
Czech Technical University in Prague

Faculty of Electrical Engineering

BACHELOR’S THESIS

Steady State of Fuzzy Dynamical System

Prague, 2015 Author: Šimon Pavĺık

Prohlášeńı

Prohlašuji, že jsem svou diplomovou (bakalářskou) práci vypracoval samostatně

a použil jsem pouze podklady (literaturu, projekty, SW atd.) uvedené v přiloženém

seznamu.

V Praze dne

podpis

i

Acknowledgement

I would like to thank my supervisor Doc. Ing. Petr Hušek, Ph.D. for his guidance. I

am very grateful for the many valuable and interesting things he has taught me. I would

also like to thank my family and relatives for their patience and support throughout my

studies.

ii

Abstract

The main objective of my thesis is to design a fuzzy system using Recursive Least

Squares Algorithm (RLS), which will be applied to approximate a grey-box dynamic non-

linear model, provided we know beforehand, that the model to be identified is monotonic.

Stand-alone algorithm will be proposed, which will enforce monotonicity of the system

after each step of RLS. Finally, two different monotonic functions will be identified in

order to demonstrate the algorithm’s effect on the system’s behavior.

iii

Abstrakt

Hlavńım ćılem mé bakalářské práce je navrhnout fuzzy systém s využit́ım rekurzivńı

metody nejmenš́ıch čtverc̊u (RLS), která bude použita k aproximaci grey-box dynam-

ického nelineárńıho modelu, o němž předem v́ıme, že je monotónńı. Bude navržen

samostatný algoritmus, jenž zaruč́ı monotonicitu systému po každém kroku RLS. Nakonec

se pokuśıme identifikovat dvě r̊uzné monotonńı funkce, za účelem demonstrace vlivu al-

goritmu na chováńı systému.

iv

v

vi

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

2 Fuzzy System Composition 3

2.1 IF-THEN Rules . 3

2.2 Fuzzy Mapping . 3

2.3 Membership Functions . 4

3 Recursive Least Squares 7

3.1 Formulation of Recursive Least Squares Algorithm 8

3.1.1 Minimization Problem . 8

3.1.2 Fuzzy System Formula Modification 8

3.1.3 RLS Algorithm . 9

3.1.4 Initialization of Parameters . 9

3.2 Other Optimization Techniques . 10

3.2.1 Least Squares . 10

3.2.2 Gradient Descent Training . 10

3.2.3 Computational complexity of RLS and LS 10

4 Monotonicity Checking Algorithm 11

4.1 Conditions of Monotonicity . 11

4.2 Monotonic Initialization of RLS . 12

4.3 Monotonicity Checking . 12

4.4 Formation of Linear Inequalities . 14

4.5 Searching for Optimal Correction . 15

vii

4.6 Known Limitations . 16

5 Fuzzy Approximation of a 2-variable Function 17

5.1 Results of Enforced Monotonicity Training 18

5.2 Response to a Random Input . 21

5.3 Accuracy with Different Levels of Noise 22

5.4 Convergence of Centers Throughout Training 23

5.5 Diverging Centers . 27

6 Conclusion 29

References 31

viii

List of Figures

2.1 Examples of pseudo-trapezoid membership functions 5

2.2 Layout of the fuzzy sets . 6

3.1 Identification scheme . 7

4.1 A pair of centers causing further violations. 13

4.2 2 distant centers with violations. 13

5.1 Real paraboloid surface - no noise . 18

5.2 Real square root surface - no noise . 18

5.3 Paraboloid fuzzy identification . 19

5.4 Paraboloid monotonic fuzzy identification 19

5.5 Sqrt fuzzy identification . 20

5.6 Sqrt monotonic fuzzy identification . 20

5.7 Paraboloid random input response . 21

5.8 Sqrt random input response . 22

5.9 Paraboloid Full Update convergence . 25

5.10 Paraboloid 4-center Update convergence 25

5.11 Sqrt Full Update convergence . 26

5.12 Sqrt 4-center Update convergence . 26

5.13 Paraboloid Full Update divergence . 27

ix

x

List of Tables

5.1 RMSE - Paraboloid . 23

5.2 RMSE - Square Root . 23

xi

xii

Chapter 1

Introduction

Thanks to their excellent approximation properties fuzzy systems are widely used in the

area of non-linear black box system identification. By measuring the input-output data

pairs of the system we can accurately determine its behavior without knowing the inner

structure of the system.

In various situations we are provided with additional knowledge of certain basic prop-

erties of the identified system. Many physical systems for instance are known to be

monotonic. A higher input value produces a higher output value. Incorporating prior

information of a different nature into our model is called grey modeling.

Quality of the black box model is oftentimes limited by the scarcity of measured data,

which furthermore tend to be corrupted by noise in measurements from sensors. Poor

data leads to a less accurate model which may lack the desired properties.

If we manage to design a fuzzy mapping based on an inherently monotonic system

without taking advantage of this prior information, we may find certain areas of the

system breaching monotonicity due to errors during the identification. Behavior of the

system in these areas would then produce results which contradict our expectation. For

example, in a hydraulic model an increase in flow rate of the water supply could cause the

water level to go down. The controller based on such wrong model would then produce

opposite reaction, which could be fatal.

In the following chapters we will form a specific fuzzy system structure. We are

going to use a Recursive Least Square Algorithm enhanced by an algorithm to ensure

monotonicity in each training step. The Monotonicity Checking Algorithm will allow for

identification of models with up to 2 inputs. We are going to carry out a few experiments

in order to test the algorithm.

1

2 CHAPTER 1. INTRODUCTION

Chapter 2

Fuzzy System Composition

The main component of this work is the fuzzy system, which is used in place of a system

that we want to identify.

2.1 IF-THEN Rules

We are going to focus on a two-dimensional (2 input) version of the fuzzy system, where

fuzzy rule base is constructed for M = N1 ×N2 IF-THEN rules in the following form:

Rui1i2 : IF x1 is Ai1
1 and x2 is Ai2

2 , THEN y is Bi1i2 (2.1)

where i1 = 1, 2, ...N1, i2 = 1, 2, ..., N2, A represented by the membership functions is a

normal fuzzy set in the input space U ⊂ R2 and the center of the fuzzy set Bi1i2 denoted

by ȳi1i2 belongs to the output space V ⊂ R. ȳ is a point at which a given membership

function achieves its maximum value.

2.2 Fuzzy Mapping

Our 2 input systems will be based on the two-dimensional fuzzy mapping form

f(x) =

∑N1

i1=1

∑N2

i2=1
ȳi1i2(µ

A
i1

1

(x1)µA
i2

2

(x2))
∑N1

i1=1

∑N2

i2=1
(µ

A
i1

1

(x1)µA
i2

2

(x2))
(2.2)

consisting of a fuzzy rule base, product inference engine, singleton fuzzifier and center

average defuzzifier with centers denoted as ȳ and membership functions denoted as µ.

3

4 CHAPTER 2. FUZZY SYSTEM COMPOSITION

All the above concepts are well explained in (Wang, L. X., 1997).

The generalized version of the n-input fuzzy system with N fuzzy sets contains a total

of Nn rules with each dimension increasing the number of rules exponentially.

We need to uniformly cover the whole set U = [α1, β1] × [α2, β2] by membership

functions, in such a way that the fuzzy sets A1
i , ...A

Ni

i are complete. It means that at

every x ∈ U there exists i1 and i2 such that µ
A

i1

1

(x1)µA
i2

2

(x2)) 6= 0. The denominator of

the fuzzy system will hence always be nonzero.

2.3 Membership Functions

All fuzzy systems in the following chapters are going to use Triangular Membership Func-

tions, which come from a family of Pseudo-Trapezoid of membership functions. Fig. 2.1

shows examples of pseudo-trapezoid functions (Wang, L. X., 1997).

Definition 2.1 (Pseudo-Trapezoid Membership Function): Let [a, d] ⊂ R. The

pseudo-trapezoid membership function of fuzzy set A is a continuous function in R given

by

µA(x; a, b, c, d,H) =































I(x), x ∈ [a, b)

H, x ∈ [b, c]

D(x), x ∈ (c, d]

0, x ∈ R− (a, d)

(2.3)

where a ≤ b ≤ c ≤ d, a < d, 0 < H ≤ 1, 0 ≤ I(x) ≤ 1 is a non-decreasing function in

[a, b) and 0 ≤ D(x) ≤ 1 is a non-increasing function in (c, d]. When the fuzzy set A is

normal (that is, H = 1), its membership function is simply written as µA(x; a, b, c, d). ◮

2.3. MEMBERSHIP FUNCTIONS 5

Figure 2.1: Examples of pseudo-trapezoid membership functions

Triangular Membership Function is one of the most commonly used membership func-

tions in the field of fuzzy identification. It is the case of 2.1, where b = c and

I(x) =
x− a

b− a
, D(x) =

x− d

c− d
, (2.4)

denoted as µA(x; a, b, d). If we choose a = ∞, b = c = x̄, d = ∞ and

I(x) = D(x) = exp(−(
x− x̄

σ
)2), (2.5)

we obtain another commonly used membership function called Gaussian Membership

Function. There are certain benefits of using Gaussian Membership functions to design a

fuzzy system. It is continuously differentiable and therefore suitable for all fuzzy system

where we require the use of derivation. Moreover, its computation is very simple.

We are now going to cover the whole space with fuzzy sets consisting of triangular

membership functions each beginning at the vertex e of the preceding one in a fashion

depicted in Fig. 2.2 (Wang, L. X., 1997). The first/last membership function has its

beginning/ending at its vertex leaving its second half out of the fuzzy set.

6 CHAPTER 2. FUZZY SYSTEM COMPOSITION

Figure 2.2: Layout of the fuzzy sets

In this particular 2-dimensional configuration with Triangular Membership Functions

we have a total of 4 active fuzzy sets at any given moment. Each input is active in two

fuzzy sets provided that both inputs are belong to their domain U . We are going to take

advantage of this property during the monotonicity checking phase.

In contrast each fuzzy set with Gaussian Membership Function covers the whole do-

main, therefore it gets activated every time there is a valid incoming signal.

Another interesting attribute of the above mentioned configuration with Triangular

Membership Functions shown in Fig. 2.2 is that the denominator always sums to one,

further simplifying the fuzzy system into

f(x) =

N1
∑

i1=1

N2
∑

i2=1

ȳi1i2(µ
A

i1

1

(x1)µA
i2

2

(x2)). (2.6)

Chapter 3

Recursive Least Squares

With the structure of the fuzzy system fully specified, our next step is to determine its

parameters according to the input-output pairs. With the overall layout of the fuzzy

sets and all membership functions fixed, the parameters of our system which are free to

change are the values of centers ȳ. We are now going to proceed towards optimization of

all centers on a training set of data.

Figure 3.1: Identification scheme

7

8 CHAPTER 3. RECURSIVE LEAST SQUARES

3.1 Formulation of Recursive Least Squares

Algorithm

3.1.1 Minimization Problem

Criterion Jp in the form

Jp =

p
∑

j=1

[f(xj)− yj)]2 (3.1)

minimizes the sum of all squares of errors between the fuzzy system f(x) and the real

system y by choosing the appropriate centers ȳ for all the input-output pairs and up to the

training sample p. The identification scheme in Fig. 3.1 (Wang, L. X., 1997) shows the

process of step by step training. Recursive nature of the algorithm is achieved by training

one step at a time, which in effect means that the current choice of optimal parameters

is a function of a single previous step. An important requirement of the selected method

is that all parameters of the optimized system must be linear.

3.1.2 Fuzzy System Formula Modification

Before using the fuzzy system for two inputs designed in the previous chapter in 2.2

and 2.6, we are going to slightly modify the fuzzy mapping

f(x) =

N1
∑

i1=1

N2
∑

i2=1

ȳi1i2(µ
A

i1

1

(x1)µA
i2

2

(x2)) (3.2)

to fit the optimization problem.

We need to collect all the centers, which will be optimized into a single vector Θ with

with length N1 ×N2.

Θ = (ȳ11, .., ȳN11, ȳ12, .., ȳN12, .., ȳ1N2, .., ȳN1N2)T (3.3)

and rewrite the fuzzy system (3.2) as

f(x) = bT (x)Θ (3.4)

where

b(x) = (b11(x), .., bN11(x), b12(x), .., bN12(x), .., b1N2(x), .., bN1N2(x))T (3.5)

bi1i2(x) = µ
A

i1

1

(x1)µA
i2

2

(x2) (3.6)

3.1. FORMULATION OF RECURSIVE LEAST SQUARES ALGORITHM 9

3.1.3 RLS Algorithm

For each consecutive step p = 1, 2, ..., of our training data series we are going to update

parameters Θ in a following way:

K(p) = P (p− 1)b(xp
0)[b

T (xp
0)P (p− 1)b(xp

0) + 1]−1 (3.7)

update(p) = K(p)[yp0 − bT (xp
0)Θ(p− 1)] (3.8)

Θ(p) = Θ(p− 1) + update(p) (3.9)

P (p) = P (p− 1)− P (p− 1)b(xp
0) ·

·[bT (xp
0)P (p− 1)b(xp

0) + 1]−1bT (xp
0)P (p− 1) (3.10)

The Recursive Least Squares Algorithm is derived in (Wang, L. X., 1997).

3.1.4 Initialization of Parameters

There are two parameters which determine the rate of convergence towards the optimum

and both need to be initialized carefully.

Initial parameter Θ(0) should be chosen either based on certain knowledge we have

about the identified system, or if we are identifying a black box system, we can simply

leave all centers initialized to zero.

The second parameter initialization

P (0) = σI (3.11)

will be chosen in accordance with the first one. In general σ represents the confidence

we put into our Θ(0) choosing. Higher values of σ are going to cause higher initial

magnitudes of training updates and vice versa. The update may be exaggerated if the

initial Θ(0) differs only slightly from the reality. If we choose the σ too low, convergence

during the training and the final precision of the trained system could be poor.

P (n) is proportional to the covariance matrix of the parameters Θ. If our knowledge of

these parameters at p = 0 is very vague, a very high covariance matrix of the parameters

is to be expected, and thus we must assign a high value to σ (Tabus,I, 2012).

10 CHAPTER 3. RECURSIVE LEAST SQUARES

3.2 Other Optimization Techniques

3.2.1 Least Squares

Apart from RLS there are various other optimization approaches at hand. Related exact

method which has wide-spread applications is the classical Least Squares Method (LS).

Unlike RLS, LS finds optimal parameters in a single step. LS can often produce more

accurate results. However, there is a need to compute a matrix inverse, an operation

which brings many limitations and should generally be avoided. It requires a lot of

computational power and causes a cumulation of error due to a loss of information during

its computation.

RLS on the other hand consists of many trivial computations which have much lower

hardware requirements, therefore it is more cost efficient and suitable for real-time appli-

cations such as data and signal processing and control systems.

3.2.2 Gradient Descent Training

Another alternative to RLS is the Gradient Descent Training algorithm. It attempts to

reach the optimum by choosing the steepest descent in every step. However due to its

non-convex nature, it can get stuck in a local minimum vastly different from the optimal

solution which lies in the global minimum.

3.2.3 Computational complexity of RLS and LS

The computational complexity of RLS compared to LS is extensively reduced mostly

thanks to the absence of matrix inversion. The number of algebraic operations and re-

quired memory locations is reduced from O(r3) to O(r2) per each iteration (i.e. per new

data point) as a function of data amount r. Moreover, even more efficient algorithms

(known as ”fast algorithms”) have been developed, which further reduce the computa-

tional complexity to O(r) (Zhu, Y.M.; Li, X.R., 2007).

Chapter 4

Monotonicity Checking Algorithm

Main purpose of monotonicity checking algorithm is to ensure after each training phase of

RLS, that the identified system meets conditions of monotonicity over all trained fuzzy

centers. Area over which monotonicity has been violated needs to be corrected. It is

important to guarantee monotonicity in each step. The idea is to limit the extent of

corrections to minimum, since each correction largely modifies the outcome of RLS. Thus

the next step proceeds towards optimization by quadratic programming, which chooses

optimal corrections to minimize intervention.

4.1 Conditions of Monotonicity

Definition 4.1 (Non-Decreasing Mapping): A mapping with ordered sets of xi
1, x

j
2

is non-decreasing if ∀(i, j) xi
1 ≤ xi+1

1 , xj
2 ≤ x

j+1

2 :

f(xi
1, x

j
2) ≤ f(xi+1

1 , x
j
2) (4.1)

f(xi
1, x

j
2) ≤ f(xi

1, x
j+1

2) (4.2)

◮

Before we look at the monotonicity checking algorithm in detail we first need to

define conditions under which the fuzzy mapping 2.2 is monotonic based on 4.1. Given

our chosen type of membership functions and configuration of centers it is necessary and

sufficient that all neighboring pairs of centers meet the following conditions:

Proposition 4.1 (Non-Decreasing Fuzzy Mapping): System is non-decreasing if for

11

12 CHAPTER 4. MONOTONICITY CHECKING ALGORITHM

each individual center ȳi1i2 of the fuzzy system 2.2

ȳi1i2 ≤ ȳi1+1i2 (4.3)

ȳi1i2 ≤ ȳi1i2+1 (4.4)

Conditions of monotonicity are derived in (Lindskog, P.; Ljung, L., 1997).

4.2 Monotonic Initialization of RLS

Crucial step before the RLS training starts is to properly initialize the centers, which

must remain monotonic from the beginning. Leaving them initialized to zero would

negatively affect convergence towards optimal value. Most updates would be classified as

monotonicity breaching.

Viable solution is to initialize the centers in Θ(0) with a plane. In most cases we know

the range of the identified system’s output. Assuming prior knowledge of the minimum

and maximum value we can use it to interpolate the plane.

4.3 Monotonicity Checking

After each RLS phase we are presented with a new set of updates to each center of the

fuzzy system being trained. Given a 2 dimensional system 2.2, we obtain a total of 4 rules

with non-zero values of membership functions that were activated by the incoming data

in each step of RLS. One would expect that it results in just 4 centers to be updated.

However, because of the RLS parameter P (3.11), which depends on all previous incoming

data, any center can be updated at a given step. The resulting update is therefore more

complex.

There are two different strategies of ensuring monotonicity that we are going to use:

One is to accept the full scale update as given by RLS. Another is to limit the scale of

the update only on the area where IF conditions of the fuzzy system were activated by

the recent incoming data. This way we would only allow 4 corresponding center updates,

where we expect the updates to be most significant. That could effectively reduce the

amount of centers where monotonicity conditions were broken and limit spreading of

4.3. MONOTONICITY CHECKING 13

the non-monotonic area. On the other hand it can eventually cause an even greater

modification of the original result of RLS.

Although my algorithm is primarily designed to ensure non-decreasing properties

of the system, we can simply change the problem to non-increasing by providing the

algorithm with the opposite value of its 2 input arguments (previous center values and

updates).

In a first step algorithm determines minimum and maximum value each center is al-

lowed to have based on its surroundings without breaking system monotonicity. The first

center has no minimum and the last has no maximum value. Violations of monotonicity

are found by checking the matrix of centers against their min/max allowed values.

In certain rare configurations violations cannot be discovered simply by checking

against their nearest neighborhood as we can see in the following two examples. Or-

dering begins in the top left corner with the smallest center. The centers depicted in

yellow show the violations found so far.

Figure 4.1: A pair of centers causing further violations.

Figure 4.2: 2 distant centers with violations.

However, if we look further, we can see that the whole identified non-monotonic area

is surrounded by centers (depicted in red) that are also mutually causing violations in

relation with each other. Fig. 4.1 shows a pair of centers on the opposite sides of the

14 CHAPTER 4. MONOTONICITY CHECKING ALGORITHM

identified non-monotonic area causing monotonicity violations. Fig. 4.2 shows another

example of distant centers mutually causing monotonicity violations.

To ensure all the violations were thoroughly searched for we need to look around the

vicinity of the non-monotonic area and check each pair of centers separately. In case of

a 2 dimensional system we are comparing all the North and West pairs with East and

South pairs. The area extends as we loop through until no further violations have been

found and we can proceed to the next step.

4.4 Formation of Linear Inequalities

Once we have found all violations next step is to form inequalities between the two centers

where corrections are required. We can distinguish the relations between a violation and

its neighbor by two factors: Firstly whether the neighbor itself is also a violation and

secondly, in our 2 dimensional situation, whether it is a Northern or Western neighbor

(N,W) or a Southern or Eastern one (S,E). Altogether we have the following 4 types

equations where c stands for a correction that is necessary in order to ensure monono-

tonicity of the system and v is an index of a center or a correction with monotonicity

violation.

North or West neighbor without violation:

ȳN ≤ ȳv + cv (4.5)

ȳW ≤ ȳv + cv (4.6)

South or East neighbor without violation:

ȳv + cv ≤ ȳS (4.7)

ȳv + cv ≤ ȳE (4.8)

North or West neighbor with violation:

ȳN + cN ≤ ȳv + cv (4.9)

ȳW + cW ≤ ȳv + cv (4.10)

4.5. SEARCHING FOR OPTIMAL CORRECTION 15

South or East neighbor with violation:

ȳv + cv ≤ ȳS + cS (4.11)

ȳv + cv ≤ ȳE + cE (4.12)

4.5 Searching for Optimal Correction

Last step is to find a set of optimal corrections for all inequalities in a way that will

cause only minimal necessary modifications of the RLS outcome. The task leads to a

solution by quadratic programming. We will now arrange the linear constraints above

into a following form:

Ac ≤ b (4.13)

All linear coefficients of corrections c from the constraints are either +1, -1, or 0 and

are collected into matrix A. Vector b represents the constants of differences between the

neighboring pairs of centers, e.g. (ȳv − ȳNW).

Finally, optimization criteria for n violations is written in the following form:

J =

n
∑

i=1

c2i (4.14)

By solving a problem

min
Ac≤b

(J(c)) (4.15)

we obtain suitable set of corrections c that will return monotonicity back to our system.

Function quadprog used for quadratic programing in my algorithm is part of MAT-

LAB’s Optimization Toolbox.

The choice of using quadratic programming over linear programming is determined

by the nature of the minimization criterion. In case of linear programming conditions

could be met simply by choosing some corrections negative and others positive, which

would sum up to zero total correction. However, this solution would be far from optimal.

We are looking for a sum of absolute values of corrections to be minimal. That is the

reason we need their squares.

16 CHAPTER 4. MONOTONICITY CHECKING ALGORITHM

4.6 Known Limitations

Precision of the algorithm is somewhat limited in the very first and the very last center

of the surface, where it is the most sensitive to an extremely big or inappropriate update

suggested by the RLS in the vicinity of the given center. Both centers are restricted only

by a maximum value in case of the first center and a minimum value in case of the last.

In order to compensate wrong update near the corner the optimal correction takes part

of the update into the corner center where it has an unrestricted minimum or maximum

value. A lot of additional training around the corner area is hence necessary to bring

the center back to it’s correct value. We can partly avoid this issue by applying the

strategy mentioned at the beginning of this chapter which allows for 4 center updates.

Monotonicity is then checked only on those 4 and the error cannot spread towards corners

unless the update occurred there.

There is another property to be aware of during the early phases of training. Some-

times the algorithm chooses optimal correction, which leaves certain small areas flat. In

this situation the result of the best correction are two or more neighboring centers with

equal values.

Chapter 5

Fuzzy Approximation of a 2-variable

Function

In this chapter we are going to test the fuzzy identification with enforced monotonicity

by approximation of 2 monotonic functions of two variables. Output signal will contain

pseudorandom noise drawn from the standard uniform distribution with a maximum

magnitude 20% of its range. Training phase will be performed on 2000 steps with random

input values. Fuzzy system consists of 11 membership functions on each input, which

results in a total of 121 centers.

First function represents an elliptic paraboloid:

y1(n) = u2

1(n− 1) + u2

2(n− 1) + noise (5.1)

Second function is a square root:

y2(n) =
√

u1(n− 1) +
√

u2(n− 1) + noise (5.2)

17

18 CHAPTER 5. FUZZY APPROXIMATION OF A 2-VARIABLE FUNCTION

5.1 Results of Enforced Monotonicity Training

10
8

6

u
1

4
2

00

5

u
2

0

50

100

150

200

10

y

Figure 5.1: Real paraboloid surface - no noise

10
8

6

u
1

4
2

00

5

u
2

0

2

4

6

8

10

y

Figure 5.2: Real square root surface - no noise

5.1. RESULTS OF ENFORCED MONOTONICITY TRAINING 19

10
8

6

u
1

4
2

00

5

u
2

200

150

0

100

50

10

y fu
zz

y

Figure 5.3: Paraboloid fuzzy identification

10
8

6

u
1

4
2

00

5

u
2

0

50

100

150

200

10

y fu
zz

y-
m

on
ot

on
ic

Figure 5.4: Paraboloid monotonic fuzzy identification

20 CHAPTER 5. FUZZY APPROXIMATION OF A 2-VARIABLE FUNCTION

10
8

6

u
1

4
2

00

5

u
2

6

8

2

0

4

10

y fu
zz

y

Figure 5.5: Sqrt fuzzy identification

10
8

6

u
1

4
2

00

5

u
2

4

2

0

8

6

10

y fu
zz

y-
m

on
ot

on
ic

Figure 5.6: Sqrt monotonic fuzzy identification

5.2. RESPONSE TO A RANDOM INPUT 21

As we can see in the charts above, high noise level in both functions causes standard

fuzzy identification to greatly loose its precision. Monotonicity checking algorithm on

the other hand not only successfully preserves monotonicity, it produces a surface that

highly resembles the real function.

Fig. 5.6 shows an example of a small peak in the corner area of the surface. As

mentioned in the previous chapter this phenomenon can sometimes occur in the area of

the first and last center.

5.2 Response to a Random Input

In this experiment, we are going to measure the response of the two functions to a random

input u1, u2:

steps[k]
0 5 10 15 20 25 30 35 40 45 50

y 1

-40

-20

0

20

40

60

80

100

120

Real
Fuzzy
Monotonic Fuzzy

Figure 5.7: Paraboloid random input response

22 CHAPTER 5. FUZZY APPROXIMATION OF A 2-VARIABLE FUNCTION

steps[k]
0 5 10 15 20 25 30 35 40 45 50

y 2

0

1

2

3

4

5

6

Real
Fuzzy
Monotonic Fuzzy

Figure 5.8: Sqrt random input response

The experiment in 5.7 and 5.8 shows that The Monotonic Fuzzy System reproduces

almost perfectly whereas the Classical Fuzzy System is less smooth with various over-

shoots.

5.3 Accuracy with Different Levels of Noise

In order to quantitatively assess the degree of similarity between the identified fuzzy

function and the real function we are going to use Root Mean Square Error (RMSE). For

n acquired function values y RMSE calculation is the following:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yifuzzy − yireal)
2 (5.3)

4 different levels of noise will be used to test the 2 strategies of training from the previous

chapter.

5.4. CONVERGENCE OF CENTERS THROUGHOUT TRAINING 23

Table 5.1: RMSE - Paraboloid

4-center Update RMSE Full Update RMSE

Noise [%] Fuzzy Monotonic Fuzzy Fuzzy Monotonic Fuzzy

5 1.9249 1.6614 1.8057 1.9066

10 3.2111 2.4134 3.0428 3.2977

20 7.1775 4.8811 6.7106 5.6886

40 15.2559 7.3391 12.7160 12.5747

Table 5.2: RMSE - Square Root

4-center Update RMSE Full Update RMSE

Noise [%] Fuzzy Monotonic Fuzzy Fuzzy Monotonic Fuzzy

5 0.0815 0.0732 0.0931 0.0838

10 0.1341 0.0923 0.1139 0.0993

20 0.2339 0.1621 0.2331 0.1616

40 0.5375 0.2588 0.4380 0.3960

Collected data shows only two cases where RMSE of the monotonic fuzzy system

remains slightly higher than of the non-monotonic one. It is in the case of Full Update

strategy under low noise conditions. With higher levels of noise, deviations of both

monotonic and non-monotonic fuzzy functions remain similar.

4-center Update strategy significantly improves RMSE values of the monotonicity

enforced training. Discrepancy is especially apparent under higher noise conditions. Non-

monotonic RMSE is approximately twice as high. This seems intuitive as the spreading

of the non-monotonic area cannot occur and the essential monotonicity corrections are

less drastic.

5.4 Convergence of Centers Throughout Training

Another interesting experiment is to observe a certain center as it converges towards its

desired value with each step of RLS. Different initialization parameters of RLS lead to a

different starting phase. Following charts show progress of training a middle center ȳ61.

Overshoot within the first 300 steps can be limited by choosing the RLS parameter P

24 CHAPTER 5. FUZZY APPROXIMATION OF A 2-VARIABLE FUNCTION

smaller, which effectively puts more confidence in center initialization. The monotonic

fuzzy RLS training usually blocks exaggerated updates since they usually lead to mono-

tonicity breach. The only area susceptible to spikes, as mentioned earlier, is around the

corner centers of the fuzzy system. The figures show that the two training methods more

or less correlate and converge in the late phases of training.

5.4. CONVERGENCE OF CENTERS THROUGHOUT TRAINING 25

steps [n]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

y61

-300

-250

-200

-150

-100

-50

0

50

100

Monotonic Fuzzy
Fuzzy
Real

Figure 5.9: Paraboloid Full Update convergence

steps [n]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

y61

-40

-20

0

20

40

60

80

100

120

140

160

Monotonic Fuzzy
Fuzzy
Real

Figure 5.10: Paraboloid 4-center Update convergence

26 CHAPTER 5. FUZZY APPROXIMATION OF A 2-VARIABLE FUNCTION

steps [n]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

y61

2

3

4

5

6

7

8

Monotonic Fuzzy
Fuzzy
Real

Figure 5.11: Sqrt Full Update convergence

steps [n]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

y61

2

2.5

3

3.5

4

4.5

5

5.5

6

Monotonic Fuzzy
Fuzzy
Real

Figure 5.12: Sqrt 4-center Update convergence

5.5. DIVERGING CENTERS 27

5.5 Diverging Centers

In our final 5.13 we are going to demonstrate a situation where the progress of training

with the monotonicity enforcing method accurately converges to the value of Real System,

whereas Classical Fuzzy System diverges far above. Note that the center was initialized

precisely at the real value of the system, thus resulting to a zero initial matching error of

training. The chaotic behavior at the beginning is caused by noise and the large initial

state of the parameter P (3.11).

steps[n]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

ydi
ve

rg
in

g

60

70

80

90

100

110

120

130

140

150

Monotonic Fuzzy
Fuzzy
Real

Figure 5.13: Paraboloid Full Update divergence

28 CHAPTER 5. FUZZY APPROXIMATION OF A 2-VARIABLE FUNCTION

Chapter 6

Conclusion

We have presented a method for modeling complex non-linear systems based on fuzzy

logic. We have shown a Recursive Least Squares training algorithm used for the ad-

justment of parameters in the identified fuzzy system. We have successfully designed

and demonstrated a grey-box modeling technique, which ensures monotonicity of the

identified system and it is compatible with systems of up to two inputs. Proposed al-

gorithm used two different approaches and managed to reliably correct all monotonicity

breaching issues that emerged during the identification phases with different levels of

noise. Monotonicity Checking algorithm greatly improved training done by the Recur-

sive Least Squares algorithm. Comparison was made, which lead to plausible results

both quantitatively measured by the Root Mean Square Error and illustratively shown.

Displayed output surface of the identified systems and progress of training show the

contrast between the classical fuzzy identification and monotonicity enforced identifica-

tion. Identified monotonic systems were more similar to the original models than their

non-monotonic counterparts both visually and in terms of RMSE.

All computations and scripts were developed in MATLAB 2013b/2014b and they

are available on the enclosed CD-ROM including many further experiments on different

systems.

29

30 CHAPTER 6. CONCLUSION

Bibliography

Lindskog, P.; Ljung, L. (1997), ‘Ensuring certain physical properties in black box

models by applying fuzzy techniques’, Conference: SYSID ’97 .

Tabus,I (2012), Advanced signal processing - lecture 10: Recur-

sive least squares estimation. Tampere University of Technology

http://www.cs.tut.fi/ tabus/course/ASP/LectureNew10.pdf.

Wang, L. X. (1997), A Course in Fuzzy Systems and Control, Prentice-Hall, Inc.

ISBN 0-13-593005-7.

Zhu, Y.M.; Li, X.R. (2007), ‘Recursive least squares with linear constraints’, Commu-

nications in Information and Systems 7(3), 287–312.

31

