 4.83
metamax-10 2.15 2.83 3.42 4.78
metamax-20 2.21 2.97 3.46 4.72
metamax-50 2.36 3.04 3.37 4.72
metamax-100 2.19 3.04 3.43 4.74
metamax-200 2.30 3.00 3.43 4.79
metamax-500 2.22 2.84 3.45 4.79

Table 19 APIs of MetaMax strategies for instances of single-swap.

52

A.3 Single-swap clustering

ss-5 ss-10 ss-18 ss-29
eps-10-0.1 3.15 3.53 3.77 4.47
eps-10-0.3 3.15 3.53 3.88 4.66
eps-10-0.5 3.22 3.64 4.02 4.83
eps-10-0.7 3.31 3.78 4.13 5.16
eps-20-0.1 3.68 3.94 4.23 4.78
eps-20-0.3 3.68 4.03 4.30 4.91
eps-20-0.5 3.74 4.11 4.44 5.14
eps-20-0.7 3.79 4.27 4.52 5.33
eps-50-0.1 4.41 4.60 4.82 5.20
eps-50-0.3 4.44 4.68 4.86 5.33
eps-50-0.5 4.45 4.76 4.97 5.48
eps-50-0.7 4.49 4.85 5.07 5.76
eps-100-0.1 5.03 5.17 5.32 5.64
eps-100-0.3 5.04 5.25 5.40 5.72
eps-100-0.5 5.07 5.29 5.45 5.84
eps-100-0.7 5.12 5.36 5.54 6.06
eps-200-0.1 5.66 5.77 5.87 6.12
eps-200-0.3 5.66 5.81 5.92 6.18
eps-200-0.5 5.68 5.83 5.99 6.30
eps-200-0.7 5.73 5.91 6.06 6.45
eps-500-0.1 6.53 6.60 6.66 6.80
eps-500-0.3 6.53 6.61 6.69 6.85
eps-500-0.5 6.54 6.63 6.73 6.92
eps-500-0.7 6.55 6.68 6.81 7.07

Table 20 APIs of Epsilon-greedy strategies for instances of single-swap.

53

Appendix A API by strategy and parameter settings

A.4 Warehouse location problem

wlp-50 wlp-200 wlp-500
constant-100 6.99 16.09 17.85
constant-200 6.86 16.04 17.73
constant-500 7.02 16.01 17.84
constant-1k 7.22 15.96 17.97
constant-2k 7.05 16.25 17.85
constant-5k 7.45 16.33 18.06
stagnation-100 7.10 16.20 17.88
stagnation-200 6.90 16.00 17.87
stagnation-500 7.11 16.13 17.92
stagnation-1k 7.07 16.14 17.96
stagnation-2k 7.19 16.13 17.89
stagnation-5k 7.49 16.24 17.94

Table 21 APIs of restarting strategies for instances of WLP.

wlp-50 wlp-200 wlp-500
multiea-kde-10 8.46 16.34 17.89
multiea-kde-20 8.57 16.33 17.93
multiea-kde-50 8.73 16.38 17.88
multiea-kde-100 9.15 16.59 17.98
multiea-kde-200 9.62 16.40 18.05
multiea-kde-500 9.99 16.44 17.87
multiea-avg-10 8.00 16.30 17.90
multiea-avg-20 8.00 16.24 17.99
multiea-avg-50 8.36 16.46 17.87
multiea-avg-100 8.85 16.49 18.01
multiea-avg-200 9.22 16.27 18.07
multiea-avg-500 9.77 16.70 17.97
multiea-med-10 8.19 16.46 17.93
multiea-med-20 8.19 16.27 17.93
multiea-med-50 8.34 16.39 17.90
multiea-med-100 8.47 16.56 17.98
multiea-med-200 8.91 16.36 17.94
multiea-med-500 9.38 16.47 18.07

Table 22 APIs of MultiEA strategies for instances of WLP.

54

A.4 Warehouse location problem

wlp-50 wlp-200 wlp-500
metamax-k-10 8.60 16.43 18.01
metamax-k-20 8.89 16.52 18.14
metamax-k-50 9.09 16.43 18.10
metamax-k-100 9.14 16.47 18.21
metamax-k-200 9.08 16.45 18.20
metamax-k-500 9.25 16.50 18.18
metamax-inf-10 9.05 16.44 18.15
metamax-inf-20 9.08 16.47 18.06
metamax-inf-50 8.93 16.49 18.09
metamax-inf-100 8.91 16.40 18.14
metamax-inf-200 8.95 16.55 18.14
metamax-inf-500 8.84 16.46 18.03
metamax-10 8.96 16.50 18.13
metamax-20 8.92 16.48 18.07
metamax-50 8.95 16.46 18.05
metamax-100 8.89 16.43 18.06
metamax-200 8.94 16.43 18.13
metamax-500 8.91 16.42 18.05

Table 23 APIs of MetaMax strategies for instances of WLP.

55

Appendix A API by strategy and parameter settings

wlp-50 wlp-200 wlp-500
eps-10-0.1 7.54 16.12 17.87
eps-10-0.3 7.76 16.12 17.80
eps-10-0.5 7.71 16.20 17.83
eps-10-0.7 8.14 16.31 17.95
eps-20-0.1 7.55 16.18 17.90
eps-20-0.3 7.71 16.12 17.89
eps-20-0.5 7.85 16.17 17.90
eps-20-0.7 8.18 16.21 17.98
eps-50-0.1 7.85 16.22 17.92
eps-50-0.3 7.84 16.15 17.93
eps-50-0.5 8.01 16.18 17.84
eps-50-0.7 8.27 16.26 17.97
eps-100-0.1 8.16 16.43 17.92
eps-100-0.3 7.93 16.21 18.00
eps-100-0.5 8.14 16.35 17.93
eps-100-0.7 8.40 16.35 17.98
eps-200-0.1 8.47 16.42 18.07
eps-200-0.3 8.26 16.49 17.98
eps-200-0.5 8.49 16.27 17.98
eps-200-0.7 8.63 16.49 18.11
eps-500-0.1 9.10 16.55 17.97
eps-500-0.3 8.99 16.66 18.02
eps-500-0.5 8.71 16.51 18.13
eps-500-0.7 8.93 16.70 18.13

Table 24 APIs of Epsilon-greedy strategies for instances of WLP.

56

Appendix B

Convergence curves

B.1 Travelling salesman problem

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

500

1000

1500

2000

2500

3000

3500

fitness evaluations

d
is

ta
n

c
e

 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−k

metamax

multiea

stagnation

Figure 13 Convergence curves for the best strategies on tsp-42.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

0.5

1

1.5

2

2.5

3
x 10

4

fitness evaluations

d
is

ta
n

c
e

 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−k

metamax

multiea

stagnation

Figure 14 Convergence curves for the best strategies on tsp-175.

57

Appendix B Convergence curves

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

2

4

6

8

10

12
x 10

4

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−k

metamax

multiea

stagnation

Figure 15 Convergence curves for the best strategies on tsp-535.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

0.5

1

1.5

2

2.5

3
x 10

5

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−k

metamax

multiea

stagnation

Figure 16 Convergence curves for the best strategies on tsp-1032.

58

B.2 K-means clustering

B.2 K-means clustering

10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12
x 10

4

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−inf

metamax−k

multiea

stagnation

Figure 17 Convergence curves for the best strategies on km-5.

10
0

10
1

10
2

10
3

10
4

10
5

0

5

10

15
x 10

4

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−inf

metamax−k

multiea

stagnation

Figure 18 Convergence curves for the best strategies on km-10.

59

Appendix B Convergence curves

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

2

4

6

8

10

12
x 10

4

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−inf

metamax−k

multiea

stagnation

Figure 19 Convergence curves for the best strategies on km-18.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

2

4

6

8

10

12
x 10

7

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−inf

metamax−k

multiea

stagnation

Figure 20 Convergence curves for the best strategies on km-29.

60

B.3 Single-swap clustering

B.3 Single-swap clustering

10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12

14

16

18
x 10

4

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−inf

metamax−k

multiea

stagnation

Figure 21 Convergence curves for the best strategies on ss-5.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−k

metamax

multiea

stagnation

Figure 22 Convergence curves for the best strategies on ss-10.

61

Appendix B Convergence curves

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3
x 10

5

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−k

metamax

multiea

stagnation

Figure 23 Convergence curves for the best strategies on ss-18.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

0.5

1

1.5

2

2.5
x 10

8

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−k

metamax

multiea

stagnation

Figure 24 Convergence curves for the best strategies on ss-29.

62

B.4 Warehouse location problem

B.4 Warehouse location problem

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−inf

metamax−k

multiea

stagnation

Figure 25 Convergence curves for the best strategies on wlp-50.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−inf

metamax−k

multiea

stagnation

Figure 26 Convergence curves for the best strategies on wlp-200.

63

Appendix B Convergence curves

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

4

fitness evaluations

d
is

ta
n
c
e
 f
ro

m
 o

p
ti
m

u
m

constant

eps

metamax−inf

metamax−k

multiea

stagnation

Figure 27 Convergence curves for the best strategies on wlp-500.

64

	Optimization problems and local search algorithms
	Local optimization
	Travelling salesman problem
	Centroid-based clustering
	Warehouse Location Problem

	Evaluation of algorithm quality
	Fitness function
	ECDF of running times
	Aggregated performance index

	Meta-strategies
	Restarting strategies
	Bandit strategies
	Epsilon-first
	Epsilon-greedy
	Epsilon-decreasing

	Portfolio algorithms
	MetaMax
	MetaMax(k)
	MetaMax()
	MetaMax

	MultiEA

	Experiments
	Optimization problems and their instances
	Meta-strategies and their configuration
	Results
	Travelling salesman problem
	K-means clustering
	Single-swap clustering
	Warehouse location problem

	Conclusion
	Bibliography
	API by strategy and parameter settings
	Travelling salesman problem
	K-means clustering
	Single-swap clustering
	Warehouse location problem

	Convergence curves
	Travelling salesman problem
	K-means clustering
	Single-swap clustering
	Warehouse location problem

